(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-13
(45)【発行日】2023-02-21
(54)【発明の名称】電界効果型トランジスタの製造方法および無線通信装置の製造方法
(51)【国際特許分類】
H01L 21/336 20060101AFI20230214BHJP
H01L 29/786 20060101ALI20230214BHJP
H10K 10/46 20230101ALI20230214BHJP
H10K 19/10 20230101ALI20230214BHJP
H10K 85/20 20230101ALI20230214BHJP
【FI】
H01L29/78 618A
H01L29/78 618B
H01L29/78 624
H01L29/78 627C
H10K10/46
H10K19/10
H10K85/20
(21)【出願番号】P 2019554954
(86)(22)【出願日】2019-10-02
(86)【国際出願番号】 JP2019038919
(87)【国際公開番号】W WO2020080109
(87)【国際公開日】2020-04-23
【審査請求日】2022-06-27
(31)【優先権主張番号】P 2018196506
(32)【優先日】2018-10-18
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000003159
【氏名又は名称】東レ株式会社
(72)【発明者】
【氏名】清水 浩二
(72)【発明者】
【氏名】堀井 新司
(72)【発明者】
【氏名】村瀬 清一郎
【審査官】岩本 勉
(56)【参考文献】
【文献】国際公開第2017/212972(WO,A1)
【文献】特開2013-021289(JP,A)
【文献】特開2009-239178(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/336
H01L 29/786
H10K 85/20
H10K 10/40
H10K 19/10
(57)【特許請求の範囲】
【請求項1】
基板の表面上に複数の電界効果型トランジスタを製造する方法であって、
少なくとも、ゲート電極、ゲート絶縁層、ソース電極およびドレイン電極の1種以上を含む構造体を複数形成した後、
(A1)当該形成したゲート電極、ゲート絶縁層、ソース電極およびドレイン電極のうちの1種以上に基づく物理量を前記複数の構造体それぞれにおいて測定する工程と、
(B1)前記測定したそれぞれの構造体の物理量に基づいて、各構造体に塗布すべき半導体材料の塗布量を調整する工程と、
(C1)前記調整した塗布量で、各構造体に半導体材料を塗布する工程と、
を含む、電界効果型トランジスタの製造方法。
【請求項2】
基板の表面上に複数の電界効果型トランジスタを製造する方法であって、
ゲート電極およびゲート絶縁層を含む構造体を複数形成した後、
(A2)当該形成したゲート電極およびゲート絶縁層のうちの1種以上に基づく物理量を前記複数の構造体それぞれにおいて測定する工程と、
(B2)前記測定したそれぞれの構造体の物理量に基づいて、各構造体に塗布すべき半導体材料の塗布量を調整する工程と、
(C2)前記調整した塗布量で、各構造体に半導体材料を塗布する工程と、
(D2)ソース電極およびドレイン電極を形成する工程と、
を含む、請求項1記載の電界効果型トランジスタの製造方法。
【請求項3】
基板の表面上に複数の電界効果型トランジスタを製造する方法であって、
ソース電極およびドレイン電極を含む構造体を複数形成した後、
(A3)当該形成したソース電極およびドレイン電極のうちの1種以上に基づく物理量を前記複数の構造体それぞれにおいて測定する工程と、
(B3)前記測定したそれぞれの構造体の物理量に基づいて、各構造体に塗布すべき半導体材料の塗布量を調整する工程と、
(C3)前記調整した塗布量で、各構造体に半導体材料を塗布する工程と、
(D3)ゲート電極およびゲート絶縁層を形成する工程と、
を含む、請求項1記載の電界効果型トランジスタの製造方法。
【請求項4】
前記塗布量を調整する工程が、前記測定した物理量の基準値からのズレ量に基づいて、前記複数の電
界効果型トランジスタのそれぞれの半導体材料の塗布量を基準塗布量から調整する工程である、請求項1~3のいずれかに記載の電界効果型トランジスタの製造方法。
【請求項5】
前記基板を、それぞれ複数の前記構造体を有する1以上の領域に区画し、前記物理量を測定する工程が、当該領域中の1の構造体について行うものであり、前記半導体材料を塗布する工程が、前記調整した塗布量で当該領域内のすべての前記構造体に半導体材料を塗布する工程である、請求項1~4のいずれかに記載の電界効果型トランジスタの製造方法
【請求項6】
前記物理量が、ゲート電極の幅、ゲート電極の長さ、ソース電極とドレイン電極との間隔、ソース電極の長さ、ドレイン電極の長さ、およびゲート絶縁層の膜厚からなる群より選ばれるいずれか一つ以上である請求項1~5のいずれかに記載の電界効果型トランジスタの製造方法。
【請求項7】
前記半導体材料が、有機半導体、カーボンナノチューブ、グラフェン、フラーレンから選ばれる少なくとも一つを含む請求項1~6のいずれかに記載の電界効果型トランジスタの製造方法。
【請求項8】
少なくとも、ゲート電極、ゲート絶縁層、半導体層、ソース電極およびドレイン電極を有する複数の電界効果型トランジスタであって、前記半導体層がカーボンナノチューブを含有し、前記各半導体層1μm
2当たりに存在するカーボンナノチューブの総長さと、前記各ゲート電極、ゲート絶縁層、ソース電極およびドレイン電極のうちの1種以上に基づく物理量と、が相関関係にある複数の電界効果型トランジスタ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電界効果型トランジスタの製造方法、および無線通信装置の製造方法に関する。
【背景技術】
【0002】
近年、RFID(Radio Frequency IDentification)技術を用いた無線通信システムが注目されている。RFIDタグは、電界効果型トランジスタ(以下、FETという)で構成された回路を有するICチップと、リーダ/ライタとの無線通信するためのアンテナとを有する。タグ内に設置されたアンテナが、リーダ/ライタから送信される搬送波を受信し、ICチップ内の駆動回路が動作する。
【0003】
RFIDタグは、物流管理、商品管理、万引き防止などの様々な用途での利用が期待されており、交通カードなどのICカード、商品タグなど一部で導入が始まっている。
【0004】
今後、あらゆる商品でRFIDタグが使用されるためには、製造コストの低減が必要である。そこで、真空や高温を使用する製造プロセスから脱却し、塗布・印刷技術を用いたフレキシブルで安価なものが検討されている。
【0005】
例えば、ICチップ内の回路には、成形性に優れた有機半導体やカーボンナノチューブを半導体層として用いたFETが提案されている。有機半導体やカーボンナノチューブをインクとして利用することで、インクジェット技術やスクリーン印刷技術等により、フレキシブル基板上に直接回路パターンを形成することが可能になる。そこで、従来の無機半導体にかわり、有機半導体やカーボンナノチューブを用いたFETが盛んに検討されている(例えば、特許文献1参照)。
【0006】
一方、ICチップ内の回路を構成するFETは、特性ばらつき(例えば、駆動電流値のばらつき)が生じると、設計仕様通りの安定した回路動作の実現が困難となる。そのため、例えば、FETの駆動電流値のばらつきをFET素子間で抑えるため、チャネルを複数の領域に分割した構成が検討されている(例えば、特許文献2参照)。この方法では、チャネルを複数の領域で構成することによって、半導体層でチャネルを形成する際のチャネル幅のばらつきを平均化させてFETの駆動電流値のばらつきを抑えている。
【0007】
また、基板の変形等に起因したパターンずれによるFETの駆動電流値のばらつきを抑えるため、基板の歪み、または基板の伸縮率に基づいて、FETのソース電極およびドレイン電極の露光データを、チャネル長を固定した状態で補正する方法が検討されている(例えば、特許文献3参照)。この方法により、フレキシブルな基板を用いても、チャネル長の変動を抑制することで、FETの駆動電流値のばらつきを軽減している。
【先行技術文献】
【特許文献】
【0008】
【文献】国際公開第2009/139339号
【文献】特開2006-261423号公報
【文献】特開2012-212722号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、特許文献2に記載された方法では、チャネル幅のばらつきによる電流値ばらつきは抑えることができるが、例えばチャネル長の製造ばらつき、ゲート絶縁膜の膜厚ばらつき等の、他の要因によるばらつきを抑えることができないという問題があった。
【0010】
特許文献3に記載された方法では、基板の歪みは補正できるが、電極形成時の製造ばらつきによるチャネル幅やチャネル長のばらつき等を抑えることができないという問題があった。
【0011】
本発明は、上記課題に着目し、特性のばらつきが抑えられたFET、およびそれを簡便に製造する方法を提供することを目的とする。
【課題を解決するための手段】
【0012】
上記課題を解決するため、本発明は以下の製造方法からなる。すなわち本発明は、基板の表面上に複数の電界効果型トランジスタを製造する方法であって、少なくとも、ゲート電極、ゲート絶縁層、ソース電極およびドレイン電極の1種以上を含む構造体を複数形成した後、
(A1)当該形成したゲート電極、ゲート絶縁層、ソース電極およびドレイン電極のうちの1種以上に基づく物理量を前記複数の構造体それぞれにおいて測定する工程と、
(B1)前記測定したそれぞれの構造体の物理量に基づいて、各構造体に塗布すべき半導体材料の塗布量を調整する工程と、
(C1)前記調整した塗布量で前記複数の構造体のそれぞれに半導体材料を塗布する工程と、を含む複数の電界効果型トランジスタの製造方法である。
【0013】
また本発明の電界効果型トランジスタの製造方法は、別な態様として、ゲート電極およびゲート絶縁層を含む構造体を複数形成した後、
(A2)当該形成したゲート電極およびゲート絶縁層のうちの1種以上に基づく物理量を前記複数の構造体それぞれにおいて測定する工程と、
(B2)前記測定したそれぞれの構造体の物理量に基づいて、各構造体に塗布すべき半導体材料の塗布量を調整する工程と、
(C2)前記調整した塗布量で前記複数の構造体のそれぞれに半導体材料を塗布する工程と、
(D2)ソース電極およびドレイン電極を形成する工程と、
を含む複数の電界効果型トランジスタの製造方法である。
【0014】
また本発明の電界効果型トランジスタの製造方法は、さらに別な態様として、ソース電極およびドレイン電極を含む構造体を複数形成した後、
(A3)当該形成したソース電極およびドレイン電極のうちの1種以上に基づく物理量を前記複数の構造体それぞれにおいて測定する工程と、
(B3)前記測定したそれぞれの構造体の物理量に基づいて、各構造体に塗布すべき半導体材料の塗布量を調整する工程と、
(C3)前記調整した塗布量で前記複数の構造体のそれぞれに半導体材料を塗布する工程と、
(D3)ゲート電極およびゲート絶縁層を形成する工程と、
を含む複数の電界効果型トランジスタの製造方法である。
【発明の効果】
【0015】
本発明によれば、製造工程において発生するばらつき(変動要因)によってのトランジスタとしての特性がばらつくことが抑えられたFETの作製が可能となる。
【図面の簡単な説明】
【0016】
【
図1A】本発明の第1の実施形態に係る電界効果型トランジスタの製造方法の例を示した模式断面図
【
図1B】本発明の第1の実施形態に係る電界効果型トランジスタの製造方法により形成した電界効果型トランジスタの模式上面図
【
図2】本発明の第2の実施形態に係る電界効果型トランジスタの製造方法の例を示した模式断面図
【
図3】本発明の第3の実施形態に係る電界効果型トランジスタの製造方法の例を示した模式断面図
【発明を実施するための形態】
【0017】
以下、本発明の実施の形態について詳細に説明する。なお、本発明は以下に説明された具体的な実施形態に限定して解釈されるものではなく、発明の目的を達成できて、かつ、発明の要旨を逸脱しない範囲内においての種々の変更は当然あり得る。
【0018】
電界効果型トランジスタは、ゲート電極、ゲート絶縁層、ソース電極、ドレイン電極、半導体層などの機能材によって構成されるものであるが、それら機能材の配置には種々の態様が知られている。本願発明は、後述するとおり半導体層の形成を後記に説明されるように制御された方法で形成する工程を含むものであるが、本発明の適用が可能である限り、電界効果型トランジスタの態様に特に制限は無い。以下では代表的な3つの態様を挙げて説明する。また特に、本発明は基板上に2個以上の電界効果型トランジスタの形成を行うにおいて極めて有用である。
【0019】
<電界効果型トランジスタ(FET)の製造方法>
(第1の実施形態)
本発明の第1の実施形態に係るFETの製造方法は、基板の表面上に複数のFETを製造する方法であって、以下の(1a)から(1f)の工程を含む方法である。
(1a)基板の表面上にゲート電極を形成する工程。
(1b)ゲート電極上にゲート絶縁層を形成する工程。
(1c)ゲート絶縁層上にソース電極およびドレイン電極を形成する工程。
(1d)当該形成したゲート電極、ゲート絶縁層、ソース電極およびドレイン電極のうちの1種以上に基づく物理量を測定する工程。
(1e)測定した物理量に基づいて、ソース電極とドレイン電極との間に塗布すべき半導体材料の塗布量を調整する工程。
(1f)ソース電極とドレイン電極の間に、半導体材料を工程(1e)にて調整した量で塗布することにより、半導体層を形成する工程。
【0020】
図1Aは、本発明の第1の実施形態に係るFETの製造方法を示す模式断面図である。また、
図1Bは、その方法により製造されたFETの模式平面図である。なお、
図1Aでは説明の便宜上一個の素子が示されているが、複数のFETを設けるにおいて上記工程を同時並行的に行えることが容易に理解できる(
図2、
図3においても同様)。
【0021】
図1では、(1a)基板1の表面上にゲート電極2を形成し、(1b)ゲート電極2を覆うようにゲート絶縁層3を形成し、(1c)ゲート絶縁層3上にソース電極4およびドレイン電極5を形成している。その後、
図1Aへの記載は省略するが、(1d)当該形成したゲート電極、ゲート絶縁層、ソース電極およびドレイン電極のうちの1種以上に基づく物理量を測定し、(1e)測定した物理量に基づいて、ソース電極とドレイン電極との間に塗布すべき半導体材料の塗布量を調整する。その後、(1f)ソース電極4とドレイン電極5の間に、半導体材料を工程(1e)にて調整した量で塗布することにより、半導体層6を形成している。
【0022】
第1の実施形態では、基板の表面上に形成する複数のFETの個々に対し上記(1a)から(1f)の工程を適用するので、ゲート電極、ゲート絶縁層、ソース電極およびドレイン電極の形成工程の全部または一部において発生するばらつきによるFETの駆動電流値ばらつきを抑えることが可能となる。
【0023】
図1Aへの記載は省略するが、第1の実施形態に関わるFETの製造方法において、工程(1a)から(1f)の他に、さらにゲート電極用の配線、ソース電極およびドレイン電極用の配線の形成工程を施すことができる。
【0024】
工程(1a)および(1c)における電極の形成方法としては、電極の形成ができれば、方法に特に制限はないが、インクジェット法、印刷法、イオンプレーティングコーティング法、抵抗加熱蒸着法、電子線ビーム法、スパッタリング法、メッキ法、CVD法などが挙げられる。中でも、製造コスト、材料の使用効率、大面積への適合性等の観点から、塗布法を用いることが好ましい。また、電極材料としてバインダーおよび導電体を含むペーストを用いた場合は、スピンコート法、ブレードコート法、スリットダイコート法、スクリーン印刷法、バーコーター法、鋳型法、印刷転写法、浸漬引き上げ法などの公知の技術を用いて、ペーストを基板上に塗布し、オーブン、ホットプレート、赤外線などを用いて乾燥を行う方法なども挙げられる。また電極パターンの形成方法としては、上記方法で作製した電極薄膜を公知のフォトリソグラフィー法などで所望の形状にパターン形成してもよいし、電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターン形成してもよい。
【0025】
工程(1b)におけるゲート絶縁層の作製方法は、絶縁層の形成ができれば、方法に特に制限はないが、例えば、原料組成物をゲート電極が形成された基板上に塗布し、乾燥することで得られたコーティング膜を必要に応じ熱処理する方法が挙げられる。塗布方法としては、スピンコート法、ブレードコート法、スリットダイコート法、スクリーン印刷法、バーコーター法、鋳型法、印刷転写法、浸漬引き上げ法、インクジェット法などの公知の塗布方法が挙げられる。コーティング膜の熱処理の温度としては、50~300℃の範囲にあることが好ましい。
【0026】
工程(1d)における物理量の測定対象である、ゲート電極、ゲート絶縁層、ソース電極およびドレイン電極のうちの1種以上に基づくものは、ゲート電極、ゲート絶縁層、ソース電極およびドレイン電極の形成工程の全部または一部において発生する物理量の設計値からのズレおよび素子間にあっては物理量の不均一、すなわちこれらを総称して(製造工程において発生する)ばらつき、に起因してFETの駆動電流値に影響するものから選択される。つまり、FETの特性である駆動電流値は、FETに関する物理量が与えられれば、求まる。そのため、FETの駆動電流値が変動するのは、FETに関する物理量が設計値からズレたり、素子間にあっては等しい物理量にならないためである。FETの特性ばらつきを抑えるためには、各FETにおいて、物理量の設定値からのずれを評価すれば、駆動電流値が所定の値からどの程度ずれるかがわかり、そのずれ量を補正するためには、ある物理量を基準値から補正すればよい。
【0027】
これをさらに具体的に説明する。FETの駆動電流値Idは、ソース電極4とドレイン電極5との間の半導体層6の状態に依存しており、例えば、以下の式(1)、式(2)で表されることが知られている。
【0028】
Vd < Vg-Vthの場合、
Id=(W/L)・(ε0・εr・μ/d)・((Vg-Vth)・Vd+(1/2)・Vd
2) ・・(1)
Vd > Vg-Vthの場合、
Id=(W/2L)・(ε0・εr・μ/d)・(Vg-Vth)2 ・・(2)
なお、Vdはドレイン電圧、Vgはゲート電圧、Vthはしきい値電圧、ε0は真空誘電率(8.85×10-12F/m)、εrはゲート絶縁膜の比誘電率、Wはチャネル幅、Lはチャネル長、dはゲート絶縁膜の厚さ、μは移動度を表している。
【0029】
式(1)、式(2)によると、FETの駆動電流値I
dは、W、L、d等に依存する。そのため、測定の対象とされる物理量としては、サイズ、表面ラフネス、密度および屈折率等が挙げられる。物理量としては、具体的には、
図1A(1f)および
図1Bを参照して説明すると、チャネル幅10、チャネル長11、ゲート電極幅12、ゲート電極長さ13、ソース電極とドレイン電極との間隔14、ドレイン電極の長さ15(なお、ソース電極の長さについても可である)、ゲート電極とソース電極との重なり部の長さ16(なお、ゲート電極とドレイン電極との重なり部の長さについても可である)、ゲート電極の膜厚17、ゲート電極の表面ラフネス、ゲート電極の密度、ゲート電極の屈折率、ソース電極の膜厚18(なお、ドレイン電極の膜厚についても可である)、ソース電極またはドレイン電極の表面ラフネス、ソース電極またはドレイン電極の密度、ソース電極またはドレイン電極の屈折率、ゲート電極端19のラフネス、ソース電極またはドレイン電極端のラフネス、ゲート絶縁層の膜厚21、ゲート絶縁層の表面ラフネス、ゲート絶縁層の密度、ゲート絶縁層の屈折率、等が挙げられる。
【0030】
中でも、ゲート電極の幅12、ゲート電極の長さ13、ソース電極とドレイン電極との間隔14、ドレイン電極の長さ15、ソース電極の長さ、およびゲート絶縁層の膜厚21は、ゲート電極、ゲート絶縁層、ソース電極またはドレイン電極形成後であれば、いずれの工程でも測定が可能であり、さらにインライン、非破壊、短時間での測定が可能であることなどから、好ましい。
【0031】
それぞれの、幅、長さ、間隔、ラフネスは、光学顕微鏡や走査型電子顕微鏡(SEM)などにより測定できる。膜厚は、原子間力顕微鏡やエリプソメトリ法などにより測定できる。屈折率は、分光エリプソメトリ法などにより測定できる。ゲート電極とソース電極またはドレイン電極との重なり部の長さは、
図1Aに示す断面をSEMを用いて観察し、ゲート電極2とソース電極4またはドレイン電極5との重なり部の長さを測定できる。表面ラフネスは、絶縁層や電極の表面粗さを、表面形状測定装置を用いて測定できる。測定方法・測定手段は、上記に限定されないが、複数のFETで同一の方法で物理量を測定し、FETごとの物理量のばらつき量を算出できる方法であれば良い。
【0032】
なお、測定値は、上記測定対象の物理量の絶対値を測定しても良いし、上記測定対象の基準値(例えば、設計値)からのズレ量として測定しても良い。
【0033】
また、半導体材料の塗布量を決めるにおいて、ある一つの物理量に基づいて半導体材料の塗布量を調整してもよいし、二種以上の物理量に基づいて半導体材料の塗布量を調整してもよい。
【0034】
工程(1e)において、工程(1d)で測定した物理量の絶対値、または物理量の基準値からのズレ量に基づいて、半導体材料の塗布量を調整する。これにより、FETの駆動電流値Idを所定の値にすることができる。例えば、半導体層をカーボンナノチューブで形成する場合、塗布量を調整することで、半導体層中のカーボンナノチューブの量、具体的には半導体層の1μm2当たりに存在するカーボンナノチューブの総長さが調整されることにより、上述式(1)、式(2)における移動度μが調整され、FETの駆動電流値Idを所定の値にすることができる。
【0035】
ここでの塗布量の調整は、測定した物理量に基づき、塗布量の絶対値を調整しても良いし、測定した物理量の基準値からのズレ量に基づき、基準塗布量から調整しても良い。また、塗布量については、FETの駆動電流値Idが所定の値になるように、予め実験等によって塗布する量をFETの仕様に応じて決めておき、これに従って塗布すれば良い。ゲート絶縁層の膜厚を例にとってみると塗布量を実験的に求めておく場合には、幾つかのゲート絶縁層の膜厚を持った試料を作製し、所定の駆動電流となる塗布量を求め、絶縁層の膜厚と塗布量との関係性を求めておく。そして、例えば、測定されたゲート絶縁層の膜厚dが基準値より薄い場合、式(1)、式(2)より、駆動電流値Idが所定の値より大きくなる。そのため、駆動電流値Idを所定の値にするため、半導体層塗布量を低減させる対応が採られることとなる。他の例では、チャネル幅Wが基準値より10%短くなったFETの場合、式(1)、式(2)より、駆動電流値Idが所定の値より10%小さくなる。そのため、駆動電流値Idを所定の値にするため、半導体層塗布量を増加させる調整を行う。半導体層をカーボンナノチューブで形成する場合、塗布量を増加させることで、半導体層中のカーボンナノチューブの量を10%増加させ、駆動電流値Idを所定の値に調整する方法が考えられる。なお、上述の塗布量の増減は、半導体層中に存在するカーボンナノチューブの総長さを増減させることを意味し、これにより駆動電流値Idを調整することが可能となる。
【0036】
工程(1f)における半導体層の形成方法としては、スピンコート法、ブレードコート法、スリットダイコート法、スクリーン印刷法、バーコーター法、鋳型法、印刷転写法、浸漬引き上げ法、インクジェット法などの公知の塗布方法が挙げられる。中でも、インクジェット法、ディスペンサー法およびスプレー法からなる群より選ばれるいずれか一つであることが好ましい。さらに、原料の使用効率の観点から、インクジェット法がより好ましい。これらの塗布方法から、塗膜厚み制御や配向制御など、得ようとする塗膜特性に応じて適切なものを選択できる。また、形成した塗膜に対して、大気下、減圧下または不活性ガス雰囲気下(窒素やアルゴン雰囲気下)でアニーリング処理を行ってもよい。
【0037】
(より効率的な第1の実施形態の例)
第1の実施形態は、基板上に複数のFETの形成を行う場合には、製造効率を高めることができるので、まず、複数のFET分、(1a)~(1c)までの工程を基板に施しておいて、基板に、複数の、ゲート電極、ゲート絶縁層、ソース電極およびドレイン電極を備えた構造体を作製し、(1d)の工程を、前記各構造体について行い、各構造体について、(1f)の工程を、工程(1e)にて調整した塗布量塗布することが好ましい。
【0038】
なお、前記の構造体において、一定のエリア内でのばらつきが少ない場合には、そのエリア内の構造体の一個について(1d)の工程を実施し、そこから得られた物理量に従って求めたその構造体に対する塗布量をそのエリア内の他の構造体に適用することが可能である。この方法では、得られたトランジスタ素子間で駆動電流値に差異が生じるものの、設計上それが許容される範囲であれば、測定される構造体の数を減らすことができて製造に要する時間を短縮できるメリットがあることなどから、好ましい。さらに、物理量を測定する構造体は、FETのゲート電極、ゲート絶縁層、ソース電極およびドレイン電極のうちの1種以上に基づくものであれば、その構造体はFETに限られない。例えば、物理量の測定用に形成されたテストパターンを測定する対象としてもよい。
【0039】
(第2の実施形態)
本発明の第2の実施形態に係るFETの製造方法は、基板の表面上に複数のFETを製造する方法であって、以下の(2a)から(2f)の工程を含む。
(2a)基板の表面上にゲート電極を形成する工程。
(2b)ゲート電極上にゲート絶縁層を形成する工程。
(2c)当該形成したゲート電極、ゲート絶縁層のうちの1種以上に基づく物理量を測定する工程。
(2d)測定した物理量に基づいて、塗布すべき半導体材料の塗布量を調整する工程。
(2e)半導体材料を工程(2d)にて調整した量で塗布することにより、半導体層を形成する工程。
(2f)ソース電極およびドレイン電極を形成する工程。
なお、(2a)から(2f)は必ずしもこの順でなくてもよい。例えば(2e)の工程と(2f)の工程はこの順であっても逆の順であってもよい。また、(2c)の工程と(2d)の工程が、(2b)の工程の前にあってもよい。
【0040】
図2は、本発明の第2の実施形態に係るFETの製造方法を示す模式断面図である。
図2では、(2a)基板1の表面上にゲート電極2を形成し、(2b)ゲート電極2を覆うようにゲート絶縁層3を形成している。その後、
図2への記載は省略するが、(2c)当該形成したゲート電極、ゲート絶縁層のうちの1種以上に基づく物理量を測定し、(2d)測定した物理量に基づいて、塗布すべき半導体材料の塗布量を調整する。その後、(2e)半導体材料を工程(2d)にて調整した量で塗布することにより、半導体層6を形成し、(2f)半導体層6上にソース電極4およびドレイン電極5を形成する。
【0041】
第2の実施形態でも、基板の表面上に形成する複数のFETの個々に対し上記(2a)から(2f)の工程を適用するので、ゲート電極、ゲート絶縁層の形成工程の全部または一部において発生するばらつきによるFETの駆動電流値ばらつきを抑えることが可能となる。
【0042】
また、第2の実施形態にあっても上記第1の実施形態において説明したより効率的な実施形態を応用してもよい。すなわち、まず、複数のFET分、(2a)、(2b)までの工程を基板に施しておいて、基板に、複数のゲート電極、ゲート絶縁層を備えた構造体を作製し、(2c)の工程を、前記各構造体について行い、各構造体について、(2e)の工程を、工程(2d)にて調整した塗布量塗布し、続いて(2f)の工程を行うことが好ましい。
【0043】
図2への記載は省略するが、第2の実施形態に関わるFETの製造方法において、工程(2a)から(2f)の他に、さらにゲート電極用の配線、ソース電極およびドレイン電極用の配線の形成工程を施すことができる。
【0044】
図2に示すように、第2の実施形態によるFETは、第1の実施形態と異なり、半導体層6がソース電極およびドレイン電極の下方に配置されている。その他の構成、各工程の製造方法・構成部材は第1の実施形態と同様である。
【0045】
(第3の実施形態)
本発明の第3の実施形態に係るFETの製造方法は、基板の表面上に複数のFETを製造する方法であって、以下の(3a)から(3f)の工程を含む。
(3a)基板の表面上にソース電極およびドレイン電極を形成する工程。
(3b)当該形成したソース電極およびドレイン電極のうちの1種以上に基づく物理量を測定する工程。
(3c)測定した物理量に基づいて、塗布すべき半導体材料の塗布量を調整する工程。
(3d)半導体材料を工程(3c)にて調整した量で塗布することにより、半導体層を形成する工程。
(3e)半導体層上にゲート絶縁層を形成する工程。
(3f)ゲート絶縁層上にゲート電極を形成する工程。
【0046】
図3は、本発明の第3の実施形態に係るFETの製造方法を示す模式断面図である。
図3では、(3a)基板1の表面上にソース電極4およびドレイン電極5を形成している。その後、
図3への記載は省略するが、(3b)当該形成したソース電極およびドレイン電極のうちの1種以上に基づく物理量を測定し、(3c)測定した物理量に基づいて、塗布すべき半導体材料の塗布量を調整する。その後、(3d)半導体材料を工程(3c)にて調整した量で塗布することにより、半導体層6を形成し、(3e)半導体層6を覆うようにゲート絶縁層3を形成し、(3f)ゲート絶縁層3上にゲート電極2を形成する。
【0047】
第3の実施形態でも、基板の表面上に形成する複数のFETの個々に対し上記(3a)から(3f)の工程を適用するので、ソース電極、ドレイン電極の形成工程の全部または一部において発生する製造ばらつきによるFETの駆動電流値ばらつきを抑えることが可能となる。
【0048】
また、第3の実施形態にあっても上記第1の実施形態において説明したより効率的な実施形態を応用してもよい。すなわち、まず、複数のFET分、(3a)の工程を基板に施しておいて、基板に、複数のソース電極およびドレイン電極を備えた構造体を作製し、(3b)の工程を、前記各構造体について行い、各構造体について、(3d)の工程を、工程(3c)にて調整した塗布量塗布し、続いて(3e)、(3f)の工程を行うことが好ましい。
【0049】
図3への記載は省略するが、第3の実施形態に関わるFETの製造方法において、工程(3a)から(3f)の他に、さらにゲート電極用の配線、ソース電極およびドレイン電極用の配線の形成工程を施すことができる。
【0050】
図3に示すように、第3の実施形態によるFETは、第1の実施形態と異なり、ソース電極4およびドレイン電極5、半導体層6がゲート絶縁層3の下方に配置されている。その他の構成、各工程の製造方法・構成部材は第1の実施形態と同様である。
【0051】
(その他の実施の形態)
上述のように、いくつか例を挙げて説明したが、本発明の実施の形態は、ゲート電極、ゲート絶縁層、ソース電極およびドレイン電極のうち、基板上に設けられているものについて、そのうちの1つまたは複数種について、物理量を測定し、半導体層の形成を行うにおいて前記物理量に基づいて決定された半導体材料の塗布量で以て塗布を行って半導体層の形成を行うとの特徴を有すれば、これらに限られない。
【0052】
なお、上記の実施の形態に示すFETは、ここでは記載していないキャパシタ、抵抗、ダイオード、インダクタなどの様々な素子を組み合わせて、回路を構成し得るものである。
【0053】
(FET)
本発明の実施の形態に係るFETは、少なくとも、ゲート電極、ゲート絶縁層、半導体層、ソース電極およびドレイン電極を有する複数のFETであって、上記半導体層は好ましくカーボンナノチューブを含有する。また、カーボンナノチューブを含有する場合、半導体層1μm2当たりに存在するカーボンナノチューブの総長さと、ゲート電極、ゲート絶縁層、ソース電極およびドレイン電極のうちの1種以上に基づく物理量と、が相関関係にある。ここで、相関関係にあるとは、上記物理量と、半導体層1μm2当たりに存在するカーボンナノチューブの総長さとの相関係数が0.7以上であることをいう。
【0054】
相関係数の算出方法としては、ランダムにピックアップした20個のFETの各半導体層1μm2当たりに存在するカーボンナノチューブの総長さをx、上記各FETのゲート電極、ゲート絶縁層、ソース電極およびドレイン電極のうちの1種以上に基づく物理量をyとすると、下記式(a)により求める方法が挙げられる。
(xとyの共分散)/((xの標準偏差)×(yの標準偏差)) (a)。
【0055】
このようなFETは、上述の、本発明の実施の形態に係るFETの製造方法により製造することができる。
【0056】
次に本発明において用いうるFETを構成する部材について具体的に例を挙げて詳細に説明する。
【0057】
<基板>
基板に用いられる材料は、特に制限はないが、少なくとも電極が配置される面が絶縁性であれば良い。例えば、ガラス、サファイア、アルミナ焼結体、シリコンウエハ等、およびそれらの表面を酸化膜で被覆したもの等の無機材料;
ポリイミド(PI)樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリサルフォン樹脂、ポリフェニレンサルファイド(PPS)樹脂、シクロオレフィン樹脂、シリコーン樹脂などの樹脂;
を含む基材が好適に用いられるが、これらに限定されない。
【0058】
<ゲート電極、ソース電極、ドレイン電極および配線>
ゲート電極、ソース電極、ドレイン電極および配線は、一般的に電極として使用されうる導電性材料であれば、いかなるものでもよい。そのような導電性材料としては、例えば、酸化錫、酸化インジウム、酸化錫インジウム(ITO)などの導電性金属酸化物が挙げられる。また、白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウム、パラジウム、モリブデン、アモルファスシリコンやポリシリコンなどの金属、これらの中から選択される複数の金属の合金、ヨウ化銅、硫化銅などの無機導電性物質が挙げられる。また、ポリチオフェン、ポリピロール、ポリアニリン、ポリエチレンジオキシチオフェンとポリスチレンスルホン酸との錯体、ヨウ素などのドーピングによって導電率を向上させた導電性ポリマーが挙げられる。さらには、炭素材料、有機成分と導電体とを含有する材料などが挙げられる。
【0059】
有機成分と導電体とを含有する材料は、電極の柔軟性が増し、屈曲時にも密着性が良く電気的接続が良好となる。有機成分としては、特に制限はないが、モノマー、オリゴマーもしくはポリマー、光重合開始剤、可塑剤、レベリング剤、界面活性剤、シランカップリング剤、消泡剤、顔料などが挙げられる。電極の折り曲げ耐性向上の観点からは、オリゴマーもしくはポリマーが好ましい。しかし、電極および配線の導電性材料は、これらに限定されるものではない。これらの導電性材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。
【0060】
また、電極の幅、厚み、および各電極間の間隔(例えばソース電極とドレイン電極との間隔)はFETの仕様により任意に設定できる。例えば、各電極の幅は5μm以上、1mm以下に設定することが好ましい。各電極の厚みは0.01μm以上、100μm以下に設定することが好ましい。ソース電極とドレイン電極との間隔は1μm以上、500μm以下に設定することが好ましい。しかし、これらのサイズは、上記のものに限らない。
【0061】
さらに、配線の幅および厚みも任意である。具体的には、配線の厚みは0.01μm以上、100μm以下に設定することが好ましい。配線の幅は5μm以上、500μm以下に設定することが好ましい。しかし、これらのサイズは、上記のものに限らない。
【0062】
<ゲート絶縁層>
ゲート絶縁層に用いられる材料は、特に限定されないが、酸化シリコン、アルミナ等の無機材料;ポリイミド、ポリビニルアルコール、ポリビニルクロライド、ポリエチレンテレフタレート、ポリフッ化ビニリデン、ポリシロキサン、ポリビニルフェノール(PVP)等の有機高分子材料;あるいは無機材料粉末と有機材料の混合物を挙げることができる。中でも、ケイ素原子と炭素原子の結合を含む有機化合物を含むものが基板や電極との密着性の観点から好ましい。また、ケイ素原子と炭素原子の結合を含む有機化合物と、金属原子および酸素原子の結合を含む金属化合物とを含むものも好ましい。
【0063】
ゲート絶縁層の膜厚は0.05μm以上5μm以下に設定することが好ましく、0.1μm以上1μm以下に設定することがより好ましい。この範囲の膜厚に設定することにより、均一な薄膜形成が容易になる。
【0064】
絶縁層は単層でも複数層でもよい。また、1つの層を複数の絶縁性材料から形成してもよいし、複数の絶縁性材料を積層して複数の絶縁層を形成しても構わない。
【0065】
<半導体層>
半導体層に用いられる材料は、半導体性を示す材料であれば特に限定されず、塗布プロセスが適用できるものであれば良い。有機半導体やカーボン材料が好ましい例として挙げられる。
【0066】
特に、カーボン材料が好ましく、その具体例としては、カーボンナノチューブ(以下、CNTという)、グラフェン、フラーレンなどが挙げられるが、塗布プロセスへの適性や高移動度の点でCNTが好ましい。
【0067】
CNTとしては、1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNT、2枚のグラフェン・シートが同心円状に巻かれた2層CNT、複数のグラフェン・シートが同心円状に巻かれた多層CNTのいずれを用いてもよく、これらを2種以上用いてもよい。半導体の特性を示すという観点から単層CNTを用いることが好ましく、中でも単層CNTが半導体型単層CNTを90重量%以上含むことがより好ましい。さらに好ましくは単層CNTが半導体型単層CNTを95重量%以上含むことである。
【0068】
半導体型単層CNTの含有比率は、可視-近赤外吸収スペクトルの吸収面積比により算出できる。CNTは、アーク放電法、化学気相成長法(CVD法)、レーザー・アブレーション法等の方法により得ることができる。
【0069】
中でも、半導体層の形成の容易性から、半導体層に用いられる材料はCNTが好ましい。さらに、表面の少なくとも一部に共役系重合体が付着したCNT(以下、CNT複合体という)は、溶液中での分散安定性に優れ、高移動度が得られるため、特に好ましい。ここで、共役系重合体とは、繰り返し単位が共役構造をとり、重合度が2以上の化合物を指す。
【0070】
共役系重合体がCNTの表面の少なくとも一部に付着した状態とは、CNT表面の一部、あるいは全部を共役系重合体が被覆した状態を意味する。共役系重合体がCNTを被覆できるのはそれぞれの共役系構造に由来するπ電子雲が重なることによって相互作用が生じるためと推測される。CNTが共役系重合体で被覆されているか否かは、被覆されたCNTの反射色が被覆されていないCNTの色から共役系重合体の色に近づくことで判別できる。定量的にはX線光電子分光法(XPS)などの元素分析によって、付着物の存在とCNTに対する付着物の質量比を同定することができる。
【0071】
CNT複合体は、CNTの表面の少なくとも一部に共役系重合体を付着させることにより、CNTの保有する高い電気的特性を損なうことなくCNTを溶液中に均一に分散することが可能になる。また、CNTが均一に分散した分散液を用いて塗布法により、均一に分散したCNT膜を形成することが可能になる。これにより、高い半導体特性を実現できる。
【0072】
共役系重合体をCNTに付着させる方法は、(I)溶融した共役系重合体中にCNTを添加して混合する方法、(II)共役系重合体を溶媒中に溶解させ、この中にCNTを添加して混合する方法、(III)CNTを溶媒中で予め超音波等で予備分散しておいた所に共役系重合体を添加し混合する方法、(IV)溶媒中に共役系重合体とCNTを入れ、この混合系に超音波を照射して混合する方法等が挙げられる。本発明では、複数の方法を組み合わせてもよい。
【0073】
本発明において、CNTの長さは、設定されたソース電極とドレイン電極間隔よりも短いことが好ましい。CNTの平均長さは、ソース電極とドレイン電極間隔によるが、好ましくは2μm以下、より好ましくは0.5μm以下である。一般に市販されているCNTは長さに分布があり、ソース電極とドレイン電極間隔よりも長いCNTが含まれることがあるため、CNTをソース電極とドレイン電極間隔よりも短くする工程を加えることが好ましい。例えば、硝酸、硫酸などによる酸処理、超音波処理、または凍結粉砕法などにより短繊維状にカットする方法が有効である。またフィルターによる分離を併用することは、純度を向上させる点でさらに好ましい。
【0074】
また、CNTの直径は特に限定されないが、0.5nm以上100nm以下が好ましく、1nm以上50nm以下がより好ましい。
【0075】
上記のCNTを被覆する共役系重合体としては、ポリチオフェン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリ-p-フェニレン系重合体、ポリ-p-フェニレンビニレン系重合体、チオフェンユニットとヘテロアリールユニットを繰り返し単位中に有するチオフェン-ヘテロアリーレン系重合体などが挙げられ、これらを2種以上用いてもよい。上記重合体は、単一のモノマーユニットが並んだもの、異なるモノマーユニットをブロック共重合したもの、ランダム共重合したもの、また、グラフト重合したものなどを用いることができる。
【0076】
また、半導体層は、CNT複合体と有機半導体を混合して用いてもよい。有機半導体中にCNT複合体を均一に分散させることにより、有機半導体そのものの特性を維持しつつ、高い移動度を実現することが可能となる。
【0077】
また半導体層は、さらに絶縁性材料を含んでもよい。ここで用いられる絶縁性材料としては、本発明の絶縁材料組成物や、ポリ(メチルメタクリレート)、ポリカーボネート、ポリエチレンテレフタレートなどのポリマー材料が挙げられるが、特にこれらに限定されない。
【0078】
半導体層6は単層でも複数層でもよく、膜厚は1nm以上200nm以下が好ましく、100nm以下がさらに好ましい。この範囲の膜厚にすることにより、均一な薄膜形成が容易になり、さらにゲート電圧によって制御できないソース・ドレイン間電流を抑制し、FETのオンオフ比をより高くすることができる。膜厚は、原子間力顕微鏡やエリプソメトリ法などにより測定できる。
【0079】
<第2絶縁層>
本発明では、半導体層に対してゲート絶縁層と反対側に第2絶縁層を形成してもよい。これにより、半導体層を酸素や水分などの外部環境から保護することができる。
【0080】
第2絶縁層に用いられる材料としては特に限定されないが、具体的には酸化シリコン、アルミナ等の無機材料、ポリイミドやその誘導体、ポリビニルアルコール、ポリビニルクロライド、ポリエチレンテレフタレート、ポリフッ化ビニリデン、ポリシロキサンやその誘導体、ポリビニルフェノールやその誘導体等などのポリマー材料、あるいは無機材料粉末とポリマー材料の混合物や有機低分子材料とポリマー材料の混合物を挙げることができる。
【0081】
これらの中でも、インクジェット等の塗布法で作製できるポリマー材料を用いることが好ましい。特に、ポリフルオロエチレン、ポリノルボルネン、ポリシロキサン、ポリイミド、ポリスチレン、ポリカーボネートまたはこれらの誘導体、ポリアクリル酸誘導体、ポリメタクリル酸誘導体、またはこれらを含む共重合体を用いると、絶縁層の均一性の観点から好ましい。
【0082】
第2絶縁層の膜厚は、50nm以上10μm以下が好ましく、100nm以上3μm以下がより好ましい。第2絶縁層は単層でも複数層でもよい。また、1つの層を複数の絶縁性材料から形成してもよいし、複数の絶縁性材料を積層して形成しても構わない。
【0083】
第2絶縁層の形成方法としては、特に限定されず、抵抗加熱蒸着、電子線ビーム、スパッタリング、CVDなど乾式の方法を用いることも可能であるが、製造コストや大面積への適合の観点から塗布法を用いることが好ましい。塗布法として、具体的には、スピンコート法、ブレードコート法、スリットダイコート法、スクリーン印刷法、バーコーター法、鋳型法、印刷転写法、浸漬引き上げ法、インクジェット法、ドロップキャスト法などを好ましく用いることができる。塗膜厚み制御や配向制御など、得ようとする塗膜特性に応じて塗布方法を選択できる。
【0084】
また、ゲート電極、ゲート絶縁層、半導体層、ソース電極およびドレイン電極を包埋するように基材上を前記第2絶縁層で説明した材料を用いて覆うことも同様に好ましい態様である。
【0085】
本出願は、2018年10月18日出願の日本国特許出願、特願2018-196506に基づくものであり、その内容はここに参照として取り込まれる。
【符号の説明】
【0086】
1 基板
2 ゲート電極
3 ゲート絶縁層
4 ソース電極
5 ドレイン電極
6 半導体層
10 チャネル幅
11 チャネル長
12 ゲート電極の幅
13 ゲート電極の長さ
14 ソース電極とドレイン電極との間隔
15 ドレイン電極の長さ
16 ゲート電極とソース電極との重なり部の長さ
17 ゲート電極の膜厚
18 ソース電極の膜厚
19 ゲート電極端
21 ゲート絶縁層の膜厚