(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-06
(45)【発行日】2023-02-14
(54)【発明の名称】銀コーティングのフラッシュアニール
(51)【国際特許分類】
C03C 17/36 20060101AFI20230207BHJP
B32B 15/04 20060101ALI20230207BHJP
【FI】
C03C17/36
B32B15/04 B
(21)【出願番号】P 2020505782
(86)(22)【出願日】2018-08-02
(86)【国際出願番号】 US2018045042
(87)【国際公開番号】W WO2019028274
(87)【国際公開日】2019-02-07
【審査請求日】2021-07-20
(32)【優先日】2017-08-04
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】518301590
【氏名又は名称】ビトロ フラット グラス エルエルシー
(74)【代理人】
【識別番号】110000855
【氏名又は名称】弁理士法人浅村特許事務所
(72)【発明者】
【氏名】ワグナー、アンドリュー、ブイ.
(72)【発明者】
【氏名】マッカミー、ジェイムズ
(72)【発明者】
【氏名】ポルシン、アダム、ディー.
(72)【発明者】
【氏名】シール、ジェイムズ、ピー.
(72)【発明者】
【氏名】フィッシャー、パトリック
(72)【発明者】
【氏名】メドウィック、ポール、エイ.
【審査官】大塚 晴彦
(56)【参考文献】
【文献】特表2015-505790(JP,A)
【文献】特表2013-523494(JP,A)
【文献】国際公開第2016/038269(WO,A1)
【文献】米国特許出願公開第2014/0199496(US,A1)
【文献】特表2016-536246(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C03C 17/34 -17/42
C03C 17/245
B32B 1/00 -43/00
C23C 14/58
H01L 21/28 -21/288
H01L 21/44 -21/445
H01L 29/40 -29/64
(57)【特許請求の範囲】
【請求項1】
コーティングされた透明体を製造する方法であって、
a.透明基板上
に層のスタックを堆積させ
て、前記コーティングされた透明体を形成するステップであって、前記スタックは、前記基板の少なくとも一部の上の第1の誘電体層と、前記第1の誘電体層の少なくとも一部の上の第1の不連続金属層と、前記第1の不連続金属層の少なくとも一部の上の第1のプライマー層とを含む、前記コーティングされた透明体を形成するステップと、
b.
0ms超かつ最大10msのパルス長で1J/cm
2~7J/cm
2の範囲の強度を有する
光源からの可視スペクトルの非コヒーレント光の
2回
以上のフラッシュにより、
室温で
、前記堆積させるステップでの前記
コーティングされた透明体をフラッシュするステップであって、これによって前記
コーティングされた透明体の可視光透過率を増加させる、フラッシュするステップと
を含む方法。
【請求項2】
前記第1のプライマー層は、1nm~2nmの範囲の厚さを有する、請求項1に記載の方法。
【請求項3】
前記非コヒーレント
光の前記光源は、キセノンフラッシュランプである、請求項1に記載の方法。
【請求項4】
前記2回以上のフラッシュの各フラッシュパルスは、0.2ms~2msの範囲である、請求項1に記載の方法。
【請求項5】
前記第1のプライマー
層は、金属チタン、オーステナイトニッケルクロム合金、またはコバルトクロム合金を含む、請求項1に記載の方法。
【請求項6】
透明体をフラッシュアニールする方法であって、前記透明体は、透明基板と、前記基板の少なくとも一部の上の第1の誘電体層と、前記第1の誘電体層の少なくとも一部の上の第1
の金属層と、前記第1の金属層の少なくとも一部の上の第1のプライマー層と、前記第1のプライマー層の少なくとも一部の上の第2の誘電体層と、前記第2の誘電体層の少なくとも一部の上の第2
の金属層と、前記第2の金属層の少なくとも一部の上の第2のプライマー
層とを含み、
前記方法は、
0ms超かつ最大10msのパルス長で1J/cm
2~7J/cm
2の範囲の強度を有する
光源からの可視スペクトルの非コヒーレント光の
2回
以上のフラッシュにより、
室温で前記透明体をフラッシュするステップであって、これによって前記透明体の可視光透過率を増加または放射率を低減させるステップを含む方法。
【請求項7】
フラッシュ後の前記透明体を透過する美的なCIELABのL
*
a
*
b
*
値は、非フラッシュ焼き戻し製品の8°以内であり、前記非フラッシュ焼き戻し製品は、
前記透明体と同じ層構造を有する焼き戻し製品である、請求項
6に記載の方法。
【請求項8】
前記透明
体は、
前記第2のプライマー層の少なくとも一部の上の第3の誘電体層と、
前記第3の誘電体層の少なくとも一部の上の第3の
金属層と、
前記第3の
金属層の少なくとも一部の上の第3のプライマー層と、
k.前記第3のプライマー層の少なくとも一部の上の保護コーティング
層と
を
さらに有する、請求項
6に記載の方法。
【請求項9】
前記
第1の金属層
および前記第2の金属層は銀
を含む、請求項
6に記載の方法。
【請求項10】
前記透明基板はフロートガラス基板
であり、
c.前記第1の
金属層は銀を含み、
d.
前記第1のプライマー層はチタンを含み、20Å~40Åの範囲の厚さを有
し、前記第2の
金属層
は銀を含み、
前記第2のプライマー層はチタンを含み、1~2nmの範囲の厚さを有し、
前記第3の
金属層
は銀を含み、
前記第3のプライマー層はチタンを含み、1~2nmの範囲の厚さを有す
る、請求項
8に記載の方法。
【請求項11】
マスクが
前記非コヒーレント光の前記光源と
前記透明体との間に配置され、これによって
前記2回以上のフラッシュの各フラッシュの少なくとも一部が覆われて、これによって
前記2回以上のフラッシュの各フラッシュの前記非コヒーレント光が前記マスクによって
前記透明体に到達することが部分的に妨害され、
前記透明体の一部のみに到達し、これによって
前記透明体で反射色、透過色、差動シート抵抗、および/または放射率のパターンを生成する、請求項
6に記載の方法。
【請求項12】
透明体をフラッシュアニールする方法であって、前記透明体は、
透明基板と、
前記基板の少なくとも一部の上の第1の誘電体層と、
前記第1の誘電体層の少なくとも一部の上の第1の金属層と、
前記第1の金属層の少なくとも一部の上の第1のプライマー層と、
前記第1のプライマー層の少なくとも一部の上の第2の誘電体層と、
前記第2の誘電体層の少なくとも一部の上の第2の金属層と、
前記第2の金属層の少なくとも一部の上の第2のプライマー層と、
前記第2のプライマー層の少なくとも一部の上の第3の誘電体層と、
前記第3の誘電体層の少なくとも一部の上の第3の金属層と、
前記第3の金属層の少なくとも一部の上の第3のプライマー層と、
前記第3のプライマー層の少なくとも一部の上の第4の誘電体層と、
前記第4の誘電体層の少なくとも一部の上の第4の金属層と、
前記第4の金属層の少なくとも一部の上の第4のプライマー層と、
前記第4のプライマー層の少なくとも一部の上の保護コーティング層と、
を含み、前記第2の金属層および前記第3の金属層は、不連続層であり、
前記方法は、0ms超かつ最大10msのパルス長で1J/cm
2
~7J/cm
2
の範囲の強度を有する光源からの可視スペクトルの非コヒーレント光の2回以上のフラッシュにより、室温で前記透明体をフラッシュするステップであって、これによって前記透明体の可視光透過率を増加または放射率を低減させるステップを含む、方法。
【請求項13】
前記透明体のシート抵抗は、前記フラッシュの後に2Ω/□以下に減少する、請求項12に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
透明体および光学デバイスを含む物品用のコーティングをフラッシュアニールする方法が提供される。
【背景技術】
【0002】
透明導電性酸化物(TCO)は、誘電体層としての建築用および自動車用透明体の製造、ならびに発光ダイオード(LED)、例えば有機LED(OLED)などの電気光学デバイス、および薄膜太陽電池などの太陽電池でしばしば使用される。LEDおよびOLEDは、電流の印加に応じて可視光などの電磁放射を放出する発光層を有するデバイスである。発光層は、2つの電極(陽極と陰極)の間に配置される。電流が陽極と陰極の間を通過すると(つまり、発光層を通過すると)、発光層は電磁エネルギーを放出する。OLEDは、テレビ画面、コンピューターモニター、携帯電話、携帯情報端末(PDA)、時計、照明、その他の様々な電子デバイスなど、多くのアプリケーションで使用されている。特許文献1は、OLEDデバイスを記載している。建築、光学、および光電子工学におけるTCOの汎用性により、TCOまたは半導体層に固有の物理的(例えば、電気的および/または光学的)属性を迅速かつ安価に生成する方法を持つことが最も望ましい。
【0003】
太陽光制御コーティングは、建築用および自動車用透明体の分野で知られている。これらのコーティングは、太陽赤外線または太陽紫外線放射の範囲など、電磁放射の選択された範囲を遮断またはフィルタリングして、車両または建物に入る太陽エネルギーの量を低減させる。この太陽エネルギー透過率の低下は、車両または建物の冷却ユニットの負荷を軽減するのに役立つ。自動車用途では、乗客が車の外を見ることができるように、透明体(フロントガラスなど)には通常、例えば、70%を超える比較的高い可視光透過率を有することが必要とされる。建築用途の場合、可視光透過率はより低くなり得る。一部の建築用途では、建物への可視光の入射を依然として可能にし、また建物内部の作業者が見えるようにしながら、建物への可視性を低下させて、できるだけ多くのプライバシーを保持するように反射性の外面を有することが望ましい場合がある。
【0004】
建築技術分野の当業者には理解されるように、ガラスは、ガラスの所望の最終用途に応じて、通常、焼き戻しされた形態または焼き戻しされていない(焼きなまし(アニール)された)形態のいずれかで使用される。焼きなましガラスの場合、ガラスは、ガラスの焼きなまし点まで加熱され、その後、ガラスのひずみ点以下までゆっくりと冷却させられる。焼きなましガラスは、例えば、ドア、窓などの所望の最終寸法に切断することができる。さらに強いガラスには、焼き戻しが使用される。焼き戻しでは、ガラスをガラスの焼きなまし点より上に加熱し、その後、ガラスに冷却媒体を向けることなどにより急速に冷却して、ガラスに外部圧縮力と内部引張力を与える。焼き戻しガラスは、焼きなましガラスよりもはるかに強く、安全性が重要な要素である場合に使用される。しかしながら、焼きなましガラスとは異なり、焼き戻しガラス(強化ガラス)は切断できないか、または粉砕される。したがって、焼き戻しガラスが望まれる場合は、焼き戻し前にガラスを所望の最終寸法に切断する必要がある。
【0005】
従来の建物は、太陽光制御コーティングを備えた焼きなまし(非焼き戻し)ガラスピースおよび焼き戻しガラスピースの両方を必要とする可能性がある。例えば、安全性を高めるために、太陽光制御コーティングを施した焼きなましガラスを下階で使用し、一方、太陽光制御コーティングを施した焼き戻しガラスを上階で使用することができる。コーティングされた焼きなましガラスとコーティングされた焼き戻しガラスの両方は、建物が同じ全体的な美的外観を維持するように、同じまたは非常に類似した光学特性を有する必要がある。これは、コーティングされたガラスの製造業者にとって問題を引き起こす。コーティングされたガラスピースを焼き戻しすることは、ガラスを焼き戻しするために必要な追加の加熱および急冷ステップによって引き起こされるコーティングの変化のために、元の焼きなましされた製品とは異なる色または光学特性を有する焼き戻し製品をもたらし得る。コーティングされた焼き戻しガラスとコーティングされた焼きなましガラスとの間の色または他の光学特性(例えば、透過率または反射率)のこの違いは、焼きなましされた製品と焼き戻し製品が同じ建物で使用される場合は望ましくない。
【先行技術文献】
【特許文献】
【0006】
【文献】米国特許第9,627,652号明細書
【文献】米国特許第4,466,562号明細書
【文献】米国特許第4,671,155号明細書
【文献】米国特許第4,379,040号明細書
【文献】米国特許第4,861,669号明細書
【文献】米国特許第4,898,789号明細書
【文献】米国特許第4,898,790号明細書
【文献】米国特許第4,900,633号明細書
【文献】米国特許第4,920,006号明細書
【文献】米国特許第4,938,857号明細書
【文献】米国特許第5,328,768号明細書
【文献】米国特許第5,492,750号明細書
【文献】米国特許第4,193,236号明細書
【文献】米国特許第4,464,874号明細書
【文献】米国特許第5,088,258号明細書
【文献】米国特許第5,106,663号明細書
【文献】米国特許第4,746,347号明細書
【文献】米国特許第4,792,536号明細書
【文献】米国特許第5,030,593号明細書
【文献】米国特許第5,030,594号明細書
【文献】米国特許第5,240,886号明細書
【文献】米国特許第5,385,872号明細書
【文献】米国特許第5,393,593号明細書
【文献】米国特許第9,604,875号明細書
【文献】米国特許第7,910,229号明細書
【文献】米国特許出願公開第20110117300号明細書
【発明の概要】
【発明が解決しようとする課題】
【0007】
ガラスの美観を一致させることは難しい。結果として、ガラスの美観を焼き戻されたガラスシートの美観に合わせて変更し、2種類のガラスの間の美観の著しい違い無しに、同じ建物内で2種類のガラスを使用できるように、コーティングされたガラスシートを処理する方法を有することが望まれている。
【課題を解決するための手段】
【0008】
本発明の一態様によれば、コーティングされた透明体を製造する方法が提供される。この方法は、透明基板の上に薄層のスタックを堆積させるステップであって、スタックは、基板の少なくとも一部の上の第1の誘電体層と、第1の誘電体層の少なくとも一部の上の第1の不連続金属層と、第1の不連続金属層の少なくとも一部の上の第1のプライマー層とを含むステップと、最大10msのパルス長で1J/cm2~7J/cm2の範囲の強度を有する可視スペクトルの非コヒーレント光の1回のフラッシュにより、10℃~50℃の範囲または20℃~30℃の範囲の温度で透明体をフラッシュするステップであって、これによって透明体の可視光透過率を増加させるステップとを含む。
【0009】
本発明の別一態様によれば、透明体をフラッシュアニールする方法であって、透明体は、透明基板と、基板の少なくとも一部の上の第1の誘電体層と、第1の誘電体層の少なくとも一部の上の第1の連続金属層と、第1の金属層の少なくとも一部の上の第1のプライマー層と、第1のプライマー層の少なくとも一部の上の第2の誘電体層と、第2の誘電体層の少なくとも一部の上の第2の連続金属層と、第2の金属層の少なくとも一部の上の第2のプライマーとを含み、方法は、最大10msのパルス長で1J/cm2~7J/cm2の範囲の強度を有する可視スペクトルの非コヒーレント光の1回のフラッシュにより、10℃~50℃の範囲または20℃~30℃の範囲の温度で透明体をフラッシュするステップであって、これによって透明体の可視光透過率を増加または放射率を低減させるステップを含む方法が提供される。
【0010】
本発明のさらに別の一態様によれば、非焼き戻し透明体であって、
a.フロートガラス基板と、
b.ガラス基板の少なくとも一部の上の第1の誘電体層と、
c.第1の誘電体層の少なくとも一部の上の第1の銀層と、
d.第1の銀層の少なくとも一部の上にあり、1~2nmの範囲の厚さを有する第1のチタン層と、
e.第1のチタン層の少なくとも一部の上の第2の誘電体層と、
f.第2の誘電体層の少なくとも一部の上の第2の銀層と、
g.第2の銀層の少なくとも一部の上にあり、1~2nmの範囲の厚さを有する第2のチタン層と、ガラス基板の少なくとも一部の上の第1の誘電体層と、
h.第2のチタン層の少なくとも一部の上の第3の誘電体層と、
i.第3の誘電体層の少なくとも一部の上の第3の銀層と、
j.第3の銀層の少なくとも一部の上にあり、1~2nmの範囲の厚さを有する第3のチタン層と、ガラス基板の少なくとも一部の上の第1の誘電体層と、
k.第3のチタン層の少なくとも一部の上の第4の誘電体層と、
l.第4の誘電体層の少なくとも一部の上の保護コーティングとを含み、
透明体は、CIELABのL*a*b*値を有し、L*は87~89の範囲であり、a*は-3~-5の範囲であり、b*は3~5の範囲である透明体が提供される。
【0011】
本発明は、全体を通して同様の符号が同様の部分を識別する以下の図面を参照して説明される。特に明記しない限り、図面に描かれている層および要素は縮尺通りではなく、描かれている部材の要素および構造の説明を容易にする方法で描かれている。
【図面の簡単な説明】
【0012】
【
図1】基板と、基板上の部分的にフラッシュアニールされた層とを含む物品の断面を示す。
【
図3】不連続金属層を含むコーティングされた透明体を示す。
【
図4】例えば
図3に関連して説明したような不連続金属層の一部を示す。
【
図5】1つ以上の反射金属層を有するコーティングされたガラス物品を示す。
【
図6】3つの反射金属層を有するコーティングされたガラス物品を示す。
【
図7】本明細書に記載されるようなフラッシュアニール法により物品をパターニングする方法を概略的に示す。
【
図8】様々なITO層の厚さに対する厚さの関数としてのシート抵抗の変化を示すグラフを提供する。
【
図9】様々なITO層の厚さに対する厚さの関数としての放射率の変化を示すグラフを提供する。
【
図10A】2.5%(体積%)の酸素と共に3mTorrで、または1.5%の酸素と共に4mTorrで堆積された様々な厚さのITO層のホール測定、キャリア濃度。
【
図10B】2.5%(体積%)の酸素と共に3mTorrで、または1.5%の酸素と共に4mTorrで堆積された様々な厚さのITO層のホール測定、移動度。
【
図11A】異なる量の酸素を有するフラッシュアニールされたITO層の光学特性を示すグラフ(透過(%)スペクトル)を示す。
【
図11B】異なる量の酸素を有するフラッシュアニールされたITO層の光学特性を示すグラフ(正規化された吸収スペクトル)を示す。
【
図12】様々な厚さのITO層の光学的および電気的特性を示すグラフを提供する。
【
図13A】ITOが異なる吸収スペクトルを有するITOコーティングされたフロートガラスの3つのサンプルに対する吸収係数スペクトルを示す。
【
図13B】同じサンプルに対するXRDトレースを示す。
【
図14】同じ吸収係数を有する4つのTCO層に対するXRDトレースを示すが、フラッシュ処理の前(BF)および後(AF)に示されるように異なる厚さを示す。
【
図15】実施例7のフラッシュ電圧条件およびシート抵抗測定値の表を提供する。
【
図16】実施例7に記載されるようなコーティング特性を使用して、シミュレートされた断熱ガラスの色および可視光度を示す表を提供する。
【
図17】実施例7に記載されるようなコーティング特性を使用して、シミュレートされた断熱ガラスの選択されたガラス中心性能特性を提供する。
【
図18】実施例8に記載されるような様々なサンプルを比較するグラフである。
【
図19】目標色の一致を達成するために銀堆積条件に対する計算された調整を比較するグラフである。
【
図20】STARPHIRE(登録商標)の上のSOLARBAN(登録商標)70XLと比較したときの、試験サンプルに対するΔE
cmcの減少を比較するグラフである。
【発明を実施するための形態】
【0013】
本明細書で使用される場合、「左」、「右」、「内側」、「外側」、「上」、「下」などの空間または方向の用語は、図面内に図示されているように本発明に関連する。しかしながら、本発明は様々な代替の向きを想定することができ、したがって、そのような用語は限定と見なされるべきではないことを理解すべきである。さらに、本明細書で使用される場合、明細書および特許請求の範囲で使用される寸法、物理的特性、処理パラメータ、成分の量、反応条件などを表すすべての数字は、「約」という用語によってすべての場合に変更されるものとして理解されるべきである。したがって、そうでないことが示されない限り、以下の明細書および特許請求の範囲に記載される数値は、本発明によって得られることが求められる所望の特性に応じて変化し得る。少なくとも、均等論の適用を特許請求の範囲に限定する試みとしてではなく、各数値は、報告された有効数字の数を考慮して、通常の丸め手法を適用することにより、少なくとも解釈されるべきである。さらに、本明細書に開示されるすべての範囲は、開始および終了範囲値、ならびにその中に含まれるすべての部分範囲を包含すると理解されるべきである。例えば、「1~10」の指定範囲は、最小値1と最大値10の間(およびこれらを含む)の任意のすべての部分範囲、つまり、1つ以上の最小値で始まり、10以下の最大値で終わるすべての部分範囲(例えば、1~3.3、4.7~7.5、5.5~10など)を含むと見なされる必要がある。また、発行された特許および特許出願などが挙げられるが、これらに限定されない本明細書で言及されるすべての文書は、その全体が「参照により組み込まれる」と見なされるものとする。
【0014】
さらに、本明細書で使用される場合、「上に形成される」、「上に堆積される」、または「上に提供される」という用語は、表面上に形成、堆積、または提供されることを意味するが、必ずしも表面と接触しているわけではない。例えば、基板「上に形成された」コーティング層は、形成されたコーティング層と基板との間に位置する同じまたは異なる組成の1つ以上の他のコーティング層または膜の存在を排除しない。同様に、特定のコーティング層の文脈における「下」または「間」という用語は、列挙された層間に位置する同じまたは異なる組成の1つ以上の他のコーティング層または膜の存在を排除しない。
【0015】
本明細書で使用される場合、「ポリマー」または「ポリマーの」という用語は、オリゴマー、ホモポリマー、コポリマー、およびターポリマー、例えば、2つ以上のタイプのモノマーまたはポリマーから形成されるポリマーを含み、「プラスチック」は、ポリマー含有材料であり、材料の特性を変更するために追加の添加剤をオプションで含むことができる。
【0016】
「可視領域」または「可視光」という用語は、380nm~800nmの範囲の波長を有する電磁放射を指す。「赤外線領域」または「赤外線放射」という用語は、800nmを超えて100,000nmまでの範囲の波長を有する電磁放射を指す。「紫外線領域」または「紫外線放射」という用語は、300nm~380nm未満の範囲の波長を有する電磁エネルギーを意味する。「透明」とは、0%を超えて100%までの可視光透過率を有することを意味する。「半透明」とは、電磁エネルギー(可視光など)を通過させるが、このエネルギーを拡散させて、見る人と反対側の物体がはっきり見えないようにすることを意味する。典型的な「透明体」は、透明体を通して材料を見ることができるように十分な可視光透過率を有し得るが、「透明体」は可視光に対して透明である必要はなく、半透明または不透明であってもよい。
【0017】
本明細書で使用される場合、「膜」という用語は、所望のまたは選択されたコーティング組成物のコーティング領域を指す。「層」は1つ以上の「膜」を含むことができ、「コーティング」または「コーティングスタック」は1つ以上の「層」を含むことができる。「非対称反射率」という用語は、片側からのコーティングの可視光反射率が反対側からのコーティングの可視光反射率と異なることを意味する。「臨界厚さ」という用語は、それより上ではコーティング材料が連続した連続層を形成し、それより下ではコーティング材料が連続層ではなくコーティング材料の不連続領域または島を形成する厚さを意味する。「臨界未満の厚さ」という用語は、コーティング材料がコーティング材料の分離された非接続領域を形成するような臨界厚さ未満の厚さを意味する。「島状」という用語は、コーティング材料が連続層ではなく、むしろ材料が堆積して孤立した領域または島を形成することを意味する。
【0018】
本明細書で提供されるのは、例えば、建築用ガラス、車両の透明体、発光ダイオード(LED)、有機LED、光起電力電池、電気光学デバイスなどに見られるコーティングされた物体または透明体に見られるような、コーティングされた物品またはコーティングされた物品のコーティング層の1つ以上の物理的属性を改善する方法である。態様において、記載のコーティングされた物品は、ボトムエミッションまたはトップエミッションLEDまたはOLEDデバイス、光起電力薄膜太陽電池などの太陽電池において有用である。例えば、LEDまたはOLEDは、少なくとも1つの透明導電性酸化物を電極として使用することができ、その中を光が通過し、発光層から抽出される。LEDデバイス用の電極として使用するためのTCOには、低いシート抵抗が必要である。本明細書に記載の方法および物品は、そのような使用に限定されないことを理解すべきである。したがって、具体的に開示された例示的な実施形態は、単に本発明の一般的な概念を説明するために提示され、本発明はこれらの特定の例に限定されないことを理解すべきである。
【0019】
フラッシュアニールは、基板上の少なくとも1つの層を含む物品が1つ以上の可視光パルスでフラッシュされ、可視光のフラッシュによる1つ以上の層の物理的転換をもたらすプロセスである。本開示の文脈内で物品をフラッシュアニールするのに十分な光束(エネルギー時間-1)のフラッシュを生成できる可視光源は、本明細書に記載の方法で使用することができる。この方法は、1~10.0J/cm2の範囲であり、その間の増分が、例えば3.5~6.0J/cm2、好ましくは4.0~5.0J/cm2のキセノンランプフラッシュなどの広域スペクトルフラッシュを利用できる。態様では、パルス長は、0.1ms~10msの範囲であり、その間の増分は0.2ms~2msであり、その間の増分は、例えば、250μs~1ms、500μs、650μs、670μsである。過度のフラッシュエネルギーは、ターゲット層に損傷を与える。フラッシュを生成するのに有用なランプには、ヘリウムランプまたはキセノンランプなどの気体放電ランプ、および水銀蒸気ランプなどの金属蒸気ランプが含まれる。複数の蒸気放電ランプを使用して、より均一なスペクトル分布を実現できる。一態様では、ランプはキセノン放電フラッシュランプである。本発明の様々な態様において、1回のフラッシュは、層の1つ以上の物理的品質を十分に改質することができる。「1回のフラッシュパルス」には、透明体またはその一部の1つのパルスへの露光、透明体の異なる部分にフラッシュする2以上のパルス、または2以上の重複するパルスであって、重複するパルスの各パルスが透明体の異なる領域又は部分をフラッシュするが、2つの部分は透明体の表面上の1つ以上の重複する点をフラッシュする2以上の重複するパルスが含まれる。
【0020】
本明細書に記載の物品は、従来の方法およびシステムによって、例えば、インラインマグネトロンスパッタ蒸着システムによってコーティングされ、そうでなければ処理される。物品は、従来の運搬方法およびシステムによって、様々な堆積システムまたは処理ステーションへ、およびそこから運搬することができる。物品のフラッシング(フラッシュ)は、22℃または25℃など、通常20℃~30℃の範囲内の室温で実行され得るが、フラッシングは、15℃~50℃など、この範囲外の温度でも実行され得る。態様において、1つ以上のフラッシュチューブは、コンベヤー上の所定の位置に配置され、所望の強度で物品をフラッシュするためにコンベヤーから適切な距離にある。コンベヤーシステムは、フラッシュチューブに対して物品を移動し、コンベヤーの移動のタイミングは、例えばコンピューター制御により、1つ以上のフラッシュが物品上の任意の所与の位置に印加されるように物品のフラッシングと調整され得る。より大きな物品の場合、複数のフラッシュを使用して物品の表面上のすべての位置をフラッシュできる。フラッシュは互いに重なり合ったり、隣接したりすることができるので、本明細書で説明されるような物品の1つ以上の物理的属性(例えば、シート抵抗、放射率、コンダクタンス、色、または透過率が挙げられるが、これらに限定されない)を転換するのに十分な光量で物品の表面はフラッシュされる。
【0021】
本明細書に記載の方法および物品において、基板は、フラッシュアニールされる少なくとも1つの層でコーティングされる。例示的な基板には、ガラス、プラスチック、結晶、金属、セラミックス、またはそれらの組み合わせを含むがこれらに限定されない基板などの透明または不透明基板が含まれる。基板として使用され得るガラスの非限定的な例には、透明ガラス、Starphire(登録商標)、Solargreen(登録商標)、Solextra(登録商標)、GL-20(登録商標)、GL-35(登録商標)、Solarbronze(登録商標)、Solargray(登録商標)ガラス、Pacifica(登録商標)ガラス、SolarBlue(登録商標)ガラス、Solarphire(登録商標)ガラス、SolarphirePV(登録商標)ガラス、およびOptiblue(登録商標)ガラスが含まれ、これらはすべて、ペンシルベニア州ピッツバーグのPPG Industries Inc.から市販されている。例えば、ガラスは、従来のソーダ石灰ケイ酸塩ガラス、ホウケイ酸塩ガラス、または鉛ガラスを含むことができる。ガラスは透明ガラスにすることができる。「透明ガラス」とは、無着色または無色のガラスを意味する。あるいはまた、ガラスは着色されたガラス、そうでなければ色付けされたガラスであってもよい。ガラスは、焼きなましガラスまたは熱処理ガラスにすることができる。本明細書で使用される場合、「熱処理」という用語は、焼き戻しまたは少なくとも部分的に焼き戻しを意味する。ガラスは、従来のフロートガラスなどの任意のタイプとすることができ、任意の光学特性、例えば、可視透過、紫外線透過、赤外線透過、および/または全太陽エネルギー透過の任意の値を有する任意の組成物とすることができる。「フロートガラス」とは、溶融ガラスが溶融金属浴上に堆積され、制御可能に冷却されてフロートガラスリボンを形成する従来のフロートプロセスによって形成されたガラスを意味する。フロートガラスプロセスの例は、特許文献2および特許文献3に開示されている。本明細書で使用される場合、「太陽光制御コーティング」という用語は、例えば、太陽光放射(例えば、コーティングされた物品から反射される、コーティングされた物品によって吸収される、またはコーティングされた物品を通過する、可視光線、赤外線、または紫外線の放射)の量、シェーディング係数、放射率などが挙げられるがこれらに限定されない、コーティングされた物品の太陽光特性に影響を及ぼす1つ以上の層または膜から構成されるコーティングを指す。
【0022】
追加の適切な基板材料の例には、ポリアクリレートなどのアクリルポリマー、ポリメチルメタクリレート、ポリエチルメタクリレート、ポリプロピルメタクリレートなどのポリアルキルメタクリレート、ポリウレタン、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート、ポリブチレンテレフタレートなどのポリアルキルテレフタレート、ポリシロキサン含有ポリマー、またはこれらを調製するための任意のモノマーのコポリマー、またはその任意の混合物などのプラスチック基板、セラミックス基板、ガラス基板、または上記のいずれかの混合物または組み合わせが含まれるが、これらに限定されない。
【0023】
基板上に適用される層は、しばしば、金属、酸化物、半導体、および誘電体を含み、それらは、透明金属、金属酸化物、導電性酸化物、半導体、および誘電体を含む。物理的特性または物理的属性には、他の効果の中でもとりわけ、透過率、吸収、色、放射率、シート抵抗、コンダクタンス(例えば、キャリア濃度またはキャリア移動度)、結晶化度または結晶構造、屈折率、または表面プラズモン共鳴が、単独または組み合わせで含まれる。追加の層は、例えば、本開示の様々な態様の文脈において以下でさらに説明されるように、広く知られているようなシリカ層またはアルミニウムシリカ層などの保護層またはオーバーコート層を含むことができる。
【0024】
本明細書に記載のコーティング層は、従来の化学気相堆積(CVD)法および/または物理気相堆積(PVD)法などが挙げられるがこれらに限定されない任意の従来の方法によって堆積させることができる。PVDプロセスの例には、熱または電子ビーム蒸着および真空スパッタリング(例えば、マグネトロンスパッタ蒸着(MSVD))が含まれる。ゾルゲル堆積が挙げられるがこれに限定されないその他のコーティング方法もまた使用できる。一態様では、コーティングは、MSVDにより堆積させることができる。MSVDコーティング装置および方法の例は、当業者によって十分に理解され、例えば、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8、特許文献9、特許文献10、特許文献11、および特許文献12に記載される。
【0025】
一態様によれば、透明導電性酸化物または半導体の層を含むコーティングされた基板を製造する方法が提供される。透明導電性酸化物の非限定的な例には、チタンの酸化物、ハフニウムの酸化物、ジルコニウムの酸化物、ニオブの酸化物、亜鉛の酸化物、ビスマスの酸化物、鉛の酸化物、インジウムの酸化物、スズの酸化物、およびそれらの混合物が含まれ、ガリウムまたはアルミニウムなどの他の元素をドープすることができる。透明導電性酸化物の具体例としては、インジウムスズ酸化物、インジウム亜鉛酸化物、フッ素化スズ酸化物(「FTO」)、ガリウムドープ酸化亜鉛、アルミニウムドープ酸化亜鉛、スズドープ酸化亜鉛(それぞれ、「GZO」、「AZO」、「TZO」)などのドープ酸化亜鉛、またはニオブドープTiO2(「NTO」)などのドープ二酸化チタンが限定することなしに含まれる。適切な透明導電性酸化物には、酸素欠乏透明導電性酸化物が含まれる。「酸素欠乏透明導電性酸化物」とは、導電性酸化物がスパッタリングなどによって(例えば、MSVDによって)酸素欠乏または半化学量論的TCOを生成する亜飽和量の酸素を含むアルゴン雰囲気などの不活性雰囲気内の条件下で堆積されることを意味する。酸素欠乏ITOなどの酸素欠乏TCOは広く知られており、当業者によって容易に作成される。本明細書で使用される場合、スパッタリング雰囲気中の記載された酸素のパーセントは、体積パーセントを指す。本明細書に記載の方法に従ってフラッシュアニールすることができる半導体の非限定的な例には、一例として、多結晶シリコンおよびゲルマニウム膜を生成するためのアモルファスシリコン層のフラッシュアニールが含まれる。
【0026】
この方法は、不活性雰囲気中の基板の少なくとも一部の上に、少なくとも1,000cm-1の可視スペクトルの波長での吸収係数を有する透明な金属酸化物層または半導体層を堆積させるステップと、透明導電性酸化物層または半導体層の少なくとも一部を、15℃~50℃の範囲、または20℃~30℃の範囲の温度で、層が少なくとも1,000cm-1の吸収係数を有する光を含む可視スペクトル内の波長の光を含む可視スペクトル内の非コヒーレント光の、3.5J/cm2~6.0J/cm2の範囲のパルスエネルギーによってフラッシュするステップとをさらに含む。一態様では、パルスは1回のパルスであり、これは例えば、シート抵抗を実質的に減少させ、コンダクタンスを増加させ、放射率を減少させ、層および物品全体の透過率を増加させるのに十分である。一態様では、透明金属酸化物または半導体層は、透明導電性酸化物層であり、一態様では、200~400nmまたは200~300nmの範囲の、例えば250nmの厚さを有する、インジウムスズ酸化物層または酸素欠乏インジウムスズ酸化物層である。
【0027】
(例えば、透明基板上の)コーティングとして使用されるITOなどの透明導電性酸化物および半導体の1つの特徴は、最適化または変更可能な吸収係数を有することである。例えば、一例として酸素欠乏インジウムスズ酸化物などの酸素欠乏透明導電性酸化物は、特定の波長で十分に大きな吸収係数を有し、これによってその波長の光がその材料の層の厚さ全体を完全には貫通できず、層の厚さ全体を通してフラッシュアニールを可能にする。したがって、層のフラッシュアニールが可能なランプによって生成される光の貫入深さが層の全厚を完全に貫通しないように、層の吸収係数および厚さをランプ放電スペクトルおよび強度と十分に一致させることは、光が十分な程度まで貫入しなかった層のフラッシュされていない部分と比較して、層のフラッシュされた部分の物理的属性が異なる分割層または分岐層をもたらす。キセノンランプパルスの貫入深さが層の厚さよりも小さい酸化インジウムスズ層または酸素欠乏酸化インジウムスズ層に適した厚さは、300nmを超え、例えば300nm~2μm(ミクロン)の範囲の厚さである。
【0028】
図1を参照すると、透明体品30の文脈では、透明導電性酸化物または半導体を含む第1の層40が基板50上に堆積される。本明細書で説明されるようにフラッシュされると、第1の層40は、遷移部46で接合される第1のサブ層42と第2のサブ層44に分割される。透明導電性酸化物または半導体の第1のサブ層42は、例えば、第1のシート抵抗、コンダクタンス、色、または透過率を有するがこれらに限定されない第1の物理的状態を有し、第2のサブ層44は、例えば、第2のシート抵抗、コンダクタンス、色、または透過率を有するがこれらに限定されない第2の物理的状態に光フラッシュによって転換される。したがって、第1および第2のサブ層42および44は、フラッシュされていない状態のままである(フラッシュから遠い)底部サブ層と、光フラッシュによって転換される第1のサブ層のすぐ上の頂部サブ層とを含む単一の統合層とみなすことができる。フラッシングの性質により、頂部および底部のサブ層は、第1および/または第2のサブ層とは異なり得る物理的特性、例えば、第1および第2のサブ層の中間の物理的特性を有する不特定の厚さの遷移部46で接合され得る。オプションの保護層60が描かれている。追加の層が、描かれた層の上または間に含まれてもよい。
【0029】
従来の加熱方法は、本明細書に記載のフラッシュ法によって生成されるような分割された透明導電性酸化物または半導体層を形成することができない。伝導熱を使用するには、透明な伝導性酸化物または半導体層の温度を、400℃を超える温度まで上げる必要がある。(例えば、5μm未満の厚さを有する)薄層の場合、特に本明細書で説明するTCO層の範囲内などのサブミクロンの厚さでは、層の表面熱が層全体にほぼ即座に伝導し、その厚さ全体で層の均一な転換をもたらす。したがって、光が層の厚さ全体を透過しないように適切に高い吸収係数を有する層をフラッシュすることにより、光が透過する層の部分のみが転換され、転換されない層が残る。そのような構成は、例えば、コーティングされた物品の色、透過率、光散乱、光トラッピング、シート抵抗、反射率、屈折率、コンダクタンス、または他の関連する物理パラメータを制御するのに有用である。
【0030】
本開示の別の一態様によれば、金属反射層を含む透明体をフラッシュアニールする方法が提供される。一態様では、この方法は、2つ以上の金属(例えば、銀)層を含む透明体の効果的なアニールを可能にする。フラッシュアニールは、焼きなまし製品と焼き戻し製品の密接な色合わせ、シート抵抗の減少、透過率の増加、所望の色プロファイルの生成、および製品の品質の一般的な向上を促進する。
【0031】
様々な態様によれば、本明細書に記載のフラッシュアニール法によって生成されたコーティングは、建築用透明体に使用することができる。一例として、2つ以上の銀層を含むコーティングなどの第3の表面コーティングを組み込んだ透明体10の非限定的な例を
図2に示す。透明体10は、任意の所望の可視光、赤外線、または紫外線の透過および/または反射を有することができる。例えば、透明体10は、例えば0%より大きく100%までの任意の所望の量の可視光透過率を有することができる。
【0032】
図2の例示的な透明体10は、従来の断熱ガラスユニットの形態であり、第1の主面14(第1面)および対向する第2の主面16(第2面)を有する第1のプライ12を含む。図示された非限定的な態様では、第1の主面14は、建物の外部に面し、すなわち外側の主面であり、第2の主面16は建物の内部に面する。透明体10はまた、外側(第1)の主面20(第3面)および内側(第2)の主面22(第4面)を有し、第1のプライ12から離間した第2のプライ18を含む。プライ面のこの番号付けは、窓割り技術の従来の慣行に沿っている。第1および第2のプライ12、18は、従来のスペーサフレーム24に接着剤で接着するなど、任意の適切な方法で互いに接続することができる。2つのプライ12、18の間には、ギャップまたはチャンバ26が形成される。チャンバ26は、空気などの選択された雰囲気、またはアルゴンまたはクリプトンガスなどの非反応性ガスで満たされ得る。太陽光制御コーティング30(または本明細書に記載の他のコーティングのいずれか)は、プライ12、18のうちの1つの少なくとも一部の上に、例えば、これに限定されないが、第2面の少なくとも一部または第3面20の少なくとも一部の上が挙げられるが、これらに限定されない場所に形成される。しかしながら、コーティングはまた、必要に応じて、第1面または第4面上にあってもよい。断熱ガラスユニットの例は、例えば、特許文献13、特許文献14、特許文献15、および特許文献16に見られる。
【0033】
透明体10のプライ12、18は、同じまたは異なる材料のものとすることができる。プライ12、18は、任意の所望の特性を有する任意の所望の材料を含むことができる。例えば、プライ12、18のうちの1つ以上は、可視光に対して透明または半透明とすることができる。適切な材料の例には、プラスチック基板(例えば、ポリアクリレートなどのアクリルポリマー、ポリメチルメタクリレート、ポリエチルメタクリレート、ポリプロピルメタクリレートなどのポリアルキルメタクリレート、ポリウレタン、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート、ポリブチレンテレフタレートなどのポリアルキルテレフタレート、ポリシロキサン含有ポリマー、またはこれらを調製するための任意のモノマーのコポリマー、またはその任意の混合物)、セラミックス基板、ガラス基板;またはそれらの混合物または組み合わせが含まれるが、これらに限定されない。例えば、プライ12、18の1つ以上は、従来のソーダ石灰ケイ酸塩ガラス、ホウケイ酸塩ガラス、または鉛ガラスを含むことができる。ガラスは透明ガラスにすることができる。「透明ガラス」とは、無着色または無色のガラスを意味する。あるいはまた、ガラスは着色されていても、そうでなければ色付きガラスでもよい。ガラスは、焼きなましガラスまたは熱処理ガラスにすることができる。ガラスは、従来のフロートガラスなどの任意のタイプとすることができ、任意の光学特性(例えば、可視透過、紫外線透過、赤外線透過、および/または全太陽エネルギー透過の任意の値)を有する任意の組成物とすることができる。
【0034】
第1および第2のプライ12、18はそれぞれ、例えば、透明なフロートガラスとすることができるか、着色ガラスまたは色付きガラスであるか、一方のプライ12、18が透明ガラスであり、他方のプライ12、18が色付きガラスとすることができる。本発明を限定するものではないが、第1のプライ12および/または第2のプライ18に適したガラスの例は、特許文献17、特許文献18、特許文献19、特許文献20、特許文献21、特許文献22、および特許文献23に記載されている。第1および第2のプライ12、18は、長さ、幅、形状、または厚さなど、任意の所望の寸法とすることができる。1つの例示的な自動車の透明体では、第1および第2のプライはそれぞれ、1mm~10mmの厚さ(例えば1mm~8mm、例えば2mm~8mm、例えば3mm~7mm、例えば5mm~7mm、例えば6mmの厚さ)とすることができる。使用できるガラスの非限定的な例は上記に記載されている。
【0035】
一態様において、太陽光制御コーティング30は、ガラスプライ12、18の一方の少なくとも1つの主面の少なくとも一部の上に堆積される。
図2に示される例では、コーティング30は、外側ガラスプライ12の内面16の少なくとも一部の上に形成される。太陽光制御コーティング30は、例えば、IR、UV、および/または可視スペクトルが挙げられるが、これらに限定されない太陽光スペクトルの選択された部分を遮断、吸収、またはフィルタリングすることができる。
【0036】
太陽光制御コーティング30は、例えば、従来の化学蒸着(CVD)および/または物理蒸着(PVD)が挙げられるが、これらに限定されない任意の従来の方法によって堆積させることができる。CVDプロセスの例には、スプレー熱分解が含まれる。PVDプロセスの例には、電子ビーム蒸着および真空スパッタリング(マグネトロンスパッタ蒸着(MSVD)など)が含まれる。ゾルゲル堆積が挙げられるがこれに限定されないその他のコーティング方法もまた使用できる。非限定的な一実施形態では、コーティング30は、MSVDにより堆積させることができる。MSVDコーティング装置および方法の例は、当業者によって十分に理解され、例えば、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8、特許文献9、特許文献10、特許文献11、および特許文献12に記載される。
【0037】
特許文献24は、2つの連続した銀層と亜臨界銀層とを組み込んだ透明体などの、亜臨界金属層を組み込んだ透明体を記載している。以下に記載される物品の焼き戻しバージョンと非焼き戻しバージョンを含む市販製品では、非焼き戻し製品(例えば、SOLARBAN(登録商標)90)のプライマー層の厚さと比較して、焼き戻し製品(例えば、SOLARBAN(登録商標)90VTは、より厚いプライマー層を必要とし、その固有の光学特性を変えずに厚さを増加させることができない亜臨界(不連続)銀層を除いて、1つ以上の連続銀層の厚さは増加させることができ、1つ以上のプライマー層の厚さは、非焼き戻し製品と比較して焼き戻し製品では増加される。一態様では、フラッシュアニールされたプライマー層の1つ以上の厚さは、非焼き戻し製品と焼き戻し製品の厚さの間であり、例えば、1つ以上のプライマー層の厚さは、(非焼き戻し製品のプライマー層の厚さ)+(焼き戻し製品のプライマー層の厚さ-非焼き戻し製品のプライマー層の厚さ)の厚さの差の20%~80%の範囲にある。
【0038】
亜臨界金属層を有する例示的な非限定的な太陽光制御コーティング130が
図3に示されている。この例示的なコーティング130は、基板の主面(例えば、第1のプライ112の第2面116)の少なくとも一部の上に堆積されたベース層または第1の誘電体層40を含む。第1の誘電体層140は、単層とすることができるか、または金属酸化物、金属合金の酸化物、窒化物、酸窒化物、またはそれらの混合物が挙げられるが、これらに限定されない反射防止材料および/または誘電体材料の複数の膜を含むことができる。第1の誘電体層140は、可視光に対して透明であり得る。第1の誘電体層140に適した金属酸化物の例には、チタンの酸化物、ハフニウムの酸化物、ジルコニウムの酸化物、ニオブの酸化物、亜鉛の酸化物、ビスマスの酸化物、鉛の酸化物、インジウムの酸化物、スズの酸化物、およびそれらの混合物が含まれる。これらの金属酸化物は、例えば、酸化ビスマス中のマンガン、酸化インジウム中のスズなど、少量の他の材料を有することができる。また、亜鉛およびスズを含む酸化物(例えば、以下に定義されるスズ酸亜鉛)、インジウムスズ合金の酸化物、窒化ケイ素、窒化ケイ素アルミニウム、または窒化アルミニウムなどの金属合金の酸化物または金属混合物を使用できる。さらに、アンチモンまたはインジウムドープ酸化スズ、またはニッケルまたはホウ素ドープ酸化ケイ素などのドープ金属酸化物を使用することができる。第1の誘電体層140は、金属合金酸化物膜(例えば、スズ酸亜鉛)などの実質的に単相の膜とすることができるか、または酸化亜鉛と酸化スズで構成される相の混合物とすることができるか、または複数の膜で構成することができる。
【0039】
例えば、第1の誘電体層240(単一の膜または複数の膜層)は、100Å~600Å(例えば、200Å~500Å(例えば、250Å~350Å(例えば、250Å~310Å(例えば、280Å~310Å(例えば、300Å~330Å(例えば、310Å~330Å))))))の範囲の厚さを有することができる。
【0040】
第1の誘電体層140は、基板の少なくとも一部(例えば、第1のプライ112の内側主面116)の上に堆積された第1の膜142(例えば、金属合金酸化物膜)と、第1の金属合金酸化物膜142の上に堆積された第2の膜144(例えば、金属酸化物または酸化物混合物膜)とを有する多層膜構造を含むことができる。非限定的な一実施形態において、第1の膜142は、亜鉛/スズ合金酸化物であり得る。「亜鉛/スズ合金酸化物」とは、真の合金と酸化物の混合物の両方を意味する。亜鉛/スズ合金酸化物は、亜鉛とスズの陰極からのマグネトロンスパッタリング真空蒸着から得られたものであり得る。1つの非限定的な陰極は、5重量%~95重量%の亜鉛および95重量%~5重量%のスズ(例えば、10重量%~90重量%の亜鉛および90重量%~10重量%のスズ)の割合の亜鉛およびスズを含むことができる。しかしながら、亜鉛とスズのその他の比率も使用できる。第1の膜142に存在することができる1つの適切な金属合金酸化物は、スズ酸亜鉛である。「スズ酸亜鉛」とは、ZnXSn1-XO2-X(式1)の組成を意味し、ここで「x」は0より大きく1未満の範囲で変化する。例えば、「x」は0より大きくすることができ、0より大きく1未満の間の分数または小数とすることができる。例えば、x=2/3の場合、式1は、Zn2/3Sn1/3O4/3であり、これは「Zn2SnO4」としてより一般的に記載される。スズ酸亜鉛含有膜は、膜中に主な量の式1の1つ以上の形態を有する。
【0041】
第2の膜144は、酸化亜鉛などの金属酸化物膜とすることができる。酸化亜鉛膜は、陰極のスパッタリング特性を改善するために他の材料を含む亜鉛陰極から堆積させることができる。例えば、亜鉛陰極は、スパッタリングを改善するために、少量の(例えば、最高10重量%(例えば、最高5重量%)の)スズを含むことができる。その場合、得られる酸化亜鉛膜は、小さな割合の酸化スズ(例えば、最大10重量%の酸化スズ(例えば、最大5重量%の酸化スズ))を含むであろう。(陰極の導電性を高めるために加えられる)最大10重量%のスズを有する亜鉛陰極から堆積されたコーティング層は、少量のスズが存在している可能性があっても、本明細書では「酸化亜鉛膜」と呼ばれる。陰極内の少量(例えば、10重量%以下(例えば、5重量%以下))のスズは、主に酸化亜鉛の第2の膜144内に酸化スズを形成すると考えられている。
【0042】
例えば、第1の膜142はスズ酸亜鉛とすることができ、第2の膜144は酸化亜鉛(例えば、90重量%の酸化亜鉛と10重量%の酸化スズ)とすることができる。例えば、第1の膜142は、50Å~600Å(例えば、50Å~500Å(例えば、75Å~350Å(例えば、100Å~250Å(例えば、150Å~250Å(例えば、195Å~250Å(例えば、200Å~250Å(例えば、200Å~220Å)))))))の範囲の厚さを有するスズ酸亜鉛を含むことができる。
【0043】
第2の膜144は、50Å~200Å(例えば、75Å~200Å(例えば、100Å~150Å(例えば、100Å~110Å)))の範囲の厚さを有する酸化亜鉛を含むことができる。
【0044】
第1の熱および/または放射反射金属層146は、第1の誘電体層140上に堆積され得る。第1の反射層146は、金属金、銅、パラジウム、アルミニウム、銀、またはそれらの混合物、合金、または組み合わせが挙げられるが、これらに限定されない反射金属を含み得る。一実施形態では、第1の反射層146は、50Å~300Å(例えば、50Å~250Å(例えば、50Å~200Å(例えば、70Å~200Å(例えば、100Å~200Å(例えば、125Å~200Å(例えば、150Å~185Å))))))の範囲の厚さを有する金属銀層を含む。第1の金属層146は連続層である。「連続層」とは、コーティングが材料の連続膜を形成し、孤立したコーティング領域ではないことを意味する。
【0045】
第1のプライマー層148は、第1の反射層146の上に配置される。第1のプライマー層148は、単一膜または多層膜層とすることができる。第1のプライマー層148は、スパッタリングプロセスまたはその後の加熱プロセス中の第1の反射層146の劣化または酸化を防止するために、堆積プロセス中に犠牲となり得る酸素捕捉材料を含むことができる。第1のプライマー層148はまた、コーティング130を通過する可視光線などの電磁放射の少なくとも一部も吸収することができる。第1のプライマー層148に有用な材料の例には、チタン、シリコン、二酸化ケイ素、窒化ケイ素、酸窒化ケイ素、ニッケル-クロム合金(例えば、インコネル)、ジルコニウム、アルミニウム、シリコンとアルミニウムの合金、コバルトとクロムを含む合金(例えば、Stellite(登録商標))、およびそれらの混合物が含まれる。例えば、第1のプライマー層148はチタンとすることができ、5Å~50Å(例えば、10Å~40Å(例えば、20Å~40Å(例えば、20Å~35Å)))の範囲の厚さを有することができる。
【0046】
第2の誘電体層150は、第1の反射層146の上に(例えば、第1のプライマー層148の上に)配置される。第2の誘電体層150は、1つ以上の金属酸化物または金属合金酸化物含有膜(例えば、第1の誘電体層140に関して上述したもの)を含むことができる。例えば、第2の誘電体層150は、第1のプライマー膜148の上に堆積された第1の金属酸化物膜152(例えば、酸化亜鉛膜)と、第1の酸化亜鉛膜152の上に堆積された第2の金属合金酸化物膜154(例えば、スズ酸亜鉛(Zn2SnO4)膜)とを含むことができる。オプションの第3の金属酸化物膜156(例えば、別の酸化亜鉛層)を、スズ酸亜鉛層の上に堆積させることができる。
【0047】
第2の誘電体層150は、50Å~1000Å(例えば、50Å~500Å(例えば、100Å~370Å(例えば、100Å~300Å(例えば、100Å~200Å(例えば、150Å~200Å(例えば、180Å~190Å))))))の範囲の合計厚さ(例えば、層の合計厚さ)を有することができる。
【0048】
例えば、多層膜層の場合、酸化亜鉛膜152(および、存在する場合、オプションの第2の酸化亜鉛膜156)は、10Å~200Å(例えば、50Å~200Å(例えば、60Å~150Å(例えば、70Å~85Å)))の範囲の厚さを有することができる。金属合金酸化物層(スズ酸亜鉛)54は、50Å~800Å(例えば、50Å~500Å(例えば、100Å~300Å(例えば、110Å~235Å(例えば、110Å~120Å))))の範囲の厚さを有することができる。
【0049】
亜臨界厚(不連続)の第2の金属層158は、第2の誘電体層150の上(例えば、存在する場合、第2の酸化亜鉛膜156の上、または存在しない場合、スズ酸亜鉛膜154の上)に位置する。金属金、銅、パラジウム、アルミニウム、銀、またはそれらの混合物、合金、または組み合わせなどが挙げられるが、これらに限定されない金属材料は、材料の連続層ではなく材料の孤立領域または島が形成されるように亜臨界厚で施される。銀の場合、臨界厚は50Å未満(例えば、40Å未満(例えば、30Å未満(例えば、25Å未満)))であることが決定されている。銀の場合、連続層と亜臨界層の間の遷移は25Å~50Åの範囲で発生する。銅、金、およびパラジウムは、この範囲で同様の亜臨界挙動を示すと推定される。第2の金属層158は、第1の反射層146に関して上述した材料のいずれか1つ以上を含むことができるが、これらの材料は連続膜としては存在しない。非限定的な一実施形態では、第2の層158は、島が1Å~70Å(例えば、10Å~40Å(例えば、10Å~35Å(例えば、10Å~30Å(例えば、15Å~30Å(例えば、20Å~30Å(例えば、25Å~30Å))))))の範囲の有効厚さを有する島状銀を含む。亜臨界金属層158は、プラズモン共鳴理論に従って電磁放射を吸収する。この吸収は、少なくとも部分的に金属島の界面の境界条件に依存する。亜臨界金属層158は、第1の金属層146のような赤外線反射層ではない。亜臨界銀層158は連続層ではない。銀の場合、亜臨界厚さ未満に堆積された銀金属の金属島またはボールは、約2nm~7nm(例えば、5nm~7nm)の高さを有し得ると推定される。亜臨界銀層を均一に広げることができれば、約1.1nmの厚さになると推定される。光学的には、不連続金属層は、2.6nmの有効層厚として振る舞うと推定される。酸化亜鉛ではなくスズ酸亜鉛の上に不連続金属層を堆積させると、(例えば、不連続金属層の)コーティングの可視光吸収が増加するように見える。
【0050】
「亜臨界」層に関連する厚さ値は「有効厚さ」である。有効厚さは、市販のコーターの実際のコーティング速度よりも遅い基準コーティング速度に基づいて計算され得る。例えば、銀層は、市販のコーターと同じコーティング速度で、しかしながら市販のコーターと比較して低下したライン速度(基準コーティング速度)で基板上に塗布される。基準コーティング速度で堆積したコーティングの厚さを測定し、その後、同じコーティング速度であるが市販のコーターのより速いライン速度で堆積したコーティングの「有効厚さ」を推定する。例えば、特定のコーティング速度が、市販のコーターのライン速度の10分の1の基準コーティング速度で25nmの銀コーティングを提供する場合、同じコーティング速度であるが、市販のコーターのライン速度(つまり、基準コーティングの実行よりも10倍速い)で銀層の「有効厚さ」は、2.5nm(つまり、厚さの1/10)と推定される。しかしながら、理解されるように、この有効厚さ(亜臨界厚未満)の銀層は連続層ではなく、銀材料の不連続領域を有する不連続層になるだろう。亜臨界銀層の厚さを調整する別の方法は、その層を堆積させる陰極に印加される電力を減らすことである。例えば、コーターは、既知のコーティング厚さを提供するために、陰極に供給される電力でセットアップできる。次に、亜臨界銀層用の陰極への電力を低減し、低減した電力レベルに基づいて亜臨界銀層の厚さを推定することができる。または、所望のL*、a*、b*が達成されるまで、様々な電力レベルで一連のサンプルを生成できる。
【0051】
第2のプライマー層160は、第2の金属層158の上に堆積させることができる。第2のプライマー層160は、第1のプライマー層148に関して上述した通りであり得る。一例では、第2のプライマー層は、5Å~50Å(例えば、10Å~25Å(例えば、15Å~25Å(例えば、15Å~22Å)))の範囲の厚さを有するチタンまたはニッケル-クロム合金(例えば、インコネル)とすることができる。亜臨界材料の吸光度は少なくとも部分的に境界条件に依存するため、(例えば、異なる屈折率を有する)異なるプライマーは、コーティングに異なる吸光度スペクトルを提供する、したがって異なる色を提供することができる。
【0052】
第3の誘電体層162は、第2の金属層158の上に(例えば、第2のプライマー膜160の上に)堆積させることができる。第3の誘電体層162はまた、第1および第2の誘電体層140、150に関して上述したように、1つ以上の金属酸化物または金属合金酸化物含有層を含むことができる。一例では、第3の誘電体層162は、第2の誘電体層150と同様に多層膜層である。例えば、第3の誘電体層162は、第1の金属酸化物層164(例えば、酸化亜鉛層)と、第2の金属合金酸化物含有層166(例えば、酸化亜鉛層164の上に堆積されたスズ酸亜鉛層)と、オプションの第3の金属酸化物層168(例えば、スズ酸亜鉛層166の上に堆積された別の酸化亜鉛層)とを含むことができる。一例では、酸化亜鉛層164、168の両方が存在し、各々は、50Å~200Å(例えば、75Å~150Å(例えば、80Å~150Å(例えば、95Å~120Å)))の範囲の厚さを有する。金属合金酸化物層166は、100Å~800Å(例えば、200Å~700Å(例えば、300Å~600Å(例えば、380Å~500Å(例えば、380Å~450Å))))の範囲の厚さを有することができる。
【0053】
一例では、第3の誘電体層162の合計厚さ(例えば、酸化亜鉛層とスズ酸亜鉛層の合計厚さ)は、200Å~1000Å(例えば、400Å~900Å(例えば、500Å~900Å(例えば、650Å~800Å(例えば、690Å~720Å))))の範囲内にある。
【0054】
第3の熱および/または放射反射金属層170は、第3の誘電体層162の上に堆積される。第3の反射層170は、第1の反射層に関して上述した材料のいずれかとすることができる。非限定的な一例では、第3の反射層170は銀を含み、25Å~300Å(例えば、50Å~300Å(例えば、50Å~200Å(例えば、70Å~151Å(例えば、100Å~150Å(例えば、137Å~150Å)))))の範囲の厚さを有する。第3の金属層は連続層である。
【0055】
第3のプライマー層172は、第3の反射層170の上に配置される。第3のプライマー層172は、第1または第2のプライマー層に関して上述した通りであり得る。非限定的な一例では、第3のプライマー層はチタンであり、5Å~50Å(例えば、10Å~33Å(例えば、20Å~30Å))の範囲の厚さを有する。
【0056】
第4の誘電体層174は、第3の反射層の上(例えば、第3のプライマー層172の上)に配置される。第4の誘電体層174は、第1、第2、または第3の誘電体層140、150、162に関して上述したような、1つ以上の金属酸化物または金属合金酸化物含有層から構成され得る。非限定的な一例では、第4誘電体層174は、第3プライマー膜172の上に堆積された第1の金属酸化物層176(例えば、酸化亜鉛層)と、酸化亜鉛層176の上に堆積された第2の金属合金酸化物層178(例えば、スズ酸亜鉛層)とを有する多層膜層である。非限定的な一実施形態では、酸化亜鉛層176は、25Å~200Å(例えば、50Å~150Å(例えば、60Å~100Å(例えば、80Å~90Å)))の範囲の厚さを有することができる。スズ酸亜鉛層178は、25Å~500Å(例えば、50Å~500Å(例えば、100Å~400Å(例えば、150Å~300Å(例えば、150Å~200Å(例えば、170Å~190Å)))))範囲の厚さを有することができる。
【0057】
非限定的な一例では、第4の誘電体層174の合計厚さ(例えば、酸化亜鉛層とスズ酸亜鉛層の合計厚さ)は、100Å~800Å(例えば、200Å~600Å(例えば、250Å~400Å(例えば、250Å~270Å)))の範囲内にある。
【0058】
オーバーコート180は、第4の誘電体層174の上に配置することができる。オーバーコート180は、下にあるコーティング層を機械的および化学的攻撃から保護するのを助けることができる。オーバーコート180は、例えば、金属酸化物または金属窒化物層とすることができる。例えば、オーバーコート180は、10Å~100Å(例えば、20Å~80Å(例えば、30Å~50Å(例えば、30Å~45Å)))の範囲の厚さを有するチタニアとすることができる。オーバーコートに有用な他の材料には、シリカ、アルミナ、またはシリカとアルミナの混合物などの他の酸化物が含まれる。
【0059】
非限定的な一実施形態では、透明体10は、第1面からの可視光のパーセント反射率(%R)が5%~50%(例えば、20%~40%(例えば、20%~40%(例えば、25%~30%)))の範囲内にある。透明体10は、20%より大きい(例えば、30%より大きい(例えば、40%より大きい))可視光透過率を有する。透明体は、0.3未満(例えば、0.27未満(例えば、0.25未満))の太陽熱利得係数(SHGC)を有する。
【0060】
コーティング130でコーティングされたプライは、物品の性能特性に悪影響を与えたり、ヘイズを生じさせたりすることなく、焼き戻しまたは熱処理することができる。また、本発明の物品は、反射および透過の両方において、青または青緑などのニュートラルまたは中程度の反射色を有する。
【0061】
加熱時のヘイズの欠如は、不連続な中間金属層の島状構造に起因すると考えられている。誘電体層192上に形成され、プライマー層194で覆われた不連続コーティング領域191を有する亜臨界金属層190の側面図を
図4に示す。亜臨界金属厚さにより、金属材料は誘電体層192上に金属または金属酸化物の不連続領域または島を形成する。プライマー層が亜臨界金属層の上に塗布されると、プライマー層の材料は島を覆い、亜臨界金属の隣接する島の間の隙間にも広がり、下層192に接触し得る。
【0062】
コーティング130は、既知のコーティングを超える様々な利点を提供する。例えば、亜臨界金属層はコーティングの可視光吸収を増加させ、コーティングされた物品をより暗くする。亜臨界金属層と選択された厚さの誘電体層との組み合わせは、コーティングされた物品に非対称反射率を提供し得る。物品の色は、コーティングに使用するプライマーを変更することにより、透過性を調整することができる。また、本発明のコーティングは、ヘイズを導入することなく熱処理することができる。
【0063】
前述のコーティング130は本発明を限定するものではないことを理解すべきである。例えば、亜臨界金属層は、スタック内の第2の(中間)金属層である必要はない。亜臨界金属層は、コーティングスタックのどこにでも配置され得る。また、複数の金属コーティング層を有するスタックをコーティングする場合、複数の金属層が亜臨界金属層になる可能性がある。
【0064】
上記の例は2つの連続金属層と1つの不連続金属層を含んでいたが、これは単なる非限定的な一例であることを理解すべきである。本発明の広範な実施において、本発明のコーティングは、複数の連続金属層および複数の不連続金属層を含むことができる。例えば、コーティングされた物品は、2つの誘電体層の間に位置する単一の亜臨界金属層を含むことができる。または、コーティングは、金属層の少なくとも1つが亜臨界金属層である3つ以上の金属層(例えば、4つ以上の金属層(例えば、5つ以上の金属層(例えば、6つ以上の金属層)))を含むことができる。コーティング130のバリエーションは、特許文献24にさらに記載されている。
【0065】
太陽光制御コーティング中に2つ以上の銀コーティング層を有する物品は広く知られている。例えば、3つの銀層を有するコーティングを記載する特許文献25、または2つの銀層を有する高太陽熱利得係数コーティングを記載する特許文献26に開示されているように、一例では、太陽光制御透明体は、基板と、基板上に、基板から離れる方向に順に、誘電体層、金属層、およびプライマー層を含む層の1~4回の反復とを含む。例えば、以下に説明するように、1つ以上の金属層は不連続であってもよい。
【0066】
以下に記載される物品の焼き戻しバージョンと非焼き戻しバージョンを含む市販製品では、非焼き戻し製品(例えば、SOLARGATE(登録商標)460、またはSOLARBAN(登録商標)70XL)のプライマー層の厚さと比較して、焼き戻し製品(例えば、SOLARGATE(登録商標)460VT、またはSOLARBAN(登録商標)70VT)は、より厚いプライマー層を必要とし、その固有の光学特性を変えずに厚さを増加させることができない亜臨界(不連続)銀層を除いて、1つ以上の連続銀層の厚さは増加させることができ、非焼き戻し製品と比較して、焼き戻し製品では1つ以上のプライマー層の厚さを増加させることができる。一態様では、フラッシュアニールされたプライマー層の1つ以上の厚さは、非焼き戻し製品と焼き戻し製品の厚さの間であり、例えば、1つ以上のプライマー層の厚さは、(非焼き戻し製品のプライマー層の厚さ)+(焼き戻し製品のプライマー層の厚さ-非焼き戻し製品のプライマー層の厚さ)の厚さの差の20%~80%または30%~70%の範囲にある。
【0067】
図5に示されるように、例示的なコーティング130は、基板の主面(例えば、第1プライ212の第2面216)の少なくとも一部の上に堆積されたベース層または第1の誘電体層240を含む。第1の誘電体層240は、単層とすることができるか、または金属酸化物、金属合金の酸化物、窒化物、酸窒化物、またはそれらの混合物が挙げられるが、これらに限定されない反射防止材料および/または誘電体材料の複数の膜を含むことができる。第1の誘電体層240は、可視光に対して透明であり得る。第1の誘電体層240に適した金属酸化物の例には、チタンの酸化物、ハフニウムの酸化物、ジルコニウムの酸化物、ニオブの酸化物、亜鉛の酸化物、ビスマスの酸化物、鉛の酸化物、インジウムの酸化物、スズの酸化物、およびそれらの混合物が含まれる。これらの金属酸化物は、酸化ビスマス中のマンガン、酸化インジウム中のスズなど、少量の他の材料を有することができる。また、亜鉛およびスズを含む酸化物(例えば、以下で定義されるスズ酸亜鉛)、インジウムスズ合金の酸化物、窒化ケイ素、窒化ケイ素アルミニウム、または窒化アルミニウムなどの金属合金の酸化物または金属混合物を使用できる。さらに、アンチモンまたはインジウムドープ酸化スズ、またはニッケルまたはホウ素ドープ酸化ケイ素などのドープ金属酸化物を使用することができる。第1の誘電体層240は、金属合金酸化物膜(例えば、スズ酸亜鉛)などの実質的に単相の膜とすることができるか、または酸化亜鉛と酸化スズで構成される相の混合物とすることができるか、または複数の膜で構成することができる。
【0068】
例えば、第1の誘電体層240(単一の膜または複数の膜層)は、100Å~600Å(例えば、100Å~500Å(例えば、100Å~350Å(例えば、150Å~300Å(例えば、200Å~250Å(例えば、210Å~220Å)))))の範囲の厚さを有することができる。
【0069】
第1の誘電体層240は、基板の少なくとも一部(例えば、第1のプライ212の内側主面216)の上に堆積された第1の膜142(例えば、金属合金酸化物膜)と、第1の金属合金酸化物膜242の上に堆積された第2の膜244(例えば、金属酸化物または酸化物混合物膜)とを有する多層膜構造を含むことができる。非限定的な一実施形態において、第1の膜242は、スズ酸亜鉛であり得る。
【0070】
例えば、第1の膜242はスズ酸亜鉛とすることができ、第2の膜244は酸化亜鉛(例えば、90重量%の酸化亜鉛と10重量%の酸化スズ)とすることができる。例えば、第1の膜242は、50Å~600Å(例えば、50Å~500Å(例えば、75Å~350Å(例えば、100Å~250Å(例えば、100Å~200Å(例えば、100Å~150Å(例えば、140Å~150Å))))))の範囲の厚さを有するスズ酸亜鉛を含むことができる。
【0071】
第2の膜244は、50Å~200Å(例えば、50Å~150Å(例えば、70Å~100Å))の範囲の厚さを有する酸化亜鉛を含むことができる。
【0072】
別の例示的なコーティングでは、第1の誘電体層240は、スズ酸亜鉛を含む第1の層と、酸化亜鉛を含む第2の層と、スズ酸亜鉛を含む第3の層と、酸化亜鉛を含む第4の層とを含み、第1の誘電体層は、44nm~48nmの範囲の厚さを有し、第1の層および第3の層はそれぞれ、16nm~17nmの範囲の厚さを有し、第2の層および第4の層はそれぞれ、6nm~8nmの範囲の厚さを有する。
【0073】
第1の熱および/または放射反射金属層246は、第1の誘電体層240上に堆積され得る。第1の反射層246は、金属金、銅、パラジウム、アルミニウム、銀、またはそれらの混合物、合金、または組み合わせが挙げられるが、これらに限定されない反射金属を含み得る。一実施形態では、第1の反射層246は、25Å~300Å(例えば、50Å~300Å(例えば、50Å~250Å(例えば、50Å~200Å(例えば、70Å~200Å(例えば、100Å~200Å(例えば、120Å~180Å))))))の範囲の厚さを有する金属銀層を含む。
【0074】
第1のプライマー層248は、第1の反射層246の上に配置される。第1のプライマー層148は、単一膜または多層膜層とすることができる。第1のプライマー層248は、スパッタリングプロセスまたはその後の加熱プロセス中の第1の反射層246の劣化または酸化を防止するために、堆積プロセス中に犠牲となり得る酸素捕捉材料を含むことができる。第1のプライマー層248はまた、コーティング230を通過する可視光線などの電磁放射の少なくとも一部も吸収することができる。第1のプライマー層248に有用な材料の例には、チタン、インコネル、Stellite(登録商標)、およびそれらの混合物が含まれる。例えば、第1のプライマー層248は、5Å~50Å(例えば、10Å~40Å(例えば、20Å~40Å(例えば、20Å~30Å)))の範囲の厚さを有することができる。一例では、第1のプライマー148はチタンである。
【0075】
オプションの外側誘電体層274は、プライマー膜248の最も外側の繰り返しの上に配置される。外側誘電体層274は、第1の誘電体層240に関して上述したような、1つ以上の金属酸化物または金属合金酸化物含有層から構成され得る。非限定的な一例では、外側誘電体層274は、第3のプライマー膜272上に堆積された第1の金属酸化物層276(例えば、酸化亜鉛層)と、酸化亜鉛層276の上に堆積された第2の金属合金酸化物層278(例えば、スズ酸亜鉛層)とを有する多層膜層である。非限定的な一実施形態では、酸化亜鉛層276は、25Å~200Å(例えば、50Å~150Å(例えば、60Å~100Å(例えば、70Å~90Å)))の範囲の厚さを有することができる。スズ酸亜鉛層278は、25Å~500Å(例えば、50Å~500Å(例えば、100Å~400Å(例えば、150Å~300Å(例えば、150Å~200Å(例えば、170Å~200Å)))))の範囲の厚さを有することができる。
【0076】
態様では、誘電体層240、熱および/または放射線反射金属層246、およびプライマー層248を含むアセンブリ249の1、2、3、または4つの追加の反復が、プライマー層の上かつ外側誘電体層274の下に堆積されてもよい。アセンブリ249の2回以上の繰り返しがある一態様では、1つ以上の熱および/または放射線反射金属層246は、例えば、
図4に示すような亜臨界であるが、これに限定されない。
【0077】
1つの非限定的な例では、外側誘電体層274の合計厚さ(例えば、酸化亜鉛層とスズ酸亜鉛層の合計厚さ)は、100Å~800Å(例えば、200Å~600Å(例えば、250Å~400Å(例えば、250Å~270Å)))の範囲内にある。
【0078】
オーバーコート280は、第4の誘電体層274の上に配置することができる。オーバーコート280は、下にあるコーティング層を機械的および化学的攻撃から保護するのを助けることができる。オーバーコート280は、例えば、金属酸化物または金属窒化物層とすることができる。例えば、オーバーコート280は、10Å~100Å(例えば、20Å~80Å(例えば、30Å~50Å(例えば、30Å~40Å)))の範囲の厚さを有するチタニアとすることができる。
【0079】
別の例示的な非限定的なコーティング330が
図6に示されている。この例示的なコーティング330は、基板の主面(例えば、第1のプライ12の第2面)の少なくとも一部の上に堆積されたベース層または第1の誘電体層340を含む。第1の誘電体層340は、上述の第1の誘電体層40と同様とすることができる。例えば、第1の誘電体層340は、単層とすることができるか、または金属酸化物、金属合金の酸化物、窒化物、酸窒化物、またはそれらの混合物が挙げられるが、これらに限定されない反射防止材料および/または誘電体材料の複数の膜を含むことができる。第1の誘電体層340は、可視光に対して透明であり得る。第1の誘電体層340に適した金属酸化物の例には、チタンの酸化物、ハフニウムの酸化物、ジルコニウムの酸化物、ニオブの酸化物、亜鉛の酸化物、ビスマスの酸化物、鉛の酸化物、インジウムの酸化物、スズの酸化物、およびそれらの混合物が含まれる。これらの金属酸化物は、例えば、酸化ビスマス中のマンガン、酸化インジウム中のスズなど、少量の他の材料を有することができる。また、亜鉛およびスズを含む酸化物(例えば、以下に定義されるスズ酸亜鉛)、インジウムスズ合金の酸化物、窒化ケイ素、窒化ケイ素アルミニウム、または窒化アルミニウムなどの金属合金の酸化物または金属混合物を使用できる。さらに、アンチモンまたはインジウムドープ酸化スズ、またはニッケルまたはホウ素ドープ酸化ケイ素などのドープ金属酸化物を使用することができる。第1の誘電体層340は、金属合金酸化物膜(例えば、スズ酸亜鉛)などの実質的に単相の膜とすることができるか、または酸化亜鉛と酸化スズで構成される相の混合物とすることができるか、または複数の膜で構成することができる。
【0080】
例えば、第1の誘電体層340(単一の膜または複数の膜層)は、100Å~800Å(例えば、100Å~600Å(例えば、200Å~600Å(例えば、400Å~500Å(例えば、440Å~500Å))))の範囲の厚さを有することができる。
【0081】
第1の誘電体層340は、基板の少なくとも一部(例えば、第1のプライ12の内側主面16)の上に堆積された第1の膜342(例えば、金属合金酸化物膜)と、第1の金属合金酸化物膜342の上に堆積された第2の膜344(例えば、金属酸化物または酸化物混合物膜)とを有する多層膜構造を含むことができる。非限定的な一実施形態において、第1の膜342は、スズ酸亜鉛であり得る。
【0082】
例えば、第1の膜342はスズ酸亜鉛とすることができ、第2の膜344は酸化亜鉛(例えば、90重量%の酸化亜鉛と10重量%の酸化スズ)とすることができる。例えば、第1の膜342は、50Å~600Å(例えば、50Å~500Å(例えば、75Å~400Å(例えば、200Å~400Å(例えば、300Å~400Å(例えば、355Å~400Å)))))の範囲の厚さを有するスズ酸亜鉛を含むことができる。
【0083】
第2の膜344は、50Å~200Å(例えば、50Å~150Å(例えば、85Å~100Å))の範囲の厚さを有する酸化亜鉛を含むことができる。
【0084】
第1の熱および/または放射反射金属層346は、第1の誘電体層340の上に堆積され得る。第1の反射層346は、金属金、銅、パラジウム、アルミニウム、銀、またはそれらの混合物、合金、または組み合わせが挙げられるが、これらに限定されない反射金属を含み得る。一実施形態では、第1の反射層346は、25Å~300Å(例えば、50Å~300Å(例えば、50Å~250Å(例えば、50Å~200Å(例えば、70Å~200Å(例えば、70Å~100Å(例えば、73Å~100Å))))))の範囲の厚さを有する金属銀層を含む。
【0085】
第1のプライマー層348は、第1の反射層346の上に配置される。第1のプライマー層348は、単一膜または多層膜層とすることができる。第1のプライマー層348は、スパッタリングプロセスまたはその後の加熱プロセス中の第1の反射層346の劣化または酸化を防止するために、堆積プロセス中に犠牲となり得る酸素捕捉材料を含むことができる。第1のプライマー層348はまた、コーティング330を通過する可視光線などの電磁放射の少なくとも一部も吸収することができる。第1のプライマー層348に有用な材料の例には、チタン、インコネル、Stellite(登録商標)、およびそれらの混合物が含まれる。例えば、第1のプライマー層348は、第1のプライマー膜349および第2のプライマー膜351を有する多層膜層であり得る。第1および第2のプライマー膜349、351は、典型的には異なる材料である。例えば、第1のプライマー膜349は、1Å~10Å(例えば、1Å~5Å)の範囲の厚さを有するインコネルであり得る。第2のプライマー膜351は、5Å~20Å(例えば、10Å~15Å)の範囲の厚さを有するチタンであり得る。
【0086】
第2の誘電体層350は、第1の反射層346の上に(例えば、第1のプライマー層348の上に)配置される。第2誘電体層350は、第1誘電体層340に関して上述したような、1つ以上の金属酸化物または金属合金酸化物含有膜を含むことができる。例えば、第2の誘電体層350は、第1のプライマー膜348の上に堆積された第1の金属酸化物膜352(例えば、酸化亜鉛膜)と、第1の酸化亜鉛膜352の上に堆積された第2の金属合金酸化物膜354(例えば、スズ酸亜鉛(Zn2SnO4)膜)とを含むことができる。オプションの第3の金属酸化物膜356(例えば、別の酸化亜鉛層)を、スズ酸亜鉛層の上に堆積させることができる。
【0087】
第2の誘電体層350は、50Å~1000Å(例えば、50Å~800Å(例えば、100Å~800Å(例えば、200Å~800Å(例えば、500Å~700Å(例えば、650Å~700Å)))))の範囲の合計厚さ(例えば、2層以上が存在する場合、層の合計厚さ)を有することができる。
【0088】
例えば、多層膜層の場合、酸化亜鉛膜352(および、存在する場合、オプションの第3の酸化亜鉛膜356)は、10Å~200Å(例えば、50Å~200Å(例えば、50Å~150Å(例えば、50Å~75Å)))の範囲の厚さを有することができる。金属合金酸化物層(スズ酸亜鉛)54は、50Å~800Å(例えば、50Å~500Å(例えば、100Å~500Å(例えば、400Å~500Å)))の範囲の厚さを有することができる。
【0089】
反射金属層358は、第2の誘電体層350の上に(例えば、存在する場合は第3の酸化亜鉛膜356の上に、存在しない場合はスズ酸亜鉛膜354の上に)配置される。非限定的な一実施形態では、第2の反射層358は、50Å~300Å(例えば、100Å~200Å(例えば、150Å~200Å(例えば、170Å~200Å)))の範囲の厚さを有する銀を含む。
【0090】
第2のプライマー層372は、第2の反射層358の上に堆積させることができる。第2のプライマー層372は、第1のプライマー層348に関して上述した通りであり得る。例えば、第2のプライマー層372は、第1のプライマー膜371および第2のプライマー膜373を有する多層膜層であり得る。第1のプライマー膜371および第2のプライマー膜373は、典型的には異なる材料である。例えば、第1のプライマー膜371は、1Å~15Å(例えば、5Å~10Å)の範囲の厚さを有するインコネルであり得る。第2のプライマー膜373は、5Å~20Å(例えば、10Å~15Å)の範囲の厚さを有するチタンであり得る。
【0091】
第3の誘電体層374は、第2の反射層358の上に(例えば、第2のプライマー膜372の上に)堆積させることができる。第3の誘電体層374はまた、第1および第2の誘電体層340、350に関して上述したように、1つ以上の金属酸化物または金属合金酸化物含有層を含むことができる。一例では、第3の誘電体層374は、第2の誘電体層350と同様の多層膜層である。非限定的な一例では、第3の誘電体層374は、第2のプライマー層372の上に堆積された第1の金属酸化物層376(例えば、酸化亜鉛層)と、酸化亜鉛層376の上に堆積された第2の金属合金酸化物層378(例えば、スズ酸亜鉛層)とを有する多層膜層である。非限定的な一実施形態では、酸化亜鉛層376は、25Å~200Å(例えば、50Å~150Å(例えば、100Å~150Å))の範囲の厚さを有することができる。スズ酸亜鉛層378は、25Å~500Å(例えば、50Å~500Å(例えば、100Å~400Å(例えば、200Å~350Å(例えば、300Å~350Å(例えば、320Å~350Å)))))の範囲の厚さを有することができる。
【0092】
非限定的な一例では、第3の誘電体層374の合計厚さ(例えば、酸化亜鉛層とスズ酸亜鉛層の合計厚さ)は、100Å~800Å(例えば、200Å~600Å(例えば、250Å~500Å(例えば、470Å~500Å)))の範囲内にある。
【0093】
オーバーコート380は、第4の誘電体層374の上に配置することができる。オーバーコート380は、下にあるコーティング層を機械的および化学的攻撃から保護するのを助けることができる。オーバーコート380は、例えば、金属酸化物または金属窒化物層とすることができる。例えば、オーバーコート380は、10Å~100Å(例えば、20Å~80Å(例えば、30Å~50Å(例えば、30Å~40Å)))の範囲の厚さを有するチタニアとすることができる。
【0094】
以下の実施例は、本発明の様々な実施形態を例示するものである。しかしながら、本発明はこれらの特定の実施形態に限定されないことを理解すべきである。
【0095】
一態様では、コーティングはパターンでフラッシュされて、コーティング内に透過率および/または反射パターンを生成する。コーティング内のパターンは、美的なものから機能的なものまで、様々な理由で役立つ。例えば、鳥との衝突を減らしたり、望ましい美的効果を生み出したり、部分的なプライバシー画面または段階的な密度または効果を作り出すために、野生生物に透明体をより見やすくするためのパターンを作成することができる。別の一態様では、例えば、電気光学装置で使用するための、低抵抗のパターン(例えば、回路)をコーティング内に作成するために、コーティングがパターニングされる。一態様では、パターンは、フラッシュランプとフラッシュされるコーティングとの間にシートなどのフィルターまたは不透明な物体またはマスクを挿入することによって作成される。
【0096】
図7を参照すると、例えば、基板の主面の少なくとも一部(例えば、第1のプライ12の第2面16)の上に堆積されたコーティング430は、フラッシュランプ432を使用して本明細書に記載されるようにフラッシュされる。マスク434は、フラッシュランプ432とコーティング430との間に挿入され、シャドーイング効果を生じ、その結果、コーティング430上にパターンの光の異なる印加をもたらす。シャドーイング効果により、コーティングの表面上で異なる光処理が行われるため、コーティングの層は異なる光強度にさらされ、したがって、その結果、透過または反射色の値(例えば、L
*a
*b
*値)、透過率、反射率、ヘイズ、結晶化度、および/またはシート抵抗の変化を含む、光の影響を受けるコーティング層のあらゆる側面のパターンをもたらす。マスク434は、フラッシュランプ432とコーティング430との間の中間位置に示されている。実際には、マスクは、ランプ432と、所望のマスキング効果を生成するのに有効なコーティング430との間の任意の位置に配置され得る。光源はインコヒーレントであり、必ずしも点光源ではないため、一態様では、マスク430をコーティング430に直接または可能な限り近接して配置して、より鮮明なパターンを作成することが好ましい場合がある。別の一態様では、図示のように、またはコーティング430とフラッシュランプ432との間の位置にマスクを配置して、より柔らかく、あまり鮮明でないパターンを作成することが好ましい場合がある。当業者には明らかであるように、マスク434としての星の使用は単なる例示であり、マスク434は任意の所望の形状および透明性を有することができ、100%不透明未満の場合、マスク434は(色または無彩色濃度フィルターとして機能する)所望の着色および/または透過率を有して、フラッシュランプ432からの光をフィルタリングし、コーティング430の部分マスキングを行うことができる。他の態様では、複数のマスクを使用することができる。さらに他の態様では、マスク434は、コーティング430上に勾配パターンを生成するために、(無彩色濃度勾配フィルターとして作用する)透過率の勾配および/または(色勾配フィルターとして作用する)色の勾配を有し得る。
【実施例1】
【0097】
ITOコーティングガラス物品は、
図8に示す厚さまで、様々な圧力およびO
2の割合のアルゴン中で厚さ3.2mmのフロートガラス上にITO層をMSVD堆積させることにより調製した。物品は、室温(約22℃)で500マイクロ秒かつ約4~5J/cm
2の単一パルスでフラッシュされた。4点プローブを使用してシート抵抗が測定され、結果が
図8に提供される。適切なシート抵抗(<30Ω/□)であり、125nmを超える層のシート抵抗は20Ω/□未満である。同じコーティングされた製品の放射率が標準的な方法によって評価され、結果を
図9に示す。
図9は、厚さが150nmを超える、特に250nm~350nmの範囲のITO層に対して、放射率は2~5倍で変化し、35Ω/□まで上昇することを示している。
【実施例2】
【0098】
図10Aおよび10Bに示されるように圧力、O
2パーセンテージ、および厚さが変化したことを除いて、本質的に実施例1に示されるように、ITOコーティングされた物品を調製した。サンプルは、キセノンランプからの約500マイクロ秒のパルスで、約4~5J/cm
2でフラッシュされた。ホール測定(キャリア濃度とキャリア移動度)は標準的な方法で測定された。
図10Aおよび10Bに見られるように、キャリア移動度と濃度はフラッシング後に増加し、導電性の全体的な増加を示しているが、4mTorrおよび1.5%O
2で堆積したITOでキャリア濃度の最大の増加が見られた。
【実施例3】
【0099】
すべてのサンプルが、0%、1.5%、または2.5%のO
2を含む4mTorrのアルゴン中でMSVDにより堆積された250nmの厚さのITO層を有することを除いて、本質的に実施例1と同様にITOコーティングされた物品を調製した。透過率を分光測光法で測定し、透過および反射データから正規化された吸収を計算した。結果を
図11Aおよび11Bに示す。2つのサンプルセットの積分透過率が示されている。サンプルは、約4~5J/cm
2で約500マイクロ秒の単一パルスでフラッシュされた。0%および1.5%O
2サンプルの可視および近赤外スペクトル内の事前フラッシュサンプルとフラッシュサンプルとの間で透過率と正規化された吸収に大きな違いが見られるが、2.5%O
2ではほとんど効果が見られず、酸素欠乏ITOがフラッシングにより反応性があることを示している。
【実施例4】
【0100】
ITOコーティングされた物品は、圧力、O
2パーセンテージが3mTorrかつ2.5%O
2であり、厚さが
図12に示されるように変化したことを除いて、本質的に実施例1に示されるように調製された。サンプルは、約4~5J/cm
2のキセノンランプからの約500マイクロ秒のパルスでフラッシュされた。シート抵抗および積分透過率は、標準的な方法で評価された。
図12から分かるように、4mTorrかつ1.5%O
2で堆積したITOの場合、250nm~650nmを超える範囲のシートでは、フラッシュアニールによって低いシート抵抗および透過率を得ることができる。
【実施例5】
【0101】
ITOコーティングされた物品は、ITO層の厚さが約300nMであったことを除いて、本質的に実施例1に記載されたように調製された。様々なITO堆積条件が使用され、標準的な方法論によって決定された
図13Aに示されるような吸収係数スペクトルが得られた。サンプルは、約4~5J/cm
2のキセノンランプからの約500マイクロ秒のパルスでフラッシュされた。X線回折(XRD)トレースは、各サンプルに対して標準的な方法論によって得られた(
図13B)。
図13Aに見られるように、425nm~500nmの間の光の吸収係数が増加すると、光の貫入深さが減少し、サンプル2の場合、XRDピークのシフトおよび増強が見られるが、サンプル3の場合、ピークの分割または分岐が見られ、これは単一のITO層からの2つのサブ層の形成を示している。
【0102】
図13Aに示されるように、層の吸収係数は、フラッシュの貫入深さに影響を与える。十分な厚さで十分に高い吸収係数を有する層の場合、層へのフラッシュの貫入の深さは、層が部分的にのみ転換されるように調整でき、異なる物理特性を有する分割ITO層が得られる。そのような場合、ITO層は、フラッシュによって物理的に変換される(フラッシュランプにより近い)第1の層と、変換されない(フラッシュからより離れた)第2の層に分岐され得る。したがって、
図13Bに示すように、吸収係数が大きい(貫入深さが小さい)コーティングは、分割を示す。中間の吸収係数(および貫入深さ)を有するコーティングは、ピークのシフトを示す。貫入深さが最も高い(吸収が最も低い)コーティングは、XRDパターンにほとんど変化が見られない。
【実施例6】
【0103】
ITOコーティングされた物品は、ITO層の厚さが
図14に示された通りであり、ITOが4mTorr、1.5%O
2で堆積されたことを除いて、本質的に実施例1に記載のように調製された。サンプルは、キセノンランプからの約500マイクロ秒のパルスで、約4~5J/cm
2でフラッシュされた。
図14にXRD回折トレースを提供する。図から分かるように、すべての厚さはフラッシングの結果として変化を示したが、層の厚さが、例えば、この特定のITO組成の光パルスの有効貫入深さを超えて増加すると、物理的に異なる2つのサブ層への層の分岐が186nmを超える厚さで見られる。異なるITOおよびTCO組成、および異なるフラッシュスペクトルと強度の場合、分岐は異なる厚さで始まると予想される。
【実施例7】
【0104】
本質的に特許文献26に記載されているように、基板、第1の誘電体層(40~55nm)、反射層(5.5~8.5nm)、プライマー層(0.5~6nm)、第2の誘電体層(15~45nm)、および最大15nmの保護層とを順に備えたMSVDコーティング製品の12インチ×12インチのシートをモノリシックガラス上に調製した。これらの厚さは焼きなましされた製品用である。この範囲内でプライマーの厚さを使用すると、フラッシング後のヘイズと視覚的品質の低下が生じることが見出された。したがって、上記の公称製品は、両方のプライマーの厚さを1kW増やすか、両方のプライマーの厚さを1.5kW増やして、頂部および中央の酸化物を3kW減らすか、または両方のプライマーの厚さを2kW増やして、頂部および中央の酸化物を3kW減らすように修正された。
【0105】
NovaCentrix PulseForge 1300システムは、テスト基板のフラッシュ加熱に使用された。ステージのZ高さは13mmに設定された。「プロセス開発」では、「固定位置」モードで1回フラッシュするようにPulseForgeを設定して、2インチ×2インチ正方形のコーティングされたガラスを使用した。これらのサンプルのシート抵抗は、4点プローブによるフラッシュ処理の前後に測定された。
【0106】
解析的分析のために検証されたサンプルは4インチ×4インチであった。使用されたフラッシュパラメータは、2インチ×2インチの結果に基づいて優先として識別されたセットであったが、ピースが1回のフラッシュイベントでカバーされる領域よりも大きかったため、オーバーラップを2.0に設定し、スループットを10フィート/分に設定して、モードを「ワンススルー」にシフトした。
【0107】
図15は、この評価で使用されたフラッシュ条件を示している。「1kW」シリーズのサンプルはすべて、Sungate 460の12×12の1つから切断され、プライマーは1kW増加され、「1.SkW」シリーズのサンプルはすべて、Sungate 460の12×12の1つから切断され、プライマーは1.5kW増加され、「2kW」シリーズのサンプルはすべて、Sungate 460の12×12の1つから切断され、プライマーは2kW増加される。「Nom」シリーズのサンプルは、公称Sungate 460の12×12からのカットである。「フラッシュ前」のシート抵抗は、バージョン間でわずかな違いを示し、公称Sungate 460のフラッシュ前のシート抵抗は約3.68Q/sq.であり、最も高く、「1kW」および「1.SkW」シリーズは約3.58Q/sq.を示し、「2kW」シリーズは3.63Q/sq.近くであった。
【0108】
各12×12からの最も低いフラッシュ後のシート抵抗サンプルは、緑色で強調表示されている。なお、緑色で強調表示されているサンプルのうちの3つでは、フラッシュアニールに640Vと500μsのパルス持続時間を使用したことに留意されたい。これらの結果のうち、3つの最も低いフラッシュ後の抵抗はすべて、異なるフラッシュ条件での「1.5kW」ピースに関係していた。フラッシュプロセスからの最も少ない利点を示した12×12はサンプルAであった。フラッシュ後のRs列内の「DAM」は、フラッシュの結果としてのコーティングの損傷の推定を示すために使用されている。これらの場合、電圧の増加と持続時間の増加の両方によって増加するフラッシュ出力が、最適レベルよりも高かったと考えられている。
【0109】
この結果に基づいて、1.5kW材料の4インチ×4インチピースが切断され、同じフラッシュ設定点の下でフラッシュされた(上記のような「ワンススルー」モードを使用)。合計3つの4インチ×4インチのサンプルが調製され、サンプルA(NOM-4×4)、フラッシュなしのサンプルC、およびフラッシュありのサンプルCの放射率とSHGC特性に対して検証された。
図16および
図17は、5つの異なるコーティング(3つの記載された4インチ×4インチのサンプル、市販の焼きなまし製品、およびその焼きなまし製品の市販の焼き戻しバージョン)に対して、3.2mm透明ガラスの2つのライトと0.5インチのエアギャップを使用して断熱ガラスデバイスに統合されたシミュレーションとして、可視色と性能特性を示す表である。
【0110】
図15に見られるように、最も低いフラッシュ後のシート抵抗が強調表示されている。強調表示されたサンプルのうち3つは640Vかつ500μsのフラッシュ持続時間を使用し、3つの最も低いフラッシュ後のシート抵抗には1.5kWのプライマーピースが含まれていた。「DAM」とマークされたサンプルは、最適な範囲を超えてフラッシュした結果、おそらく損傷を受けた。1.5kW材料のピースは、その後、上記のようにフラッシュされ、上記の公称製品と比較され、断熱ガラスのコンピューターシミュレーションを使用して、市販の非焼き戻し(Sungate 460)および焼き戻し(Sungate 460VT)市販製品と比較された。
図16から分かるように、フラッシュ処理されたサンプルの色は市販製品と非常によく似ており、3つすべてのサンプルが市販製品と比較して高い透過率を示している。
図17から分かるように、フラッシュ処理されたサンプルは、より低い放射率と、より高い太陽熱利得係数を示した。
【実施例8】
【0111】
本質的に上記のように(例えば、
図5および
図6を参照して)、市販のSOLARBAN(登録商標)70ベースのコーティングに対応し、市販の焼き戻し製品と非常に一致する非焼き戻し製品を製造することができるのに十分な量のTL
*の増加が達成できるかどうかを判断することを目標として、3つの銀層の物品が調製された。
【0112】
非焼きなまし製品のバリエーションのサンプルセットは、5mmの透明ガラス上に堆積された。サンプルセットのバリエーションは、プライマーの厚さと連続銀層の厚さの変化に焦点を合わせた。5つのフラッシュ処理条件のセットが定義され、対照(非フラッシュ)サンプルとともに、各コーティングから切断されたピースに対して実行された。102個のサンプルのセットが特徴付けられて分析され、光学モデリングを使用して層の厚さを決定した。
【0113】
表1に示すように、17種類のコーティングのバリエーションを非焼き戻し(焼きなまし)および焼き戻し(VT)サンプルと比較した。
【表1】
【0114】
表1において、0、1、2、3、および221は、連続銀層の各々における増加%である。「0」の下にリストされているすべてのサンプルは、各層に名目上の銀厚(+0%)を使用して各層に堆積され、「2」の下のサンプルの各々は約2%銀陰極電力を増加させた。「221」は、下部の銀に対して2%増加させ、中央部の銀に対して2%増加させ、上部の銀に対して1%増加させることを指す。プライマーには、焼きなましレベルのプライマー厚さ、VTレベル、および%が焼きなましレベルからVTレベルまでの厚さ増加の割合を表す3種類の中間プライマーを含む、5種類のプライマー厚さを使用した。例えば、サンプル「29C」は、(1)銀層電力レベル(したがって、名目上の銀の厚さ)の各々が約2%増加され、(2)各プライマー陰極電力レベルが焼きなまし電力レベルからVT電力レベルに向かって増加する途中の設定値40%であったことを除いて、その他は製品SOLARBAN(登録商標)70XLと同一であった。
【0115】
各サンプルは、「-C」および「-1」から「-5」と呼ばれる6つの異なるフラッシュ処理条件下で処理された。これらの接尾辞の解釈を表2に示す。
【表2】
【0116】
レシピ19は、高いTL
*値を生成することが観察されたフラッシュ条件のセットを指す。このプロセスでは、概して次のように電圧を上げながら19回のフラッシュを使用する。
【表3】
【0117】
この命名法を使用すると、サンプル36C-3は、VTプライマー出力レベルを使用し、次いで620V、500μsの持続時間で1回フラッシュしたことを除いて、その他はベースラインSOLARBAN(登録商標)70XLと同一であるコーティングから切断したピースを指す。このセットの100以上のサンプルにより、複数の条件下での単一の変数の比較が可能になる。
調査結果は以下を含む。
・焼きなましレベルのプライマーの厚さを有するサンプルは、通常、フラッシュ処理によって損傷を受けた。30%のプライマー増加サンプルでも、ある程度の損傷/ヘイズが観察された。
・VTレベルのプライマーを有するサンプルは、透過率を改善するのに十分強くフラッシュされた場合、透過色がはるかに外れていた(Tb*が高かった)。
・(5mmの透明ベースラインサンプル上の製品SOLARBAN(登録商標)70XLと比較して)TL*の2.3ポイントの増加が、複数のフラッシュを使用して生成され、1回のフラッシュで1.4増加した。
・フラッシュ処理されたサンプルは、VTスタックよりも焼きなましスタックに光学的により類似していた。
・色を維持するには、より薄い酸化物が必要である。
・色を維持するには、より厚い銀層が必要である(一番下のAgに最大の増加、一番上のAgに最小の増加)。
【0118】
図18は、フラッシュ処理されたサンプル、SOLARBAN(登録商標)70仕様、および関連する製品コーティングの間のTL
*値を比較する。「1回のフラッシュ」サンプルは、35C-3(ベースラインの銀の厚さ、50%のプライマー中間体)であり、複数回のフラッシュサンプルは35C-5であった。これらのサンプルは両方とも、STARPHIRE(登録商標)サンプル上のSOLARBAN(登録商標)70XLよりも著しく高いTL
*値を示した。フラッシュされたサンプルは5mmが透明であり、透明の余分なmmは、フラッシュされたサンプルのTL
*がさらに約0.1減少することが予想されることに留意すべきである。
【0119】
多数のサンプル(27C~31C、すべてフラッシュプロセス)がコンピューターモデリングを使用して評価され、そのようなコンピューターベースの最適化プロセスに適していると判断された。サンプルの特性を調べ、層の移動%を記録した。以下の表4は、27C~31Cにおけるすべての特性を調べた-Cサンプル(ベースライン21C-Cサンプルと共に)からの各レイヤーの推奨レイヤー移動%を示している。「公称移動」とは、各サンプルに使用されるベースライン電力レベルに対する%変化を指す(陰極電力が0.1kWの増分で調整されたため、数値は正確に1%、2%、3%ではなかった。使用された実際の調整値は、表にリストされている)。「焼きなましレベルの上22%のTiプライマー」は、これらが40%のプライマー中間サンプルであり、22%の増加は、焼きなましからVTプライマーの厚さに達するのに必要な56%の増加までの途中の40%に近いことを示している。「推奨される移動」セルは、色を保持するために必要な推定厚さ調整に公称移動を追加している。自己一貫性のある移動を仮定すると、これらの数値は連続的な銀の厚さが変化しても一定であることが理想的である。(例えば、ベースラインの銀の厚さで必要な厚さ調整が2%増加する場合、自己一貫性のある移動は、2%増加後の推定された必要な厚さ調整は0%になると予測する。0%+2%、および2%+0%は、結果として得られる「推奨される移動」値は同じになる。)
【0120】
結果は、かなりの程度の自己一貫性を示し、SOLARBAN(登録商標)70XLの美観を保持するために必要な厚さ調整は、実際の銀層に実施される変更と比べてはるかに小さい範囲(約1%)で変化した。表示される最後の数字ブロック「調整された「固有の」移動」は、ベースラインサンプルに必要な対応する層厚調整に必要な推定層厚調整値を正規化している。これの最も重要な効果は、中央部の銀にあり、光学に基づいて中央部の銀の2.2%の増加が必要であると推定される。この最下部の数値セットの目的は、その堆積されたままの状態で最適化されたスタックを特定のフラッシュプロセスに最適化されたスタックに調整する仮想的な移動を記述することである(以前の「推奨される移動」数値セットは、任意の使用されているベースラインスタックに対して調整するように最適化され、これは、色であっても、適度な量でいくつかの場所で厚さから外れていると見なされる可能性がある)。
【表4】
【0121】
表から、計算された平均的な「固有の」銀層の厚さの変更要件がまとめられ、フラッシュプロセス間で比較された。結果を
図19に示す。フラッシュなしのサンプル(-C)の場合、推奨される移動は厚さの減少である。これは、過剰なAgとして金属Tiに適合するモデルとして解釈される。この解釈では、-3のサンプルにも一部の金属Tiが残っている可能性が見受けられる(移動のうちの2つは依然として減少している)。他のフラッシュプロセスでは、直観に反する同様の厚さ調整の推定が行われ、底部の銀は2.5~4.5%の増加、中央部の銀は1.2~2.5%の増加、頂部の銀は0.2~1.2%の増加である。
【0122】
ΔE
cmcは、2つの物品の色プロファイル間の全体的な差の尺度である。ΔE
cmcは、サンプル35C-3に対して、およびSTARPHIRE(登録商標)上のSOLARBAN(登録商標)70XLに対して、SOLARBAN(登録商標)70VTと比較して決定された。
図20は、35C-3サンプルが、STARPHIRE(登録商標)上のSOLARBAN(登録商標)70XLよりも焼き戻し製品に非常に近い色合いであることを示している。
【実施例9】
【0123】
単一の不連続(亜臨界)銀層を有する4つの銀層物品は、本質的に上記のように、例えば、
図3および4を参照し、市販のSOLARBAN(登録商標)90ベースのコーティングに対応し、物品への損傷なく、670Vで500μs、650Vで500μs、800Vで200μs、または500Vで2000μsを含む1回のフラッシュを用いて、TL
*の増加が達成でき、有用な色プロファイルが生成され得るかどうかを判定することを目標として調製された。フラッシュ条件によっては、b
*(黄変)が大きいCIELABのL
*a
*b
*プロファイルなどの望ましくない結果もあったが、概して透過率は増加し、色プロファイルはフラッシュ処理に応じて、プライマー厚が厚くなるとヘイズが減少した。
【0124】
以下の条項は、本開示の様々な態様の例を提供する:
(項1)
コーティングされた透明体を製造する方法であって、
a.透明基板上に薄層のスタックを堆積させるステップであって、スタックは、基板の少なくとも一部の上の第1の誘電体層と、第1の誘電体層の少なくとも一部の上の第1の不連続金属層と、第1の不連続金属層の少なくとも一部の上の第1のプライマー層とを含む、堆積させるステップと、
b.最大10msのパルス長で1J/cm2~7J/cm2の範囲の強度を有する可視スペクトルの非コヒーレント光の1回のフラッシュにより、10℃~50℃の範囲または20℃~30℃の範囲の温度で透明体をフラッシュするステップであって、これによって透明体の可視光透過率を増加させる、フラッシュするステップとを含む方法。
(項2)
透明基板と第1の誘電体層との間、または第1のプライマー層と保護コーティングとの間に、第2の誘電体層、第2の誘電体層の少なくとも一部の上に第1の連続金属層、および第1の連続金属層の少なくとも一部の上に第2のプライマー層を堆積させるステップをさらに含む、項1に記載の方法。
(項3)
第2の誘電体層、第1の連続金属層、および第2のプライマー層が、透明基板と第1の誘電体層との間に堆積される、項2に記載の方法。
(項4)
スタックは、第1または第2のプライマー層の少なくとも一部の上の第3の誘電体層、第3の誘電体層の少なくとも一部の上の第2連続金属層、および第2の連続金属層の少なくとも一部の上で保護コーティングの下の第3のプライマー層をさらに含む、項1または2に記載の方法。
(項5)
スタックは、第1、第2、または第3のプライマー層の少なくとも一部の上の第4の誘電体層と、第4の誘電体層の少なくとも一部の上の第3の連続金属層と、第3の連続金属層の少なくとも一部の上の第4のプライマー層とをさらに含む、項4に記載の方法。
(項6)
透明基板の少なくとも一部の上の第2の誘電体層と、第2の誘電体層の少なくとも一部の上の第1の連続金属層と、第1の連続金属層の少なくとも一部の上の第2のプライマー層と、第2のプライマー層の少なくとも一部の上の第1の誘電体層と、第1の誘電体層の少なくとも一部の上の第1の不連続金属層と、第1連続金属層の少なくとも一部の上の第1プライマー層と、第1のプライマー層の少なくとも一部の上の第3の誘電体層と、第3の誘電体層の少なくとも一部の上の第2の連続金属層と、第2の連続金属層の少なくとも一部の上の第3のプライマー層と、第3のプライマー層の少なくとも一部の上の第4の誘電体層と、第4誘電体層の少なくとも一部の上の第3連続金属層と、第3の連続金属層の少なくとも一部の上の第4のプライマー層と、第4のプライマー層の少なくとも一部の上の第5の誘電体層と、第5の誘電体層の少なくとも一部の上の保護コーティングとを含む、項5に記載の方法。
(項7)
プライマー層は、1nm~2nmの範囲の厚さを有する、項1~6のいずれか1項に記載の方法。
(項8)
コーティングされた透明体の可視光透過率は、フラッシュパルスによって増加する、項1~7のいずれか1項に記載の方法。
(項9)
透明体のシート抵抗は、1回のフラッシュパルスの後に2Ω/□以下に減少する、項1~7のいずれか1項に記載の方法。
(項10)
非コヒーレント光源は、キセノンフラッシュランプである、項1~9のいずれか1項に記載の方法。
(項11)
フラッシュパルスは、0.2ms~2msの範囲である、項1~10のいずれか1項に記載の方法。
(項12)
第1のプライマーは、金属チタン、オーステナイトニッケルクロム合金(例えば、INCONEL(登録商標))、またはコバルトクロム合金(例えば、STELLITE(登録商標))を含む、項1~11のいずれか1項に記載の方法。
(項13)
非焼き戻し透明体であって、
a.厚さが2.0mmを超える透明なガラス基板と、
b.ガラス基板の少なくとも一部の上の第1の誘電体層と、
c.第1の誘電体層の少なくとも一部の上の第1の銀層と、
d.第1の銀層の少なくとも一部の上にあり、1~2nmの範囲の厚さを有する第1のチタン層と、
e.第1のチタン層の少なくとも一部の上の第2の誘電体層と、
f.第2の誘電体層の少なくとも一部の上の第2の銀層と、
g.第2の銀層の少なくとも一部の上にあり、1~2nmの範囲の厚さを有する第2のチタン層と、ガラス基板の少なくとも一部の上の第1の誘電体層と、
h.第2のチタン層の少なくとも一部の上の第3の誘電体層と、
i.第3の誘電体層の少なくとも一部の上の第3の銀層と、
j.第3の銀層の少なくとも一部の上にあり、1~2nmの範囲の厚さを有する第3のチタン層と、ガラス基板の少なくとも一部の上の第1の誘電体層と、
k.第3のチタン層の少なくとも一部の上の第4の誘電体層と、
l.第4の誘電体層の少なくとも一部の上の保護コーティングとを含み、
透明体は、法線またはほぼ法線(例えば、法線から8°以内)で透過する美的なCIELABのL*a*b*値を有し、L*は87~89の範囲であり、a*は-3~-5の範囲であり、b*は3~5の範囲である、および/またはSHGCに対する透過率の比が2.2を超える、例えば、透明体は、法線またはほぼ法線(例えば、法線から8°以内)で透過する美的なCIELABのL*a*b*値を有し、L*は87~89の範囲であり、a*は-3~-5の範囲であり、b*は3~5の範囲である透明体。
(項14)
透明体をフラッシュアニールする方法であって、透明体は、透明基板と、基板の少なくとも一部の上の第1の誘電体層と、第1の誘電体層の少なくとも一部の上の第1の連続金属層と、第1の金属層の少なくとも一部の上の第1のプライマー層と、第1のプライマー層の少なくとも一部の上の第2の誘電体層と、第2の誘電体層の少なくとも一部の上の第2の連続金属層と、第2の金属層の少なくとも一部の上の第2のプライマーとを含み、方法は、最大10msのパルス長で1J/cm2~7J/cm2の範囲の強度を有する可視スペクトルの非コヒーレント光の1回のフラッシュにより、10℃~50℃の範囲または20℃~30℃の範囲の温度で透明体をフラッシュするステップであって、これによって透明体の可視光透過率を増加または放射率を低減させるステップを含む方法。
(項15)
フラッシュするステップは、非フラッシュ焼き戻し製品に一致する法線またはほぼ法線(例えば、法線から8°以内)で透過する美的なCIELABの色値を有する透明体を生成する、項14に記載の方法。
(項16)
非フラッシュ焼き戻し製品は、同じ層構造を有する(すなわち、同じ層を同じ順序で有するが必ずしも同じ厚さではない)焼き戻し製品である、項15に記載の方法。
(項17)
透明体および非フラッシュ焼き戻し製品は、層構造:
a.ガラス基板と、
b.ガラス基板の少なくとも一部の上の第1の誘電体層と、
c.第1の誘電体層の少なくとも一部の上の第1の銀層と、
d.第1の銀層の少なくとも一部の上の第1のプライマー層と、
e.第1のプライマー層の少なくとも一部の上の第2の誘電体層と、
f.第2の誘電体層の少なくとも一部の上の第2の銀層と、
g.第2の銀層の少なくとも一部の上の第2のプライマー層と、
h.第2のプライマー層の少なくとも一部の上の第3の誘電体層と、
i.第3の誘電体層の少なくとも一部の上の第3の銀層と、
j.第3の銀層の少なくとも一部の上の第3のプライマー層と、
k.第3のプライマー層の少なくとも一部の上の保護コーティングとを有する、項15に記載の方法。
(項18)
金属層の金属は銀である、項14~項17のいずれか1項に記載の方法。
(項19)
透明体および非フラッシュ製品は、層構造:
a.フロートガラス基板と、
b.ガラス基板の少なくとも一部の上の第1の誘電体層と、
c.第1の誘電体層の少なくとも一部の上の第1の銀層と、
d.第1の銀層の少なくとも一部の上にあり、1~2nmの範囲の厚さを有する第1のチタン層と、
e.第1のチタン層の少なくとも一部の上の第2の誘電体層と、
f.第2の誘電体層の少なくとも一部の上の第2の銀層と、
g.第2の銀層の少なくとも一部の上にあり、1~2nmの範囲の厚さを有する第2のチタン層と、
h.第2のチタン層の少なくとも一部の上の第3の誘電体層と、
i.第3の誘電体層の少なくとも一部の上の第3の銀層と、
j.第3の銀層の少なくとも一部の上にあり、1~2nmの範囲の厚さを有する第3のチタン層と、
k.第3のチタン層の少なくとも一部の上の保護コーティングとを有し、
透明体は、法線またはほぼ法線(例えば、法線に対して8°以内)で透過する美的なCIELABのL*a*b*値を有し、L*は87~89の範囲であり、a*は-3~-5の範囲であり、b*は3~5の範囲である、項18に記載の方法。
(項20)
複数の金属層を含むコーティングされた透明体基板を製造する方法であって、
a.基板上に薄層のスタックを堆積させるステップであって、スタックは、基板の少なくとも一部の上に第1の誘電体層と、第1の誘電体層の少なくとも一部の上に第1の金属層と、第1の金属層の少なくとも一部の上に第1のプライマー層と、第1プライマー層の少なくとも一部の上に第2の誘電体層と、第2の誘電体層の少なくとも一部の上に第2の金属層と、第2の金属層の少なくとも一部の上に第2のプライマー層とを含むステップと、
b.最大10msのパルス長で1J/cm2~10J/cm2の範囲の強度を有する可視スペクトルの非コヒーレント光の1回のフラッシュにより、10℃~50℃の範囲または20℃~30℃の範囲の温度で透明体をフラッシュするステップであって、マスクが光源と薄層の前記スタックとの間に配置され、これによってフラッシュの少なくとも一部がマスクされ、これによってフラッシュからの光がマスクによって薄層のスタックに到達するのを部分的に妨害され、薄層のスタックの一部のみに到達し、これによって薄層のスタックで反射色、透過色、差動シート抵抗、および/または放射率のパターンを生成するステップとを含む方法。
(項21)
基板は透明基板である、項20に記載の方法。
【0125】
前述の説明に開示された概念から逸脱することなく、本発明に修正を加えることができることは、当業者によって容易に理解されるであろう。したがって、本明細書で詳細に説明する特定の実施形態は例示に過ぎず、添付の特許請求の範囲およびそのあらゆる均等物の全範囲が与えられる本発明の範囲を限定するものではない。