IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 五洋建設株式会社の特許一覧 ▶ 三菱電機特機システム株式会社の特許一覧

<>
  • 特許-対象物測定方法 図1
  • 特許-対象物測定方法 図2
  • 特許-対象物測定方法 図3
  • 特許-対象物測定方法 図4
  • 特許-対象物測定方法 図5
  • 特許-対象物測定方法 図6
  • 特許-対象物測定方法 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-08
(45)【発行日】2023-02-16
(54)【発明の名称】対象物測定方法
(51)【国際特許分類】
   G01S 15/74 20060101AFI20230209BHJP
   G01S 7/539 20060101ALI20230209BHJP
   G01S 15/89 20060101ALI20230209BHJP
   G01C 7/04 20060101ALN20230209BHJP
【FI】
G01S15/74
G01S7/539
G01S15/89 A
G01C7/04
【請求項の数】 7
(21)【出願番号】P 2021054960
(22)【出願日】2021-03-29
(65)【公開番号】P2022152255
(43)【公開日】2022-10-12
【審査請求日】2021-10-06
(73)【特許権者】
【識別番号】000166627
【氏名又は名称】五洋建設株式会社
(73)【特許権者】
【識別番号】394025094
【氏名又は名称】三菱電機特機システム株式会社
(74)【代理人】
【識別番号】110000752
【氏名又は名称】弁理士法人朝日特許事務所
(72)【発明者】
【氏名】杉本 英樹
(72)【発明者】
【氏名】堤 賢一郎
(72)【発明者】
【氏名】八尾 悠生
(72)【発明者】
【氏名】齋藤 隆
(72)【発明者】
【氏名】湯浅 智志
【審査官】九鬼 一慶
(56)【参考文献】
【文献】米国特許出願公開第2019/0339414(US,A1)
【文献】米国特許出願公開第2016/0124105(US,A1)
【文献】特開平10-010232(JP,A)
【文献】米国特許出願公開第2013/0128700(US,A1)
【文献】米国特許出願公開第2003/0078706(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 1/72- 1/82
G01S 3/80- 3/86
G01S 5/18- 5/30
G01S 7/52- 7/64
G01S 15/00-15/96
G01C 7/04
(57)【特許請求の範囲】
【請求項1】
音響送受波器から音響信号を水中の対象物に敷設された複数の音響応答器に発信する第1工程と、
前記水中の対象物に敷設された前記複数の音響応答器が、発信された前記音響信号に応答する応答信号をそれぞれ返信する第2工程と、
前記音響送受波器が前記複数の音響応答器からそれぞれ返信された前記応答信号を受信する第3工程と、
前記音響送受波器が受信した各々の前記各応答信号と前記音響信号との時間差に基づいて、前記対象物の位置、形状又は姿勢のうち少なくともいずれか1つを算出する第4工程と
を備え
或る対象エリアで、前記第4工程において、前記第1工程における前記音響送受波器の絶対位置に基づいて、前記複数の音響応答器のうち少なくとも1の音響応答器の絶対位置を特定し、絶対位置を特定した前記少なくとも1の音響応答器を設置したままにしておき、
別の対象エリアで、前記音響送受波器の絶対位置を用いずに、前記第4工程において、前記少なくとも1の音響応答器の既知の絶対位置に基づいて他の前記音響応答器の位置を特定し、特定した前記位置に基づいて前記算出を行う
対象物測定方法。
【請求項2】
前記第1工程の前に行われる工程であって、複数の音響応答器が所定の間隔で設けられた可撓性部材を水中に沈める工程を備える、
請求項1記載の対象物測定方法。
【請求項3】
記対象物としてのシンカー及びブイを連結する連結部材に、前記複数の音響応答器が取り付けられている
請求項1記載の対象物測定方法。
【請求項4】
記対象物に対する要求測定精度に応じて、前記対象物に取り付けられる前記音響応答器の間隔又は数が異なる
請求項1~のいずれか1項に記載の対象物測定方法。
【請求項5】
前記第1工程において、前記音響送受波器から、前記音響信号に代えて、呼び出し信号を前記複数の音響応答器に有線で発信し、
前記第2工程において、前記複数の音響応答器が、発信された前記呼び出し信号に応答する応答信号に前記複数の音響応答器の識別信号と前記複数の音響応答器が測定した深度データを付加して無線でそれぞれ返信する
請求項1~のいずれか1項に記載の対象物測定方法。
【請求項6】
前記第1工程において、前記音響送受波器から前記音響信号を前記複数の音響応答器に無線で発信し、
前記第2工程において、前記複数の音響応答器が、発信された前記音響信号に応答する応答信号に前記複数の音響応答器の識別信号と前記複数の音響応答器が測定した深度データを付加して無線でそれぞれ返信する
請求項1~4のいずれか1項に記載の対象物測定方法。
【請求項7】
前記第4工程において、前記複数の音響応答器の各位置を前記対象物の各位置とするとともに、隣り合う前記音響応答器間については補間処理を行うことで、前記対象物の位置又は形状を算出する
請求項1~6のいずれか1項に記載の対象物測定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水中の対象物の測定を行うための技術に関する。
【背景技術】
【0002】
浅海域で小規模の浚渫工事を実施するときに、船舶からサンドポンプを水中に吊り下げて水底を浚渫する。このとき、水底地盤の表面付近を泥水化するためジェット水流などを併用して地盤の土砂を乱し、サンドポンプで吸引する。浚渫作業中は浚渫後の形状把握や進捗を把握するために、サンドポンプなどの水中で稼働する機器を停止させ、その都度、潜水士が浚渫形状を確認している。しかしながら浚渫箇所は、ジェット水流の影響などにより濁度が高いため視界が悪く、また、潜水士によって浚渫形状の確認結果にばらつきが生じる。
【0003】
水底の地形を測定する技術としては、ナローマルチビーム測深装置、GNSS(Global Navigation Satellite System)及び動揺センサなどを測量船に艤装して、ナローマルチビーム測深装置から多数の音響ビームを水底に向けて扇状に受発信することで、水底地形を3次元データとして取得するものが知られている。このとき、GNSSによる測位誤差と、動揺センサによる動揺補正の誤差が、上記3次元データに含まれるという問題がある。また、測量船による上記測量を行うためにはサンドポンプ等の浚渫装置を退避させる必要があり、作業効率が低下する場合がある。
【0004】
なお、音響を用いた測位技術として、例えば特許文献1には、水底3からフロートで浮かされる受波器a1~anを有する水中受波器群に対して、試験船1に吊り下げられた音響信号発生器から音響信号を発信し、音響信号を受信した各受波器は、音響信号を電気信号に変換し伝送ケーブル5を介して形状測定装置10に送ることで、その電気信号の到達時間差により水中受波器群の形状を求めることが開示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2001-330666号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、従来とは異なる手法により、水中の対象物について簡便に精度よく測定を行うことを目的する。
【課題を解決するための手段】
【0007】
上記課題を解決するため、本発明は、音響送受波器から音響信号を水中の対象物に敷設された複数の音響応答器に発信する第1工程と、前記水中の対象物に敷設された前記複数の音響応答器が、発信された前記音響信号に応答する応答信号をそれぞれ返信する第2工程と、前記音響送受波器が前記複数の音響応答器からそれぞれ返信された前記応答信号を受信する第3工程と、前記音響送受波器が受信した各々の前記各応答信号と前記音響信号との時間差に基づいて、前記対象物の位置、形状又は姿勢のうち少なくともいずれか1つを算出する第4工程とを備え、或る対象エリアで、前記第4工程において、前記第1工程における前記音響送受波器の絶対位置に基づいて、前記複数の音響応答器のうち少なくとも1の音響応答器の絶対位置を特定し、絶対位置を特定した前記少なくとも1の音響応答器を設置したままにしておき、別の対象エリアで、前記音響送受波器の絶対位置を用いずに、前記第4工程において、前記少なくとも1の音響応答器の既知の絶対位置に基づいて他の前記音響応答器の位置を特定し、特定した前記位置に基づいて前記算出を行う対象物測定方法を提供する。
【0008】
前記第1工程の前に行われる工程であって、複数の音響応答器が所定の間隔で設けられた可撓性部材を水中に沈める工程を備えるようにしてもよい。
【0011】
前記対象物としてのシンカー及びブイを連結する連結部材に、前記複数の音響応答器が取り付けられているようにしてもよい。
【0012】
前記対象物としての水中作業機に、前記複数の音響応答器が取り付けられているようにしてもよい。
【0013】
前記対象物としての潜水士及び水中作業機に、それぞれ1以上の前記音響応答器が取り付けられているようにしてもよい。
【0014】
前記対象物に対する要求測定精度に応じて、前記対象物に取り付けられる前記音響応答器の間隔又は数が異なるようにしてもよい。
【0015】
前記第1工程において、前記音響送受波器から、前記音響信号に代えて、呼び出し信号を前記複数の音響応答器に有線で発信し、前記第2工程において、前記複数の音響応答器が、発信された前記呼び出し信号に応答する応答信号に前記複数の音響応答器の識別信号と前記複数の音響応答器が測定した深度データを付加して無線でそれぞれ返信するようにしてもよい。また、前記第1工程において、前記音響送受波器から前記音響信号を前記複数の音響応答器に無線で発信し、前記第2工程において、前記前記複数の音響応答器が、発信された前記音響信号に応答する応答信号に前記複数の音響応答器の識別信号と前記複数の音響応答器が測定した深度データを付加して無線でそれぞれ返信するようにしてもよい。また、前記第4工程において、前記複数の音響応答器の各位置を前記対象物の各位置とするとともに、隣り合う前記音響応答器間については補間処理を行うことで、前記対象物の位置又は形状を算出するようにしてもよい。
【発明の効果】
【0016】
本発明によれば、従来とは異なる手法により、水中の対象物について簡便に精度よく測定を行うことが可能となる。
【図面の簡単な説明】
【0017】
図1】本発明の実施形態に係るシステム全体の構成の一例を示すブロック図。
図2】同実施形態に係る音響応答器群の構造の一例を示す平面図。
図3】同実施形態に係る情報処理装置のハードウェア構成の一例を示すブロック図。
図4】同実施形態に係る音響応答器のハードウェア構成の一例を示すブロック図。
図5】同実施形態における対象物測定方法の一例を示すフローチャート。
図6】同実施形態における測定結果の一例を示す表。
図7】本発明の変形例に係るシステム全体の構成の一例を示すブロック図。
【発明を実施するための形態】
【0018】
本発明を実施するための形態の一例について説明する。
[構成]
図1は、本発明の実施形態に係るシステム全体の構成の一例を示すブロック図である。このシステムは、船舶10に艤装された情報処理装置20、音響送受波器30及びGNSS(Global Navigation Satellite System)40と、水底に配置される音響応答器群100とを備える。このシステムは、水中の対象物としての水底の形状を測定する。なお、図1において、Gは水底(海底)で、Wは水面(海面)である。
【0019】
情報処理装置20は、コンピュータ装置であり、水底の形状を測定するための各種演算を行う。音響送受波器30は、船舶10の下方の水中に設置されており、所定の音響信号を水中に発信する。GNSS40は、地球上空を周回する複数の衛星から発信される衛星信号を受信して測位を行う。情報処理装置20と、音響送受波器30及びGNSS40との間は、それぞれ有線又は無線を介して通信可能に接続されている。
【0020】
音響応答器群100は、複数の音響応答器101と、これら音響応答器を相互に連結するための連結部材102と、音響応答器群100を水底に固定するための1以上のアンカー103とを備えている。音響応答器101はそれぞれ、音響送受波器30から発信された音響信号を受信すると、これに応答する応答信号を返信する。連結部材102は、音響応答器群100が水中に沈められた場合にその水底の形状に沿って敷設されるように、重量物で可撓性のある可撓性部材で構成されている。連結部材102は例えばワイヤ状又はシート状に構成されており、この連結部材102において所定間隔で複数の音響応答器101が配置されている。
【0021】
ここで図2は、音響応答器群100の構造の一例を示す平面図である。図2の例では、連結部材102は、複数のワイヤが格子状に配置された構造であり、各々のワイヤの交点に相当する位置に音響応答器101がそれぞれ配置されている。複数の連結部材102のうち少なくとも1以上の連結部材102には、水底に固定されるアンカー103が取り付けられている。図2の例では3つの連結部材102にそれぞれアンカー103が取り付けられているが、アンカー103の数や取り付け位置は任意に決められる。各音響応答器101の間隔は、測定対象となる対象物に対する要求測定精度に応じて異なっていることが望ましい。つまり、対象物に対する要求測定精度が高い場合は、各音響応答器101の間隔をより小さくし、対象物に対する要求測定精度が低い場合は、各音響応答器101の間隔をより大きくすることができる。なお、各音響応答器101の間隔は必ずしも等間隔である必要はなく、その配置には疎密があってもよい。つまり、測定対象物においても高い測定精度が求められる部分については各音響応答器101の間隔を小さくし、同一測定対象物でも測定精度が低くてもよい箇所は各音響応答器101の間隔を大きくするようにしてもよい。音響応答器の数についても同様に、測定対象となる対象物に対して求められる測定精度に応じて異なっていることが望ましい。つまり、対象物に対して求められる測定精度が高い場合は、各音響応答器101の数をより多くし、対象物に対して求められる測定精度が低い場合は、各音響応答器101の数をより少なくする。
【0022】
図3は、情報処理装置20のハードウェア構成を示す図である。情報処理装置20は、物理的には、プロセッサ2001、メモリ2002、ストレージ2003、通信装置2004、入力装置2005、出力装置2006及びこれらを接続するバスなどを含むコンピュータ装置として構成されている。これらの各装置は図示せぬ電源から供給される電力によって動作する。なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。情報処理装置20のハードウェア構成は、図3に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
【0023】
情報処理装置20における各機能は、プロセッサ2001、メモリ2002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ2001が演算を行い、通信装置2004による通信を制御したり、他の装置から送信されてきたデータを取得したり、メモリ2002及びストレージ2003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
【0024】
プロセッサ2001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ2001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。また、例えばベースバンド信号処理部や呼処理部などがプロセッサ2001によって実現されてもよい。
【0025】
プロセッサ2001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ2003及び通信装置2004の少なくとも一方からメモリ2002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、後述する動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。情報処理装置20の機能ブロックは、メモリ2002に格納され、プロセッサ2001において動作する制御プログラムによって実現されてもよい。各種の処理は、1つのプロセッサ2001によって実行されてもよいが、2以上のプロセッサ2001により同時又は逐次に実行されてもよい。プロセッサ2001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介して情報処理装置20に送信されてもメモリ2002やストレージ2003にインストールされてもよい。
【0026】
メモリ2002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ2002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ2002は、本実施形態に係る方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
【0027】
ストレージ2003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、ソリッドステートドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ2003は、補助記憶装置と呼ばれてもよい。
【0028】
通信装置2004は、有線又は無線の少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、音響送受波器30及びGNSS40と通信を行う。
【0029】
入力装置2005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタンなど)である。出力装置2006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、プリンターなど)である。なお、入力装置2005及び出力装置2006は、一体となった構成(例えば、タッチパネル)であってもよい。
【0030】
情報処理装置20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ2001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
【0031】
図4は、音響応答器101のハードウェア構成を示す図である。音響応答器101は、演算装置1010と、バッテリ1014と、船舶10の船底に設置されている音響送受波器30からの音響信号を受信して、これに応答する応答信号を返信するための音響送受波装置1015と、音響応答器101の水深を測定するための深度計(水圧計)1016から構成されている。
【0032】
演算装置1010は、プロセッサ1011、メモリ1012及び通信装置1013から構成される。プロセッサ1011、メモリ1012は、情報処理装置20のプロセッサ2001、メモリ2002とハードウェアとしては共通である。通信装置1013は、情報処理装置20の通信装置200とハードウェアとしては共通であり、有線で音響送受波装置1015と深度計1016とに接続されている。通信装置1013は、これら音響送受波装置1015及び深度計1016と通信を行う。バッテリ1014は、音響応答器101の各部に電力を供給する。
【0033】
[動作]
次に、本実施形態の動作について説明する。図5は、本実施形態における対象物測定方法の一例を示すフローチャートである。図5において、まず、サンドポンプ等の浚渫装置の操縦者は、この浚渫装置を用いて対象エリアの浚渫を行う(ステップS11)。
【0034】
次に、複数の潜水士は、浚渫が行われた対象エリアにおいて、船舶から音響応答器群100を水中に沈めて、各音響応答器101を水底に敷設する作業を行う(ステップS12)。このとき、各潜水士は、浚渫が行われた対象エリアの水底を音響応答器群100でおおよそ覆うように配置してアンカー103で水底に固定する。前述したように、各音響応答器101を連結する連結部材102は可撓性があるため、図1に例示したように、浚渫された水底の形状に合わせて各音響応答器101が配置されることになる。
【0035】
次に、情報処理装置20のオペレータは、情報処理装置20を操作して、GNSS40による測位を行うとともに、音響送受波器30から音響信号を発信させる(ステップS13)。これにより、本発明の第1工程として、音響信号が音響送受波器30から水底に敷設された複数の音響応答器101に対して同時に発信されることになる。
【0036】
各音響応答器101は、音響送受波器30から発信された音響信号を受信すると、これに応答する応答信号をそれぞれ返信する(ステップS14)。この応答信号には、返信元の音響応答器101を識別する情報(応答器IDという)と、返信元の音響応答器101の深度計1016によって測定された深度データとが含まれている。これにより、本発明の第2工程として、複数の音響応答器101から、音響信号に応答する応答信号がそれぞれ返信されることになる。
【0037】
複数の音響応答器101からそれぞれ返信された応答信号は、音響送受波器30へと到達する(ステップS15)。これにより、本発明の第3工程として、音響送受波器30が複数の音響応答器101からそれぞれ返信された応答信号を受信することになる。応答信号の受信時刻と、その応答信号に含まれる応答器ID及び深度データは、音響送受波器30から情報処理装置20に送信される。
【0038】
次に、情報処理装置20は、音響信号の発信時にGNSS40により測定された位置と、音響送受波器30が音響信号を発信した発信時刻と、音響送受波器30が各音響応答器101から受信した応答信号の受信時刻と、各応答信号に含まれる応答器ID及び深度データとに基づいて、各音響応答器101の位置を算出する(ステップS16)。
【0039】
図6は、測定結果の一例を示す表である。図6において、「船舶位置(絶対位置)」は、GNSS40により測定された絶対位置であり、船舶に10におけるGNSS40と音響送受波器30の設置位置との関係から、音響送受波器30の絶対位置も分かるが、以降の説明においては、GNSS40により測定された絶対位置を音響送受波器30の位置とみなす。音響送受波器30と各音響応答器101との間の距離はそれぞれ異なっているため、音響送受波器30から音響信号が発信された発信時刻と、音響送受波器30が各音響応答器101から応答信号を受信した受信時刻との差(時間差)は、それぞれ異なる。このため、各々の音響応答器101と対応する時間差と、水中での音波速度と、各音響応答器101の間隔との関係から、音響送受波器30を基準とした各音響応答器101の相対位置を算出することができる。これにより、各々の「応答器ID」に対応する「応答器位置(相対位置)」が算出される。さらに、音響送受波器30の絶対位置は、「船舶位置(絶対位置)」に相当するから、これを基準として、各音響応答器101の絶対位置である「応答器位置(絶対位置)」を算出することが可能となる。このとき複数の音響応答器101の位置を同一時刻に発信された音響信号を基準にして算出するから、従来必要であった動揺補正が不要となる。このため、短時間且つ簡便な処理で音響応答器101の位置を算出することが可能となる。なお、情報処理装置20は、各音響応答器101の3次元空間上の位置を示すxyz座標のうちz座標については、各応答信号に含まれる深度データを用いて算出する。音響応答器101の構成から深度計1016を除いたとしても、音響信号を発信した発信時刻と、音響送受波器30が各音響応答器101から受信した応答信号の受信時刻との差から各音響応答器101のxyz座標を算出することができるため、深度計1016は必ずしも必須ではないが、深度計1016によって計測された深度を用いたほうがより高い精度で座標を算出することができる。
【0040】
図5の説明に戻り、情報処理装置20は、対象物である水底の位置、形状を算出する(ステップS17)。具体的には、情報処理装置20は、ステップS15において各音響応答器101の絶対位置が算出されるから、これらの位置を水底の各位置とするとともに、隣り合う音響応答器101間については補間処理を行うなどして、水底の位置、形状を算出する。これにより、本発明の第4工程として、音響送受波器30が受信した各々の応答信号と発信した音響信号との時間差に基づいて、対象物である水底の位置、形状が算出されることになる。
【0041】
上述した実施形態によれば、可撓性のある連結部材102によって連結された音響応答器101を浚渫された水底に沈めることで、その水底の形状に合わせて各音響応答器101を敷設することができる。また、これら複数の音響応答器101の位置を、同一時刻に発信された音響信号を基準にして算出するから、従来必要であった動揺補正が不要となり、従来に比べて簡便で且つ精度の良い測定が可能となる。さらに、複数の音響応答器101の位置がほぼ同時に算出されるため、対象物となる水底の位置及び形状を短時間で把握することが可能となる。
【0042】
[変形例]
上述した実施形態を以下のように変形してもよい。また、以下の2つ以上の変形例を組み合わせて実施してもよい。
【0043】
[変形例1]
複数の音響応答器101のうち少なくとも1の音響応答器の位置(絶対位置)が既知である場合には(このような音響応答器を既知応答器という)、図5のステップS13のGNSS測位を不要とし、ステップS16~S17においてこの既知応答器の位置(絶対位置)に基づいて、他の音響応答器101(既知応答器以外の音響応答器101)の位置(絶対位置)を特定して対象物の測定を行うようにしてもよい。既知応答器の位置は、例えば図5で説明したように音響送受波器30の絶対位置に基づいて算出しておき、情報処理装置20はその絶対位置を記憶しておく。また、その既知応答器は音響マーカとして水底に設置したままにする。そして、例えば近辺の別の対象エリアを浚渫した後において、情報処理装置20は、GNSS測位を行わずに、その対象エリアに敷設された各音響応答器101の相対位置(つまり音響送受波器30を基準とした相対位置)と、既知応答器の相対位置(つまり音響送受波器30を基準とした相対位置)と、既に測位している既知応答器の絶対位置とに基づいて、その対象エリアに敷設された各音響応答器101の絶対位置を算出する。このようにすれば、GNSSによる測位誤差を含まないようにすることができる。
【0044】
[変形例2]
対象物は水中にあるものであれば適用可能である。例えば、水中で作業をしている潜水士にエアを送気するためのフーカホースを対象物としてもよい。この場合、フーカホースには複数の音響応答器101が所定間隔で取り付けられる。情報処理装置20は、各音響応答器101の位置を算出することで、フーカホースの位置、形状(状態)を把握する。これにより、例えばフーカホースどうし、又は、フーカホースと近傍の構造物との接触や絡まりを監視又は防止することが可能となる。
【0045】
[変形例3]
海流の調査などを行うためのシンカー及びブイを対象物としてもよい。この場合、対象物としてのシンカー及びブイを連結する連結部材には複数の音響応答器101が所定間隔で敷設される。情報処理装置20は、各音響応答器101の位置からこれらシンカー、連結部材及びブイの位置、形状を算出する。これにより、海流等を計測することが可能となる。
【0046】
[変形例4]
水中バックホウ等の、水中で何らかの作業を行う水中作業機を対象物としてもよい。この場合、水中作業機の所定位置に複数の音響応答器101が敷設される。情報処理装置20は、これら各音響応答器101の位置を算出することで、水中作業機の位置、姿勢を把握する。これにより、水中作業の監視や作業指示を行うことが可能となる。
【0047】
[変形例5]
潜水士が何らかの水中作業機を用いて水中にて作業を行う場合に、これら潜水士及び水中作業機を対象物としてもよい。この場合、潜水士及び水中作業機にそれぞれ1以上の音響応答器101が敷設される。潜水士及び水中作業機といった対象物にそれぞれ少なくとも1つの音響応答器101が敷設されている場合、情報処理装置20は、これら各音響応答器101の位置を算出することで、潜水士及び水中作業機の位置を把握することができる。さらに、潜水士又は水中作業機の少なくともいずれか一方に2以上の音響応答器101が敷設されている場合、情報処理装置20は、これら各音響応答器101の位置を算出することで、潜水士又は水中作業機の位置を把握するとともに、2以上の音響応答器101が敷設された対象物の姿勢を把握することができる。これにより、水中作業における安全確認や作業指示を行うことが可能となる。
【0048】
[変形例6]
音響送受波器30を水底又は水中の既設構造物に設置してもよい。この場合、設置する音響送受波器30(以下、音響マーカという)の絶対位置を予め測定しておけば、GNSSがなくともこの音響マーカから発信された音響信号の発信時刻と音響マーカが各音響応答器101から受信した各応答信号の受信時刻の差と、音響マーカの絶対位置とに基づいて、音響応答器101の絶対位置を算出することが可能となる。
【0049】
[変形例7]
図7は、本変形例に係るシステム全体の構成の一例を示すブロック図である。水底又は水中の既設構造物に音響マーカ31が設置される。つまり音響マーカ31は絶対位置がわかっている水中の既知点(絶対位置が既知である音響応答器の変形例)である。このシステムにおいては、図5のGNSS測位を除くステップS13~S16の手順に従い、船舶10と音響マーカ31の相対位置が測定される。音響マーカ31の絶対位置は既知であるため、既知点との相対位置から船舶10の絶対位置も導き出すことが出来る。そして、船舶10の絶対位置から水底に敷設した複数の音響応答器101の絶対位置も算出することができる。この音響マーカ31は電池式又は給電式で動作し、非同期で音響信号を水中に発信する。
これら音響応答器101の絶対位置を用いることで、対象物の測定が行われる。このような音響マーカ31を例えば大きな港湾に常時設置し、継続的に使用するようにしておけば、その港湾において施工者が変わる連続した工事においても、同一の精度で水底等の位置、形状等を算出できるので、施工の基準が一定に保たれることになる。
【0050】
[変形例8]
上記実施形態において、音響送受波器30及び各音響応答器101間の音響信号及び/又は応答信号は無線(つまり音波)で行われていたが、有線を利用するようにしてもよい。
船舶に設置した情報処理装置20と海底に敷設した音響応答器101との間を有線で接続し、各音響応答器101への呼び出し信号の発信を有線を用いて行うことで、船底に設けた音響送受波器30は各音響応答器101からの応答信号を受信する音響受波機能だけ有していればよい。これにより、音響応答器101の構成も音響送波器と深度計だけとできることから、経済性及びハンドリングの向上が実現できる。特に、音響応答器101は小型化により、潜水士による敷設ではなく、ROV(Remotely Operated Vehicle)や水中ドローンなどによる敷設も可能となる。
【符号の説明】
【0051】
10:船舶、20:情報処理装置、30:音響送受波器、40:GNSS、100:音響応答器群、101:音響応答器、102:連結部材、103:アンカー、1010:演算装置、1011:プロセッサ、1012:メモリ、1013:通信装置、1014:バッテリ、1015:音響送受波装置、1016:深度計、2001:プロセッサ、2002:メモリ、2003:ストレージ、2004:通信装置、2005:入力装置、2006:出力装置、G:水底、W:水面。
図1
図2
図3
図4
図5
図6
図7