(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-03
(45)【発行日】2023-02-13
(54)【発明の名称】インピーダンス測定装置
(51)【国際特許分類】
G01R 27/02 20060101AFI20230206BHJP
G01R 27/08 20060101ALI20230206BHJP
【FI】
G01R27/02 A
G01R27/08
(21)【出願番号】P 2018208841
(22)【出願日】2018-11-06
【審査請求日】2021-09-27
(73)【特許権者】
【識別番号】000227180
【氏名又は名称】日置電機株式会社
(74)【代理人】
【識別番号】100104787
【氏名又は名称】酒井 伸司
(72)【発明者】
【氏名】酒井 健至
(72)【発明者】
【氏名】鎌田 康良
(72)【発明者】
【氏名】三木 昭彦
【審査官】島田 保
(56)【参考文献】
【文献】特開2012-013588(JP,A)
【文献】特開2003-121478(JP,A)
【文献】特開2014-044102(JP,A)
【文献】特開2011-257340(JP,A)
【文献】特開2013-104663(JP,A)
【文献】特開2001-281283(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 27/00-27/32
G01R 19/00-19/32
G01R 1/06-1/073
(57)【特許請求の範囲】
【請求項1】
信号源から測定対象に電圧を印加した際に当該測定対象に流れる測定用電流と、当該測定用電流が流れることによって当該測定対象の両端間に発生する両端間電圧とに基づいて当該測定対象のインピーダンスを測定するインピーダンス測定装置であって、
第1検出プローブを介して前記測定対象の一方の電極に接続される第1検出用コネクタ、第2検出プローブを介して前記測定対象の他方の電極に接続される第2検出用コネクタ、および一対の入力部間に入力される電圧に基づいて前記両端間電圧を検出する電圧検出回路が実装されると共に、前記第1検出用コネクタと前記一対の入力部のうちの一方の入力部とを接続する第1配線パターンおよび前記第2検出用コネクタと前記一対の入力部のうちの他方の入力部とを接続する第2配線パターンが形成された回路基板を備え、
前記回路基板は、グランド層、および当該グランド層を挟んで形成された一対の配線層を少なくとも含む多層配線基板で構成され、
前記第1配線パターンのうちの前記第1検出用コネクタの近傍部位と前記一方の入力部の近傍部位とを除く主たる部位は前記一対の配線層のうちの一方の配線層に形成され、
前記第2配線パターンのうちの前記第2検出用コネクタの近傍部位と前記他方の入力部の近傍部位とを除く主たる部位は、前記一対の配線層のうちの他方の配線層に形成されると共に、前記回路基板を平面視した状態において前記第1配線パターンの前記主たる部位の全体とほぼ重なる特定部位を含んでいるインピーダンス測定装置。
【請求項2】
前記グランド層の電位は、当該インピーダンス測定装置の内部基準電位である請求項1記載のインピーダンス測定装置。
【請求項3】
前記電圧検出回路は、前記一方の入力部に入力端子が接続された第1バッファ回路、および前記他方の入力部に入力端子が接続された第2バッファ回路を備えて構成され、
前記第1バッファ回路が前記一方の配線層に実装されると共に前記一方の入力部の前記近傍部位は当該一方の配線層に形成され、
前記第2バッファ回路が前記他方の配線層に実装されると共に前記他方の入力部の前記近傍部位は、当該他方の配線層に形成され、かつ前記回路基板を平面視した状態において前記第1配線パターンの前記一方の入力部の前記近傍部位とほぼ重なるように形成されている請求項1
または2記載のインピーダンス測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測定対象のインピーダンスを4端子法で測定するインピーダンス測定装置に関するものである。
【背景技術】
【0002】
この種のインピーダンス測定装置の一例として、下記の特許文献1において従来技術として開示された抵抗測定装置が知られている。この抵抗測定装置は、
図7に示すように、定電流(この特許文献1の抵抗測定装置では一例として直流定電流)を測定対象DUT(この特許文献1では一例としてスルーホール)に供給する電流源61と、この定電流が供給されているときに測定対象DUTの両端間に発生する電圧(両端間電圧)を、一対の電圧検出用のプローブ52a,52bおよび電圧検出用電路RT
Hp,RT
Lpを介して測定する電圧計51とを備え、電圧計51で測定された両端間電圧を定電流の電流値で除算することで、測定対象DUTの抵抗を算出している。
【0003】
なお、この抵抗測定装置では、電流源61から電流供給用電路RTHc,RTLcおよび一対の電流供給用のプローブ62a,62bを介して測定対象DUTに定電流を供給する際に、電流供給用電路RTHc,RTLcの周囲に磁束Φが発生し、隣接する電圧計51側の電圧検出用電路RTHp,RTLpにこの磁束Φが鎖交することにより、この電圧検出用電路RTHp,RTLpに起電力が誘起される。そして、この起電力は、両端間電圧に重畳されて電圧計51により測定されるため、誤差要因となる。
【0004】
この誤差による影響をなくすためには、上記特許文献1に開示されているように、電圧検出用電路に誘起される起電力が消滅するまで十分な待ち時間を設けて両端間電圧を測定する方法が考えられるが、電流源から測定対象に供給される定電流が直流定電流ではなく交流定電流のときには、電流供給用電路の周囲に磁束が常時発生することから、この方法は採用できない。
【0005】
そこで、電流源61から測定対象DUTに定電流を供給する
図7の構成に代えて、
図8に示すインピーダンス測定装置の構成を採用することが考えられる。このインピーダンス測定装置では、信号源71から交流電圧V1(グランドGの電位を基準とする電圧)を電流供給用電路RT
Hcおよび電流供給用のプローブ62aを介して測定対象DUTの一方の電極に印加する。また、電流供給用のプローブ62bおよび電流供給用電路RT
Lcを介して測定対象DUTの他方の電極に電流電圧変換回路72を接続し、この電流電圧変換回路72において、測定対象DUTの他方の電極の電圧をグランドGの電位に規定すると共に測定対象DUTに流れる電流Imを電圧Viに変換する。また、電圧計73でこの電圧Viを測定する。そして、このインピーダンス測定装置では、電流Imを示す電圧Viと電圧計51で測定した両端間電圧とに基づいて測定対象DUTのインピーダンスを算出する。また、電圧検出用電路RT
Hpと電圧検出用電路RT
Lpとを可能な限り接近させて(つまり、各電圧検出用電路RT
Hp,RT
Lp、各電圧検出用のプローブ52a,52bおよび測定対象DUTで囲まれる領域ARの面積を小さくして)、電流供給用電路RT
Hcおよび電流供給用電路RT
Lcの周囲に発生する磁束Φの影響を低減させている。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2010-2199号公報(第2-3頁、第2図)
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところが、上記した
図8に示すインピーダンス測定装置では、接近させた電圧検出用電路RT
Hpと電圧検出用電路RT
Lpとの間の結合容量Cが大きくなるため、信号源71から測定対象DUTに供給される電流Imのうちのこの結合容量Cを介して流れる電流が無視できない状況になる(つまり、電流電圧変換回路72で電圧Viに変換する電流に、測定対象DUTに流れた電流だけでなく、結合容量Cを介して流れた電流が含まれる状況になる)ことから、測定される測定対象DUTのインピーダンスに誤差が生じる。そこで、接近させた電圧検出用電路RT
Hpと電圧検出用電路RT
Lpとの間に不図示のシールド板(金属板)を配置して接地することで、この結合容量Cを介して流れる電流の電流電圧変換回路72側への流入を抑える(ひいては、測定対象DUTのインピーダンスの算出に及ぼす結合容量Cの影響を抑える)構成を採用することも考えられる。しかし、その構成では、シールド板(金属板)を別途配置しなければならないことから、装置コストがアップしたり、電圧検出用電路RT
Hp,RT
Lpとしての配線パターンが形成される回路基板(シールド板を実装する回路基板)の構造設計が難しくなるという課題が新たに生じる。
【0008】
本発明は、かかる解決すべき課題に鑑みてなされたものであり、電流供給用電路の周囲に発生する磁束の電圧検出用電路側への影響を低減しつつ、シールド板を別途配置することなく、各電圧検出用電路における結合容量の影響も抑え得るインピーダンス測定装置を提供することを主目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成すべく請求項1記載のインピーダンス測定装置は、信号源から測定対象に電圧を印加した際に当該測定対象に流れる測定用電流と、当該測定用電流が流れることによって当該測定対象の両端間に発生する両端間電圧とに基づいて当該測定対象のインピーダンスを測定するインピーダンス測定装置であって、第1検出プローブを介して前記測定対象の一方の電極に接続される第1検出用コネクタ、第2検出プローブを介して前記測定対象の他方の電極に接続される第2検出用コネクタ、および一対の入力部間に入力される電圧に基づいて前記両端間電圧を検出する電圧検出回路が実装されると共に、前記第1検出用コネクタと前記一対の入力部のうちの一方の入力部とを接続する第1配線パターンおよび前記第2検出用コネクタと前記一対の入力部のうちの他方の入力部とを接続する第2配線パターンが形成された回路基板を備え、前記回路基板は、グランド層、および当該グランド層を挟んで形成された一対の配線層を少なくとも含む多層配線基板で構成され、前記第1配線パターンのうちの前記第1検出用コネクタの近傍部位と前記一方の入力部の近傍部位とを除く主たる部位は前記一対の配線層のうちの一方の配線層に形成され、前記第2配線パターンのうちの前記第2検出用コネクタの近傍部位と前記他方の入力部の近傍部位とを除く主たる部位は、前記一対の配線層のうちの他方の配線層に形成されると共に、前記回路基板を平面視した状態において前記第1配線パターンの前記主たる部位の全体とほぼ重なる特定部位を含んでいる。
また、請求項2記載のインピーダンス測定装置は、請求項1記載のインピーダンス測定装置において、前記グランド層の電位は、当該インピーダンス測定装置の内部基準電位である。
【0010】
また、請求項3記載のインピーダンス測定装置は、請求項1または2記載のインピーダンス測定装置において、前記電圧検出回路は、前記一方の入力部に入力端子が接続された第1バッファ回路、および前記他方の入力部に入力端子が接続された第2バッファ回路を備えて構成され、前記第1バッファ回路が前記一方の配線層に実装されると共に前記一方の入力部の前記近傍部位は当該一方の配線層に形成され、前記第2バッファ回路が前記他方の配線層に実装されると共に前記他方の入力部の前記近傍部位は、当該他方の配線層に形成され、かつ前記回路基板を平面視した状態において前記第1配線パターンの前記一方の入力部の前記近傍部位とほぼ重なるように形成されている。
【発明の効果】
【0011】
請求項1,2記載のインピーダンス測定装置によれば、測定対象、各検出プローブおよび第1,第2配線パターンで構成される電圧検出ループ全体のうちの第1,第2配線パターンで構成される基板内電圧検出ループの面積が小さくなるように構成されることで、電圧検出回路が、回路基板に形成されて電流供給用電路の一部を構成する配線パターンの周囲に測定用電流に起因して生じる磁束の影響が大幅に低減された状態で両端間電圧を正確に検出することができ、また第1,第2配線パターンがグランド層を挟んで異なる配線層に形成されることで、電流検出回路が、第1,第2配線パターン間の結合容量の影響が回避された状態で測定用電流を正確に検出することができる。このため、このインピーダンス測定装置によれば、回路基板に形成されて電流供給用電路の一部を構成する配線パターンの周囲に発生する磁束の第1,第2配線パターン側への影響を低減しつつ、シールド板を別途配置することなく第1,第2配線パターンにおける結合容量の影響も抑えながら、測定対象のインピーダンスを正確に測定することができる。
【0012】
また、請求項3記載のインピーダンス測定装置によれば、一方の入力部に入力端子が接続された第1バッファ回路、および他方の入力部に入力端子が接続された第2バッファ回路を備えて電圧検出回路が構成され、第1バッファ回路を一方の配線層に実装して、第1配線パターンにおける一方の入力部の近傍部位を主たる部位と共に一方の配線層に形成し、第2バッファ回路を他方の配線層に実装して、第2配線パターンにおける他方の入力部の近傍部位を、主たる部位と共に他方の配線層に形成し、かつ回路基板を平面視した状態において第1配線パターンにおける近傍部位と重なるように形成する構成を採用しているため、第1,第2配線パターンで構成される基板内電圧検出ループの面積がさらに小さくなるように構成されて、上記の磁束の影響がさらに低減されると共に、第1,第2配線パターン間の結合容量の影響についてもより完全に近い形で回避されていることから、測定対象のインピーダンスをより正確に測定することができる。
【図面の簡単な説明】
【0013】
【
図1】インピーダンス測定装置1の構成を示す構成図である。
【
図2】各コネクタ2a,3a,3b,2b、信号源4および電流検出回路5と、電圧検出回路6の各バッファ回路6d,6eおよび差動増幅回路6fとが実装された回路基板9の斜視図である。
【
図3】回路基板9の第1配線層WP1側から見た第1配線層WP1上のコネクタ2a等の部品および各配線パターンP1~P4の配置図である。
【
図4】回路基板9の第1配線層WP1側から見た第2配線層WP2上のコネクタ2a等の部品および各配線パターンP1~P4の配置図である。
【
図5】回路基板9の構造を説明するための
図3におけるX-X線断面図である。
【
図6】他の回路基板9の第1配線層WP1側から見た第1配線層WP1上のコネクタ2a等の部品および各配線パターンP1~P4の配置図である。
【
図8】背景技術を説明するための他の説明図である。
【発明を実施するための形態】
【0014】
以下、インピーダンス測定装置の実施の形態について、添付図面を参照して説明する。
【0015】
まず、このインピーダンス測定装置としてのインピーダンス測定装置1の構成について、
図1を参照して説明する。
【0016】
インピーダンス測定装置1は、
図1に示すように、一対の第1供給用コネクタ2aおよび第2供給用コネクタ2b、一対の第1検出用コネクタ3aおよび第2検出用コネクタ3b、信号源4、電流検出回路5、電圧検出回路6、処理部7および出力部8を備え、測定対象DUTのインピーダンスZを測定可能に構成されている。また、インピーダンス測定装置1では、少なくとも、各供給用コネクタ2a,2b、各検出用コネクタ3a,3b、信号源4、電流検出回路5および電圧検出回路6については、共通の回路基板9に実装された状態で、インピーダンス測定装置1を構成する不図示の筐体内に配設されている。回路基板9は、一例として、
図2,5に示すように、内層としてのグランド層(回路基板9のほぼ全域に亘って形成されたグランドプレーン)GP、およびグランド層GPを挟んで形成された一対の配線層(第1配線層WP1および第1配線層WP2)を含む多層配線基板で構成されている。なお、本例では一例として、
図1に示すように、処理部7についても回路基板9に実装されているものとするが、回路基板9の外部に配設されて、不図示の接続ケーブルを介して回路基板9と接続される構成であってもよい。また、回路基板9は、一例として、3層配線基板で構成されているが、4層以上の多層配線基板であってもよい。
【0017】
第1供給用コネクタ2aには、測定対象DUTの一方の電極に接触させられる電流供給端子Hcが先端部に接続された第1供給プローブPLc1の基端部が接続される。この構成により、第1供給用コネクタ2aは、第1供給プローブPLc1および電流供給端子Hcを介して測定対象DUTの一方の電極に接続される。第2供給用コネクタ2bには、測定対象DUTの他方の電極に接触させられる電流供給端子Lcが先端部に接続された第2供給プローブPLc2の基端部が接続される。この構成により、第2供給用コネクタ2bは、第2供給プローブPLc2および電流供給端子Lcを介して測定対象DUTの他方の電極に接続される。
【0018】
第1検出用コネクタ3aには、測定対象DUTの一方の電極に接触させられる電圧検出端子Hpが先端部に接続された第1検出プローブPLp1の基端部が接続される。この構成により、第1検出用コネクタ3aは、第1検出プローブPLp1および電圧検出端子Hpを介して測定対象DUTの一方の電極に接続される。第2検出用コネクタ3bには、測定対象DUTの他方の電極に接触させられる電圧検出端子Lpが先端部に接続された第2検出プローブPLp2の基端部が接続される。この構成により、第2検出用コネクタ3bは、第2検出プローブPLp2および電圧検出端子Lpを介して測定対象DUTの他方の電極に接続される。各コネクタ2a,2b,3a,3bは、
図2に示すように、一対の配線層WP1,WP2のうちの一方の配線層(本例では一例として、第1配線層WP1)に実装されている。
【0019】
信号源4は、一例として
図1に示すように、交流電圧源4a、保護抵抗4bおよび出力部4cを備えて構成されて、
図2に示すように回路基板9の第1配線層WP1に実装されている。交流電圧源4aは、保護抵抗4bと直列接続された状態で、インピーダンス測定装置1の内部基準電位(装置1の内部グランドGの電位であるグランド層GPの電位)と出力部4cとの間に接続されて、内部グランドGを基準とする正弦波電圧信号V1(一定の周波数(既知)および一定の振幅の信号)を生成すると共に、保護抵抗4bを介して出力部4cから出力する。また、出力部4cは、回路基板9に形成された配線パターン(第3配線パターン)P3を介して第1供給用コネクタ2aに接続されている。この構成により、正弦波電圧信号V1は、配線パターンP3、第1供給用コネクタ2a、第1供給プローブPLc1および電流供給端子Hcで構成される電流供給用電路RT
Hcを介して測定対象DUTの一方の電極に供給される。また、配線パターンP3は、本例では一例として
図2に示すように、第1供給用コネクタ2aおよび信号源4が第1配線層WP1に実装されていることに対応させて、回路基板9の第1配線層WP1に形成されている。なお、第1供給用コネクタ2aおよび信号源4については、一対の配線層WP1,WP2のうちの他方の配線層(本例では一例として、第2配線層WP2)に実装される構成であってもよいし、配線パターンP3も第2配線層WP2に形成される構成であってもよい。
【0020】
電流検出回路5は、一例として
図1に示すように、入力部5a、演算増幅器5b、抵抗5cおよび出力部5dを備えて構成されて、
図2に示すように回路基板9の第1配線層WP1に実装されている。具体的には、電流検出回路5は、演算増幅器5bの反転入力端子と出力端子との間に帰還抵抗としての抵抗5cが接続されると共に、演算増幅器5bの非反転入力端子が内部グランドGに接続されて、電流電圧変換回路として構成されている。また、電流検出回路5では、演算増幅器5bの反転入力端子が入力部5aに接続され、演算増幅器5bの出力端子が出力部5dに接続されている。また、入力部5aは、回路基板9に形成された配線パターン(第4配線パターン)P4を介して第2供給用コネクタ2bに接続されている。また、配線パターンP4は、本例では一例として
図2に示すように、第2供給用コネクタ2bおよび電流検出回路5が第1配線層WP1に実装されていることに対応させて、回路基板9の第1配線層WP1に形成されている。なお、第2供給用コネクタ2bおよび電流検出回路5については、第2配線層WP2に実装される構成であってもよいし、配線パターンP4も第2配線層WP2に形成される構成であってもよい。
【0021】
この構成により、電流検出回路5では、入力部5aが内部グランドGに仮想接地されることから、電流検出回路5は、配線パターンP4、第2供給用コネクタ2b、第2供給プローブPLc2および電流供給端子Lcで構成される電流供給用電路RTLcを介して測定対象DUTの他方の電極を内部グランドGの電位に規定する。これにより、信号源4が正弦波電圧信号V1を測定対象DUTの一方の電極に供給しているときに、測定用電流Imが、信号源4から、電流供給用電路RTHc、測定対象DUTおよび電流供給用電路RTLcを介して電流検出回路5の入力部5aに至る経路に流れる。電流検出回路5は、この測定用電流Imを、その電流値に応じて電圧値が変化する電圧信号である電流検出信号Viに変換して出力部5dから処理部7に出力する。
【0022】
電圧検出回路6は、一例として
図1に示すように、一対の入力部6a,6b、出力部6c、第1バッファ回路6d、第2バッファ回路6eおよび差動増幅回路6fを備えて構成されている。また、入力部6aは、回路基板9に形成された配線パターン(第1配線パターン)P1を介して第1検出用コネクタ3aに接続され、入力部6bは、回路基板9に形成された配線パターン(第2配線パターン)P2を介して第2検出用コネクタ3bに接続されている。また、第1バッファ回路6dおよび第2バッファ回路6eは、共に、一例として、演算増幅器を用いたボルテージフォロワ回路として構成されている。また、第1バッファ回路6dは、その入力端子(演算増幅器の非反転入力端子)が入力部6aに接続され、第2バッファ回路6eは、その入力端子(演算増幅器の非反転入力端子)が入力部6bに接続されている。この構成により、電圧検出回路6では、一対の入力部6a,6b間の入力インピーダンスが極めて高い状態となっている。差動増幅回路6fは、一例として、演算増幅器を用いて構成されて、一方の入力端子(演算増幅器の反転入力端子)が第1バッファ回路6dの出力端子に抵抗を介して接続され、他方の入力端子(演算増幅器の非反転入力端子)が第2バッファ回路6eの出力端子に抵抗を介して接続され、出力端子が出力部6cに接続されている。この構成により、差動増幅回路6fは、第1バッファ回路6dおよび第2バッファ回路6eの各出力信号の差分(つまり、入力部6a,6b間の電位差(後述する両端間電圧Vm))を予め規定された増幅率で増幅して、電圧検出信号Vv(両端間電圧Vmの電圧値に比例して電圧値が変化する電圧信号)に変換して、出力部6cから処理部7に出力する。
【0023】
本例では、配線パターンP1,P2同士をできる限り接近させて、各配線パターンP1,P2間の隙間をできる限り狭めることで(つまり、測定対象DUT、各検出プローブPLp1,PLp2および各配線パターンP1,P2で構成される電圧検出ループ全体のうちの各配線パターンP1,P2で構成される基板内電圧検出ループの面積をできる限り小さくすることで)、測定用電流Imが流れている際に配線パターンP3,P4の周囲に発生する磁束の配線パターンP1,P2側への(つまり、電圧検出回路6側への)影響を低減する構成を採用している。また、併せて、各配線パターンP1,P2間の隙間を狭めたことに起因してそのままでは大きくなる配線パターンP1,P2間の結合容量Cの影響を回避(十分に低減)するために、配線パターンP1,P2を異なる配線層に形成する構成(配線層WP1,WP2のうちの一方の配線層に配線パターンP1を形成したときには、グランド層GPを挟んで一方の配線層と反対側に位置する他方の配線層に配線パターンP2を形成する構成)を採用している。本例では一例として
図2~
図5に示すように、配線パターンP1を第1配線層WP1に形成し、配線パターンP2を第2配線層WP2に形成する構成を採用している。これにより、内部グランドGの電位に規定されたグランド層GPが配線パターンP1,P2間に介在する構成となることから、信号源4から測定対象DUTの一方の電極側に供給された測定用電流Imの一部が、測定対象DUTを流れずに、配線パターンP1とグランド層GPとの間の不図示の結合容量を介して内部グランドGに流れたとしても、この電流が電流検出回路5に流れ込むことはない。つまり、電流検出回路5で検出される電流は、測定対象DUT自体を流れた測定用電流Imだけとなる。
【0024】
したがって、本例では、電圧検出回路6は、測定用電流Imが流れることによって配線パターンP3,P4の周囲に発生する磁束の影響が大幅に低減された状態で、測定用電流Imが流れることによって測定対象DUTの両電極間に発生する両端間電圧Vmを、電圧検出端子Hp、第1検出プローブPLp1、第1検出用コネクタ3aおよび配線パターンP1で構成される電圧検出用電路RTHpと、電圧検出端子Lp、第2検出プローブPLp2、第2検出用コネクタ3bおよび配線パターンP2で構成される電圧検出用電路RTLpとを介して、正確に検出することが可能となっている。また、電流検出回路5は、配線パターンP1,P2間の結合容量Cの影響が回避(大幅に低減)された状態で、測定対象DUTに流れる測定用電流Imを、その電流値に応じて電圧値が変化する電圧信号である電流検出信号Viに正確に変換して出力することが可能となっている。
【0025】
以下、各供給用コネクタ2a,2b、各検出用コネクタ3a,3b、信号源4、電流検出回路5および電圧検出回路6についての回路基板9への具体的な実装構造について、各配線パターンP1,P2,P3,P4の具体的な形成構造と併せて、
図1~
図5を参照して説明する。
【0026】
図2~
図5に表されるように、第1配線層WP1上に実装された各供給用コネクタ2a,2bおよび各検出用コネクタ3a,3bは、供給用コネクタ2a、検出用コネクタ3a、検出用コネクタ3bおよび供給用コネクタ2bの順に回路基板9の1つの縁部に沿って間隔を空けて並設されている。
【0027】
信号源4は、第1配線層WP1上における供給用コネクタ2aの近傍に実装されると共に、第1配線層WP1上に形成された配線パターンP3を介して供給用コネクタ2aに接続されている。電流検出回路5は、第1配線層WP1上における供給用コネクタ2bの近傍に実装されると共に、第1配線層WP1上に形成された配線パターンP4を介して供給用コネクタ2bに接続されている。
【0028】
電圧検出回路6は、一例として
図2~
図5に示すように、入力部6bおよび第2バッファ回路6eが残りの回路要素(入力部6a、出力部6c、第1バッファ回路6dおよび差動増幅回路6f)と分離されて、第2配線層WP2上に実装されている。一方、上記の残りの回路要素(入力部6a、出力部6c、第1バッファ回路6dおよび差動増幅回路6f)は、第1配線層WP1上に実装されている。
【0029】
また、第1検出用コネクタ3aと入力部6aとを接続する配線パターンP1については、第1検出用コネクタ3a、入力部6aおよび第1バッファ回路6dがいずれも第1配線層WP1上に実装されていることから、
図1に示す第1検出用コネクタ3aの近傍部位P1a、入力部6aの近傍部位P1b、およびこの2つの近傍部位P1a,P1bを除く主たる部位P1c(例えば、配線パターンP1の全長に対して80%以上を占める部位)が、第1配線層WP1上に形成されている。つまり、配線パターンP1全体が第1配線層WP1上に形成されている。
【0030】
一方、第2検出用コネクタ3bと入力部6bとを接続する配線パターンP2については、第2検出用コネクタ3bが第1配線層WP1上に実装され、入力部6bおよび第2バッファ回路6eが第2配線層WP2上に実装されていることから、第1配線層WP1から第2配線層WP2に達するビアホールやスルーホール(グランド層GPに接続されないようにグランド層GPを貫通し、かつ第1配線層WP1側の端部が第2検出用コネクタ3bに接続されたホール部)として形成された第2検出用コネクタ3bの近傍部位P2aを除く部位(入力部6bの近傍部位P2b、およびこの両近傍部位P2a,P2bを除く主たる部位P2c)が、第2配線層WP2上に形成されている。近傍部位P2a,P2bおよび主たる部位P2cについては、
図1参照。また、回路基板9を平面視した状態において、入力部6bが第2検出用コネクタ3bに対して、各コネクタ2a,2b,3a,3bの並設方向に沿ってずれて位置していることから、入力部6bと第2検出用コネクタ3bとを接続する配線パターンP2は、このコネクタの並設方向に沿ってほぼ同じ位置に配置されている入力部6aと第1検出用コネクタ3aとを接続する配線パターンP1よりも長く形成されている。
【0031】
以上の構成により、本例では、配線パターンP1の全体(上記の近傍部位P1a,P1bおよび主たる部位P1c)と、配線パターンP2における上記の近傍部位P2aを除く部位(近傍部位P2bおよび主たる部位P2c)との間にグランド層GPが介在した状態となっている。
【0032】
また、本例では、
図3,4に示すように、回路基板9を平面視した状態において、配線パターンP1をできる限り短く形成するために、入力部6a、第1バッファ回路6dおよび差動増幅回路6fが第1検出用コネクタ3a寄り(つまり、上記したように、回路基板9を平面視した状態において、入力部6aと第1検出用コネクタ3aとが上記したコネクタの並設方向に沿ってほぼ同じ位置)に実装されている。なお、配線パターンP1を平面視したときの主たる部位P1cの形状(平面視形状)は、第1検出用コネクタ3aと入力部6aとの間への他の電子部品の実装状態などに応じて、直線状や矩形状など種々の形状に形成されるが、本例では一例として、第1検出用コネクタ3aおよび入力部6aの各近傍部位P1a,P1bの平面形状も含めて、全体としてほぼ直線状に形成されている。
【0033】
また、第2バッファ回路6eは、回路基板9を平面視した状態において、入力部6bが入力部6aと重なる位置となるように、第1バッファ回路6dおよび差動増幅回路6fの背面に位置する第2配線層WP2上の部位に実装されている。なお、
図3,4では、理解の容易のため、入力部6bの位置を入力部6aの位置から誇張してずらして図示している。また、配線パターンP2における入力部6bの近傍部位P2bについては、回路基板9を平面視した状態において、第1配線層WP1上に形成された配線パターンP1における入力部6aの近傍部位P1bと重なる状態で形成されている。また、配線パターンP2における主たる部位P2cは、回路基板9を平面視した状態において、第1配線層WP1上に形成された配線パターンP1における主たる部位P1cの全体とほぼ重なる(例えば、90%以上重なる)特定部位としての第1部位SP1(入力部6bの近傍部位P2bに接続される部位)と、この特定部位SP1に対してほぼ直角に折曲されて第2検出用コネクタ3bの方向に延びると共に、第2検出用コネクタ3bの近傍部位P2aに接続される第2部位SP2とを含んでいる。
【0034】
なお、本例では、上記したように、配線パターンP1の主たる部位P1cの平面視形状がほぼ直線状に形成されていることから、配線パターンP2における主たる部位P2cに含まれる第1部位SP1(特定部位)の平面視形状もこれに重なるようにほぼ直線状に形成されている。ただし、配線パターンP1の主たる部位P1cの平面視形状が直線状以外の形状のときには、配線パターンP2における第1部位SP1の平面視形状も、この配線パターンP1の主たる部位P1cに重なるように、この主たる部位P1cの平面視形状に合せた形状に形成される。
【0035】
以上の構成により、本例では、第1検出用コネクタ3aおよび第2検出用コネクタ3bが回路基板9の縁部に沿って間隔を空けて並設されている構成下において、配線パターンP2が、第1部位SP1を含んで主たる部位P2cが上記のように形成されていること、および、さらに本例では、配線パターンP2における入力部6bの近傍部位P2bも平面視した状態において配線パターンP1における入力部6aの近傍部位P1bと重なるように形成されていることから、各配線パターンP1,P2で構成される上記の基板内電圧検出ループの面積が小さくなる構成となっている。
【0036】
なお、電圧検出回路6における入力部6bおよび第2バッファ回路6eについては、配線パターンP2におけるより多くの部位(主たる部位P2cだけではなく、近傍部位P2b)を、配線パターンP1とは異なる第2配線層Wp2上に形成するために、上記した残りの回路要素(入力部6a、出力部6c、第1バッファ回路6dおよび差動増幅回路6f)とは異なる第2配線層Wp2上に実装する構成を採用しているが、この構成に限定されない。
【0037】
例えば、
図6に示すように、電圧検出回路6のすべての回路要素(各入力部6a,6b、出力部6c、各バッファ回路6d,6eおよび差動増幅回路6f)を同じ第1配線層WP1上に実装して(例えば、電圧検出回路6における各バッファ回路6d,6eを分離できない構成のとき)、配線パターンP2については、主たる部位P2cだけを第2配線層WP2上に形成し、かつ入力部6bの近傍部位P2bを第2検出用コネクタ3bの近傍部位P2aと同様にしてホール部で形成して、第2検出用コネクタ3bと入力部6bとを接続する構成を採用することもできる。この構成においても、配線パターンP2の殆どの部位である主たる部位P2cについて、配線パターンP1と異なる配線層に形成することが可能となる。また、図示はしないが、
図2~
図4に示す回路基板9の実装構造において、第2検出用コネクタ3bのみを第1配線層Wp1から第2配線層Wp2側に移して実装する構成を採用することもできる。この構成では、ホール部で形成していた第2検出用コネクタ3bの近傍部位P2aを、第2配線層Wp2上に形成した配線パターンで構成できるため、配線パターンP2のすべての部位(各近傍部位P2a,P2bおよび主たる部位P2c)を、配線パターンP1と異なる配線層である第2配線層Wp2に形成することが可能となる。
【0038】
処理部7は、一例として、A/D変換器、CPUおよびメモリを有して構成されて、インピーダンス測定処理を実行することにより、測定対象DUTのインピーダンスZを算出する。また、処理部7は、算出したインピーダンスZを出力部8に出力させる出力処理を実行する。
【0039】
出力部8は、一例として、表示装置で構成されて、処理部7から出力されるインピーダンスZを画面上に表示する(出力する)。なお、出力部8は、表示装置に代えて種々のインターフェース回路で構成することもでき、外部インターフェース回路で構成されたときには、外部インターフェース回路を介して伝送路で接続された外部装置にこの算出(測定)したインピーダンスZを出力し、また媒体用インターフェース回路で構成されたときには、この媒体用インターフェース回路に接続された記憶媒体にこの算出(測定)したインピーダンスZを記憶させる。
【0040】
次に、インピーダンス測定装置1の動作について、図面を参照して説明する。なお、インピーダンス測定装置1には、各供給プローブPLc1,PLc2および各検出プローブPLp1,PLp2を介して測定対象DUTが接続されているものとする。
【0041】
この状態において、インピーダンス測定装置1では、信号源4が、正弦波電圧信号V1を生成すると共に、電流供給用電路RTHcを介して測定対象DUTの一方の電極に供給する。これにより、測定用電流Imが、信号源4から、電流供給用電路RTHc、測定対象DUTおよび電流供給用電路RTLcを介して電流検出回路5の入力部5aに至る経路に流れる。電流検出回路5は、この測定用電流Imを、その電流値に応じて電圧値が変化する電圧信号である電流検出信号Viに変換して出力部5dから処理部7に出力する。また、電圧検出回路6は、配線パターンP1を含む電圧検出用電路RTHpと、配線パターンP2を含む電圧検出用電路RTLpとを介して測定対象DUTの両電極間に発生する両端間電圧Vmを検出すると共に、両端間電圧Vmの電圧値に比例して電圧値が変化する電圧検出信号Vvを出力部6cから処理部7に出力する。
【0042】
この場合、インピーダンス測定装置1では、上記したように、配線パターンP2が、回路基板9を平面視した状態において、配線パターンP1における主たる部位P1cの全体とほぼ重なる特定部位としての第1部位SP1を含んで形成されることで、各配線パターンP1,P2で形成される基板内電圧検出ループの面積が小さくなる構成(測定用電流Imが流れることによって配線パターンP3,P4の周囲に発生する磁束の影響を大幅に低減し得る構成)となっており、また配線パターンP1,P2がグランド層GPを挟んで異なる配線層に形成されることで、配線パターンP1,P2間の結合容量Cの影響を回避し得る構成となっている。したがって、電圧検出回路6は、上記の磁束の影響が大幅に低減された状態で、両端間電圧Vmを正確に検出して、正しい電圧検出信号Vvを処理部7に出力する。また、電流検出回路5は、上記の結合容量Cの影響が回避された状態で、測定用電流Imを正確に検出して、正しい電流検出信号Viを処理部7に出力する。
【0043】
次いで、処理部7は、インピーダンス測定処理を実行する。このインピーダンス測定処理では、処理部7は、まず、電流検出信号Viおよび電圧検出信号Vvを入力すると共に、測定用電流Imの電流波形を示す波形データと、両端間電圧Vmの電圧波形を示す波形データとにA/D変換する。次いで、処理部7は、これらの波形データに基づいて測定対象DUTのインピーダンスZを測定(算出)する。また、処理部7は、出力処理を実行して、算出したインピーダンスZを出力部8に表示させる。これにより、インピーダンス測定装置1によるインピーダンスZの測定が完了する。
【0044】
このように、このインピーダンス測定装置1によれば、測定対象DUT、各検出プローブPLp1,PLp2および各配線パターンP1,P2で構成される電圧検出ループ全体のうちの各配線パターンP1,P2で構成される基板内電圧検出ループの面積が小さくなるように構成されることで、電圧検出回路6が、上記したように測定用電流Imに起因して生じる磁束の影響が大幅に低減された状態で両端間電圧Vmを正確に検出して、正確な電圧検出信号Vvを出力し、また配線パターンP1,P2がグランド層GPを挟んで異なる配線層に形成されることで、電流検出回路5が、配線パターンP1,P2間の結合容量Cの影響が回避された状態で測定用電流Imを正確に検出して、正確な電流検出信号Viを出力することができる。このため、このインピーダンス測定装置1によれば、配線パターンP3,P4の周囲に発生する磁束の電圧検出用電路THp,RTLp側への影響を低減しつつ、シールド板を別途配置することなく配線パターンP1,P2における結合容量Cの影響も抑えながら、測定対象DUTのインピーダンスZを正確に測定することができる。
【0045】
また、このインピーダンス測定装置1では、一方の入力部6aに入力端子が接続された第1バッファ回路6d、および他方の入力部6bに入力端子が接続された第2バッファ回路6eを備えて電圧検出回路6が構成され、第1バッファ回路6dを第1配線層WP1に実装して、配線パターンP1における入力部6aの近傍部位P1bを主たる部位P1cと共に第1配線層WP1に形成し、第2バッファ回路6eを第2配線層WP2に実装して、配線パターンP2における入力部6bの近傍部位P2bを、主たる部位P2cと共に第2配線層WP2に形成し、かつ回路基板9を平面視した状態において配線パターンP1における近傍部位P1bと重なるように形成する構成を採用している。したがって、このインピーダンス測定装置1によれば、各配線パターンP1,P2で構成される基板内電圧検出ループの面積がさらに小さくなるように構成されて、上記の磁束の影響がさらに低減されると共に、配線パターンP1,P2間の結合容量Cの影響についてもより完全に近い形で回避されていることから、測定対象DUTのインピーダンスZをより正確に測定することができる。
【0046】
また、上記の例では一例として、一対の配線層WP1,WP2のうちの第1配線層WP1を一方の配線層として、この第1配線層WP1に第1配線パターンとしての配線パターンP1の主たる部位P1cなどを形成し、かつ第2配線層WP2を他方の配線層として、この第2配線層WP2に第2配線パターンとしての配線パターンP2の主たる部位P2cなどを形成しているが、この構成に限定されるものではない。例えば、図示はしないが、一対の配線層WP1,WP2のうちの第2配線層WP2を一方の配線層として、この第2配線層WP2に第1配線パターンとしての配線パターンP1の主たる部位P1cなどを形成し、かつ第1配線層WP1を他方の配線層として、この第1配線層WP1に第2配線パターンとしての配線パターンP2の主たる部位P2cなどを形成する構成を採用することもできる。
【符号の説明】
【0047】
1 インピーダンス測定装置
2a 第1供給用コネクタ
2b 第2供給用コネクタ
3a 第1検出用コネクタ
3b 第2検出用コネクタ
4 信号源
6 電圧検出回路
6a,6b 入力部
6d 第1バッファ回路
6e 第2バッファ回路
9 回路基板
DUT 測定対象
GP グランド層
Im 測定用電流
P1 第1配線パターン
P2 第2配線パターン
PLc1 第1供給プローブ
PLc2 第2供給プローブ
PLp1 第1検出プローブ
PLp2 第2検出プローブ
V1 正弦波電圧信号
Vm 両端間電圧
WP1 第1配線層
WP2 第2配線層
Z インピーダンス