IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ホウメディカ・オステオニクス・コーポレイションの特許一覧

特許7227377骨密度モデリング及び整形外科手術計画システム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-13
(45)【発行日】2023-02-21
(54)【発明の名称】骨密度モデリング及び整形外科手術計画システム
(51)【国際特許分類】
   A61B 6/03 20060101AFI20230214BHJP
   A61B 34/10 20160101ALI20230214BHJP
   A61F 2/40 20060101ALI20230214BHJP
【FI】
A61B6/03 377
A61B6/03 360G
A61B6/03 370Z
A61B6/03 360D
A61B34/10
A61F2/40
【請求項の数】 12
(21)【出願番号】P 2021534216
(86)(22)【出願日】2019-12-11
(65)【公表番号】
(43)【公表日】2022-02-04
(86)【国際出願番号】 US2019065789
(87)【国際公開番号】W WO2020123702
(87)【国際公開日】2020-06-18
【審査請求日】2021-08-06
(31)【優先権主張番号】62/778,774
(32)【優先日】2018-12-12
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/826,156
(32)【優先日】2019-03-29
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/826,119
(32)【優先日】2019-03-29
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/826,133
(32)【優先日】2019-03-29
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/826,146
(32)【優先日】2019-03-29
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/826,168
(32)【優先日】2019-03-29
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】521418414
【氏名又は名称】ホウメディカ・オステオニクス・コーポレイション
【氏名又は名称原語表記】Howmedica Osteonics Corp.
【住所又は居所原語表記】325 Corporate Drive Mahwah, NJ 07430, United States of America
(74)【代理人】
【識別番号】100108855
【弁理士】
【氏名又は名称】蔵田 昌俊
(74)【代理人】
【識別番号】100103034
【弁理士】
【氏名又は名称】野河 信久
(74)【代理人】
【識別番号】100179062
【弁理士】
【氏名又は名称】井上 正
(74)【代理人】
【識別番号】100199565
【弁理士】
【氏名又は名称】飯野 茂
(74)【代理人】
【識別番号】100219542
【弁理士】
【氏名又は名称】大宅 郁治
(74)【代理人】
【識別番号】100153051
【弁理士】
【氏名又は名称】河野 直樹
(74)【代理人】
【識別番号】100162570
【弁理士】
【氏名又は名称】金子 早苗
(72)【発明者】
【氏名】シャウウィ、ジャン
(72)【発明者】
【氏名】ル・サン、シャルロット
(72)【発明者】
【氏名】マイヤ、マクシミリアン
(72)【発明者】
【氏名】ユルボワ、マニュエル・ジャン-マリー
【審査官】遠藤 直恵
(56)【参考文献】
【文献】米国特許出願公開第2018/0250138(US,A1)
【文献】米国特許出願公開第2014/0121715(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 6/00-6/14
A61B 34/00ー90/98
A61F 2/00ー2/80、3/00ー4/00
(57)【特許請求の範囲】
【請求項1】
患者に関する患者固有の画像データを記憶するように構成されたメモリと、処理回路と、を備えるシステムであって、
前記処理回路は、
前記患者固有の画像データ内の上腕骨頭を識別することと、
前記患者固有の画像データに基づいて、前記上腕骨頭の少なくとも一部の骨密度を表す骨密度メトリックを決定することと、
前記骨密度メトリックに基づいて、前記患者に対する上腕骨インプラントタイプの推奨を生成することと、ここで、前記上腕骨インプラントタイプは、ステム付きインプラントタイプ又はステムレスインプラントタイプのうちの1つを含むものであり、
前記患者に対する前記上腕骨インプラントタイプの前記推奨を出力することと、
を行うように構成されている、システム。
【請求項2】
前記上腕骨インプラントタイプの前記推奨は、前記ステム付きインプラントタイプのステムの長さを示す推奨を含む、請求項1に記載のシステム。
【請求項3】
前記骨密度メトリックは、前記上腕骨頭の少なくとも一部内の骨梁の総合的な密度スコアを表す、請求項1又は2に記載のシステム。
【請求項4】
前記骨密度メトリックは、前記上腕骨頭内のそれぞれの部分についての複数の骨密度値を含む、請求項1~のいずれか一項に記載のシステム。
【請求項5】
前記処理回路は、
前記患者固有の画像データに基づいて、前記上腕骨頭の少なくとも一部内のそれぞれのボクセルの強度を識別することと、
前記それぞれのボクセルの前記強度を2つ以上の強度レベルのうちの1つに分類することと、
前記2つ以上の強度レベルの各々に分類されたボクセルの数又は前記2つ以上の強度レベルの各々に分類された前記ボクセルの前記上腕骨頭における位置のうちの少なくとも1つに基づいて、前記骨密度メトリックを決定することと
によって、前記骨密度メトリックを決定するように構成されている、請求項1~のいずれか一項に記載のシステム。
【請求項6】
前記処理回路は、
上腕骨頭を通る平面を決定することと、ここで、前記平面は、上腕骨インプラントを受け入れるために上腕骨を準備するであろう前記上腕骨における上腕骨切断面を表すものであり、
前記平面によって露出した前記上腕骨頭の少なくとも一部についての前記骨密度メトリックを決定することと
を行うように構成されている、請求項1~のいずれか一項に記載のシステム。
【請求項7】
前記処理回路は、前記患者の前記上腕骨頭の少なくとも一部の表現上に前記骨密度メトリックのグラフィカル表現を含むユーザインターフェースを出力するように構成されている、請求項1~のいずれか一項に記載のシステム。
【請求項8】
前記骨密度メトリックは、複数の色のヒートマップを含み、前記複数の色の各色は、骨密度値の異なる範囲を表す、請求項に記載のシステム。
【請求項9】
複合現実ディスプレイを更に備え、前記処理回路は、前記骨密度メトリックの前記グラフィカル表現を含む前記ユーザインターフェースを提示するように前記複合現実ディスプレイを制御するように構成されている、請求項又はに記載のシステム。
【請求項10】
前記骨密度メトリックの前記グラフィカル表現は、前記上腕骨頭の平面内の骨密度変動の2次元表現を含む、請求項のいずれか一項に記載のシステム。
【請求項11】
前記骨密度メトリックの前記グラフィカル表現は、前記上腕骨頭の少なくとも骨梁内の骨密度変動の3次元表現を含む、請求項~1のいずれか一項に記載のシステム。
【請求項12】
前記処理回路は、上腕骨インプラントのステムサイズを生成するために畳み込みニューラルネットワークを前記患者固有の画像データに適用するように構成され、前記上腕骨インプラントの前記推奨は、前記患者のための前記ステム付きインプラントタイプの推奨であり、前記畳み込みニューラルネットワークから生成された前記ステムサイズを有する、請求項1~1のいずれか一項に記載のシステム。
【発明の詳細な説明】
【背景技術】
【0001】
[0001]外科的関節修復処置は、損傷又は罹患した関節の修復術及び/又は置換術を含む。多くの場合、一例として関節形成術のような外科的関節修復処置は、損傷した関節を、患者の骨の中に埋め込まれるプロテーゼに置換することを含む。最適な手術結果を確実にするための適切にサイズ決定及び成形されたプロテーゼの適切な選択及びそのプロテーゼの適切な位置決めは困難であり得る。位置決めを支援するために、外科手術では、多くの場合、損傷した骨の表面の成形と、プロテーゼを受け入れるための骨の切断又は穿孔とを制御するために手術器具の使用を伴う。
【0002】
[0002]今日では、関節修復術及び置換術のための術前計画を容易にするために骨の形状の3次元モデリングを使用する視覚化ツールが外科医に利用可能である。これらのツールは、患者の解剖学的構造に厳密に一致するインプラント及びサージカルガイドの設計及び/又は選択に関して外科医を支援することができ、患者ごとに手術計画をカスタマイズすることによって手術結果を改善することができる。
【発明の概要】
【0003】
[0003]本開示は、外科的関節修復処置のための患者分析、術前計画、並びに/又はトレーニング及び教育を提供するための様々なシステム、デバイス、及び技法を説明する。例えば、本明細書で説明されるシステムは、患者の撮像データから軟組織(例えば、筋肉、結合組織、脂肪組織など)の寸法及び/又は特性を決定し得る。軟組織の特性には、脂肪浸潤、萎縮率、可動域、又は他の類似特性が含まれ得る。システムは、これらの軟組織の寸法及び/又は特性を使用して、患者の1つ又は複数の関節の可動域値を決定し得る。これらの可動域値に基づいて、システムは、1つ又は複数の関節の1つ又は複数の状態を治療するのに適切であり得る外科的介入の1つ又は複数のタイプを提案し得る。一例では、システムは、軟組織の寸法を使用して、特定の患者にとって適切であるのが解剖学的肩関節置換手術であるのかリバース型肩関節置換手術であるかを決定し得る。
【0004】
[0004]本明細書で説明されるシステムはまた、又は代替的に、患者の上腕骨頭の少なくとも一部についての骨密度メトリックを、その患者に関する患者固有の画像データに基づいて決定し得る。例えば、骨密度メトリックは、上腕骨頭又は上腕骨頭の一部の全体的な密度の単一の指示であり得る。別の例として、骨密度メトリックは、患者の上腕骨頭のそれぞれの部分の骨密度値を含み得る。骨密度メトリックは、実際に骨の密度を示すものではなく、骨密度を表すメトリック(例えば、画像データからのボクセル強度、画像データからのボクセル強度の標準偏差、圧縮性など)であり得る。システムは、骨密度メトリックのグラフィカル表現を提示するように、及び/又は、骨密度メトリックに基づいて上腕骨頭のインプラントタイプに関する推奨を生成するようにユーザインターフェースを制御し得る。例えば、骨密度メトリックが上腕骨頭の十分な骨梁密度を示すと、システムは、ステム付き上腕骨インプラントとは対照的にステムレス上腕骨インプラントを推奨し得る。
【0005】
[0005]一例では、患者の軟組織構造をモデル化するためのシステムは、患者に関する患者固有の画像データを記憶するように構成されたメモリと、患者固有の画像データを受け取ることと、患者固有の画像データの強度に基づいて、患者の軟組織構造を表す患者固有の形状を決定することと、患者固有の形状を出力することとを行うように構成された処理回路とを含む。
【0006】
[0006]別の例では、患者の軟組織構造をモデル化するための方法は、メモリによって、患者に関する患者固有の画像データを記憶することと、処理回路によって、患者固有の画像データを受け取ることと、処理回路によって、患者固有の画像データの強度に基づいて、患者の軟組織構造を表す患者固有の形状を決定することと、処理回路によって、患者固有の形状を出力することとを含む。
【0007】
[0007]別の例では、コンピュータ可読記憶媒体は命令を含み、命令は、処理回路によって実行されると、処理回路に、患者に関する患者固有の画像データをメモリに記憶することと、患者固有の画像データを受け取ることと、患者固有の画像データの強度に基づいて、患者の軟組織構造を表す患者固有の形状を決定することと、患者固有の形状を出力することとを行わせる。
【0008】
[0008]別の例では、患者の軟組織構造をモデル化するためのシステムは、患者に関する患者固有の画像データを記憶するための手段と、患者固有の画像データを受け取るための手段と、患者固有の画像データの強度に基づいて、患者の軟組織構造を表す患者固有の形状を決定するための手段と、患者固有の形状を出力するための手段とを含む。
【0009】
[0009]本開示の様々な例の詳細は、添付の図面及び以下の説明に記載されている。様々な特徴、目的、及び利点は、説明、図面、及び特許請求の範囲から明らかになるであろう。
【図面の簡単な説明】
【0010】
図1】[0010]本開示の一例による整形外科手術システムのブロック図である。
図2】[0011]本開示の一例による、複合現実(MR)システムを含む整形外科手術システムのブロック図である。
図3】[0012]外科的ライフサイクルの例となる段階を例示するフローチャートである。
図4】[0013]整形外科手術を支援する術前、術中、及び術後のワークフローを例示するフローチャートである。
図5A】[0014]患者の肩に関する例となる筋肉及び骨の図である。
図5B】患者の肩に関する例となる筋肉及び骨の図である。
図6】[0015]本開示の一例による、軟組織構造の寸法及び/又は特性並びに関節に関連する外科的介入に関する他の情報を決定するように構成されたシステムの例となる構成要素を例示するブロック図である。
図7】[0016]回旋腱板の筋肉の例となる付着点(insertion point)の図である。
図8A】[0017]例となる患者固有の画像データの概念図である。
図8B】[0018]図8Aの患者固有の画像データに基づいて生成されたヘシアン特徴画像の概念図である。
図8C】[0019]患者固有の画像データに重ね合わされた例となる初期形状及び例となる輪郭の概念図である。
図9】[0020]患者の軟組織構造を表す患者固有の形状に向けて初期形状を変更する例となる手順の概念図である。
図10】[0021]患者の軟組織構造を表す患者固有の形状に向けて中間形状を変更する例となる手順の概念図である。
図11】[0022]患者固有の画像データ内の実際の輪郭と比較した、患者の軟組織構造を表す例となる患者固有の形状の概念図である。
図12】[0023]患者固有の画像データに重ね合わされた肩甲下筋を表す例となる初期形状及び患者固有の形状の概念図である。
図13】[0024]患者固有の画像データに重ね合わされた棘上筋を表す例となる初期形状及び患者固有の形状の概念図である。
図14】[0025]患者固有の画像データに重ね合わされた回旋腱板筋を表す例となる最終的な患者固有の形状の概念的な軸方向ビューである。
図15】[0026]患者固有の画像データに重ね合わされた回旋腱板筋を表す例となる最終的な患者固有の形状の概念的なサジタルビューである。
図16A】[0027]患者固有の画像データから骨と共に回旋腱板筋を表す例となる最終的な患者固有の形状の概念的な後部3次元ビューである。
図16B】[0028]患者固有の画像データから骨と共に回旋腱板筋を表す例となる最終的な患者固有の形状の概念的な前部3次元ビューである。
図17】[0029]患者固有の画像データから骨と共に回旋腱板筋を表す例となる最終的な患者固有の形状の概念的な端面3次元ビューである。
図18A】[0030]軟組織構造に関連する初期形状が骨構造に位置合わせされ、軟組織構造を表す患者固有の形状に修正される例となる患者固有のCTデータの概念図である。
図18B】軟組織構造に関連する初期形状が骨構造に位置合わせされ、軟組織構造を表す患者固有の形状に修正される例となる患者固有のCTデータの概念図である。
図19】[0031]脂肪浸潤のような軟組織特性を決定するためにマスク及び閾値処理された例となる最終的な患者固有の形状の概念図である。
図20】[0032]軟組織構造の例となる最終的な患者固有の形状及び病前推定の概念図である。
図21】[0033]肩関節の可動域分析への筋肉の寄与をモデル化する例となるばねの概念図である。
図22】肩関節の可動域分析への筋肉の寄与をモデル化する例となるばねの概念図である。
図23A】[0034]本開示の技法による、患者固有の画像データを使用して軟組織構造をモデル化するための例となる手順を例示するフローチャートである。
図23B】[0035]本開示の技法による、患者固有の画像データを使用して軟組織構造をモデル化するための別の例となる手順を例示するフローチャートである。
図24】[0036]本開示の技法による、患者固有の画像データを使用して軟組織構造をモデル化するための例となる手順を例示するフローチャートである。
図25】[0037]本開示の技法による、患者の軟組織構造の脂肪浸潤値を決定するための例となる手順を例示するフローチャートである。
図26】[0038]本開示の技法による、患者の軟組織構造の萎縮率を決定するための例となる手順を例示するフローチャートである。
図27】[0039]本開示の技法による、患者の決定された軟組織構造に基づいて肩関節治療のタイプを決定するための例となる手順を例示するフローチャートである。
図28】[0040]本開示の技法による、患者固有の画像データに基づいて肩関節治療のタイプを決定するための例となる手順を例示するフローチャートである。
図29】[0041]本開示の技法による、患者の解剖学的構造、診断、及び/又は治療の推奨のうちの1つ又は複数の態様を決定するために使用可能なディープニューラルネットワーク(DNN)を実装する例となるコンピューティングシステムを例示するブロック図である。
図30】[0042]図29の例となるコンピューティングシステムによって実装され得る例となるDNNを例示する。
図31】[0043]本開示の技法による、患者に対する推奨される肩関節手術のタイプを決定するためにDNNを使用するコンピューティングシステムの例となる動作を例示するフローチャートである。
図32】[0044]患者の肩関節に関する例となる骨の図である。
図33A】[0045]上腕骨インプラントのために準備された例となる上腕骨頭の概念図である。
図33B】上腕骨インプラントのために準備された例となる上腕骨頭の概念図である。
図33C】上腕骨インプラントのために準備された例となる上腕骨頭の概念図である。
図34】[0046]例となる上腕骨インプラントの概念図である。
図35】[0047]例となるステム付き上腕骨インプラントの概念図である。
図36】[0048]上腕骨頭に埋め込まれた例となるステムレス上腕骨インプラントの概念図である。
図37】[0049]例となるリバース型上腕骨インプラントの概念図である。
図38】[0050]本開示の一例による、患者固有の画像データから骨密度を決定するように構成されたシステムの例となる構成要素を例示するブロック図である。
図39A】[0051]骨密度に基づいて上腕骨インプラントのタイプを決定するための例となる手順を例示するフローチャートである。
図39B】[0052]上腕骨インプラントのステムサイズを決定するために患者固有の画像データにニューラルネットワークを適用するための例となる手順を例示するフローチャートである。
図39C】[0053]患者固有の画像データから決定された軟組織構造及び骨密度に基づいて肩関節治療についての推奨を決定するための例となる手順を例示するフローチャートである。
図40】[0054]骨密度情報を表示するための例となる手順を例示するフローチャートである。
図41】[0055]上腕骨頭と切断面とを含む例となるユーザインターフェースの概念図である。
図42】[0056]上腕骨頭と内部骨密度の表現とを含む例となるユーザインターフェースの概念図である。
図43】[0057]上腕骨頭と、上腕骨インプラント推奨のタイプに関連する内部骨密度の表現とを含む例となるユーザインターフェースの概念図である。
【発明を実施するための形態】
【0011】
[0058]本開示は、外科的関節修復処置のための患者分析、術前計画、並びに/又はトレーニング及び教育を提供するための様々なシステム、デバイス、及び技法を説明する。整形外科手術は、患者の損傷又は罹患した関節を修復又は置換するために、1つ又は複数の補綴具を埋め込むことを伴い得る。仮想手術計画ツールは、外科医が術前に見たり操作したりすることができる正確な3次元骨モデルを生成するために、罹患又は損傷した関節の画像データを使用する。これらのツールにより、外科医は、手術をシミュレートすること、患者の実際の骨の輪郭により厳密に一致するインプラントを選択又は設計すること、及び特定の患者の骨を修復するのに特に適している手術器具及びガイドツールを選択又は設計することができ、手術結果を向上させることができる。
【0012】
[0059]これらの計画ツールは、個々の患者のために選択又は製造されるインプラント及び手術器具を完備した術前の手術計画を生成するために使用され得る。これらのシステムは、個々の患者に対する特定のインプラント及び/又は処置のタイプを決定するために、患者の骨モデルに依存し得る。しかしながら、患者に関する撮像データから導出される軟組織構造情報(例えば、筋肉及び/又は結合組織)は利用できない。患者の軟組織に関するこの撮像データがない場合、計画ツール及び臨床医は、患者の軟組織が現在の関節及び術後の関節の機能にどのような影響を与え得るか分からない状態で、手術又はインプラントの特定の側面を決定し得る。
【0013】
[0060]本明細書で説明されるように、システムは、患者の撮像データから軟組織(例えば、筋肉、腱、靭帯、軟骨、及び/又は結合組織)の寸法及び他の特性を決定し得る。次いで、システムは、患者の撮像データから導出されたこれらの軟組織の寸法及び/又は他の特性を使用して、特定のタイプの医療介入、外科治療のタイプ、又は更には1つ又は複数の医療インプラントのタイプ、寸法、及び/又は埋植(placement)を選択又は提案するように構成され得る。このように、システムは、患者の撮像データから導出された軟組織情報を使用して、特定の患者のための手術計画を決定するか、又はその決定を支援し得る。例えば、システムは、解剖学的肩関節置換手術又はリバース型肩関節置換手術を選択し、次いで、患者の撮像データから導出された軟組織の寸法及び他の特性に基づいて、例えば、ディスプレイ上への提示によって、この選択を外科医のようなユーザに出力し得る。本明細書で説明される肩関節置換術についてのこれらの推奨は、肩関節の新たな置換もしくは最初の置換に適用され得るか、又は他の例では、患者がすでに肩関節置換術を受けている場合の再置換手術に適用され得る。典型的には、肩関節手術は、患者の肩の機能を回復させるため及び/又は痛みを軽減するために使用され得る。
【0014】
[0061]一例では、システムは、患者の撮像データ(例えば、X線画像、磁気共鳴撮像(MRI)画像、又は他の撮像モダリティを含むコンピュータ断層撮影(CT))を受け取り、3次元(3D)撮像データセットを構築し得る。この撮像データセットから、システムは、対象の軟組織構造に関連する骨の位置と、軟組織構造自体のおおよその位置とを識別することができる。例えば、患者が肩関節置換手術を必要とし得る場合、システムは、肩甲骨及び上腕骨の部分並びに回旋腱板の筋肉を識別し得る。軟組織構造の各々について(例えば、回旋腱板の各筋肉について)、システムは、撮像データから軟組織構造の表現を決定し得る。システムは、軟組織構造の推定位置内に初期形状を配置し、次いで、この初期形状を撮像データに適合させて、実際の軟組織構造の表現を決定し得る。この推定位置は、関連する骨又は他の骨構造もしくは骨構造の一部上の1つ又は複数のマーカ又はランドマーク(例えば、筋肉の付着点又は筋肉の起始)に基づき得る。初期形状は、被験者の集団から導出された統計的平均形状(SMS)又は任意の幾何学的形状であり得る。
【0015】
[0062]初期形状から、システムは、初期形状の表面に対して垂直なベクトルを使用して、撮像データ内の軟組織構造の境界を表す強度閾値を超える初期形状の外側又は内側のボクセルを識別し得る。いくつかの例では、軟組織構造の境界は、隣接する軟組織構造間で識別される分離ゾーンから推定され得る。各ベクトルについて、初期形状上のそれぞれの位置から、システムは、識別されたボクセルのそれぞれのボクセルに向かって初期形状の表面を移動させ得る。初期形状の表面のこの移動は、初期形状が修正されて、識別されたボクセルの輪郭を近似するまで、数回の反復にわたって行われ得る。他の例では、システムは、初期形状と関連する骨との対応関係及び/又は最小化もしくは最大化アルゴリズム(例えば、コスト関数)を使用して、初期形状を患者固有の画像データに適合及びスケーリングし得る。次いで、最終的な修正された形状は、患者の回旋腱板の筋肉のような軟組織構造の表現として使用され得る。
【0016】
[0063]システムは、決定された表現から1つ又は複数の軟組織構造の1つ又は複数の特性を決定し得る。システムは、例えば、手術計画のためにこれらの特性を採用し得る。いくつかの例では、システムは、他の決定に使用される軟組織構造の体積を計算し得る。システムは、軟組織構造の表現内の撮像データからのボクセルの強度を閾値化することに基づいて、すなわち、ボクセル強度を閾値強度値と比較してボクセルを脂肪組織を表すものとして特徴付けることに基づいて、軟組織構造の脂肪浸潤値を決定し得る。例えば、閾値強度値を超える強度を有する軟組織構造のセグメント化された表現内のボクセルは、筋組織ではなく脂肪組織を表すと考えられ得る。閾値強度値を超えないボクセル、又は2つ以上のボクセルのグループは、非脂肪組織を表すと考えられ得る。本明細書で使用される場合、「超える」という用語は、値が閾値超であること又は閾値未満であることを指し得る。
【0017】
[0064]表現内の(脂肪組織と非脂肪組織とを含む)全組織に対する脂肪組織の比率は、脂肪浸潤値であると決定され得る。システムはまた、患者の骨に適合したSMSの体積(例えば、患者の推定される病前組織の体積)を軟組織構造の表現の体積で割ることによって、萎縮率を計算し得る。次いで、システムは、軟組織構造及び関節に関連する他の軟組織構造のばね定数(又は筋機能の何らかの他の表現)を決定して、その関節の可動域を決定することができる。次いで、システムは、可動域及び/又は本明細書で説明される他の特性に基づいて、その関節に対する介入のタイプを決定することができる。例えば、システムは、患者にとってより適切な治療が解剖学的肩関節置換術であるかリバース型肩関節置換術であるかを決定することができる。
【0018】
[0065]いくつかの例では、システムは、患者固有の画像データ(例えば、2D又は3D画像データ)に基づいて上腕骨の上腕骨頭の骨密度特性を決定し得る。例えば、システムは、上腕骨頭の少なくとも一部内の骨梁のボクセル又はボクセルのグループの骨密度値を特徴付けて割り当て得る。他の例では、システムは、上腕骨頭の少なくとも一部内の骨梁の全体積を示す全体的な骨密度メトリック又はスコアを決定し得る。システムは、骨密度のグラフィカル指示のような骨密度の表現を含むユーザインターフェースを表示するようにディスプレイデバイスを制御し得る。いくつかの例では、システムは、決定された骨密度に基づいて、上腕骨インプラントのタイプ(例えば、ステム付き又はステムレス)の推奨を生成し得る。いくつかの例では、上腕骨インプラントのタイプの推奨は、システムが、患者に使用される上腕骨インプラントのタイプを、その同じ患者の患者固有の画像データにおいて識別された骨密度値と相関させた、上腕骨インプラントに関する過去の手術データに基づき得る。
【0019】
[0066]本明細書では一例として肩関節置換手術が説明される。しかしながら、本明細書で説明されるシステム、デバイス、及び技術は、患者の他の解剖学的構造又は構造のグループを分析するため、患者の他の関節(例えば、肘関節、股関節、膝関節など)に対する治療のタイプを決定するため、又は患者の特定の解剖学的状態に対して特定のタイプのインプラントを選択するために採用され得る。加えて、患者の撮像データから軟組織構造を決定するための本明細書で説明される技法は、他の例では、骨のような他の構造を識別するために採用され得る。
【0020】
[0067]いくつかの例では、システム、デバイス、及び方法は、どのタイプの治療(例えば、肩関節置換術のような関節置換手術)を患者に提供するかを決定することに関連するプロセスのような、外科手術の前及び最中における手術計画の作成、実装、検証、及び/又は修正を支援するために、複合現実(MR)可視化システムを採用し得る。手術計画と対話するためにMR又はいくつかの事例ではVRが使用され得るため、本開示では、手術計画を「仮想」手術計画とも呼び得る。複合現実視覚化システム以外の又はそれに加えて視覚化ツールが、本開示の技法に従って使用され得る。
【0021】
[0068]例えば、Wright Medical,Inc.から入手可能なBLUEPRINT(登録商標)システム又は別の手術計画プラットフォームによって生成されるような手術計画又は推奨は、提案される外科治療のタイプ(例えば解剖学的肩関節手術又はリバース型肩関節手術)のような外科手術の様々な特徴、例えば骨又は組織準備ステップ及び/又はインプラント部品の選択、修正及び/又は埋植のためのステップを含む手術計画に従って外科医によって患者に対して行われるべき特定の外科手術ステップの特徴を定義する情報を含み得る。そのような情報は、様々な例では、外科医によって選択又は修正されることとなるインプラント部品の寸法、形状、角度、表面輪郭、及び/又は向き、骨又は組織準備ステップにおいて外科医によって骨又は軟組織において画定されることとなる寸法、形状、角度、表面輪郭、及び/又は向き、並びに/あるいは外科医による、患者の骨又は他の組織に対するインプラント部品の埋植を画定する位置、軸、平面、角度、及び/又は侵入点を含み得る。患者の解剖学的特徴の寸法、形状、角度、表面輪郭、及び/又は向きのような情報は、撮像(例えば、X線、CT、MRI、超音波、又は他の画像)、直接観察、又は他の技法から導出され得る。
【0022】
[0069]いくつかの視覚化ツールは、関節修復術及び置換術のための術前計画を容易にするために、患者の画像データを利用して骨輪郭の3次元モデルを生成する。これらのツールは、外科医が、患者の解剖学的構造に厳密に一致するサージカルガイド及びインプラント部品を設計及び/又は選択することを可能にし得る。これらのツールは、患者ごとに手術計画をカスタマイズすることによって手術結果を改善することができる。肩関節修復術のためのそのような視覚化ツールの例は、上で識別されたBLUEPRINT(登録商標)システムである。BLUEPRINT(登録商標)システムは、骨修復領域の2次元平面ビューだけでなく該修復領域の3次元仮想モデルも外科医に提供する。外科医は、BLUEPRINT(登録商標)システムを使用して、適切なインプラント部品を選択、設計、又は修正すること、インプラント部品を配置及び方向付けする最良の方法とこの部品を受け入れるように骨の表面を成形する方法とを決定すること、及び手術計画を実行するためのサージカルガイドツール(複数可)又は器具を設計、選択、又は修正することができる。BLUEPRINT(登録商標)システムによって生成された情報は、実際の手術の前及び最中を含めて、外科医又は他のケア提供者がアクセスすることができる適切な位置(例えば、ワイドエリアネットワーク、ローカルエリアネットワーク、又はグローバルネットワーク内のサーバ上)のデータベースに記憶された患者のための術前の手術計画にコンパイルされる。
【0023】
[0070]本開示の特定の例は、添付の図面を参照して説明されており、ここでは、同様の参照番号は同様の要素を示す。しかしながら、添付の図面は、本明細書で説明される様々な実装形態を例示しているにすぎず、本明細書で説明される様々な技術の範囲を限定するものではないことは理解されたい。図面は、本開示の様々な例を示し、説明するものである。
【0024】
[0071]以下の説明では、本開示の理解を与えるために多数の詳細が記載されている。しかしながら、本開示の1つ又は複数の態様がこれらの詳細なしに実施され得ること、及び説明された例からの多数の変形例又は修正例が可能であり得ることを当業者は理解するであろう。
【0025】
[0072]図1は、本開示の一例による整形外科手術システム100のブロック図である。整形外科手術システム100は、サブシステムのセットを含む。図1の例では、サブシステムは、仮想計画システム102と、計画支援システム104と、製造及び送達システム106と、術中ガイダンスシステム108と、医療教育システム110と、モニタリングシステム112と、予測分析システム114と、通信ネットワーク116とを含む。他の例では、整形外科手術システム100は、より多い、より少ない、又は異なるサブシステムを含み得る。例えば、整形外科手術システム100は、医療教育システム110、モニタリングシステム112、予測分析システム114、及び/又は他のサブシステムを省略し得る。いくつかの例では、整形外科手術システム100は、手術追跡に使用され得、その場合、整形外科手術システム100は、手術追跡システムと呼ばれ得る。他の場合には、整形外科手術システム100は、一般に、医療機器システムと呼ばれ得る。
【0026】
[0073]整形外科手術システム100のユーザは、整形外科手術を計画するために、仮想計画システム102を使用し得る。例えば、仮想計画システム102及び/又は別の手術計画システムは、本明細書で説明されるように、患者の撮像データ(例えば、骨及び/又は軟組織)を分析し、撮像データから決定された骨及び/又は軟組織特性に基づいて提案される外科治療を決定し得る。整形外科手術システム100のユーザは、計画支援システム104を使用して、整形外科手術システム100を使用して生成された手術計画を検討し得る。製造及び送達システム106は、整形外科手術を行うために必要とされるアイテムの製造及び送達を支援し得る。術中ガイダンスシステム108は、整形外科手術を行う際に整形外科手術システム100のユーザを支援するためのガイダンスを提供する。医療教育システム110は、医療専門家、患者、及び他のタイプの個人のようなユーザの教育を支援し得る。術前及び術後モニタリングシステム112は、患者が手術を受ける前及び手術を受けた後に患者を監視することを支援し得る。予測分析システム114は、様々なタイプの予測で医療専門家を支援し得る。例えば、予測分析システム114は、人工知能技法を適用して、整形外科関節の状態の分類の決定、例えば診断、患者に対してどのタイプの手術を行うか及び/又は手術でどのタイプのインプラントを使用するかの決定、手術中に必要とされ得るアイテムのタイプの決定などをし得る。
【0027】
[0074]整形外科手術システム100のサブシステム(例えば、仮想計画システム102、計画支援システム104、製造及び送達システム106、術中ガイダンスシステム108、医療教育システム110、術前及び術後モニタリングシステム112、並びに予測分析システム114)は、様々なシステムを含み得る。整形外科手術システム100のサブシステム内のシステムは、様々なタイプのコンピューティングシステム、サーバコンピュータ、パーソナルコンピュータ、タブレットコンピュータを含むコンピューティングデバイス、スマートフォン、ディスプレイデバイス、モノのインターネット(IoT)デバイス、視覚化デバイス(例えば、複合現実(MR)視覚化デバイス、仮想現実(VR)視覚化デバイス、ホログラフィックプロジェクタ、又は拡張現実(XR)可視化を提示するための他のデバイス)、手術用具などを含み得る。ホログラフィックプロジェクタは、いくつかの例では、ヘッドセットを装着しているユーザだけが見るのではなく、ヘッドセットなしで複数のユーザ又は単一のユーザが全体的に見るためのホログラムを投影し得る。例えば、仮想計画システム102は、MR視覚化デバイス及び1つ又は複数のサーバデバイスを含み得、計画支援システム104は、1つ又は複数のパーソナルコンピュータ及び1つ又は複数のサーバデバイスなどを含み得、他も同様である。コンピューティングシステムは、システムとして動作するように構成された1つ又は複数のコンピューティングデバイス及び/又はシステムのセットである。いくつかの例では、1つ又は複数のデバイスが、整形外科手術システム100のサブシステムのうちの2つ以上の間で共有され得る。例えば、前述の例では、仮想計画システム102及び計画支援システム104は、同じサーバデバイスを含み得る。
【0028】
[0075]例となるMR視覚化デバイスは、ワシントン州レドモンドのマイクロソフト社から入手可能なMicrosoft HOLOLENS(登録商標)ヘッドセットを含み、これは、ユーザがレンズを通して現実世界のオブジェクトを見ると同時に投影された3Dホログラフィックオブジェクトを見ることを可能にする、導波管と呼ばれることもあるシースルーホログラフィックレンズを含む。Microsoft HOLOLENS(登録商標)ヘッドセット又は同様の導波管ベースの視覚化デバイスは、本開示のいくつかの例に従って使用され得るMR視覚化デバイスの例である。いくつかのホログラフィックレンズは、ユーザが現実世界のオブジェクトと仮想のホログラフィックオブジェクトとを見ることができるように、シースルーホログラフィックレンズを通してある程度の透明性を有するホログラフィックオブジェクトを提示し得る。いくつかの例では、いくつかのホログラフィックレンズは、時々、ユーザに対して現実世界のオブジェクトを全く見えないようにし得、代わりに、ユーザが仮想環境だけを見ることを可能にし得る。複合現実という用語はまた、1人以上のユーザがホログラフィック投影によって生成された1つ又は複数の仮想オブジェクトを知覚することができるシナリオを包含し得る。換言すると、「複合現実」は、ホログラフィックプロジェクタが、ユーザの実際の物理的環境内に存在するようにユーザに見える要素のホログラムを生成する場合を包含し得る。本明細書ではMR視覚化デバイスを一例として説明するが、他の例において本明細書で説明される情報の任意の側面を提示するために、陰極線管(CRT)ディスプレイ、液晶ディスプレイ(LCD)、及び発光ダイオード(LED)ディスプレイのようなディスプレイ画面が使用され得る。
【0029】
[0076]図1の例では、整形外科手術システム100のサブシステム内に含まれるデバイスは、通信ネットワーク116を使用して通信し得る。通信ネットワーク116は、インターネット、ローカルエリアネットワークなどの1つ又は複数のワイドエリアネットワークを含む様々なタイプの通信ネットワークを含み得る。いくつかの例では、通信ネットワーク116は、ワイヤード及び/又はワイヤレス通信リンクを含み得る。
【0030】
[0077]整形外科手術システム100の多くの変形例が可能である。そのような変形例は、図1に示される整形外科手術システム100のバージョンよりも多い又は少ないサブシステムを含み得る。例えば、図2は、本開示の一例による、1つ又は複数の複合現実(MR)システムを含む、整形外科手術システム200のブロック図である。整形外科手術システム200は、手術計画を作成、検証、更新、修正、及び/又は実装するために使用され得る。いくつかの例では、手術計画は、例えば、仮想手術計画システム(例えば、BLUEPRINT(登録商標)システム)を使用することで手術前に作成され、次いで、例えば、手術計画のMR視覚化又は他の視覚化を使用して、手術中に検証、修正、更新、及び閲覧され得る。他の例では、整形外科手術システム200は、必要に応じて、手術の直前に又は術中に手術計画を作成するために使用され得る。いくつかの例では、整形外科手術システム200は、手術追跡に使用され得、その場合、整形外科手術システム200は、手術追跡システムと呼ばれ得る。他の場合には、整形外科手術システム200は、一般に、医療機器システムと呼ばれ得る。
【0031】
[0078]図2の例では、整形外科手術システム200は、術前手術計画システム202と、医療施設204(例えば、外科センター又は病院)と、記憶システム206と、ネットワーク208とを含み、ネットワーク208は、医療施設204のユーザが、(例として)病歴、損傷した関節又は骨に対応する画像データ、及び術前に作成された手術計画に対応する様々なパラメータのような記憶された患者情報にアクセスすることを可能にする。術前手術計画システム202は、図1の仮想計画システム102に相当し得、いくつかの例では、一般に、BLUEPRINT(登録標)システムに類似した又はそれと同一の仮想計画システムに対応し得る。
【0032】
[0079]図2の例では、医療施設204は、複合現実(MR)システム212を含む。本開示のいくつかの例では、MRシステム212は、術前計画、術中ガイダンス、又は術後検討及びフォローアップにさえも関連する視覚情報のユーザへの提示のような機能性を提供するための1つ又は複数の処理デバイス(複数可)(P)210を含む。処理デバイス(複数可)210は、プロセッサ(複数可)とも呼ばれ得る。加えて、MRシステム212の1人以上のユーザ(例えば、外科医、看護師、又は他のケア提供者)は、処理デバイス(複数可)(P)210を使用して、ネットワーク208を介して記憶システム206に送信される特定の手術計画又は他の患者情報に対する要求を生成することができる。これに応答して、記憶システム206は、要求された患者情報をMRシステム212に返す。いくつかの例では、ユーザは、MRシステム212の一部であるが任意の視覚化デバイスの一部ではない1つ又は複数の処理デバイス、又はMRシステム212の視覚化デバイス(例えば、視覚化デバイス213)の一部である1つ又は複数の処理デバイス、又はMRシステム212の一部であるが任意の視覚化デバイスの一部ではない1つ又は複数の処理デバイスと、MRシステム212の一部である視覚化デバイス(例えば、視覚化デバイス213)の一部である1つ又は複数の処理デバイスとの組合せのような、他の処理デバイス(複数可)を使用して、情報を要求して受信することができる。換言すると、Microsoft HOLOLENS(登録商標)デバイスのような例となるMR視覚化デバイスは、MRシステム212の構成要素の全てを含むか、又は1つ又は複数の外部プロセッサ及び/又はメモリを利用して、受動的な視覚化デバイス213に必要な処理機能性の一部又は全てを実行し得る。
【0033】
[0080]いくつかの例では、複数のユーザがMRシステム212を同時に使用することができる。例えば、MRシステム212は、複数のユーザが各々自分の視覚化デバイスを使用することでユーザが同時に同じ視点から同じ情報を見ることができるスペクテータモードで使用され得る。いくつかの例では、MRシステム212は、複数のユーザが各々自分の視覚化デバイスを使用することでユーザが異なる視点から同じ情報を見ることができるモードで使用され得る。
【0034】
[0081]いくつかの例では、処理デバイス(複数可)210は、データを表示し、医療施設204でユーザから入力を受け取るためのユーザインターフェースを提供することができる。処理デバイス(複数可)210は、ユーザインターフェースを提示するように視覚化デバイス213を制御するように構成され得る。更に、処理デバイス(複数可)210は、3D仮想モデル、2D画像、手術計画情報などの仮想画像を提示するように視覚化デバイス213(例えば、ホログラフィックレンズのような1つ又は複数の光導波路)を制御するように構成され得る。処理デバイス(複数可)210は、サーバ、デスクトップコンピュータ、ラップトップコンピュータ、タブレット、携帯電話及び他の電子コンピューティングデバイス、又はそのようなデバイス内のプロセッサのような、様々な異なる処理デバイス又はコンピューティングデバイスを含むことができる。いくつかの例では、処理デバイス(複数可)210のうちの1つ又は複数は、医療施設204から離れて位置し得る。いくつかの例では、処理デバイス(複数可)210は、視覚化デバイス213内に存在する。いくつかの例では、処理デバイス(複数可)210のうちの少なくとも1つは、視覚化デバイス213の外部にある。いくつかの例では、1つ又は複数の処理デバイス(複数可)210は、視覚化デバイス213内に存在し、処理デバイス(複数可)210のうちの1つ又は複数は、視覚化デバイス213の外部にある。
【0035】
[0082]図2の例では、MRシステム212はまた、処理デバイス(複数可)210によって実行可能なソフトウェアの命令及びデータを記憶するための1つ又は複数のメモリ又は記憶デバイス(複数可)(M)215を含む。ソフトウェアの命令は、本明細書で説明されるMRシステム212の機能性に対応することができる。いくつかの例では、BLUEPRINT(登録商標)システムのような仮想手術計画アプリケーションの機能性はまた、メモリ又は記憶デバイス(複数可)(M)215と共に処理デバイス(複数可)210によって記憶及び実行され得る。例えば、メモリ又は記憶システム215は、仮想手術計画の少なくとも一部に対応するデータを記憶するように構成され得る。いくつかの例では、記憶システム206が、仮想手術計画の少なくとも一部に対応するデータを記憶するように構成され得る。いくつかの例では、メモリ又は記憶デバイス(複数可)(M)215は、視覚化デバイス213内に存在する。いくつかの例では、メモリ又は記憶デバイス(複数可)(M)215は、視覚化デバイス213の外部にある。いくつかの例では、メモリ又は記憶デバイス(複数可)(M)215は、視覚化デバイス213内の1つ又は複数のメモリ又は記憶デバイスと、視覚化デバイスの外部の1つ又は複数のメモリ又は記憶デバイスとの組合せを含む。
【0036】
[0083]ネットワーク208は、ネットワーク116に相当し得る。ネットワーク208は、術前手術計画システム202及びMRシステム212を記憶システム206に接続する1つ又は複数のワイドエリアネットワーク、ローカルエリアネットワーク、及び/又はグローバルネットワーク(例えば、インターネット)を含むことができる。記憶システム206は、患者情報、医療情報、患者の画像データ、及び手術計画を定義するパラメータを含むことができる1つ又は複数のデータベースを含むことができる。例えば、患者の罹患又は損傷した骨及び/又は軟組織の医用画像は、典型的に、整形外科手術に備えて術前に生成される。医用画像は、患者の身体の矢状面及び冠状面に沿って撮影された関連する骨(複数可)及び/又は軟組織の画像を含むことができる。医用画像は、X線画像、磁気共鳴撮像(MRI)画像、コンピュータ断層撮影(CT)画像、超音波画像、及び/又は関連する手術領域に関する情報を提供する任意の他のタイプの2D又は3D画像を含むことができる。記憶システム206はまた、特定の患者のために選択されたインプラント部品(例えば、タイプ、サイズなど)、特定の患者のために選択されたサージカルガイド、並びに侵入点、切断面、穿孔軸、リーミング深度などの外科手術の詳細を識別するデータを含むことができる。記憶システム206は、例として、(図示されるように)クラウドベースの記憶システムであり得るか、又は医療施設204にもしくは術前手術計画システム202の位置にあり得るか、又はMRシステム212もしくは視覚化デバイス(VD)213の一部であり得る。
【0037】
[0084]MRシステム212は、手術計画を作成、検討、検証、更新、修正、及び/又は実施するために、外科手術の前(例えば、術前)又は外科手術の最中(例えば、術中)に外科医によって使用され得る。いくつかの例では、MRシステム212はまた、外科手術の結果を検討し、再置換が必要であるかどうかを評価し、又は他の術後タスクを実行するために、外科手術の後(例えば、術後)に使用され得る。このように、MRシステム12は、ユーザが、現実世界のシーンに配置された仮想画像(例えば、仮想の関節窩又は上腕骨の画像、ガイダンス画像、又は他のテキストもしくは画像)に加えて、解剖学的対象物のような現実世界のシーンを見ることを可能にし得る。そのため、MRシステム212は、外科医によって装着され得る視覚化デバイス213を含み得、(以下でより詳細に説明されるように)視覚化デバイス213は、骨又は軟組織の生成されたモデル、患者の撮像データから導出された患者の骨及び/又は軟組織の画像のような手術計画の詳細及び患者の罹患した、損傷した、又は手術後の関節の3D仮想画像と、手術計画のために選択された人工インプラント部品の3D仮想画像と、人工部品、サージカルガイド及び手術器具、並びに損傷した関節へのそれらの埋植を適切に方向付け及び配置するために、外科手術において、人工部品を配置するための侵入点、骨表面を成形する切断ツール又はリーミングツール又は骨表面に1つもしくは複数の穴を画定する穿孔ツールをアラインするためのアライメント軸及び切断面の3D仮想画像と、手術計画を実施するために外科医に有用であり得る任意の他の情報とを含む様々なタイプの情報を表示するように動作可能である。MRシステム212は、外科手術の前及び/又は最中に視覚化デバイス213のユーザが認識可能な、この情報の画像を生成することができる。
【0038】
[0085]いくつかの例では、MRシステム212は、複数のユーザが同じ画像を同時に見すること及び同じ3Dシーンを共有することができるように、複数の視覚化デバイス(例えば、視覚化デバイス213の複数のインスタンス)を含む。いくつかのそのような例では、視覚化デバイスのうちの1つがマスタデバイスに指定され得、その他の視覚化デバイスがオブザーバ又はスペクテータに指定され得る。任意のオブザーバデバイスは、MRシステム212のユーザが望み得る通りに、いつでもマスタデバイスに再指定され得る。
【0039】
[0086]図3は、外科的ライフサイクル300の例となる段階を例示するフローチャートである。図3の例では、外科的ライフサイクル300は、術前段階(302)から始まる。術前段階中に、手術計画が作成される。術前段階の後に製造及び送達段階(304)が続く。製造及び送達段階中に、手術計画を実行するために必要なパーツ及び機器などの患者固有のアイテムが製造され、手術部位に送達される。いくつかの例では、手術計画を実行するために患者固有のアイテムを製造する必要はない。術中段階が、製造及び送達段階(306)に続く。手術計画は、術中段階中に実行される。換言すると、術中段階中に1人以上の人が患者に手術を行う。術中段階の後に術後段階(308)が続く。術後段階は、手術計画が完了した後に行われる活動を含む。例えば、患者は、術後段階中、合併症について監視され得る。
【0040】
[0087]本開示で説明されるように、整形外科手術システム100(図1)は、術前段階302、製造及び送達段階304、術中段階306、並びに術後段階308のうちの1つ又は複数で使用され得る。例えば、仮想計画システム102及び計画支援システム104は、術前段階302で使用され得る。いくつかの例では、術前段階302は、システムが患者の撮像データを分析すること、骨及び/もしくは軟組織をモデル化すること、並びに/又は患者の状態に基づいて外科治療のタイプを決定もしくは推奨することを含み得る。製造及び送達システム106は、製造及び送達段階304で使用され得る。術中ガイダンスシステム108は、術中段階306で使用され得る。図1のシステムのうちのいくつかは、図3の複数の段階で使用され得る。例えば、医療教育システム110は、術前段階302、術中段階306、及び術後段階308のうちの1つ又は複数において使用され得、術前及び術後モニタリングシステム112は、術前段階302及び術後段階308において使用され得る。予測分析システム114は、術前段階302及び術後段階308において使用され得る。図3の外科的プロセス内には様々なワークフローが存在し得る。例えば、図3の外科的プロセス内の異なるワークフローは、異なるタイプの手術に適切であり得る。
【0041】
[0088]図4は、整形外科手術を支援する例となる術前、術中、及び術後のワークフローを例示するフローチャートである。図4の例では、外科的プロセスは、医療コンサルテーション(400)から始まる。医療コンサルテーション(400)中に、医療専門家は、患者の病状を評価する。例えば、医療専門家は、患者の症状に関して患者と相談し得る。医療コンサルテーション(400)中に、医療専門家はまた、様々な治療の選択肢を患者と話し合い得る。例えば、医療専門家は、患者の症状に対処するための1つ又は複数の異なる手術を説明し得る。
【0042】
[0089]更に、図4の例は、症例作成ステップ(402)を含む。他の例では、症例作成ステップは、医療コンサルテーションステップの前に行われる。症例作成ステップ中に、医療専門家又は他のユーザは、患者の電子症例ファイルを確立する。患者の電子症例ファイルは、患者の症状に関するデータ、患者の可動域の観察、患者のための手術計画に関するデータ、患者の医用画像、患者に関する注記、患者に関する請求情報など、患者に関する情報を含み得る。
【0043】
[0090]図4の例は、術前患者モニタリング段階(404)を含む。術前患者モニタリング段階中、患者の症状が監視され得る。例えば、患者は、患者の肩の関節炎に関連する疼痛に苦しんでいるかもしれない。この例では、患者の症状は、患者の肩関節を置換する関節形成術が必要なレベルにまだ達していない可能性がある。しかしながら、関節炎は、典型的には、時間と共に悪化する。従って、患者の肩関節の手術をすべき時が来たかどうかを決定するために患者の症状が監視され得る。術前患者モニタリング段階からの観察は、患者の電子症例ファイルに記憶され得る。いくつかの例では、予測分析システム114は、患者がいつ手術を必要とし得るかを予測するため、手術を遅延もしくは回避するための治療過程を予測するため、又は患者の健康に関する他の予測を行うために使用され得る。
【0044】
[0091]加えて、図4の例では、術前段階中に医用画像取得ステップが行われる(406)。画像取得ステップ中に、患者の医用画像が生成される。特定の患者に関する医用画像は、様々な方法で生成され得る。例えば、画像は、コンピュータ断層撮影(CT)プロセス、磁気共鳴撮像(MRI)プロセス、超音波プロセス、又は別の撮像プロセスを使用して生成され得る。画像取得ステップ中に生成された医用画像は、特定の患者の対象の解剖学的構造の画像を含む。例えば、患者の症状が患者の肩に関わる場合、患者の肩の医用画像が生成され得る。医用画像は、患者の電子症例ファイルに追加され得る。医療専門家は、術前段階、術中段階、及び術後段階のうちの1つ又は複数で医用画像を使用することが可能であり得る。
【0045】
[0092]更に、図4の例では、自動処理ステップ(408)が行われ得る。自動処理ステップ中に、仮想計画システム102(図1)は、患者のための予備の手術計画を自動的に作成し得る。例えば、仮想計画システム102は、患者の骨及び/又は軟組織のモデル又は表現を生成し得る。これらの表現に基づいて、仮想計画システム102は、軟組織量、筋肉の脂肪浸潤、筋肉の萎縮率、及び骨の可動域のような骨及び/又は軟組織特性を決定し得る。仮想計画システム102は、これらの特性に基づいて、どのタイプの治療が実行されるべきか(例えば、肩関節置換術は解剖学的置換術であるべきかリバース型置換術であるべきか)を決定し得る。本開示のいくつかの例では、仮想計画システム102は、機械学習技術を使用して、患者の仮想症例ファイル内の情報に基づいて予備の手術計画を作成し得る。
【0046】
[0093]図4の例はまた、手動補正ステップ(410)を含む。手動補正ステップ中に、1人以上の人間ユーザは、自動処理ステップ中に行われた決定をチェックして補正することができる。本開示のいくつかの例では、1人以上のユーザは、手動補正ステップ中、複合現実又は仮想現実視覚化デバイスを使用し得る。いくつかの例では、自動処理ステップ中に仮想計画システム102によって適用される機械学習技法を改良するために、手動補正ステップ中に行われた変更がトレーニングデータとして使用され得る。
【0047】
[0094]仮想計画ステップ(412)が、図4の手動補正ステップに続き得る。仮想計画ステップ中に、医療専門家は、患者のための手術計画を作成し得る。本開示のいくつかの例では、1人以上のユーザは、患者のための手術計画の作成中に複合現実又は仮想現実視覚化デバイスを使用し得る。
【0048】
[0095]更に、図4の例では、術中ガイダンスが生成され得る(414)。術中ガイダンスは、手術計画をどのように実行するかに関する外科医へのガイダンスを含み得る。本開示のいくつかの例では、仮想計画システム102が術中ガイダンスの少なくとも一部を生成し得る。いくつかの例では、外科医又は他のユーザ(複数可)が術中ガイダンスに寄与し得る。
【0049】
[0096]加えて、図4の例では、手術アイテムを選択及び製造するステップが実行される(416)。手術アイテムを選択及び製造するステップ中、製造及び送達システム106(図1)は、手術計画によって説明されている手術中に使用するための手術アイテムを製造し得る。例えば、手術アイテムは、手術用インプラント、手術用具、及び手術計画によって説明されている手術を行うために必要な他のアイテムを含み得る。
【0050】
[0097]図4の例では、術中システム108(図1)からのガイダンスを用いて外科手術が行われ得る(418)。例えば、外科医は、外科医にガイダンス情報を提示する術中システム108の頭部装着型MR視覚化デバイスを装着した状態で手術を行い得る。ガイダンス情報は、一連のステップ、個々のステップの詳細、並びに外科手術ワークフローにおける様々なステップのためのツール又はインプラント選択、インプラント埋植及び位置、並びに骨表面の準備を含む、外科的ワークフローにおける様々なステップのためのガイダンスを提供して、外科医が手術を行う際の指針となり得る。
【0051】
[0098]外科手術の完了後に術後患者モニタリングが行われ得る(420)。術後患者モニタリングステップ中、患者の医療結果が監視され得る。医療結果は、症状の緩和、可動域、合併症、埋め込まれた手術アイテムのパフォーマンスなどを含み得る。術前及び術後モニタリングシステム112(図1)は、術後患者モニタリングステップを支援し得る。
【0052】
[0099]図4の医療コンサルテーション、症例作成、術前患者モニタリング、画像取得、自動処理、手動補正、及び仮想計画ステップは、図3の術前段階302の一部である。図4のガイダンスステップを有する外科手術は、図3の術中段階306の一部である。図4の術後患者モニタリングステップは、図3の術後段階308の一部である。
【0053】
[0100]先に述べたように、整形外科手術システム100のサブシステムのうちの1つ又は複数は、MRシステム212(図2)のような1つ又は複数の複合現実(MR)システムを含み得る。各MRシステムは、視覚化デバイスを含み得る。例えば、図2の例では、MRシステム212は、視覚化デバイス213を含む。いくつかの例では、視覚化デバイスを含むことに加えて、MRシステムは、視覚化デバイスの動作をサポートする外部コンピューティングリソースを含み得る。例えば、MRシステムの視覚化デバイスは、外部コンピューティングリソースを提供するコンピューティングデバイス(例えば、パーソナルコンピュータ、ノートブックコンピュータ、タブレットコンピュータ、スマートフォンなど)に通信可能に結合され得る。代替的に、視覚化デバイスの必要な機能を実行するために、適切なコンピューティングリソースが視覚化デバイス213上に又はその内部に提供され得る。
【0054】
[0101]仮想計画システム102及び/又は他のシステムは、関節手術のような外科的介入を計画するためにも使用され得る患者の撮像データを分析し得る。一例として本明細書で説明されるように、肩関節置換手術は、本明細書のシステム及び技法を使用して計画され得る手術の1つのタイプである。図5A及び図5Bは、患者の肩に関する例となる筋肉及び骨の図である。
【0055】
[0102]図5Aの例に示されるように、患者500の前部像は、胸骨502と、肩504と、肋骨506とを含む。肩504の構造及び機能に関連するいくつかの骨は、肩甲骨の烏口突起510と肩峰512とを含む(全体は図示せず)。肩504に関連する筋肉は、前鋸筋508と、大円筋と、二頭筋518とを含む。肩甲下筋514は、図5Aに示される回旋腱板筋のうちの1つである。他の回旋腱板筋、棘上筋526、棘下筋530、及び小円筋532は、図5Bの例における患者500の後面像に示されている。図5Bはまた、上腕骨頭520及び肩甲骨528の脊柱の骨の特徴を例示する。肩504に関連する他の筋肉は、三頭筋522と三角筋524とを含む。
【0056】
[0103]どのタイプの肩関節治療又は肩関節置換術が適切であり得るかなど、治療のために肩504を評価するとき、システムは、図5A及び図5Bで説明されたもののような、骨及び軟組織に関する患者固有の撮像データを分析し得る。例えば、仮想計画システム102は、患者の撮像データから軟組織(例えば、筋肉)の表現を生成し、軟組織の様々な特性を決定し得る。これらの特性は、筋肉量、脂肪浸潤(例えば、脂肪率)、筋萎縮率、及び筋肉に関連する関節の可動域を含み得る。
【0057】
[0104]この情報から、仮想計画システム102は、推奨される治療のタイプ、例えば患者に解剖学的肩関節置換術又はリバース型肩関節置換術が有効か否かを決定し得る。解剖学的肩関節置換術では、上腕骨頭が人工上腕骨頭(例えば、部分球体)と置換され、肩甲骨の関節窩表面が人工上腕骨頭と嵌合する人工湾曲面と置換される。リバース型肩関節置換術では、関節窩表面のために人工部分球体が埋め込まれ、この球体と嵌合する人工湾曲面(例えばカップ)が上腕骨頭の代わりに埋め込まれる。仮想計画システム102はまた、患者の撮像データ及び/又は筋肉特性に基づいてインプラントの寸法及び/又は埋植を提案し得る。
【0058】
[0105]一例では、仮想計画システム102のようなシステムは、患者の軟組織構造をモデル化するように構成され得る。仮想計画システム102は、患者に関する患者固有の画像データを記憶するように構成されたメモリと処理回路とを含み得る。処理回路は、患者固有の画像データ(例えば、CTデータ)を受け取ることと、患者固有の画像データの強度に基づいて、患者の軟組織構造を表す患者固有の形状を決定することと、患者固有の形状を出力することとを行うように構成され得る。このように、患者固有の形状は、患者の実際の軟組織構造のモデルであり得る。
【0059】
[0106]仮想計画システム102は、様々な方法を使用して軟組織構造の患者固有の形状を生成し得る。例えば、処理回路は、初期形状(例えば、患者集団に基づく幾何学的形状又は統計的平均形状)を受け取ることと、初期形状上の複数の表面点を決定することとを行うように構成され得る。次いで、仮想計画システム102は、初期形状を患者固有の画像データに位置合わせし(例えば、隣接する骨上の筋肉の付着点に基づいて初期形状を患者固有の画像データ内に配置し)、患者の軟組織構造の境界を表す患者固有の画像データ内の1つ又は複数の輪郭を識別し得る。これらの1つ又は複数の輪郭は、軟組織構造の境界を示す閾値を超える強度を有する患者固有の撮像データ内のボクセル又はピクセルであり得る。いくつかの例では、輪郭は、(例えば、患者固有の画像データ内の強度勾配を表すヘシアン特徴画像を使用して)隣接する軟組織構造間の分離ゾーンを識別することによって決定され得る。筋肉と、例えば脂肪組織との間で非常に類似している強度だけに基づいて構造境界を識別するのとは対照的に、隣接する構造間の分離ゾーンを識別するヘシアン特徴画像は、これらの構造境界の精度を向上さ得る。次いで、仮想計画システム102は、1つ又は複数の輪郭のそれぞれの位置に向かって複数の表面点を反復的に移動させて初期形状を患者の軟組織構造を表す患者固有の形状に変化させる。このように、移動の各反復により、修正された初期形状は、画像データにおいて示される患者の軟組織構造の実際の形状にますます類似するようになる。
【0060】
[0107]いくつかの例では、仮想計画システム102は、撮像データを使用してモデル化された患者固有の形状を表示し得る。仮想計画システム102はまた、手術計画の一部として追加の決定を実行し得る。例えば、仮想計画システム102は、患者固有の撮像データを使用して、患者固有の形状の脂肪体積比を決定し、患者固有の形状の萎縮率を決定し、患者の軟組織構造の患者固有の形状の脂肪体積比及び萎縮率に基づいて、患者の上腕骨の可動域を決定し、次いで、上腕骨の可動域に基づいて、患者の肩関節治療処置の複数のタイプのうちの1つのタイプを決定し得る。
【0061】
[0108]仮想計画システム102は、患者の回旋腱板の1つ又は複数の筋肉の脂肪体積比と萎縮率とに基づいて、患者の上腕骨の可動域を決定することによって、上腕骨の可動域を決定し得る。この情報に基づいて、仮想計画システム102は、解剖学的肩関節置換手術又はリバース型肩関節置換手術のうちの1つから肩関節治療のタイプを選択し得る。いくつかの例では、仮想計画システム102は、患者の骨及び/又は筋肉が解剖学的肩関節置換術を支持することができない状況に対してリバース型肩関節置換手術を推奨し得る。このように、(例えば、1つ又は複数の適切な閾値と比較して)より大きな脂肪浸潤及びより大きな萎縮率を有すると決定された患者は、リバース型肩関節置換術により適している可能性がある。いくつかの例では、計画システム102は、決定木又はニューラルネットワークを採用し、脂肪浸潤値を、患者の年齢、性別、活動、及び/又は患者がリバース型肩関節置換術により適しているか解剖学的肩関節置換術により適しているかを示し得る他の要因のような他のパラメータと共に入力として使用し得る。いくつかの例では、脂肪浸潤値は、筋肉のような軟組織構造についてのあるタイプの品質メトリックのであり得る。他の例では、筋肉の質は、筋肉中の脂肪の存在を組み込んでいる場合もそうでない場合もある別のタイプの値によって表され得る。
【0062】
[0109]図6は、本開示の一例による、軟組織構造の寸法及び関節に関連する外科的介入に関する他の情報を決定するように構成されたシステム540の例となる構成要素を例示するブロック図である。システム540は、図1の仮想計画システム102及び/又は本明細書で説明されるプロセスを実行するように構成されたシステムに類似し得る。図6の例では、システム540は、処理回路542と、電源546と、ディスプレイデバイス(複数可)548と、入力デバイス(複数可)550と、出力デバイス(複数可)552と、記憶デバイス(複数可)554と、通信デバイス544とを含む。図6の例では、ディスプレイデバイス(複数可)548は、不透明又は少なくとも部分的に透明な画面のような、ユーザインターフェースをユーザに提示するための画像を表示し得る。ディスプレイデバイス548は、視覚情報を提示し得、いくつかの例では、オーディオ情報又はユーザに提示される他の情報を提示し得る。例えば、ディスプレイデバイス548は、1つ又は複数のスピーカ、触覚デバイスなどを含み得る。他の例では、出力デバイス(複数可)552は、1つ又は複数のスピーカ及び/又は触覚デバイスを含み得る。ディスプレイデバイス(複数可)548は、不透明な画面(例えば、LCD又はLEDディスプレイ)を含み得る。代替的に、ディスプレイデバイス(複数可)548は、例えば、プロジェクタと組み合わせてシースルーホログラフィックレンズを含むMR視覚化デバイスを含み得、それは、ユーザが、現実世界の環境において、レンズを通して現実世界のオブジェクトを見ることと、例えば、Microsoft HOLOLENS(登録商標)デバイスのようなホログラフィック投影システムによって、レンズ内に及びユーザの網膜上に投影された仮想3Dホログラフィック画像を見ることとを可能にする。この例では、仮想3Dホログラフィックオブジェクトは、現実世界の環境内に配置されているように見え得る。いくつかの例では、ディスプレイデバイス548は、LCD表示画面、OLED表示画面などの1つ又は複数の表示画面を含む。ユーザインターフェースは、特定の患者のための仮想手術計画の詳細の仮想画像を提示し得る。
【0063】
[0110]いくつかの例では、ユーザは、様々な方法でシステム540と対話したり、それを制御したりすることができる。例えば、入力デバイス550は、1つ又は複数のマイクロフォンと、関連する音声認識処理回路又はソフトウェアとを含み得、ユーザが発した音声コマンドを認識し、それに応答して、手術計画、術中ガイダンスなどに関連する様々な機能の選択、アクティブ化、又は非アクティブ化のような様々な動作のいずれかを実行し得る。別の例として、入力デバイス550は、上で説明したような動作を実行するためにジェスチャを検出及び解釈する1つ又は複数のカメラ又は他の光学センサを含み得る。更なる例として、入力デバイス550は、注視方向を感知し、本開示の他の箇所で説明されるような様々な動作を実行する1つ又は複数のデバイスを含む。いくつかの例では、入力デバイス550は、例えば、1つ又は複数のボタン、キーパッド、キーボード、タッチスクリーン、ジョイスティック、トラックボール、及び/又は他の手動入力媒体を含むハンドヘルドコントローラを介して、ユーザから手動入力を受け取り、手動ユーザ入力に応答して、上で説明したような様々な動作を実行し得る。
【0064】
[0111]通信デバイス544は、他のデバイスとのデータ通信を容易にする1つ又は複数の回路又は他の構成要素を含み得る。例えば、通信デバイス544は、システム540に物理的に接続されたときにドライブとシステム540との間のデータの移送を可能にする1つ又は複数の物理ドライブ(例えば、DVD、ブルーレイ、又はユニバーサルシリアルバス(USB)ドライブ)を含み得る。他の例では、通信デバイス544がそれを含み得る。通信デバイス544はまた、別のコンピューティングデバイス及び/又はネットワークとのワイヤード及び/又はワイヤレス通信をサポートし得る。
【0065】
[0112]記憶デバイス544は、共通及び/又は別個のデバイスにそれぞれのタイプのデータを記憶する1つ又は複数のメモリ及び/又はリポジトリを含み得る。例えば、ユーザインターフェースモジュール556は、ユーザに情報を提示するためにシステム540がディスプレイデバイス548をどのように制御するかを定義する命令を含み得る。術前モジュール558は、撮像データのような患者データの分析、及び/又は患者データに基づく治療選択肢の決定に関する命令を含み得る。術中モジュール560は、計画された手術に関する詳細及び/又は外科手術に関するフィードバックのような情報を表示のために臨床医に提供する際にシステム540がどのように動作するかを定義する命令を含み得る。
【0066】
[0113]表面フィッティングモジュール562は、処理回路542が患者固有の撮像データから軟組織の表現(例えば、患者固有の形状)をどのように決定するかを定義する命令を含み得る。例えば、表面フィッティングモジュール562は、初期形状、反復回数、及び患者の撮像データの強度に基づいて初期形状を患者固有の形状に調整することに関する他の詳細を指定し得る。画像位置合わせモジュール564は、初期形状又は他の解剖学的構造を患者の画像データにどのように位置合わせするかを定義する命令を含み得る。例えば、画像位置合わせモジュール564は、表面フィッティングプロセス中に患者固有の形状を生成する前に、統計的平均形状(SMS)(例えば、多くの人々の集団から導出された解剖学的形状)を患者の撮像データの骨とどのように位置合わせするかを処理回路542に命令し得る。患者データ566は、患者の撮像データ(例えば、CTスキャン、X線スキャン、又はMRIデータ)、患者の特性(例えば、年齢、身長、体重)、患者の診断、患者の状態、以前に受けた手術もしくはインプラント、又は患者に関する任意の他の情報のような任意のタイプの患者データを含み得る。
【0067】
[0114]上述したように、外科的ライフサイクル300は、術前段階302(図3)を含み得る。1人以上のユーザは、術前段階302において整形外科手術システム100を使用し得る。例えば、整形外科手術システム100は、1人以上のユーザが、特定の患者の対象の解剖学的構造に合わせてカスタマイズされ得る仮想手術計画を生成するのを助けるために、仮想計画システム102(システム540に類似し得る)を含み得る。本明細書で説明されるように、仮想手術計画は、特定の患者の対象の解剖学的構造に対応する3次元仮想モデルと、対象の解剖学的構造を修復するために特定の患者に適合しているか、又は対象の解剖学的構造を修復するために選択された1つ又は複数の人工部品の3次元モデルとを含み得る。仮想手術計画はまた、外科医が外科手術を行う際、例えば、骨表面又は組織を準備し、そのような骨表面又は組織に対して埋込型の補綴具を埋植する際の指針となるガイダンス情報の3次元仮想モデルを含み得る。
【0068】
[0115]本明細書で説明されるように、システム540は、患者の撮像データを使用して患者の軟組織構造をモデル化するように構成され得る。例えば、システム540は、患者に関する患者固有の画像データ(例えば、患者データ566)を記憶するように構成されたメモリ(例えば、記憶デバイス554)を含み得る。システム540はまた、患者固有の画像データを受け取ることと、患者固有の画像データの強度に基づいて、患者の軟組織構造を表す患者固有の形状を決定することとを行うように構成された処理回路542を含む。次いで、処理回路542は、例えば、表示又は患者のための更なる分析での使用のために、患者固有の形状を出力することができる。例えば、処理回路542は、本明細書で説明されるように、患者固有の画像データからの患者固有の形状又は他の特性を使用して、外科手術の推奨(例えば、患者に対してどのタイプの治療を行うべきか)を生成し得る。
【0069】
[0116]処理回路542は、1つ又は複数のプロセスを使用して患者固有の形状を決定し得る。例えば、処理回路542は、初期形状(例えば、幾何学的形状又はSMS)を受け取り、初期形状上の複数の表面点を決定し、初期形状を患者固有の画像データに位置合わせし得る。処理回路542は、患者固有の画像データ内の予めセグメント化された骨上の1つ又は複数の筋肉の付着点及び/又は起始を決定することによって、又は他の方法で対象の軟組織構造の近似位置を識別することによって、初期形状を位置合わせし得る。次いで、処理回路542は、患者の軟組織構造の境界を表す患者固有の画像データ内の1つ又は複数の輪郭(軟組織構造間の分離ゾーンに基づき得る)を識別し、1つ又は複数の輪郭のそれぞれの位置に向かって複数の表面点を反復的に移動させて初期形状を患者の軟組織構造を表す患者固有の形状に変化させ得る。このように、処理回路542は、初期形状の境界が、輪郭により厳密に適合する方向に向かって反復的に移動されるにつれて、1つ又は複数の中間形状を生成し得る。輪郭は、軟組織構造の境界を示す、特定の閾値を超えるか、又は閾値範囲内に入るボクセルの集合を表し得る。
【0070】
[0117]いくつかの例では、初期形状及び患者固有の形状は3次元形状である。しかしながら、他の例では、初期形状及び/又は患者固有の形状は2次元で定義され得る。これらの例では、いくつかの2次元形状のセットは、総体積又は3次元形状を画定するために使用され得る。一例では、処理回路542は、処理回路542が3次元空間においてデータを処理するように、初期形状及び中間形状の表面点を3次元のそれぞれのベクトルの方向に反復的に移動させ得る。他の例では、処理回路542は、2次元スライスで動作して、初期形状を患者固有の画像データ内の輪郭に向かって変化させ得る。次いで、処理回路542は、いくつかの2次元スライスを組み合わせて、患者についての最終的な患者固有の形状の完全な3次元体積を生成し得る。
【0071】
[0118]軟組織構造は、筋肉、腱、靭帯、又は骨ではない他の結合組織を含み得る。関節置換治療は、一般に、骨の修正(例えば、骨の少なくとも一部を金属及び/又はポリマーのような人工材料に置換すること)を伴い得るが、置換されるその特定の関節に適切であり得るのがどのタイプの置換術であるかは軟組織の状態が知らせ得る。このように、システム540は、関節置換術のタイプに影響を及ぼし得る情報を求めて、関節の周囲の筋肉のような患者の軟組織を分析し得る。肩関節置換術の場合、関節の対象の軟組織構造は、肩甲下筋、棘上筋、棘下筋、小円筋のような回旋腱板筋を含み得る。大円筋、三角筋、前鋸筋、三頭筋、及び二頭筋のような肩に関連する他の筋肉も、肩関節置換治療のために分析され得る。手術計画の目的上、システム540は、新たな修復された関節がどのタイプの可動域及び/又は応力を受け得るかを決定するために、各軟組織構造の様々な特性を決定し得る。
【0072】
[0119]いくつかの例では、処理回路542は、関節窩表面又は肩甲骨の残りの部分に対する上腕骨の可動域のような様々な基準に基づいて、患者に対する肩関節治療のタイプを決定し得る。肩関節治療のタイプは、解剖学的肩関節置換術又はリバース型肩関節置換術を含み得、処理回路542は、軟組織特性に基づいて、どのタイプの置換術が患者に好ましいかを提案し得る。加えて、処理回路542は、インプラント埋植位置、角度、向き、インプラントのタイプなどの、治療のための他のパラメータを推奨する。例えば、処理回路542は、患者固有の画像データから患者固有の形状の脂肪体積比(例えば、脂肪浸潤値)を決定し得る。処理回路542はまた、対象の軟組織構造についての推定された病前の状態又は以前の健康な状態に基づいて、患者固有の形状の萎縮率を決定し得る。次いで、処理回路542は、患者の軟組織構造の患者固有の形状の脂肪体積比及び萎縮率に基づいて、患者の上腕骨の可動域を決定することができる。例えば、筋肉の脂肪浸潤及び萎縮がより高いことは、関節の可動域がより低く(又はより狭く)なることを示し得る。いくつかの例では、可動域は、関節のそれぞれの動きについての1つ又は複数の特定の角度、又は関節の全体的な可動域を表すメトリックもしくは他の複合値であり得る。処理回路542は、いくつかの筋肉に基づいて、関節の可動域を決定し得る。例えば、処理回路542は、回旋腱板のいくつかのそれぞれの筋肉及び/又は肩関節に関連する他の筋肉もしくは結合組織に対する脂肪率及び萎縮率に基づいて、肩甲骨に対する上腕骨の1つ又は複数の可動域値(例えば、1つ又は複数の個々の角度又は全体的な可動域を表す1つ又は複数の複合値)を決定し得る。加えて、可動域は、骨対骨衝突又は他の機械的インピンジメントの影響を受け得る。この情報から、処理回路542は、術前計画段階中に患者に対する肩関節治療のタイプを提案し得る。
【0073】
[0120]図7図18Bは、患者固有の画像データから患者の軟組織構造をモデル化することに関与する例となるステップを例示する。システム540の処理回路542は、これらのプロセスを実行するための例となるシステムとして説明されるが、他のデバイス、システム、又はそれらの組合せが同様の決定を実行し得る。図7は、回旋腱板のいくつかの筋肉の例となる付着点の図である。
【0074】
[0121]図7の例に示されるように、処理回路542は、初期形状を患者の関連する骨に位置合わせすることによって、軟組織モデリングを開始し得る。肩甲骨の関節窩578が上腕骨570の上腕骨頭520と共に示されている。患者の骨は、処理回路542又は別のシステムが患者固有の画像データの強度値に基づいて骨を決定する自動セグメンテーションプロセスから決定され得る。これらの骨から、処理回路542は、肩関節の対象の1つ又は複数の軟組織構造の付着点、又は付着部(又はそうでなければ、筋肉の起始)を識別し得る。他の例では、付着点又は他の骨ランドマークは、骨セグメンテーションからではなく、患者固有の画像データから直接決定され得る。例えば、棘上筋付着点572は、棘上筋が上腕骨頭520に付着している場所を示し、棘下筋付着点574は、棘下筋が上腕骨頭520に付着している場所を示し、肩甲下筋付着点576は、肩甲下筋が上腕骨頭520に付着している場所を示す。処理回路542は、解剖学的アトラス又は一般的な人体解剖学的構造に基づく他の命令との比較に基づいて、これらの付着点の各々を識別し得る。いくつかの例では、処理回路542は、初期形状を患者の骨に位置合わせするための追加の点として、肩甲骨又は他の骨上の追加の付着点を決定し得る。
【0075】
[0122]本明細書で説明されるように、変形されて患者の画像データに適合することとなる初期形状は、幾何学的形状又はより具体的なSMSとして開始することができる。SMSは、一般集団に対して選択され得るか、又は患者集団についての1つ又は複数の人口統計学的要因(例えば、性別、年齢、民族性など)に基づいて複数の異なるSMSから選択され得る。いくつかの例では、SMSが患者の筋肉により厳密に一致し得るため、SMSが使用され得る。従って、処理回路542は、初期形状を修正して、画像データに適合する患者固有の形状を生成するために必要な反復又は計算の数を低減させ得る。加えて、SMSは、関連する骨上の識別された付着点に一致する予め識別された位置を含み得る。
【0076】
[0123]図8Aは、例となる患者固有の画像データの概念図である。図8Aに示されるように、2次元画像データ600は、CT又はX線画像の強度を例示するために示されている。より高い強度は、肩甲骨602の形態の骨のような、X線エネルギーを吸収する高密度組織を示す。典型的には、筋肉のような軟組織構造は、組織が同様に低レベルでX線エネルギーを吸収するため、CTデータで識別することはより困難である。例えば、棘下筋は、肩甲骨602の縁である縁601と、棘下筋の外縁と隣接する脂肪組織層との間の分離ゾーンである縁603とによって部分的に決定される境界を有し得る。X線データから縁603を識別することは困難であり得るが、特定のデータ処理技法は、縁603又は縁603が決定され得る分離ゾーンを識別するのを助け得る。
【0077】
[0124]図8Bは、図8Aの患者固有の画像データに基づいて生成されたヘシアン特徴画像605(Hessian feature image)の概念図である。図8Bの例に示されるように、処理回路542は、図8Aからの画像データ600のような患者固有のCTデータからヘシアン特徴画像605を決定し得る。ヘシアン特徴画像605は、2次元画像として示されているが、3次元データフィールドの一部であり得る。ヘシアン特徴画像605は、患者固有のCTデータ内の2つ以上のボクセル間のより高い強度勾配を含む患者固有のCTデータの領域を示す。例えば、処理回路542は、隣接するボクセル又はボクセルのグループ間の二次導関数を計算して、ボクセル又はボクセルのグループ間の勾配を決定し、次いで、二次導関数に基づいてヘシアン特徴画像を生成し得る。ヘシアン特徴画像は、3次元画像として説明されているが、2次元画像も同じ技術を用いて同様に生成され得る。
【0078】
[0125]これらの構造のボクセル間、例えば、骨のオブジェクトと軟組織との間、互いに隣接する骨のオブジェクトの2つのセット間、及び互いに隣接する軟組織の2つのセット間の強度に変化があるため、ヘシアン特徴画像は、2つの解剖学的対象物間の分離を示し得る。処理回路542は、ボクセルベースの分離情報に基づいて(例えば、ヘシアン特徴画像に基づいて)、1つ又は複数の輪郭、又は輪郭の少なくとも一部を決定し得る。
【0079】
[0126]輪郭は解剖学的対象物間の分離を示すが、輪郭は、解剖学的対象物の完全な形状は提供しない場合がある。例えば、撮像の不完全性、ボクセルもしくはボクセルのグループ間の強度勾配の欠如、又はノイズにより、解剖学的構造(例えば、骨又は軟組織)の境界を表す輪郭の不連続性を生じさせる穴、隙間、又は他の誤差が存在し得る。一例として、輪郭は完全でないことがあり、解剖学的対象物を表す閉曲面ではない場合がある。一般に、輪郭は、解剖学的対象物のサイズ、形状、及び位置の初期推定値を提供し得る。しかしながら、より詳細に説明されるように、輪郭が画像情報に基づき、2Dスキャンが不完全であり得るため、輪郭は、実際の解剖学的対象物の不正確なインジケータであり得る(例えば、穴又は他の欠落部分、並びに輪郭における突出部により)。従って、処理回路542は、閉曲面を有する初期形状を使用し、ヘシアン特徴画像によって少なくとも部分的に画定される輪郭を近似するように初期形状を修正し得る。
【0080】
[0127]ヘシアン特徴画像605は、様々な強度のいくつかの線を含む(例えば、白色は、暗色又は黒色のエリアよりもボクセル間の勾配が高いエリアを示す)。より白い及びより広い線は、より高い勾配のエリアを示す。鎖骨602は、骨からのより高い強度を有するボクセルと軟組織からのより低い強度を有するボクセルとの間の大きな勾配を表す鎖骨602の外面の周囲の線として識別され得る。図8Bに示されるように、棘下筋は、肩甲骨602の縁である輪郭607Aと、棘下筋の外縁と隣接する脂肪組織層との間の分離ゾーンである輪郭607Bとによって部分的に決定される境界を有し得る。輪郭607A及び607Bの各々は、ヘシアン特徴画像605の線によって示される分離ゾーンの中央を通って延びるものとして識別され得る。このように、輪郭607A及び607Bは、各構造の境界を近似し得る隣接する構造間の対応関係を示し得る。
【0081】
[0128]輪郭607A及び607Bの各々は不連続であり得るが、これらの輪郭は、他の例では、連続した分離ゾーンであり得る。次いで、輪郭607A及び607Bは、棘下筋の境界を表す輪郭の少なくとも一部を形成し得る。いくつかの例では、他の筋肉の輪郭を提供するために、他の分離ゾーンが使用され得る。例えば、ヘシアン特徴画像605は、典型的に、筋肉と皮膚との間に最小限の脂肪組織を有する皮膚に隣接して位置し得る筋肉の境界を識別するために使用され得る輪郭607Cのような皮膚の境界を示し得る。
【0082】
[0129]ヘシアン特徴画像605に基づいて、処理回路542は、軟組織構造と隣接する軟組織構造との間の1つ又は複数の分離ゾーンを識別し得る。換言すると、分離ゾーンは、患者固有の画像データにおける2つの軟組織構造間の強度勾配を示し得る。次いで、処理回路542は、1つ又は複数の輪郭の少なくとも一部を、1つ又は複数の分離ゾーンを通過するものとして決定し得る。輪郭は、分離ゾーンの中央を通過するように、又は分離ゾーンの強度ベースの重み付けされた中央を通過するように、処理回路542によって決定され得る。
【0083】
[0130]図8Cは、患者固有の画像データに重ね合わされた例となる初期形状604及び例となるセグメンテーション輪郭の概念図である。図8Cに示されるように、本明細書で説明される例となるプロセスによる軟組織構造をモデル化するプロセスを例示するために2次元画像データ600が示される。棘下筋の軟組織構造が例として示されているが、同じプロセスが任意の軟組織構造に対して実行され得る。例示のために2次元画像が図8Cに示されているが、処理回路542は、3次元空間においてこれらのプロセスを実行し得る。
【0084】
[0131]破線で例示された初期形状604のような初期形状が、この例では棘下筋である、対象の軟組織構造に対して選択される。次いで、初期形状604は、肩甲骨602を含む1つ又は複数の関連する骨に位置合わせされる。例えば、肩甲骨602上で識別された付着点は、初期形状604から識別されたそれぞれの付着部と一致させるために使用され得る。初期形状604は、患者とは異なる複数の被験者の軟組織構造を表す解剖学的形状であるSMSであり得る。SMSは対象の筋肉に固有であるため、初期形状604は患者の構造に類似し得る。しかしながら、図8Cに示されるように、初期形状604は、肩甲骨602の境界又は画像データ600の他の強度を正確に反映していない。従って、処理回路542は、初期形状604を変形又は修正して、その特定の患者に関する画像データに適合させ得る。
【0085】
[0132]処理回路542は、1回以上の反復によって、初期形状604の一部を、(例えば、結果として得られる患者固有の形状に類似する)セグメンテーション輪郭606によって表される患者の実際の軟組織構造に向かって移動させ得る。矢印グループ608A、608B、及び608C(集合的に「矢印グループ608」)によって示されるように、初期形状604の一部は、セグメンテーション輪郭606の他のそれぞれの部分に向かって変形される。図8Cに示されるそれぞれの矢印グループ内の矢印の各々は、初期形状604の表面上のそれぞれの表面点を、1回の反復の間に、セグメンテーション輪郭606に向かって経路の少なくとも一部だけ移動させる。このようにして、2回以上の反復の後には、処理回路542は、初期形状604を変形させてセグメンテーション輪郭606に適合させ得る。例えば、矢印グループ608Bの方向に移動したセグメンテーション輪郭606の部分は、肩甲骨602の一部に適合する。矢印グループ608A及び矢印グループ608Cの方向に移動した初期形状604の部分もまた、画像データ600の強度によって示されるような軟組織構造の輪郭に適合する。このプロセスは、いくつかの例では閉曲面フィッティングと呼ばれ得る。
【0086】
[0133]いくつかの例では、処理回路542は、棘下筋のような対象の軟組織構造の表現を生成するために、患者固有の画像データの初期分析であるセグメンテーション輪郭606を受け取り得る。セグメンテーション輪郭606は、例えば、3次元形状又は複数の2次元スライスであり得る。しかしながら、セグメンテーション輪郭606は、軟組織構造を表す完全なモデルではない場合がある。例えば、画像データ内の様々なボクセルは不正確であったり欠落していたりする場合があり、結果として得られるセグメンテーション輪郭606は、完全とならないことがある。例えば、セグメンテーション輪郭606は、ヘシアン特徴画像からの分離ゾーンから識別された輪郭によって少なくとも部分的に決定され得る。従って、完全に閉じられているSMS又は幾何学的形状を変形させて画像データ600に適合させることで、軟組織構造の完全なモデルを得ることができる。
【0087】
[0134]他の例では、処理回路542は、軟組織構造についてのセグメンテーション輪郭606を受け取らなくてもよい。代わりに、処理回路542は、患者固有の画像データ内の関連する骨上の付着点に従って、初期形状を配置し得る。次いで、処理回路542は、初期形状の表面上の様々な位置から、閾値強度を超えるか、周囲のボクセルと所定の値もしくは割合だけ異なるか、又は別の方法で画像データ600内の軟組織構造もしくは骨のエッジを示すそれぞれのボクセルに向かってベクトルを拡張し得る。閾値強度を超えるこれらのボクセルは、例えば、患者固有の画像データによって表される軟組織構造の1つ又は複数の輪郭を一緒に形成し得る。あるいは、本明細書で説明されるように、軟組織構造の縁を表す輪郭は、ヘシアン特徴画像にあるようなボクセル間の勾配に基づいて決定され得る。従って、1回以上の反復によって、閾値を超えるか、又はボクセル強度の相対的変化を超える識別されたボクセルに向かって初期形状604を変形させた後、初期形状604は、患者の軟組織構造を表す患者固有の形状に変形し得る。従って、患者固有の形状は、患者のためのその構造のモデルであり得、体積、長さなどの様々な特性が、処理回路542によって計算され得る。図9図11は、初期形状の表面上の点を反復的に移動させることによって患者固有の画像データから患者固有の形状を決定するための例となるプロセスを示す。
【0088】
[0135]図9は、患者の軟組織構造を表す患者固有の形状614に向けて初期形状616を変更する例となる手順の概念図である。図9の例は、患者の画像データのサジタルビュー610と、初期形状616と、肩甲骨612とを示す。初期形状616は、配置され、点線によって示される輪郭614に類似し得る肩甲下筋の軟組織構造を表すように変形され得る。処理回路542は、初期形状616上の複数の位置を、患者の画像データにおいて識別された1つ又は複数の骨上の対応する挿入位置に位置合わせすることによって、画像データ内で初期形状616を位置合わせする。例えば、初期形状616は、肩甲骨612上の挿入位置に位置合わせされ得る。この位置合わせは、初期形状616の任意の部分が肩甲骨612に実際に接触することを必要としないが、この位置合わせは、患者固有の画像データ内で初期形状616を位置合わせすべき場所の指針として、肩甲骨612上の挿入位置を使用する。初期形状616は、患者の構造を近似するためのSMSとして示されている。他の例では、球体、卵形、又は他の構造のような幾何学的形状が、初期形状616として使用され得る。
【0089】
[0136]初期形状616は変形又は修正される必要があるため、処理回路542は、軟組織構造の表面を表す画像データのボクセルに向かって、必要に応じて初期形状616の一部を移動させることができる。例えば、処理回路542は、初期形状616上の複数の表面点を選択し得る。ベクトル618A及び618B(集合的に「ベクトル618」)の各々は、初期形状616上のそれぞれの表面点から、初期形状616の表面から垂直な方向に伸びる。処理回路542は、ベクトル618を初期形状616の内側及び外側に伸ばし得、これにより、処理回路542は、初期形状616が撮像データに最初に位置合わせされた場所に応じて、初期形状616の外側又は内側に存在し得る軟組織構造の輪郭を識別することができ得る。例えば、ベクトル618Bは、肩甲骨612の一部が初期形状616内に存在するため、初期形状616の表面から内向きに向けられる。反対に、初期形状616の残りの部分の周りのベクトル618Aは、最終的に、初期形状616の表面から外向きに向けられる。
【0090】
[0137]従って、処理回路542は、ベクトル618を使用して、輪郭614及び肩甲骨612の表面によって示されるような、軟組織構造の縁に対応する1つ又は複数の輪郭を識別することができる。例えば、処理回路542は、初期形状616上の複数の表面点の各表面点(例えば、ベクトル618の各々の基点)から、それぞれのベクトル618を、それぞれの表面点から外向き又は内向きのうちの少なくとも1つに伸ばし得る。次いで、処理回路542は、各表面点からのベクトルについて、ボクセル強度が閾値強度値を超える患者固有の画像データ内のそれぞれの位置を決定することができる。複数の表面点のうちの少なくとも1つの表面点についてのこれらのそれぞれの位置は、1つ又は複数の輪郭を少なくとも部分的に画定する。換言すると、ベクトル618の各ベクトルについて、閾値強度値を超える強度値を含むボクセル又はピクセルは、輪郭614の一部又は軟組織構造に隣接する骨であると決定され得る。他の例では、処理回路542は、患者の軟組織構造を示す画像データの以前のセグメンテーションから輪郭614を受け取り得るか、又はヘシアン特徴画像が、ヘシアン特徴画像内の分離ゾーンから識別され得る輪郭614の少なくとも一部を決定するために使用され得る。しかしながら、処理回路542は依然として、対象の軟組織構造の完全な閉曲面モデルを生成するために、既知の輪郭に向かって初期形状616を変形させ得る。この完全な閉曲面モデルはまた、どの部分が骨に面しているべきか、又はどの部分が別の特定の筋肉に隣接すべきかとして、予めラベル付けされ得る(例えば、初期形状616が予めラベル付けされ得る)。このラベル付けは、軟組織構造の更なるセグメンテーションを可能にするか又は開始することができる。
【0091】
[0138]上述したように、ベクトル618の各々が探している可能性のある患者固有の画像内の位置は、ヘシアン特徴画像から決定された分離ゾーン及び輪郭に基づき得る。他の例では、処理回路542は、所定の強度値超の又は未満の患者固有の画像データ内のそれぞれの位置を決定することによって、ボクセル強度が閾値強度値超の患者固有の画像データ内のそれぞれの位置を決定し得る。換言すると、強度は、ボクセルが骨を表すことを示す高閾値強度値を超え得る(例えば、より高くなる)か、又はボクセルが流体、脂肪組織、もしくは軟組織構造の境界を示す他の組織を表すことを示す低閾値強度値を超え得る(例えば、より低くなる)。例えば、閾値強度値は、骨強度を表し得る。ベクトルが骨の位置に到達すると、軟組織(例えば、筋肉)がその骨表面に接して存在するため、処理回路542は、その位置を軟組織構造の境界として推測する。閾値強度値はまた、ベクトルが軟組織構造の体積から出たことを識別するために、筋肉以外の構造に設定され得る。他の例では、閾値強度値は、筋肉の予想強度値未満であり得る。例えば、ベクトルの経路における閾値強度が閾値強度値未満に低減されると、処理回路542は、そのより低い強度値を、流体又は対象の軟組織構造とは異なる他の構造として解釈し得る。閾値強度値は、いくつかの例では、所定の大きさであり得る。
【0092】
[0139]他の例では、閾値強度値は、ベクトルがどこから発生したか、及び/又はベクトルが最近横切った前のボクセル(複数可)もしくはピクセル(複数可)に基づいて計算された差分値であり得る。このように、処理回路542は、患者の画像データの強度の相対的変化(例えば、ボクセル間変化)、又は軟組織構造もしくは対象の軟組織構造の輪郭614の一部と相関する他の構造に対する境界を示し得るフィルタマスクを識別することができる。例えば、処理回路542は、それぞれの表面点に関連する強度と患者固有の画像データ内のそれぞれの位置の強度との間の差分閾値超の患者固有の画像データ内のそれぞれの位置を決定することによって、閾値強度値を超える患者固有の画像データ内のそれぞれの位置を決定するように構成され得る。いくつかの例では、処理回路542は、対象の軟組織構造に対する境界について画像データを分析するときに、これらのタイプの閾値のうちの1つ又は複数を採用し得る。
【0093】
[0140]一般に、処理回路542は、各ベクトルについて、軟組織構造に対する境界を表す患者固有の画像データ内のそれぞれの位置を識別し得る。しかしながら、いくつかの例では、処理回路542は、閾値強度値を超えるボクセル又はピクセルを識別しなくてもよい。この問題は、患者固有の画像データ内の不完全な情報、データの破損、データの生成中に患者が動くこと、又は任意の他のタイプの異常によって引き起こされ得る。処理回路542は、初期形状616の変形プロセスに伴うそのような問題を回避するためにアルゴリズムを採用し得る。例えば、処理回路542は、閾値強度値を超えるボクセル又はピクセルを識別するために、画像データ内の最大距離を採用し得る。最大距離とは、ベクトルが始まる初期形状616上の点からの所定の距離又はスケーリングされた距離であり得る。最大距離は、約5ミリメートル(mm)~約50mmの範囲から選択され得る。一例では、最大距離は、約20mmに設定され得る。
【0094】
[0141]処理回路542が、閾値強度値を超えるボクセルをベクトルの起点からその距離内で識別しない場合、処理回路542は、そのベクトル及び初期形状616の表面上のそれぞれの点を変形プロセスから除去し、変形については他の点及びベクトルだけに依存し得る。代替的に、処理回路542は、初期形状616から新たな表面点を選択し、閾値強度値を超えるボクセルを見つけるために又はヘシアン特徴画像から決定された軟組織構造の輪郭又は境界に対応するボクセルを見つけるために、その新たな表面点から新たなベクトルを伸ばし得る。初期形状616の表面上のこの新たな表面点は、除去された表面点から所定の距離内にもしくは所定の距離にあるか、除去された表面点と別の表面点との間の所定の距離にあるか、又は処理回路542が除去された表面点を置換するために選択する初期形状616上の何らかの他の位置にあり得る。
【0095】
[0142]次いで、処理回路542は、閉じた初期形状616を輪郭614及び肩甲骨612の一部に近づける又は適合させるために、初期形状616の表面を変形させる1回以上の反復を使用し得る。各反復中に、処理回路542は、初期形状616上の表面点のうちのいくつか又は全てを移動させ得る。例えば、処理回路542は、それぞれの表面点からの、かつ、それぞれの表面点を含む初期形状616の表面に対して垂直なそれぞれのベクトル618を、複数の表面点の各表面点から伸ばし得る。上述したように、これらのベクトルは、初期形状616の表面から内向き及び/又は外向きに向けられ得る。次いで、処理回路542は、各表面点からのそれぞれのベクトル618について、閾値強度値を超える患者固有の画像データ内のそれぞれの点を決定し得る。閾値強度値を超えるこれらの点は、骨の表面及び/又は輪郭614に類似する1つ又は複数の輪郭を形成し得る。
【0096】
[0143]輪郭614の各それぞれの点において、処理回路542は、それぞれの点の包絡線内にあり、かつ、患者固有の画像データ内の閾値強度値を超える複数の潜在的位置を決定し得る。このように、この単一ベクトルについての複数の潜在的位置は、輪郭614の表面を少なくとも部分的に画定する。包絡線内のこれらの潜在的位置は、初期形状616上の表面点が移動すべき潜在的な方向を示す。処理回路542は、これらの潜在的位置における輪郭の表面が初期形状616上の表面点に対してどのように方向付けされるかを説明するために、それぞれの表面点の移動の指針となる、これらの潜在的位置のうちの1つを選択するであろう。換言すると、処理回路542は、初期形状616の表面の向きと、その潜在的位置における輪郭614の表面の向きとの間の差が低減した潜在的位置を選択し得る。
【0097】
[0144]例えば、処理回路542は、複数の潜在的位置の各々ついて、表面に対して垂直なそれぞれの法線ベクトルを決定し得る。初期形状616の表面上のそれぞれの表面点からのベクトル620の例では、いくつかの法線ベクトルが潜在的位置の各々から生成される。1つの例となる法線ベクトルは、潜在的位置のうちの1つからのベクトル622である。次いで、処理回路542は、それぞれの法線ベクトルの各々について、それぞれの法線ベクトルとそれぞれの表面点からのベクトルとの間の角度を決定し得る。ベクトル624の例を使用して、処理回路542は、ベクトル624とベクトル620との間の角度622を決定し得る。この角度622は、余弦角と呼ばれ得る。処理回路542は、例となるベクトル620のようなそれぞれのベクトル618に対応する各潜在的位置について、この計算を実行し得る。
【0098】
[0145]次いで、処理回路542は、初期形状616からの各それぞれの表面点について、それぞれの表面点からのベクトル(例えば、ベクトル620)と複数の潜在的位置の各々からのそれぞれの法線ベクトル(例えば、ベクトル624)との間の最小角度を有する1つの潜在的位置を複数の潜在的位置の中から選択し得る。換言すると、処理回路542は、表面点の適切な移動及び表面点の変形を提供する、輪郭614上の位置を識別し得る。次いで、処理回路542は、各それぞれの表面点について、少なくとも部分的に、選択された1つの潜在的位置に向かってそれぞれの表面点を移動させ得る。それぞれの表面点のこの移動は、輪郭614及び肩甲骨612の一部に対応する患者固有の形状に向かって初期形状616を修正又は変形させる。処理回路542は、閾値強度値を超えるか又は対象の軟組織構造の以前にセグメント化された境界に対応するボクセル又はピクセルを近似するように初期形状616が変形されるまで、全ての反復でこのプロセスを繰りし得る。
【0099】
[0146]処理回路542は、それぞれの表面点と輪郭614に対応する選択された1つの潜在的位置との間の距離の少なくとも半分だけそれぞれの表面点を移動させ得る。しかしながら、移動する距離は、他の状況において又はプロセスにおける反復において変動し得る。単一のステップで結果として得られる変形は、正確な最終的な患者固有の形状を生成しない可能性があるため、表面点は、潜在的位置に向かって完全に移動されなくてもよい。換言すると、各反復において各潜在的位置についての法線ベクトルに基づいて輪郭614上の選択された位置に微調整することで、輪郭614により厳密に一致した最終的な形状を提供し得る。換言すると、初期形状616上の各表面点は、全ての反復にわたって必ずしも完全な直線方向に移動しなくてもよい。各表面点についての移動のこの非線形の組合せにより、最終的な患者固有の形状は、輪郭614及び適切な場合には隣接する骨表面により厳密に一致する又は適合することができ得る。
【0100】
[0147]図10のサジタルビュー640に示されるように、図9の初期形状616が、1回の反復中に、初期形状616よりも輪郭614に近い中間形状632に変形されている。処理回路542が、中間形状632が依然として輪郭614を近似していないと決定するか、それ以外で追加の変形を必要とすると決定すると、処理回路542は、変形の1回以上の追加の反復を実行し得る。例えば、処理回路542は、中間形状632上のそれぞれの表面点からベクトル634A及び634B(集合的に「ベクトル634」)を決定し得る。ベクトル634Bは、肩甲骨612の表面に向かって内向きに向けられており、ベクトル634Bは、図9に関して上で説明したベクトル618と同様に、肩甲骨612及び輪郭614の一部に向かって外向きに向けられている。
【0101】
[0148]次いで、処理回路542は、閾値強度値を超えるボクセル又はピクセルにそれぞれのベクトルが到達した時点で、ベクトル634の各々についての潜在的位置の別のセットを決定する。各ベクトル634についての潜在的位置の各々から、処理回路542は、表面点からのベクトルと比較されたときに最小角度を持つ法線ベクトルを有する潜在的位置を選択し得る。例えば、中間形状632上のその表面点からの例となるベクトル636に関して、処理回路542は、ベクトル636が輪郭614に到達した輪郭614内の点から、包絡線内の輪郭614内の潜在的位置のうちの1つからの1つのベクトルとしてベクトル637を決定し得る。処理回路542は、角度638が中間形状632からのベクトルと潜在的位置からの法線ベクトルとの間の最小角度である場合にベクトル637に関連する潜在的位置を選択し得る。このように、処理回路542は、ベクトル634のうちの少なくともいくつかについて、ベクトル634が輪郭614に到達する点とは異なる輪郭614上の位置を選択し得る。このプロセスにより、処理回路542は、それぞれの表面点において表面に対して垂直な方向以外の方向に中間体632上の表面点を移動させることによって輪郭614をより厳密に近似することができる。
【0102】
[0149]次いで、処理回路542は、中間形状632の表面点を少なくとも部分的に輪郭614上の選択された潜在的位置に向かって移動させ得る。例えば、処理回路542は、中間形状632を、図11に示されるように完全に包囲される最終的な患者固有の形状642に変形させ得る。図11に示されるように、患者固有の形状642は、輪郭614と、患者のために軟組織構造が配設される肩甲骨612の少なくとも一部の表面とを近似し得る。患者固有の形状642は、いくつかの例では、輪郭614と全く同じであるか又は類似し得る。輪郭614は、患者固有の画像データ内の軟組織構造の初期セグメント化、及び/又は各ベクトルから識別された閾値超のボクセルを表す表面を表し得る。他の例では、処理回路542は、最終的な患者固有の形状642に到達する前に、初期形状616を、2回より多い回数、変形させ得る。いくつかの例では、処理回路542は、閾値強度値を超えるボクセル又はピクセルの輪郭を近似するために、所定数の反復を実行し得る。他の例では、処理回路542は、形状の表面点の特定の数、特定の割合、又は全てが、閾値超過したボクセル又はピクセルから所定の距離内になるまで、初期形状の変形の追加の反復を実行し続け得る。換言すると、処理回路542は、変形された形状が患者固有の画像データ内の輪郭から何らかの許容可能な許容度、すなわち誤差内になるまで、初期形状及びその中間形状を変形させ続け得る。
【0103】
[0150]いくつかの例では、処理回路542は、各反復において変形のための同じ命令に従い得る。代替的に、処理回路542は、変形プロセスの反復中に処理回路542が形状の表面点をどのように移動させるかを決定する1つ又は複数の要因を調整し得る。例えば、これらの要因は、初期形状又は中間形状からの表面点の数、輪郭内で識別される潜在的位置の数、表面点からの各ベクトルについて潜在的位置が選択され得る包絡線サイズ、各表面点が1回の反復内で移動することができる距離、各表面点が1回の反復内で互いに対して移動することができる許容偏差、又は他のそのような要因を指定し得る。これらのタイプの要因は、処理回路542が単一の反復で初期形状又は中間形状を変形させることができる範囲を制限することができる。
【0104】
[0151]例えば、処理回路542は、画像データにおいて識別された軟組織構造の実際の寸法をより厳密に近似するために、初期形状をより均一な方法で変形させ、中間形状をより均一でない方法で変形させ得る。一例では、処理回路542は、第1の反復において、初期形状616から、第1の修正距離の第1の許容範囲内の第1のそれぞれの距離だけ複数の表面点の各表面点を移動させることによって、1つ又は複数の輪郭(例えば、輪郭614)のそれぞれの潜在的位置に向かって複数の表面点を反復的に移動させて、第2の形状(例えば、中間形状632)を生成するように構成され得る。第1の許容範囲は、初期形状616に対して第2の形状の平滑性を維持するように、処理回路542によって選択されるか、ユーザによって選択されるか、又は別様に事前決定され得る。換言すると、許容範囲は、ある値からの許容される偏差であり得る。許容範囲は、全ての表面点が同じ距離を移動しなければならないように、ゼロと同程度に低くされ得る。しかしながら、許容範囲は、各表面点が反復内で移動可能な距離を処理回路542が変えることができるように、より大きくてもよい。
【0105】
[0152]次いで、処理回路542は、第1の反復に続く第2の反復において、第2の形状の複数の表面点の各表面点を、第2の修正距離の第2の許容範囲内の第2のそれぞれの距離だけ移動させて、第2の形状から第3の形状(例えば、別の中間形状又は最終的な形状)を生成し得る。この第2の反復では、各表面点が移動する距離が前の反復で許容された変動よりも大きく変動し得るように、第2の許容範囲は第1の許容範囲よりも大きい。このように、より小さい許容範囲は、形状の変形における平滑性を促進し得、より大きい許容範囲は、次の変形された形状が軟組織構造を近似する程度においてより高い精度を促進し得る。一般に、処理回路542は、反復間に表面点の修正距離に対する許容範囲を増加させ得る。しかしながら、いくつかの例では、処理回路542は、許容範囲を増加させることと減少させることとを切り替え得るか、又は処理回路542は、各反復について許容範囲を同一値に維持し得る。別の言い方をすれば、より後の反復の弾性は、各表面点がより接近してそれらの対応点に(例えば、軟組織構造の境界を表す輪郭に向かって)移動することができるように増加し得る。加えて、システムが輪郭614への対応関係をより確信するようになるため、反復ごとに探索距離は減少し得る。例えば、骨構造に関連する輪郭614の部分への対応関係により確信がある場合、システムは、初期形状616上の各表面点について、より弾性のある又はより許容範囲のある移動を提供するより高い反復を使用し得る。対照的に、他の軟組織に関連する輪郭614の部分は、輪郭614への対応関係があまり確信のないものであるため、より低い弾性を有する初期の反復を必要とし得る。
【0106】
[0153]いくつかの例では、位置合わせ及び修正のこのプロセスは、B-スプラインアルゴリズムに類似し得る。B-スプラインアルゴリズムの内部パラメータは、スプライン次数、制御点の数、及び形状の修正のための反復回数を含み得る。スプライン次数及び制御点の数という最初の2つのパラメータは、アルゴリズムの「弾性」の程度を制御することができる。スプライン次数及び制御点の数が高いほど、形状上の各表面点について、発生する挙動はより弾性になる。換言すると、輪郭への対応関係の信頼度が高いままである限り、より後の反復は、修正された形状に対するより具体的な解をもたらす。
【0107】
[0154]一例では、第1の反復で、アルゴリズムは、初期形状616の空間をいくつかの表面点に分割することができる。処理回路542は、これらの表面点とスプライン関係を用いたスプライン次数とに基づいて変形場を決定し得る。更なる反復では、表面点の数は、変化する初期形状616のためのより具体的な変形場を可能にするように、複製されたり、3倍にされたりし得る。各「反復」は、B-スプラインアルゴリズムの内部反復を指し得る。処理回路542は、外部反復を使用して、「N」回の内部反復で、初期形状又は修正された形状の位置合わせを実行し得る。「N」は、より弾性な出力を可能にするために、外部反復と連動して増加され得る。処理回路542がB-スプライン位置合わせを実行するための1つの例となる方法は、Leeらによる「Scattered Data Interpolation with Multilevel B-Splines」IEEE Transactions on Visualization and Computer Graphics,Vol. 3, No. 3, July-September 1997に記載されている。B-スプライン位置合わせを実行するための追加の例となる方法は、https://itk.org/Doxygen411/html/classitk_1_1BSplineScatteredDataPointSetToImageFilter.html and http://www.insight-journal.org/browse/publication/57に記載されているであろう。
【0108】
[0155]いくつかの例では、処理回路542は、その位置におけるボクセル又はピクセルの識別された強度値に基づいて、輪郭に向かって、初期形状又は中間形状の表面点をより大きい距離又は全距離だけ移動させ得る。例えば、高強度ボクセルは、骨の存在を示し得る。一般に、軟組織構造は、骨の一部に対して配設され得る。従って、ボクセルが骨であると識別される場合、処理回路542は、初期形状又は中間形状のそれぞれの表面点を、識別された骨構造に直接、又はそれに隣接して移動させ得る。他の例では、処理回路542は、骨が輪郭の一部として識別される場合、修正距離の許容範囲を増加させて、次の反復が骨の輪郭をより高い精度で近似することを可能にし得る。他の例では、本明細書で説明されるように、輪郭614は、隣接する構造間の分離ゾーンを表すヘシアン特徴画像に基づいて決定され得る。いくつかの例では、処理回路542は、軟組織構造の境界への対応関係を決定するために、ベクトルに沿ってヘシアン特徴画像のプロファイル挙動を追跡し得る。ヘシアン特徴画像は、ベクトルについての対応関係に対してボクセルを提供する矩形状関数に類似したプロファイルを含み得る。骨構造に関して、処理回路542は、表面点をそのボクセルに直接移動させるために、骨表面のボクセルを把握し得る。
【0109】
[0156]最終的な患者固有の形状642が決定されると、処理回路542は、その患者固有の形状642を出力し得る。いくつかの例では、処理回路542は、患者固有の形状642がユーザに表示されるように制御し得る。他の例では、処理回路542は、患者固有の形状642に対して追加の計算を実行し得る。例えば、処理回路542は、患者固有の形状642の体積、線寸法、断面寸法、又は他の特性を決定し得る。処理回路542は、本明細書で説明されるように、他の決定においてこれらの特性を使用し得る。
【0110】
[0157]図12図18は、本明細書で説明される変形プロセスに基づいた、回旋腱板筋の例となるモデリングを例示する。いくつかの例では、システム540のようなシステムは、ユーザインターフェースを介してユーザに同様の画像を表示し得る。いくつかのビューは2次元であり、他のビューは同じモデル化された構造の3次元である。図12は、肩甲骨652を含む患者の画像データの例となる軸方向ビュー650の概念図である。初期形状654は、肩甲下筋のSMSを表し、これは、患者の肩甲下筋を表す患者固有の形状656に変形されている。図13は、肩甲骨662を含む患者の画像データの例となるサジタルビュー660の概念図である。初期形状664は、棘上筋のSMSを表し、これは、患者の棘上筋を表す患者固有の形状666に変形されている。
【0111】
[0158]図14は、患者固有の画像データに重ね合わされた3つの回旋腱板筋を表す例となる最終的な患者固有の形状676、678、及び680の概念的な軸方向ビュー670である。図15に示されるように、肩甲骨672は上腕骨頭674に対して示されている。具体的には、患者固有の形状676は肩甲下筋を表し、患者固有の形状678は棘上筋を表し、患者固有の形状680は棘下筋を表す。図15に示されるように、患者の画像データのサジタルビュー682は、患者固有の形状676(例えば、肩甲下筋)、患者固有の形状678(例えば、棘上筋)、及び患者固有の形状680(例えば、棘下筋)に対する肩甲骨672を含む。対象の関節に関連する追加の回旋筋又は他の筋肉は示されていないが、他の例では決定され得ることに留意されたい。
【0112】
[0159]図16Aは、患者固有の画像データから骨と共に3つの回旋腱板筋を表す例となる最終的な患者固有の形状の概念的な後部3次元ビュー690である。図16Aに示されるように、患者固有の形状676によって表される肩甲下筋は、肩甲骨692及び上腕骨頭694に対して示されている。ビュー690はまた、患者固有の形状678として棘上筋を例示し、患者固有の形状680として棘下筋を例示する。図16Bに示されるように、前部像702は、患者固有の形状676としての肩甲下筋、患者固有の形状678としての棘上筋、及び患者固有の形状680としての棘下筋のような、後面像690に例示された構造と同様の構造の3次元図である。図17に示されるように、端面ビュー704は、後面像690に例示された構造と同様の構造の3次元ビューである。端面ビュー704は、関節窩表面706とアラインされた平面でこれらの肩構造を示している。このように、肩甲下筋は患者固有の形状676として示され、棘上筋は烏口突起708と肩峰710との間の患者固有の形状678として示され、棘下筋は患者固有の形状680として示される。
【0113】
[0160]図18A及び図18Bは、軟組織構造に関連する初期形状が骨構造に位置合わせされ、軟組織構造を表す患者固有の形状に修正される例となる患者固有のCTデータの概念図である。処理回路542は、例えば、最初に、軟組織構造の初期形状を位置合わせするための基準ランドマークであり得るCTデータ(例えば、1つ又は複数のX線画像)内の骨構造を識別し、次いで、初期形状をスケーリングして初期形状を患者に関するCTデータに適合させ得る。
【0114】
[0161]図18Aの軸方向スライスの例に示されるように、処理回路542は、ターゲットの筋肉(例えば、軟組織構造)に基づいて、患者画像から基準ランドマーク713A、713B、及び713C(集合的に「ランドマーク713」)のセットを決定し得る。例えば、肩甲下筋は胸郭に隣接しているため、肋骨をセグメント化して、そのようなランドマーク(ランドマーク713の肋骨)を位置特定するために使用することができる。初期形状715は、患者に厳密に位置合わせされた肩甲下筋の統計的平均形状(SMS)であり得る。初期形状715は、患者と同様の状態を有する他の患者から生成されたSMSのような病理学的形状であり得る。別の言い方をすれば、SMSは位置合わせ及びスケーリングだけが行われるため、健康なSMSは、患者の軟組織の適切なモデルを提供しない可能性がある。しかしながら、いくつかの例では、位置合わせ及び/又はスケーリングされたSMSは、本明細書の図8A図11に関して説明した閉曲面修正に従って更に修正され得る。
【0115】
[0162]接続714A、714B、及び714C(集合的に「接続714」)は、ランドマーク713と初期形状715のSMS上のそれぞれの点との間の対応関係を示す。図18Aは、患者固有のCTデータの軸方向スライスである。
【0116】
[0163]図18Bは、患者固有のCTデータの矢状スライスであり、肋骨及び肩甲下筋の異なるビューを示す。単一の肋骨716は、初期形状715上のそれぞれの点に対応するいくつかの点を含むランドマークであり、接続717は、それらの対応関係を示す線である。図18A及び図18Bは、この位置合わせプロセスの2次元表現であり、いくつかの例では、処理回路542が、3次元で位置合わせを実行し得る。肩甲下筋に関して説明されるプロセスは、他の筋肉についても同様に実行され得る。例えば、棘上筋関連のランドマークは、鎖骨及び肩峰の下側で識別され得、棘下筋関連のランドマークは、周囲の皮膚に基づいて識別され得る。
【0117】
[0164]一般に、基準ランドマーク(例えば、ランドマーク713及び716)が識別されると、SMS上のそれらの最も近い対応関係が位置特定される。処理回路542は、ランドマーク「l」をSMS上のその対応点「c」と接続する線(例えば、接続713及び717)に沿って強度ベースのプロファイルを決定し得る。ある位置「v」でプロファイルの特定の変動が検出されると、「v」と「c」との間のユークリッド距離(d)が、「v」の強度ベースの値(i)と共に記憶される。次いで、処理回路542は、以下の方程式を使用することができる:
Cf=fun(d,i),n∈ランドマーク 式(1)
[0165]強度ベースのメトリックは、単にCT画像データの強度値又はその勾配であり得る。強度の場合、特定の変動は、高いもの(骨強度)から低いもの(軟組織構造)へと進むステップであり、勾配の例の場合、軟組織構造の境界を示す接続のプロファイルに沿って正のスパイクが存在する。処理回路542は、コスト関数のような最小化アルゴリズムを利用して、初期形状715の位置合わせを決定し得る。最小化アルゴリズムは、処理回路542が、アルゴリズムの閾値を満たすことによって初期形状715(例えば、SMS)を変形させて、SMSの変形バージョンを軟組織構造の骨対筋肉寸法に適合させる一般的なタイプのアルゴリズムを指し得る。例えば、コスト関数は、ユークリッド距離
【数1】
とiとの組合せであり得、例えば、
【数2】
ここで、w及びwは、経験的に決定された重みである。
【0118】
[0166]コスト関数はまた、位置合わせの最終的な推定値を平滑化するために使用される、患者に依存しない別の項を有することができる。この項は、正則化項と呼ばれ、(SMSにおけるそれらの関連性及びノイズに基づいて)初期形状715パラメータに適応的な重みを与えることができる。この項(Cf)は、前の「差分」項(ここでは(Cf)と呼ばれる)に加算され得、その合計は、次を求めるように最適化される:
Cf=Cf+Cf 式(3)
[0167]比較可能であるために、Cfは、Cfと同じスケールであり得る。Cfは、その値が正規化されている(すなわち、0と1との間)であろう。Cfを同じ間隔にスケーリングするために、それは、剛体レジストレーション後(すなわち、SMSと患者固有のCTデータとの間)の値Cfを使用して正規化される。
【0119】
[0168]初期形状715が患者に剛体位置合わせされると、初期形状715は、以下のその有限パラメータ方程式を使用して患者の軟組織構造に一致するように弾性的に変形され得る:
【数3】
ここで、それぞれ、s’は初期形状(例えば、SMS)であり、λは固有値であり、vは共分散行列の固有ベクトルである(例えば、変動モードとも呼ばれる)。共分散行列は、患者固有の患者データの分散のような、データセットの分散を表す。bの値は、sの形状(例えば、軟組織構造の最終的な患者固有の形状)を決定する。この項bは、初期形状715のスケーリング係数である。処理回路542は、このプロセスを使用して、ターゲットの筋肉の患者固有の構造を推定する最終的な形状(複数可)を提供するようなbの値を見つけ得る。例えば、この最良適合は、患者固有のCT画像におけるsと患者の筋肉(例えば、m)との間の「差」を定義するコスト関数を最小化するために処理回路542によって実行される。換言すると、最適化アルゴリズムは、Cf=|s-m|を最小化するか、又はCf’=|s-m|-1を最大化することができる。
【0120】
[0169]ここで、Cf又はCf’を定義することは、その凸性に基づいて、オプティマイザが全体的又は局所的な最小値又は最大値になったりならなかったりするため、重要であり得る。最適化プロセスの終わりに良好な推定値を得るために、処理回路542は、修正された最終的なオブジェクト(複数可)とターゲット(m)との間の「形状差異」を反映するようにCfを決定し得る。この差異を計算する変形例は、患者上に位置する限られた数の基準ランドマークまでの、最終的な形状(複数可)の推定値のユークリッド距離に関し得る。
【0121】
[0170]処理回路542は、SMSパラメータ方程式を反復的に適用し、各反復後にCfの値に基づいてパラメータ値を変えることによって、コスト関数の最小化のために最適化アルゴリズムを使用し得る。処理回路542は、Cfをこれ以上最適化(最小化又は最大化)することができない場合、すなわち最適に到達した場合、又は最大の反復回数に到達した場合、このループを停止し得る。この最適化アルゴリズムの完了時に、処理回路542は、修正された初期形状715を軟組織構造の最終的な患者固有の形状として最終決定し得る。最小化又は最大化アルゴリズムは、処理回路542が、アルゴリズムの閾値を満たすことによって初期形状715(例えば、SMS)を変形させて、SMSの変形バージョンを軟組織構造の骨対筋肉寸法に適合させる一般的なタイプのアルゴリズムを指し得る。この閾値は、SMSの変形されたバージョンが患者固有の画像データ内の軟組織構造に対して最良適合となる、又は誤差を低減するときを示し得る。
【0122】
[0171]図19は、脂肪浸潤を決定するためにマスク及び閾値処理された例となる最終的な患者固有の形状の概念図である。脂肪浸潤、又は脂肪率もしくは筋肉内の脂肪体積を表す値は、他の点では健康な筋肉からの構造的及び/又は機能的変化を示し得る。このように、筋肉内の脂肪の量は、その筋肉の健康状態を示し得る。次に、筋肉の健康状態は、どのタイプの関節治療が患者にとって適切であるかに影響を与え得る。
【0123】
[0172]本明細書で説明されるように、システム540のようなシステムは、閾値強度値に対して、軟組織構造の表現内の患者固有の画像データからのボクセル又はボクセルのグループを閾値化することに基づいて、モデル化された軟組織構造の脂肪浸潤値を決定し得る。表現内の全組織に対する脂肪組織の比率が脂肪浸潤値であると決定され得る。システム540は、患者固有の画像データの複数の2次元スライスのピクセル又は3次元画像データセットからのボクセルから脂肪浸潤値を決定し得る。本明細書では3次元アプローチを例として説明するが、例示のために2次元ビューが使用される。例となるCT画像データについて、脂肪に対して使用される強度の閾値は、約-29ハウンスフィールド単位(HU)であり得、筋肉については160HUであり得る。一例では、脂肪浸潤(FI)値は、FI=100*(1-x/X)のように計算され得、ここで、xはマスク内の筋肉の体積であり、Xはマスク内の総体積である。いくつかの例では、特定の閾値未満(例えば、1立方ミリメートル未満)の脂肪又は筋肉を有する領域はノイズと見なされ、除去され得る。
【0124】
[0173]図19に示されるように、患者の画像データ720は、ボクセルに適用されたマスクを用いて対象の筋肉に対して生成された患者固有の形状722を含む。システムは、最初に、患者固有の形状722の外側のデータを除去するために、患者固有の形状722にマスクを適用し得る。次に、システムは、マスク下のボクセルに閾値を適用し得る。いくつかの例では、閾値は、個々のボクセルに存在し得るノイズを回避するために、ボクセルのグループに又は2つ以上のボクセルにわたる平均ボクセル強度に適用され得る。このように、システムは、脂肪組織の領域を決定するために患者固有の画像データの強度及び/又は空間特性を分析し得る。ボクセル724によって示される黒いエリアは、筋組織を示す閾値強度を上回った筋組織を示す。対照的に、より明るいボクセル726は、閾値を下回り、強度が低く、脂肪組織を示す。示されるようなマスクがない場合、脂肪組織のボクセルの強度は、筋肉に関連するボクセルの強度よりも低くなるであろう。次いで、システムは、閾値未満のボクセル726を足して、軟組織構造の脂肪体積を決定し得る。次いで、システムは、脂肪体積と軟組織構造の患者固有の形状722の総体積とに基づいて脂肪浸潤値を決定することができる。例えば、システム540は、軟組織構造の脂肪率を(例えば、パーセンテージとして)決定するために、脂肪体積を総体積で割ることができる。次いで、システム540は、軟組織構造の脂肪体積比を出力し得る。いくつかの例では、システム540は、どのタイプの関節置換術が患者にとって適切であり得るかを決定するときに、脂肪体積比を入力として使用し得る。いくつかの例では、システム540は、上腕骨インプラント又は関節窩インプラントのようなインプラント部品の位置決め及び/又は向きを決定するために、脂肪浸潤のような筋肉品質指標を可動域と共に使用することができる。例えば、システム540は、その患者の肩の可動域及び/又は強度を改善するために、1つ又は複数のインプラントを側方に又は内側に移動させることを提案し得る。筋肉の強度又は可撓性が関節窩と上腕骨頭との間の距離に少なくとも部分的に依存し得るため、上腕骨インプラントの位置を変えて(又は異なるサイズの上腕骨インプラントを選択して)上腕骨を関節窩に近づけたり遠ざけたりすることで、臨床医は、埋め込んだ後の肩の可動域及び/又は強度を改善することができるであろう。いくつかの例では、骨移植は上腕骨頭又は関節窩のいずれかに付加するために使用され、上腕骨の所望の側方化又は内側化を達成する(上腕骨インプラントの有無にかかわらず)し得る。
【0125】
[0174]図20は、軟組織構造の例となる最終的な患者固有の形状736及び病前予測734の概念図である。図20の例に示されるように、サジタルビュー730は、肩甲骨732と、棘上筋の患者固有の形状736とを含む。患者固有の形状736は、上で説明した閉曲面フィッティングに基づいて決定され得る。しかしながら、関節治療のタイプを選択するときに、筋肉が健康な状態又は病前の状態からどのように変化したかを理解することは有益であり得る。このように、システム540は、筋肉の萎縮率を決定し得る。
【0126】
[0175]例えば、システム540の処理回路542は、患者の軟組織構造の骨対筋肉寸法を決定するように構成され得る。処理回路542は、患者固有の形状736に従って、筋肉の寸法に対する、肩甲骨732のような骨の長さ、幅、及び/又は体積を決定し得る。骨対筋肉寸法は、患者の特定の解剖学的サイズを識別し得る。処理回路542は、軟組織構造の統計的平均形状(SMS)を取得し得る。SMSは、多くの健康な被験者の集団からの計算に基づく典型的な筋肉の表現であり得る。しかしながら、いくつかの例では、病理学的構造のSMSが使用され得る。
【0127】
[0176]次に、処理回路542は、最小化アルゴリズムを使用してSMSを変形させて、SMSを軟組織構造の骨対筋肉寸法に適合させ得る。例えば、処理回路542は、SMSを修正して、患者の骨対筋肉寸法により厳密に適合させ、その結果、その筋肉の病前の状態を推定し得る。結果として得られる病前予測734は、健康な状態の筋肉の推定値として使用され得る。次いで、処理回路542は、変形されたSMS体積を患者固有の形状736によって表される軟組織構造体積で割ることによって、軟組織構造(例えば、患者固有の形状736によって表される棘上筋のような筋肉)の萎縮率を決定し得る。この結果が、軟組織構造の萎縮率である。いくつかの例では、処理回路542は、表示のため、又は術前計画中の追加の計算での更なる使用のために、萎縮率を出力し得る。
【0128】
[0177]図21及び図22は、肩関節の可動域分析への筋肉の寄与をモデル化する例となるばねの概念図である。図21及び図22は、リバース型肩関節置換術のための術前計画を例示するが、他の例では、解剖学的肩関節置換術が計画され得る。図21に示されるように、仮想ビュー740は、左側に上腕骨頭744及び肩甲骨742の後面像を含み、右側に上腕骨頭744及び肩甲骨742の前部像を含む。上腕骨頭は、関節窩表面に取り付けられた関節窩球体750と嵌合するように構成されたスペーサ748に取り付けられている。スペーサ748用のカップ及びプレートといった他の部品もインプラントに関与し得る。解剖学的肩関節置換術では、代わりにインプラント球体が上腕骨頭744に取り付けられるように、これらの部品が反転される。いくつかの例となる部品は、ウェッジベースプレート、中心ねじ、グレのスフィア、及び対称な移植片を有するリバース型関節窩部品を含み得る。標準型インサート及び1.5オフセットトレイを有するステムレスAscend FLEXのリバース型上腕骨部品もまた、リバース型肩関節置換術で使用され得る。
【0129】
[0178]システム540は、例えば、肩関節が劣化したときに患者が解剖学的肩関節置換術を受けるべきかリバース型肩関節置換術を受けるべきかに関する決定を実行し得る。この決定の一部は、関節の動きへの1つ又は複数の筋肉の寄与の考慮を含み得る。一例では、システム540の処理回路542は、3つの回旋腱板筋を、ばね定数K1、K2、及びK3を有するばねとしてモデル化し得る。図21に示されるように、棘下筋は、ばね746としてモデル化されており、肩甲下筋は、ばね747としてモデル化されている。他の例では、より少ない又は追加の筋肉が、この分析の一部としてモデル化され得る。図22に示されるように、仮想ビュー760は、ばね762としてモデル化されている棘上筋を例示する。処理回路542は、ばね定数を各ばねに、例えば、ばね定数K1、K2、及びK3をばね746、747、及び762にそれぞれ割り当てることができる。
【0130】
[0179]処理回路542は、本明細書で説明されるようにすでにモデル化されているそれぞれの筋肉の計算された脂肪浸潤(例えば、脂肪体積比)及び萎縮率に基づいて、各ばね定数を決定し得る。例えば、処理回路542は、各筋肉のばね定数を決定するために、K=(R(FI),R(A))のような方程式を採用し得、ここで、Kはばね定数であり、FIは脂肪浸潤であり、Aはそれぞれの筋肉の萎縮である。他の例では、ばね定数を決定するときに、筋肉の患者固有の形状の総体積、長さ、及び/又は断面厚さ、患者の年齢、患者の性別、患者の傷害歴、又は筋肉の機能に影響を及ぼし得る任意の他のタイプの要因のような追加の要因が使用され得る。各ばね746、747、及び762の付着部は、例えば、筋肉の付着点に基づいて、処理回路542によって決定され得る。いくつかの例では、各筋肉は、筋肉から骨への各付着部を表す異なるばねのような、2つ以上のばねによって表され得る。他の例では、各筋肉は、ばねよりも複雑な筋機能モデルによって表され得る。いくつかの例では、処理回路542は、ばねに印加される荷重を決定し得る。荷重は、骨の構造の重量と(標準的なオブジェクトを持ち上げるような)外部荷重とを組み合わせ得る。ばねは、くつかのモデルとして使用され得るが、他の例では有限要素モデルが使用され得る。
【0131】
[0180]処理回路542は、患者の回旋腱板の1つ又は複数のそれぞれの筋肉の脂肪体積比及び萎縮率に基づいて、患者の上腕骨の可動域を決定することによって、上腕骨の可動域を決定し得る。例えば、処理回路542は、K1、K2、及びK3の各々についてのばね定数を計算し、次いで、肩甲骨に対する上腕骨の可動域を決定し得る。処理回路542は、いくつかの例では、1つ又は複数の平面又は3次元における可動域を決定し得る。可動域の軸は、事前に定義され得、いくつかの例では、骨衝突は、軟組織がそれらの軸に沿った限定要因ではないとき、可動域のいくつかの角度を定めるように決定され得る。処理回路542は、解剖学的置換術又はリバース型置換術のような可能な治療のタイプの各々について、この計算を実行し得る。他の例では、処理回路542は、現在の損傷した関節及び骨に対して可動域分析を実行し、この計算を使用して、どのタイプの治療が患者に対して適切であるかを識別し得る。いずれの場合も、処理回路542は、解剖学的肩関節置換手術又はリバース型肩関節置換手術のようなどのタイプの肩関節治療が患者のために選択されるべきかを決定し、次いで、表示のために、その選択された肩関節治療タイプを出力し得る。処理回路542は、治療の各タイプに対する分析をユーザに提示、例えば、治療の各タイプについての数値スコア又は計算を提示し得る。次いで、ユーザは、各タイプの治療についてのこの提示された情報から、どのタイプの治療を患者に提供すべきかを決定し得る。
【0132】
[0181]図23Aは、本開示の技法による、患者固有の画像データを使用して軟組織構造をモデル化するための例となる手順を例示するフローチャートである。システム540の処理回路542は、図23Aの例を実行するものとして説明されるが、仮想計画システム102のような他のデバイス又はシステムが、本技法の1つ又は複数の部分を実行し得る。更に、本技法のいくつかの部分は、分散システムを介して2つ以上のデバイス及び/又はシステムの組合せによって実行され得る。図23Aの例は、図8図11に関して上述した図及び説明と同様であり得る。
【0133】
[0182]図23Aに示されるように、処理回路542は、対象の患者の患者固有の画像データを取得し得る(800)。この患者固有の画像データは、1つ又は複数の撮像モダリティ(例えば、X線、CT、MRIなど)から生成され、データ記憶デバイスに記憶され得る。次いで、処理回路542は、対象の軟組織構造の初期形状を取得する(802)。初期形状は、幾何学的形状又は統計的平均形状(Statistical Mean Shape:SMS)であり得る。この軟組織構造は、筋肉又は他の非骨構造であり得る。しかしながら、他の例では、図23Aのプロセス又は本明細書で説明される他の技法は、骨に対して実行され得る。次いで、処理回路542は、初期形状を患者固有の画像データに位置合わせする(804)。この位置合わせは、初期形状を、患者固有の画像データ内のすでにセグメント化された骨によって識別される骨及び/又は骨の付着点に位置合わせすることを含み得る。予備の筋肉セグメンテーションが患者固有の画像データ内の対象の軟組織構造に対してすでに実行されている他の例では、処理回路542は、初期形状をこの予備の筋肉セグメンテーションに位置合わせし得る。
【0134】
[0183]次いで、処理回路542は、軟組織構造の境界を表す患者固有の画像データ内の1つ又は複数の輪郭を識別する(806)。これらの1つ又は複数の輪郭は、患者固有の画像データ内のすでにセグメント化された骨及び/又は筋肉に関連するボクセルとして識別され得る。他の例では、処理回路542は、初期形状の表面からの法線ベクトルを初期形状から内向き及び/又は外向きに伸ばすことによって、各輪郭を決定し得る。患者固有の画像データ内の閾値強度値を超える、各ベクトルが遭遇するボクセル又はピクセルは、輪郭の少なくとも一部を画定するものとして識別され得る。
【0135】
[0184]次いで、処理回路542は、初期形状の表面上の表面点を1つ又は複数の輪郭上のそれぞれの点に向かって移動させる(808)。これらの表面点の移動は、初期形状の表面全体を変形させる。初期形状を1つ又は複数の輪郭により厳密に適合させるために表面点を再び移動させる必要があると処理回路542が決定すると(ブロック810の「YES」分岐)、処理回路542は、初期形状の変形した表面の表面点を再び移動させる(808)。表面点を再び移動させる必要がなく、変形形状が1つ又は複数の輪郭に適合すると処理回路542が決定すると(ブロック810の「NO」分岐)、処理回路542は、患者の軟組織構造を表す患者固有の形状として最終的な変形形状を出力する(812)。患者固有の形状は、ユーザインターフェースを介して提示され得、及び/又は、患者のための治療の術前計画の一部などの更なる分析に使用され得る。
【0136】
[0185]図23Bは、本開示の技法による、患者固有の画像データを使用して軟組織構造をモデル化するための別の例となる手順を例示するフローチャートである。システム540の処理回路542は、図23Bの例を実行するものとして説明されるが、仮想計画システム102のような他のデバイス又はシステムが、本技法の1つ又は複数の部分を実行し得る。更に、本技法のいくつかの部分は、分散システムを介して2つ以上のデバイス及び/又はシステムの組合せによって実行され得る。図23Bの例は、図8A図11に関して上述した図及び説明と同様であり得る。図23Bの技法はまた、いくつかの態様では、図23Aの技法と同様であり得る。
【0137】
[0186]図23Bに示されるように、処理回路542は、対象の患者の患者固有の画像データを取得し得る(820)。この患者固有の画像データは、1つ又は複数の撮像モダリティ(例えば、X線、CT、MRIなど)から生成され、データ記憶デバイスに記憶され得る。次いで、処理回路542は、対象の軟組織構造のSMSである初期形状を取得する(821)。次いで、処理回路542は、SMSを患者固有の画像データの1つ又は複数のそれぞれの骨の付着点に位置合わせする(822)。他の例では、位置合わせは、SMSを、骨の付着点に付加的なものである患者固有の画像データ内の予備の筋肉セグメンテーションに位置合わせすることを含み得る。
【0138】
[0187]次いで、処理回路542は、SMSの表面の周囲の複数の表面点を選択し、各表面点からの表面に対して垂直なベクトルを決定する(823)。表面点は、所定の密度で、所定の間隔で、及び/又は他の選択要因に従って、SMSの表面の周囲に均等に分散され得る。いくつかの例では、処理回路542は、これらの法線ベクトルを表面点のうちの少なくともいくつかから外向き及び内向きに向け得る。これらのベクトルの各々について、処理回路542は、閾値強度値を超える患者固有の画像データ内の点と、その点の包絡線内の潜在的位置とを決定する(824)。決定された点は、ボクセル、ピクセル、又はそのボクセルもしくはピクセルに関連する空間内の点であり得る。これらの決定された点は、患者固有の画像データ内で識別される対象の軟組織構造の外面(例えば、1つ又は複数の輪郭)に対応するであろう。包絡線内の潜在的位置は、同じく閾値を超える位置であり、1つ又は複数の輪郭の一部である。包絡線は、ベクトルによって識別された点からの所定の距離、点に隣接する潜在的位置の数(例えば、点から最も近い8つの潜在的位置)、又は他のそのような基準として決定され得る。
【0139】
[0188]これらの潜在的位置は、SMSが適合される輪郭の変動を識別するために分析される。換言すると、潜在的位置は、SMSの表面点を移動させる方向をより正確にするために分析される。処理回路542は、各ベクトルについて、そのベクトルと表面点からのベクトルとの間の最小角度差を有する潜在的位置を決定する(825)。この角度は、2つのベクトル間の余弦と呼ばれ得る。図9の角度622は、表面点からのベクトル620と輪郭上の潜在的位置からのベクトル624との間のこの角度の一例である。潜在的位置がSMS上の各表面点に対して選択された後、処理回路542は、各表面点を輪郭のそれぞれの潜在的位置に向かってある距離だけ移動させる(826)。移動された距離は、潜在的位置までの総距離のうちのいくらかの部分、又は割合であり得る。一例では、距離は、潜在的位置までの総距離の約半分である。このように、各反復は、表面点を1つ又は複数の輪郭のより近くに移動させるが、反復ごとに距離はますます短くなる。他の例では、距離は、潜在的位置までの総距離の半分未満であり得るか、又は潜在的位置までの総距離の半分超であり得る。
【0140】
[0189]これらの表面点の移動により、SMSの表面全体が変形する。SMSを1つ又は複数の輪郭により厳密に適合させるために表面点を再び移動させる必要があると処理回路542が決定すると(ブロック827の「YES」分岐)、処理回路542は、各ベクトル及びSMS表面点について閾値を超える点を再び決定する(824)前に、SMS形状変更関数を更新する(828)。SMS変更関数は、処理回路542がその反復においてSMSをどのように変形させるかを定義し得る。例えば、SMS変更関数は、SMSの変形が次の形状のための「平滑性」と「精度」のバランスをどのようにとるかを定義し得る。例えば、より早い変形は、患者固有の画像データ内の1つ又は複数の輪郭に対する変形の精度を優先させ得るより後の変形よりも平滑であるか又は均一である場合がある。
【0141】
[0190]一例では、SMS変更関数は、各表面点のどれだけの移動で別の表面点から逸脱し得るかを定義する耐性因子を利用し得る。例えば、ゼロの許容範囲は、全ての表面点がその反復で同じ距離移動しなければならないことを示し得る。より大きい許容範囲は、表面点が異なる距離だけ移動することを許容し得、その結果、変形されたSMSの平滑性は低くなるが、患者固有の画像データ内の輪郭についての精度は高くなり得る。いくつかの例では、SMS変更関数は、異なる閾値強度に対して異なる許容範囲を指定し得る。例えば、患者固有の画像データ内の点が骨を示す閾値を超える場合、SMS変更関数は大きい許容範囲を指定し得、これにより、処理回路542は、筋肉が骨表面に支えられていると予想され得ることから、その表面点を骨表面のはるかに近くに移動させることができる。いくつかの例では、処理回路542は、2つの反復間でSMS形状変更関数を変更しなくてもよい。
【0142】
[0191]表面点が再び移動される必要がなく、変形されたSMS形状が1つ又は複数の輪郭に適合すると処理回路542が決定すると(ブロック827の「NO」分岐)、処理回路542は、患者の軟組織構造を表す患者固有の形状として最終的な変形形状を出力する(829)。患者固有の形状は、図25図26、及び図27の例のうちの1つ又は複数で説明されているように、ユーザインターフェースを介して提示され得、及び/又は、患者のための治療の術前計画の一部などの更なる分析に使用され得る。
【0143】
[0192]図24は、本開示の技法による、患者固有の画像データを使用して軟組織構造をモデル化するための例となる手順を例示するフローチャートである。システム540の処理回路542は、図24の例を実行するものとして説明されるが、仮想計画システム102のような他のデバイス又はシステムが、本技法の1つ又は複数の部分を実行し得る。更に、本技法のいくつかの部分は、分散システムを介して2つ以上のデバイス及び/又はシステムの組合せによって実行され得る。図24の例は、図18A及び図18Bに関して上述した図及び説明と同様であり得る。
【0144】
[0193]図24に示されるように、処理回路542は、対象の患者の患者固有の画像データを取得し得る(830)。この患者固有の画像データは、1つ又は複数の撮像モダリティ(例えば、X線、CT、MRIなど)から生成され、データ記憶デバイスに記憶され得る。次いで、処理回路542は、対象の軟組織構造の初期形状を取得する(831)。初期形状は、幾何学的形状又は統計的平均形状(SMS)であり得る。例えば、SMSは、患者と同様の状態を把握するために病理学的形状であり得る。この軟組織構造は、筋肉又は他の非骨構造であり得る。次いで、処理回路542は、初期形状を、患者固有のCTデータの1つ又は複数の骨に関連する1つ又は複数の位置に位置合わせする(832)。この位置合わせは、初期形状上の点を、隣接する骨に関連する対応する点又は位置に位置合わせすることを含み得る。
【0145】
[0194]次いで、処理回路542は、骨の各位置と初期形状上のそれぞれの点との間の対応関係を決定する(833)。次いで、処理回路542は、対応関係についての強度プロファイルに基づいて、各位置と初期形状上の各点との距離を決定する(834)。例えば、患者固有のCTデータ内の軟組織構造の境界を識別するために、強度又は勾配プロファイルが使用され得る。処理回路542は、全ての利用可能な骨の基準位置に初期形状を適合させるためにコスト関数を採用し得る。
【0146】
[0195]次いで、処理回路542は、初期形状と患者固有のCTデータの分散との間の差を最小化するスケーリング係数を選択し得る(835)。例えば、処理回路542は、異なるスケーリング係数を分析し、コスト関数を使用して、患者固有のCTデータに対する初期形状の最良適合を取得し得る。次いで、処理回路542は、患者の軟組織構造を表す最終的な患者固有の形状を出力し得る。処理回路542は、例えば、置換対象の肩関節に関連するいくつかの筋肉について、この分析を実行し得る。
【0147】
[0196]図25は、本開示の技法による、患者の軟組織構造の脂肪浸潤値を決定するための例となる手順を例示するフローチャートである。システム540の処理回路542は、図25の例を実行するものとして説明されるが、仮想計画システム102のような他のデバイス又はシステムが、本技法の1つ又は複数の部分を実行し得る。更に、本技法のいくつかの部分は、分散システムを介して2つ以上のデバイス及び/又はシステムの組合せによって実行され得る。図25の例は、図19に関して上述した図及び説明と同様であり得る。図25のプロセスは、3次元データセットに関して説明されるが、他の例では、データのいくつかの2次元スライスが同様の方法で分析され得る。
【0148】
[0197]図25に示されるように、処理回路542は、患者の軟組織構造の最終的な患者固有の形状を取得又は受け取り得る(840)。次いで、処理回路542は、患者固有の形状にマスクを適用する(842)。このマスクは、患者固有の形状の外側のデータを除去し得る。次に、処理回路542は、マスク下のボクセル又は体積に閾値を適用し得る(844)。いくつかの例では、処理回路542は、ボクセルのグループが脂肪組織として識別されるべきか否かを決定するために、閾値を2つ以上のボクセルのグループ及び/又はボクセルのグループにわたる平均強度に適用し得る。ボクセルのこのグループ化は、ボクセルが脂肪組織であると決定されるか否かからのノイズの影響を低減し得る。次いで、処理回路542は、閾値未満であると決定された強度値を有するボクセルを加えることによって、軟組織構造の脂肪体積を決定する(846)。換言すると、閾値未満のボクセルは脂肪組織であると決定され、閾値を超えるボクセルは筋肉であると決定された。次いで、処理回路542は、脂肪体積(すなわち、脂肪体積を表す、強度閾値未満の強度値を有するボクセルの数)と、軟組織構造の患者固有の形状の総体積(すなわち、強度閾値未満の強度値を有するボクセルの数及び強度閾値以上の強度値を有するボクセルの数を含む、マスクされた患者固有の形状内の全てのボクセルによって表される総数)とに基づいて脂肪浸潤値を決定する(848)。例えば、処理回路542は、軟組織構造の脂肪率を決定するために、脂肪体積を患者固有の形状の総体積で割ることができる。処理回路542は、患者固有の形状の総体積を計算するか、又は以前に計算された総体積を取得し得る。次いで、処理回路542は、脂肪浸潤値として、軟組織構造の脂肪体積比を出力し得る(850)。脂肪体積比は、ユーザインターフェースを介して提示され得、及び/又は追加の分析に使用され得る。
【0149】
[0198]図26は、本開示の技法による、患者の軟組織構造の萎縮率を決定するための例となる手順を例示するフローチャートである。システム540の処理回路542は、図26の例を実行するものとして説明されるが、仮想計画システム102のような他のデバイス又はシステムが、本技法の1つ又は複数の部分を実行し得る。更に、本技法のいくつかの部分は、分散システムを介して2つ以上のデバイス及び/又はシステムの組合せによって実行され得る。図26の例は、図20に関して上述した図及び説明と同様であり得る。図26のプロセスは、3次元データセットに関して説明されるが、他の例では、データのいくつかの2次元スライスが同様の方法で分析され得る。
【0150】
[0199]図26の例に示されるように、処理回路542は、最初に、患者の軟組織構造の骨対筋肉寸法を決定する(860)。処理回路542は、患者固有の形状に従って、筋肉の寸法に対する、肩甲骨のような骨の長さ、幅、及び/又は体積を決定し得る。骨対筋肉寸法は、患者の特定の解剖学的サイズを識別し得る。次いで、処理回路542は、軟組織構造の統計的平均形状(SMS)を取得する(862)。SMSは、多くの被験者の集団からの計算に基づく典型的な筋肉寸法の表現であり得る。このSMSは、健康な集団に基づき得る。いくつかの例では、SMSは、人種、性別、年齢、身長、又は他の要因が患者に類似している患者に基づき得る。
【0151】
[0200]次に、処理回路542は、最小化アルゴリズムを使用してSMSを変形させて、SMSを軟組織構造の骨対筋肉寸法に適合させる(864)。例えば、処理回路542は、SMSを修正して、患者の骨対筋肉寸法により厳密に適合させ、その結果、その筋肉の病前の状態を推定し得る。SMSを患者の解剖学的構造に適合させるために、多種多様のタイプの最小化アルゴリズムが採用され得る。その筋肉についての結果として得られる病前予測は、健康な状態の筋肉の寸法の推定値として使用され得る。次いで、処理回路542は、変形されたSMS体積を患者固有の形状によって表される軟組織構造体積で割ることによって、軟組織構造の萎縮率を決定する(866)。この結果が、軟組織構造の萎縮率、すなわち、実際の組織の体積に対する健康な組織の体積の比である。他の例では、萎縮率は、軟組織構造の健康な状態と現在の状態との間の他の寸法の比較に基づいて計算され得る。次いで、処理回路542は、ユーザへの表示のために、又は術前計画中の追加の計算での更なる使用のために、萎縮率を出力する(868)。例えば、処理回路542は、現在の組織又は患者固有の形状を、同じ軟組織構造の病前の又は健康な推定値に重ね合わせて出力し得る。処理回路542は、対象の関節(例えば、対象の肩関節の回旋腱板筋)の術前計画を実行するときに、対象の筋肉ごとに、この萎縮率計算を実行し得る。
【0152】
[0201]図27は、本開示の技法による、患者の決定された軟組織構造に基づいて肩関節治療のタイプを決定するための例となる手順を例示するフローチャートである。システム540の処理回路542は、図27の例を実行するものとして説明されるが、仮想計画システム102のような他のデバイス又はシステムが、本技法の1つ又は複数の部分を実行し得る。更に、本技法のいくつかの部分は、分散システムを介して2つ以上のデバイス及び/又はシステムの組合せによって実行され得る。図26のプロセスは、3次元データセットに関して説明されるが、他の例では、データのいくつかの2次元スライスが同様の方法で分析され得る。
【0153】
[0202]図27の例に示されるように、処理回路542は、1つ又は複数の回旋腱板筋及び/又は肩関節に関連する他の筋肉をばねとしてモデル化し得る(870)。次いで、処理回路542は、軟組織構造の各々の脂肪浸潤値及び萎縮率を取得する(872)。次いで、処理回路542は、各筋肉について、脂肪浸潤値と萎縮率とに基づいてばね定数を決定する(874)。次いで、処理回路542は、1つ又は複数の筋肉のばね定数に基づいて、肩関節内の上腕骨の可動域を決定することができる(876)。次いで、処理回路542は、決定された可動域に基づいて、肩関節治療のタイプを決定する(878)。例えば、処理回路542は、解剖学的肩関節置換手術又はリバース型肩関節置換手術を選択し得る。いくつかの例では、同心性変形性関節症又は回旋腱板広範囲断裂のような病理、筋肉品質指標、年齢、及び関節窩変形状態も、患者にとって適切であるのは解剖学的肩関節置換術であるかリバース型肩関節置換術であるかに影響を及ぼし得る。いくつかの例では、処理回路542は、この情報から、インプラントのサイズ、インプラントの位置、又は他の関連情報のような表面の他の側面を決定し得る。いくつかの例では、処理回路542は、肩関節治療のタイプを決定するために、1つ又は複数の決定木又はニューラルネットワークを使用し得る。推奨される肩関節治療はまた、年齢、性別、活動、又は任意の他の側面のような他の患者情報に基づき得る。
【0154】
[0203]処理回路542は、推奨される肩関節置換手術を表示するようにユーザインターフェースを制御し得る。臨床医が推奨を選択、承認、又は確認することに応答して、処理回路542は、選択されたタイプの肩関節置換手術及び患者のための他の術前計画を起動し得る。例えば、処理回路542又は図1の仮想計画システム102のような他のシステムは、選択された肩関節置換手術のための手術計画を生成し得る。処理回路542は、必要とされるインプラント、切断面、アンカー位置、リーミング軸、ねじの穿孔及び/又は配置、サイズ決定、インプラント埋植、手術に対する特定のステップ、並びに選択された手術の任意の他の側面のような、患者のための追加のカスタマイズステップを臨床医が行う際の指針となるようにユーザインターフェースを制御し得る。臨床医はまた、システムによって生成された、患者のための処置、解剖学的構造、及び/又はインプラントを視覚化したものを見ることによって手術計画と対話し得る。これらのタイプのプロセスは、足関節、肘関節、手関節、股関節、膝関節などの他の関節の手術に適用され得る。加えて、図27のプロセスは、肩関節治療に関連する1つ又は複数のインプラントの位置又は回転角度を決定するために使用され得る。例えば、処理回路542は、ばね定数に基づいて、可動域を改善するために、内側化する(例えば、上腕骨頭インプラントを肩甲骨のより近くに移動させるか、又は関節窩を患者の正中線のより近くに移動させる)か、外側化する(例えば、上腕骨頭インプラントを肩甲骨からより遠くに移動させるか、又は関節窩を上腕骨のより近くに移動させる)かを決定し得る。いくつかの例では、処理回路542は、肩甲骨に対する上腕骨の所望の位置を達成するために、上腕骨頭及び/又は関節窩への骨移植(骨の除去又は追加)のサイズ及び/又は位置を提案し得る。肩の筋肉の剛性(例えば、筋肉をモデル化するために使用されるときのばね定数)は、肩の適切な可動域及び/又は強度を達成するために、上腕骨頭の適切な位置を決定するために処理回路によって使用され得る。
【0155】
[0204]本明細書で説明されるように、処理回路542及び/又は他のシステムは、患者固有の撮像データを使用して、患者の形態学的特性の複数の測定値を決定することができる。そのような測定値には、距離測定値、角度測定値、及び患者の構造の及び/又は構造間の測定可能な関係の他のタイプの数値的特徴付けが含まれ得る。例えば、測定値は、以下のうちの1つ又は複数に関する値の任意の組合せを含み得る:
・関節窩のバージョン:肩甲骨の横軸に対する関節窩の関節面の軸の角度方向。
・関節窩の傾斜:肩甲骨に対する関節窩の上方向/下方向の傾き。
・関節窩の向き/方向:3次元空間における関節窩の3次元の向き。
・関節窩の最良適合球体の半径:患者の関節窩に対する最良適合球体の半径。最良適合球体は、球体のセクタが患者の関節窩と可能な限り同一平面に位置するようにサイズ決定された概念的な球体である。
・関節窩の最良適合球体の二乗平均平方根誤差:患者の関節窩と最良適合球体のセクタとの間の差の平均二乗誤差。
・リバースショルダーアングル:関節窩の下部の傾斜。
・クリティカルショルダーアングル:関節窩の平面と肩峰の最も下外側の点への接続線との間の角度。
・肩峰上腕骨空間:肩峰と上腕骨の上部との間の空間。
・関節窩上腕骨空間:関節窩と上腕骨との間の空間。
・上腕骨のバージョン:上腕骨の向きと上顆軸との間の角度。
・上腕骨頸対角:上腕骨の解剖学的頸部の法線ベクトルと髄内軸との間の角度。
・上腕骨頭の最良適合球体の半径及び二乗平均平方根誤差:患者の上腕骨頭に対する最良適合球体の半径。最良適合球体は、球体のセクタが上腕骨頭の表面に可能な限り一致するようにサイズ決定された概念的な球体である。二乗平均平方根誤差は、最良適合球体と患者の実際の上腕骨頭との間の誤差を示す。
・上腕骨亜脱臼:関節窩に対する上腕骨の亜脱臼の度合い。
・上腕骨の向き/方向:3次元空間における上腕骨頭の向き。
・患者の上腕骨の骨端の測定値、
・患者の上腕骨の骨幹端の測定値、
・患者の上腕骨の骨幹の測定値、
・骨の後傾
[0205]図28は、本開示の技法による、患者固有の画像データに基づいて肩関節治療のタイプを決定するための例となる手順を例示するフローチャートである。システム540の処理回路542は、図28の例を実行するものとして説明されるが、仮想計画システム102のような他のデバイス又はシステムが、本技法の1つ又は複数の部分を実行し得る。更に、本技法のいくつかの部分は、分散システムを介して2つ以上のデバイス及び/又はシステムの組合せによって実行され得る。図28のプロセスは、3次元データセットに関して説明されるが、他の例では、データのいくつかの2次元スライスが同様の方法で分析され得る。
【0156】
[0206]図28の例に示されるように、処理回路542は、患者に関する患者固有の画像データ(例えば、CT画像データ)を受け取り得る。次いで、処理回路542は、患者の1つ又は複数の軟組織構造について、患者固有の画像データから1つ又は複数の軟組織特性を決定する(892)。例となる軟組織特性は、軟組織の形状及び体積、脂肪浸潤値、萎縮率、可動域値、又は任意の他のそのようなパラメータを含み得る。次いで、処理回路542は、決定された1つ又は複数の軟組織特性に基づいて、肩関節手術タイプの推奨を生成する(894)。例えば、処理回路542は、解剖学的肩関節全置換術又はリバース型肩関節全置換術を選択し得る。次いで、処理回路542は、ユーザインターフェースによる表示のために、患者に対する肩関節手術のタイプに関する決定された推奨を出力し得る(896)。
【0157】
[0207]本明細書で説明した、整形外科分類及び手術計画に関する決定のうちの1つ又は複数は、ニューラルネットワークのような人工知能(AI)技法を採用し得る。一例では、処理回路542は、萎縮率、脂肪浸潤、可動域、インプラントのタイプについての推奨(例えば、上腕骨インプラントのステムサイズ)、及び/又は特定のタイプの外科治療(例えば、解剖学的又はリバース型肩関節置換術)についての推奨のような、組織の1つ又は複数の特性を生成するために、様々なAI技法を採用し得る。いくつかの例では、そのようなAI技法は、術前段階302(図3)又は外科的ライフサイクルの別の段階中に採用され得る。ディープニューラルネットワーク(DNN)は、分類ツールとして大いに有望視されている人工ニューラルネットワーク(ANN)のクラスである。DNNは、入力層と、出力層と、入力層と出力層との間の1つ又は複数の隠れ層とを含む。DNNは、プーリング層のような1つ又は複数の他のタイプの層も含み得る。
【0158】
[0208]各層は、人工ニューロンのセットを含み得、これは、頻繁に、単に「ニューロン」と呼ばれる。入力層内の各ニューロンは、入力ベクトルから入力値を受け取る。入力層内のニューロンの出力は、DNNにおける次の層への入力として提供される。入力層の後の層の各ニューロンは、前の層の1つ又は複数のニューロンの出力に伝播関数を適用して、ニューロンへの入力値を生成し得る。次いで、ニューロンは、この入力に活性化関数を適用して、活性化値を計算し得る。次いで、ニューロンは、この活性化値に出力関数を適用して、ニューロンの出力値を生成し得る。DNNの出力ベクトルは、DNNの出力層の出力値を含む。
【0159】
[0209]特に肩の病変に関して、整形外科手術を計画することへのDNNの適用に関連する課題がいくつかあった。例えば、いくつかの課題は、DNNが肩の病変に関する意味のある出力を提供することができるようにするためにはDNNをどのように構築しトレーニングするか、に関する。整形外科手術を計画することへのDNNの適用に関連する課題の別の例では、患者及び医療専門家は、特にコンピュータがどのように決定を行ったかが不明である場合、コンピュータによって行われた決定を信頼することに当然ながら消極的である。従って、問題となるのは、どのようにすれば、患者及び医療専門家がDNNの出力を安心して信頼するような方法で出力を生成することができるかである。
【0160】
[0210]本開示は、これらの課題を解決し、1つ又は複数の入力に基づいて、肩の病変及び/又は推奨される肩関節治療に関する意味のある出力を提供するDNN構造を提供することができる技法について説明する。例えば、人工ニューラルネットワーク(ANN)は、入力層と、出力層と、入力層と出力層との間の1つ又は複数の隠れ層とを有する。入力層は、複数の入力層ニューロンを含む。複数の入力層ニューロン中の各入力層ニューロンは、複数の入力要素中の異なる入力要素に対応する。出力層は、複数の出力層ニューロンを含む。
【0161】
[0211]複数の出力層ニューロン中の各出力層ニューロンは、複数の出力要素中の異なる出力要素に対応する。複数の出力要素中の各出力要素は、1つ又は複数の肩病変分類システムにおける異なる分類に対応する。この例では、コンピューティングシステムは、過去の肩関節手術の症例から複数のトレーニングデータセットを生成し得る。各それぞれのトレーニングデータセットは、複数のトレーニングデータ患者中の異なるトレーニングデータ患者に対応し、それぞれのトレーニング入力ベクトル及びそれぞれのターゲット出力ベクトルを含む。
【0162】
[0212]各それぞれのトレーニングデータセットについて、それぞれのトレーニングデータセットのトレーニング入力ベクトルは、複数の入力要素の各要素の値を含む。各それぞれのトレーニングデータセットについて、それぞれのトレーニングデータセットのターゲット出力ベクトルは、複数の出力要素の各要素の値を含む。この例では、コンピューティングシステムは、複数のトレーニングデータセットを使用して、ニューラルネットワークをトレーニングし得る。加えて、この例では、コンピューティングシステムは、現在の患者に対応する現在の入力ベクトルを取得し得る。コンピューティングシステムは、DNNを現在の入力ベクトルに適用して、現在の出力ベクトルを生成し得る。次いで、コンピューティングシステムは、現在の出力ベクトルに基づいて、現在の患者の肩の状態の診断を決定し得、これは肩分類とも呼ばれ得る。
【0163】
[0213]この例では、複数の出力要素中の異なる出力要素を1つ又は複数の肩病変分類システムにおける異なるクラスに対応させることによって、DNNは、患者の肩の状態の診断、解剖学的特性の決定、又は治療についての推奨で使用され得る意味のある出力情報を提供することができる。例えば、これは、出力層中のニューロンの異なる値が異なるクラスに対応するシステムよりも、計算上及びトレーニング時間の観点でより効率的であり得る。更に、いくつかの例では、出力層中のニューロンの出力値は、患者の分類された肩の状態が肩病変分類システムのうちの1つにおける対応クラスに属することの信頼度の度合いを示す。そのような信頼値は、患者が、DNNを使用してコンピューティングシステムによって決定されたものとは異なるクラスの肩の状態を有し得る可能性をユーザが考慮するのに役立ち得る。更に、同じ出力層ニューロンの出力が、信頼レベルを表現することと、患者の肩の状態の診断(例えば、分類)、組織の特定の特性(例えば、脂肪浸潤値、萎縮値、可動域値)、又はこれらの組織特性のうちの1つ又は複数に基づく手術のタイプに関する推奨を決定するための基礎としての使用されることとを兼ねることは、計算上効率的であり得る。
【0164】
[0214]図29は、本開示の技法による、患者の解剖学的構造、診断、及び/又は治療の推奨のうちの1つ又は複数の態様を決定するために使用可能なDNNを実装する例となるコンピューティングシステム902を例示するブロック図である。コンピューティングシステム902は、整形外科手術システム100(図1)の一部であり得る。コンピューティングシステム902は、DNNを使用して、軟組織特性及び/又は治療のタイプに関する推奨、例えば、患者に有効なのは解剖学的肩関節全置換術であるかリバース型肩関節全置換術であるかを決定し得る。いくつかの例では、コンピューティングシステム902は、コンピューティングシステム902の動作を実行する1つ又は複数のプロセッサを含むXR視覚化デバイス(例えば、MR視覚化デバイス又はXR視覚化デバイス)を含む。
【0165】
[0215]図29の例に示されるように、システム900は、コンピューティングシステム902と、1つ又は複数のクライアントデバイスのセット(集合的に「クライアントデバイス904」)とを含む。他の例では、システム900は、より多くの、より少ない、又は異なるデバイス及びシステムを含み得る。いくつかの例では、コンピューティングシステム902及びクライアントデバイス904は、インターネットのような1つ又は複数の通信ネットワークを介して通信し得る。
【0166】
[0216]コンピューティングシステム902は、1つ又は複数のコンピューティングデバイスを含み得る。コンピューティングシステム902及びクライアントデバイス904は、サーバコンピュータ、パーソナルコンピュータ、スマートフォン、ラップトップコンピュータ、及び他のタイプのコンピューティングデバイスのような、様々なタイプのコンピューティングデバイスを含み得る。図29の例では、コンピューティングシステム902は、処理回路908と、データ記憶システム910と、1つ又は複数の通信インターフェース912A~912Nのセット(集合的に「通信インターフェース912」)とを含む。データ記憶装置910は、データを記憶するように構成される。通信インターフェース912は、コンピューティングシステム902が、クライアントデバイス904のような他のコンピューティングシステム及びデバイスと(例えば、ワイヤレスに又はワイヤを使用して)通信することを可能にし得る。説明を容易にするために、本開示では、処理回路906、データ記憶装置910、及び通信インターフェース912によって実行されるアクションを、コンピューティングシステム902全体によって実行されるものとして説明し得る。整形外科手術システム100(図1)の1つ又は複数のサブシステムは、コンピューティングシステム902及びクライアントデバイス904を含み得る。例えば、仮想計画システム102が、コンピューティングシステム902及びクライアントデバイス904を含み得る。
【0167】
[0217]ユーザは、コンピューティングシステム902によって生成された情報にアクセスするためにクライアントデバイス904を使用し得る。例えば、コンピューティングシステム902は、現在の患者に対する肩関節治療のタイプについての推奨を生成し得る。推奨は、肩関節治療分類システムにおける複数の肩クラスのうちの1つの肩クラスによって表され得る。この例では、ユーザは、介入についての推奨に関する情報にアクセスするためにクライアントデバイス904を使用し得る。コンピューティングシステム902はクライアントデバイス904から遠隔にあり得るため、クライアントデバイス904のユーザは、コンピューティングシステム902がクラウドベースのコンピューティングシステム内にあると考え得る。他の例では、コンピューティングシステム902の機能性の一部又は全部は、クライアントデバイス904のうちの1つ又は複数によって実行され得る。
【0168】
[0218]コンピューティングシステム902は、DNNを実装し得る。記憶システム910は、1つ又は複数のコンピュータ可読データ記憶媒体を備え得る。記憶システム910は、DNNのパラメータを記憶し得る。例えば、記憶システム910は、DNNのニューロンの重み、DNNのニューロンのバイアス値などを記憶し得る。
【0169】
[0219]コンピューティングシステム902は、DNNの出力に基づいて、患者の肩の状態の治療についての推奨を決定し得る。本開示の技法によれば、DNNの出力要素は、1つ又は複数の肩推奨分類システムにおける異なるクラスに対応する出力要素を含む。肩推奨分類システムは、患者に対する治療のタイプの各々に対して、又は異なる推奨をもたらし得る異なるタイプの病状に対する異なる分類に対して、異なる分類システムを含み得る。例えば、異なる治療は、解剖学的肩関節置換術及びリバース型肩関節置換術を含み得る。しかしながら、他の治療又は手術は、それぞれの分類システムを有し得る。例えば、Walch分類システム及びFavard分類システムは、2つの異なる原発性関節窩上腕骨関節炎分類システムである。Warner分類システム及びGoutallier分類システムは、2つの異なる回旋腱板分類システムである。いくつかの例では、肩病変分類システムは、原発性関節窩上腕骨関節炎(PGHOA)、回旋腱板断裂関節症(RCTA)不安定性、回旋腱板広範囲断裂(MRCT)、リウマチ性関節炎、外傷後関節炎、及び変形性関節症のうちの1つ又は複数のような肩の病変のより一般的なカテゴリのクラスを含み得る。これらの分類システムは、治療に関する推奨を決定するために使用され得る。
【0170】
[0220]Walch分類システムは、例えば、1A、1B、2A、2B、及び3という5つのクラスを指定する。Favard分類システムは、別の例として、E0、E1、E2、E3、及びE4という5つのクラスを指定する。Warner分類システムは、更なる例として、なし、軽度、中程度、及び重度という4つのクラスの回旋腱板萎縮を特定する。Goutallier分類システムは、更なる例として、0(完全に正常な筋肉)、I(若干脂肪線条がある)、II(筋肉の量が脂肪浸潤よりも多い)、III(筋肉の量が脂肪浸潤と等しい)、IV(脂肪浸潤の量が筋肉よりも多い)という5つのクラスを指定する。他の例では、分類システムは、患者固有の画像データから計算された脂肪浸潤値又は萎縮率を使用し得る。
【0171】
[0221]いくつかの例では、コンピューティングシステム902は、DNNによって生成された出力要素の値の比較に従って、患者の肩の状態の診断に基づいて治療についての推奨を決定し得る。例えば、出力要素の値は、患者の肩の状態が、その値を生成した出力層ニューロンに対応するクラスに属することの信頼レベルを示す信頼値に対応し得る。例えば、出力要素の値が信頼値であり得るか、又はコンピューティングシステム902が出力要素の値に基づいて信頼値を計算し得る。
【0172】
[0222]いくつかの例では、出力層ニューロンの出力関数は信頼値を生成する。更に、コンピューティングシステム902は、信頼値のうちのどれが最も高いかを識別し得る。この例では、コンピューティングシステム902は、最も高い信頼値に対応する肩の病変のクラスが現在の患者の肩の状態の診断であると決定し得る。いくつかの例では、信頼値がいずれも閾値を上回らない場合、コンピューティングシステム902は、コンピューティングシステム902が確定診断を行うことができないことを示す出力を生成し得る。従って、コンピューティングシステム902は、治療に関する推奨を決定することができない可能性がある。
【0173】
[0223]先に述べたように、いくつかの例では、DNNの出力要素は信頼値を含む。1つのそのような例では、信頼値関数は信頼値を出力する。信頼値関数は、DNNの出力層ニューロンの出力関数であり得る。この例では、信頼値関数によって出力される全ての可能な信頼値は、事前に定義された範囲内にある。更に、この例では、コンピューティングシステム902は、DNNを入力ベクトルに適用して出力ベクトルを生成し得る。DNNを適用することの一部として、コンピューティングシステム902は、複数の出力層ニューロン中の各それぞれの出力層ニューロンについて、それぞれの出力層ニューロンの出力値を計算し得る。
【0174】
[0224]次いで、コンピューティングシステム902は、信頼値関数への入力としてそれぞれの出力層ニューロンの出力値を有する信頼値関数を適用し得る。信頼値関数は、それぞれの出力層ニューロンの信頼値を出力する。この例では、複数の出力層ニューロン中の各それぞれの出力層ニューロンについて、それぞれの出力層ニューロンに対応する出力要素は、それぞれの出力層ニューロンの信頼値を指定する。更に、複数の出力層ニューロン中の各それぞれの出力層ニューロンについて、それぞれの出力層ニューロンの信頼値は、現在の患者の肩の状態が、それぞれの出力層ニューロンに対応する出力要素に対応する1つ又は複数の肩病変分類システム中のクラスに属することの信頼度の度合いである。
【0175】
[0225]コンピューティングシステム902は、様々な信頼値関数を使用し得る。例えば、コンピューティングシステム902は、双曲線正接関数、シグモイド関数、又は事前に定義された範囲内にある値を出力する別のタイプの関数を適用し得る。双曲線正接関数(tanh)は、γ(c)=tanh(c)=(e-e-c)/(e+e-c)の形である。双曲線正接関数は、出力層ニューロンの出力値のような実数値の引数を取り、それらを範囲(-1,1)に変換する。シグモイド関数は、γ(c)=1/(1+e-c)の形である。シグモイド関数は、出力層ニューロンの出力値のような実数値の引数を取り、それらを範囲(0,1)に変換する。
【0176】
[0226]コンピューティングシステム902は、複数のトレーニングデータセットを使用して、DNNをトレーニングし得る。各それぞれのトレーニングデータセットは、以前に診断された複数のトレーニングデータ患者中の異なるトレーニングデータ患者に対応し得る。例えば、第1のトレーニングデータセットは第1のトレーニングデータ患者に対応し得、第2のトレーニングデータセットは第2のトレーニングデータ患者に対応し得、以下同様である。トレーニングデータセットは、トレーニングデータセットが患者に関する情報を含み得るという意味で、トレーニングデータ患者に対応し得る。トレーニングデータ患者は、肩の状態の診断を受けた実際の患者であり得る。いくつかの例では、トレーニングデータ患者は、シミュレートされた患者を含み得る。
【0177】
[0227]各それぞれのトレーニングデータセットは、それぞれのトレーニング入力ベクトル及びそれぞれのターゲット出力ベクトルを含み得る。各それぞれのトレーニングデータセットについて、それぞれのトレーニングデータセットのトレーニング入力ベクトルは、複数の入力要素の各要素の値を含む。換言すると、トレーニング入力ベクトルは、DNNの各入力層ニューロンの値を含み得る。各それぞれのトレーニングデータセットについて、それぞれのトレーニングデータセットのターゲット出力ベクトルは、複数の出力要素の各要素の値を含み得る。換言すると、ターゲット出力ベクトルは、DNNの各出力層ニューロンの値を含み得る。
【0178】
[0228]いくつかの例では、ターゲット出力ベクトル中の値は信頼値に基づく。そのような信頼値は、次に、整形外科医のような、1人以上のトレーニングされた医療専門家によって表される信頼レベルに基づき得る。例えば、トレーニングされた医療専門家は、トレーニングデータセットのトレーニング入力ベクトル内の情報(又はトレーニングデータセットのトレーニング入力ベクトルが導出される情報)が与えられ得、トレーニングデータ患者が肩病変分類システムの各々の各クラスに属する肩の状態を有することの信頼レベルを提供するように求められ得る。
【0179】
[0229]例えば、肩病変分類システムがWalch分類システムを含む例では、医療専門家は、トレーニングデータ患者の肩の状態がクラスA1に属することの信頼レベルが0であることを示し(これは、トレーニングデータ患者の肩の状態がクラスA1に属する肩の状態であると全く信じていないことを意味する)、トレーニングデータ患者の肩の状態がクラスA2に属することの信頼レベルが0であることを示し、トレーニングデータ患者の肩の状態がクラスB2に属することの信頼レベルが0.75であることを示し(これは、トレーニングデータ患者の肩の状態がクラスB1に属する肩の状態であることを確信していることを意味する)、トレーニングデータ患者の肩の状態がクラスB2に属することの信頼レベルが0.25であることを示し(これは、トレーニングデータ患者の肩の状態がクラスB1に属する肩の状態であることをわずかに信じていることを意味する)、トレーニングデータ患者の肩の状態がクラスCに属することの信頼レベルが0であることを示し得る。いくつかの例では、コンピューティングシステム902は、信頼値関数の逆数を医療専門家によって提供された信頼値に適用して、ターゲット出力ベクトルに含める値を生成し得る。いくつかの例では、医療専門家によって提供される信頼値は、ターゲット出力ベクトルに含まれる値である。
【0180】
[0230]異なる医療専門家は、同じトレーニングデータ患者が、肩病変分類システムの各々の各クラスに属する肩の状態を有することの信頼レベルが異なり得る。従って、いくつかの例では、ターゲット出力ベクトル中の値が基づく信頼値は、平均であるか、又は複数の医療専門家によって与えられる信頼レベルから他の方法で決定され得る。同様の信頼値が、DNNから決定された、識別された病理又は特性に基づいて、治療のタイプに関する推奨について計算され得る。
【0181】
[0231]いくつかのそのような例では、いくつかの医療専門家の信頼レベルは、信頼レベルの加重平均の重みが、他の医療専門家の信頼レベルよりも大きく与えられ得る。例えば、卓越した整形外科医の信頼レベルには、他の整形外科医の信頼レベルよりも大きい重みを与えることができる。別の例では、特定の地域又は病院における医療専門家又はトレーニングデータ患者の信頼レベルは、他の地域又は病院の医療専門家又はトレーニングデータ患者よりも大きい重みを与えられ得る。有利に、そのような加重平均化により、DNNを様々な基準及び選好に従って調整することができる。
【0182】
[0232]例えば、医療専門家は、信頼レベルが特定の方法で重み付けされるようにトレーニングされたDNNの使用を好む場合がある。トレーニングデータセットが医療専門家自身の症例に基づくトレーニングデータセットを含むいくつかの例では、医療専門家(例えば、整形外科医)は、医療専門家自身の症例がより重く重み付けされたトレーニングデータセットを使用してトレーニングされているか、又は医療専門家自身の症例だけを使用してトレーニングされたDNNの使用を好む場合がある。このように、DNNは、医療専門家自身の実務スタイルに合わせた出力を生成し得る。更に、先に述べたように、医療専門家及び患者は、コンピューティングシステムの出力を信頼することが困難な場合がある。従って、いくつかの例では、コンピューティングシステム902は、DNNが医療専門家自身及び/又は特に信頼できる整形外科医の決定をエミュレートするようにトレーニングされたことを示す情報を提供し得る。
【0183】
[0233]いくつかの例では、異なるトレーニングデータセットを生成する際に、同じトレーニングデータ患者に対する異なる医療専門家の信頼レベルが使用され得る。例えば、第1のトレーニングデータセットを生成するために特定のトレーニングデータ患者に関する第1の医療専門家の信頼レベルが使用され得、第2のトレーニングデータセットを生成するために同じトレーニングデータ患者に関する第2の医療専門家の信頼レベルが使用され得る。
【0184】
[0234]更に、いくつかの例では、コンピューティングシステム902は、1人以上のユーザへの出力のために信頼値を提供し得る。例えば、コンピューティングシステム902は、1人以上のユーザへの表示のために信頼値をクライアントデバイス904に提供し得る。このように、1人以上のユーザは、コンピューティングシステム902が患者の肩関節の治療についての診断及び/又は推奨にどのように至ったかをよりよく理解することができる。
【0185】
[0235]いくつかの例では、トレーニングデータセットの母集団を拡張するために、コンピューティングシステム902は、電子医療記録から信頼値を自動的に生成し得る。例えば、一例では、患者の電子医療記録は、コンピューティングシステム902が入力ベクトルを形成し得るデータを含み得、外科医による患者の肩の状態の診断及び選択された肩関節治療を示すデータを含み得る。この例では、コンピューティングシステム902は、診断からデフォルトの信頼レベルを推測し得る。デフォルトの信頼レベルは、様々な値(例えば、0.75、0.8など)を有し得る。そのようなデフォルトの信頼レベルは外科医の実際の信頼レベルを反映しない場合があるが、信頼レベルに帰することは、利用可能なトレーニングデータセットの数を増加させるのを助け得、これは、DNNの精度を改善し得る。
【0186】
[0236]いくつかの例では、トレーニングデータセットは、トレーニングデータ患者の健康転帰に基づいて重み付けされる。例えば、トレーニングデータセットに関連するトレーニングデータ患者が全て肯定的な健康転帰を有していた場合、トレーニングデータセットはより高い重みが与えられ得る。しかしながら、トレーニングデータセットは、関連付けられたトレーニングデータ患者がそれ程肯定的でない健康転帰を有していた場合、より低い重みが与えられ得る。トレーニング中、コンピューティングシステム902は、トレーニングデータセットに与えられた重みに基づいてトレーニングデータセットを重み付けする損失関数を使用し得る。
【0187】
[0237]いくつかの例では、トレーニングデータセットを生成することの一部として、コンピューティングシステム902は、1つ又は複数のトレーニングデータセット選択基準に基づいてトレーニングデータセットのデータベースから複数のトレーニングデータセットを選択し得る。換言すると、コンピューティングシステム902は、特定のトレーニングデータセットがトレーニングデータセット選択基準を満たさない場合、DNNのトレーニングプロセスからそのトレーニングデータセットを除外し得る。図122の例では、データ記憶システム910は、過去の肩関節手術の症例からのトレーニングデータセットを含むデータベース914を記憶する。
【0188】
[0238]多種多様なトレーニングデータセット選択基準が存在し得る。例えば、一例では、1つ又は複数のトレーニングデータセット選択基準は、どの外科医が複数のトレーニングデータ患者に手術をしたかを含み得る。いくつかの例では、1つ又は複数のトレーニングデータセット選択基準は、トレーニングデータ患者が住んでいる地域を含む。いくつかの例では、1つ又は複数のトレーニングデータセット選択基準は、1人以上の外科医に関連する地域(例えば、1人以上の外科医が、開業している、住んでいる、免許を受けた、トレーニングさを受けた地域など)を含む。
【0189】
[0239]いくつかの例では、1つ又は複数のトレーニングデータセット選択基準は、トレーニングデータ患者の術後の健康転帰を含む。そのような例では、トレーニングデータ患者の術後の健康転帰は、術後の可動域、術後感染症の有無、又は術後疼痛のうちの1つ又は複数を含み得る。従って、そのような例では、DNNがトレーニングされるトレーニングデータセットは、有害な健康転帰が発生したトレーニングデータセットを除外し得る。
【0190】
[0240]追加のトレーニングデータセットは、経時的にデータベースに追加され得、コンピューティングシステム902は、追加のトレーニングデータセットを使用して、DNNをトレーニングし得る。従って、DNNは、より多くのトレーニングデータセットがデータベースに追加されるにつれて、経時的に改善し続けることができる。
【0191】
[0241]コンピューティングシステム902は、トレーニングデータセットを使用してDNNをトレーニングするために様々な技法のうちの1つを適用し得る。例えば、コンピューティングシステム902は、当技術分野で知られている様々な標準バックプロパゲーションアルゴリズムのうちの1つを使用し得る。例えば、DNNをトレーニングすることの一部として、コンピューティングシステム902は、コスト関数を適用して、DNNによって生成された出力ベクトルとターゲット出力ベクトルとの間の差に基づいてコスト値を決定し得る。次いで、コンピューティングシステム902は、バックプロパゲーションアルゴリズムにおいてこのコスト値を使用して、DNNにおけるニューロンの重みを更新し得る。このように、コンピューティングシステム902は、組織体積、ボクセルグループ化、病前の形状体積などの入力に基づいて、患者の軟組織の様々な特性(例えば、脂肪浸潤、萎縮率、可動域など)を決定するようにDNNをトレーニングし得る。いくつかの例では、コンピューティングシステム902は、患者固有の画像データからの入力及び/又は異なるDNNから決定されている可能性のある特性のような軟組織の決定された特性を使用して肩関節治療についての推奨を決定するようにDNNをトレーニングし得る。いくつかの例では、コンピューティングシステム902は、インプラントを受け入れることになる1つ又は複数の骨(例えば、上腕骨頭)の骨密度を示すか又はそれに関する骨密度メトリックを使用して肩関節治療についての推奨を決定するようにDNNをトレーニングし得る。例えば、コンピューティングシステム902は、上腕骨頭に関連する患者固有の撮像データ(例えば、CTデータ)と、それぞれの各患者に対して外科医が選択したタイプの上腕骨インプラント(例えば、ステム付き、この場合はステムの長さを含んでも含まなくてもよい、又はステムレス上腕骨インプラント)とを使用して、DNNをトレーニングし得る。このトレーニングの出力は、新たな患者の上腕骨頭に関連する患者固有の画像データに基づく推奨されるタイプの上腕骨インプラントとなる。このように、肩関節治療及び/又はインプラントのタイプは、上腕骨内の骨梁の密度又は密度に関し得る他の特性に基づいて決定され得る。
【0192】
[0242]図30は、図29のシステムを有するコンピューティングシステム902によって実装され得る例となるDNN930を例示する。図30の例では、DNN930は、入力層932と、出力層934と、入力層932と出力層934との間の1つ又は複数の隠れ層936とを含む。図30の例では、ニューロンが円で表されている。図30の例では、各層は6つのニューロンを含むものとして示されているが、DNN930中の層は、より多い又はより少ないニューロンを含み得る。更に、DNN930は、全結合ネットワークとして図30に示されているが、DNN930は、異なるアーキテクチャを有し得る。例えば、DNN930は、全結合ネットワークでなくてもよく、1つ又は複数の畳み込み層を有し得るか、又はそうでなければ図123に示されたものとは異なるアーキテクチャを有し得る。
【0193】
[0243]いくつかの実装形態では、DNN930は、1つ又は複数の人工ニューラルネットワーク(単にニューラルネットワークとも呼ばれる)であるか、又はそれを含むことができる。ニューラルネットワークは、ニューロン又はパーセプトロンとも呼ばれ得る連結ノードのグループを含むことができる。ニューラルネットワークは、1つ又は複数の層に編成され得る。複数の層を含むニューラルネットワークは、「ディープ」ネットワークと呼ばれ得る。ディープネットワークは、入力層と、出力層と、入力層と出力層との間に配置された1つ又は複数の隠れ層とを含むことができる。ニューラルネットワークのノードは、結合されていても、完全には結合されていなくてもよい。
【0194】
[0244]DNN930は、1つ又は複数のフィードフォワードニューラルネットワークであるか、又はそれを含むことができる。フィードフォワードネットワークでは、ノード間の結合はサイクルを形成しない。例えば、各結合は、前の層のノードを後の層のノードに結合することができる。
【0195】
[0245]いくつかの事例では、DNN930は、1つ又は複数のリカレント型ニューラルネットワークであるか、又はそれを含むことができる。いくつかの事例では、リカレント型ニューラルネットワークのノードのうちの少なくともいくつかは、サイクルを形成することができる。リカレント型ニューラルネットワークは、本質的に連続的である入力データを処理するのに特に有用であり得る。具体的には、いくつかの事例では、リカレント型ニューラルネットワークは、リカレント型又は有向の循環型ノード結合の使用を通して、情報を入力データシーケンスの前の部分から入力データシーケンスの後続の部分に渡す又は保持することができる。
【0196】
[0246]いくつかの例では、連続入力データは、時系列データ(例えば、センサデータ対時間又は異なる時間にキャプチャされた画像)を含むことができる。例えば、リカレント型ニューラルネットワークは、スワイプ方向の検出又は予測、手書き文字認識の実行などを行うために、センサデータ対時間を分析することができる。連続入力データは、(例えば、自然言語処理、音声検出又は処理などのための)文中の単語、楽曲中の音符、(例えば、連続アプリケーション使用を検出又は予測するために)ユーザが行う連続アクション、連続オブジェクト状態などを含み得る。例となるリカレント型ニューラルネットワークには、ロングショートターム(LSTM)リカレント型ニューラルネットワーク、ゲートリカレントユニット、双方向リカレント型ニューラルネットワーク、連続時間リカレント型ニューラルネットワーク、ニューラルヒストリコンプレッサ、エコーステートネットワーク、エルマンネットワーク、ジョーダンネットワーク、再帰型ニューラルネットワーク、ホップフィールドネットワーク、完全リカレント型ネットワーク、シーケンスツーシーケンス構成などが含まれる。
【0197】
[0247]いくつかの実装形態では、DNN930は、1つ又は複数の畳み込みニューラルネットワークであるか、又はそれを含むことができる。いくつかの事例では、畳み込みニューラルネットワークは、学習されたフィルタを使用して入力データ上で畳み込みを実行する1つ又は複数の畳み込み層を含むことができる。フィルタはカーネルとも呼ばれ得る。畳み込みニューラルネットワークは、例えば入力データが静止画像又はビデオのような画像を含むときの視覚問題に特に有用であり得る。しかしながら、畳み込みニューラルネットワークは、自然言語処理にも適用され得る。
【0198】
[0248]DNN930は、例えば、ディープボルツマンマシン、ディープビリーフネットワーク、スタック型オートエンコーダなど、人工ニューラルネットワークの1つ又は複数の他の形態であるか、又はそれらを含み得る。本明細書で説明されるニューラルネットワークのいずれかを組み合わせて(例えば、スタックして)、より複雑なネットワークを形成し得る。
【0199】
[0249]図30の例では、入力ベクトル938は、複数の入力要素を含む。入力要素の各々は数値であり得る。入力層932は、複数の入力層ニューロンを含む。入力層932中に含まれる複数の入力層ニューロン中の各入力層ニューロンは、複数の入力要素中の異なる入力要素に対応し得る。換言すると、入力層932は、入力ベクトル938中の入力要素ごとに異なるニューロンを含み得る。
【0200】
[0250]更に、図30の例では、出力ベクトル940は、複数の出力要素を含む。出力要素の各々は数値であり得る。出力層934は、複数の出力層ニューロンを含む。複数の出力層ニューロン中の各出力層ニューロンは、複数の出力要素中の異なる出力要素に対応する。換言すると、出力層934中の各出力層ニューロンは、出力ベクトル940中の異なる出力要素に対応する。
【0201】
[0251]入力ベクトル938は、多種多様な情報を含み得る。例えば、入力ベクトル938は、患者の形態学的測定値を含み得る。入力ベクトル938が患者の形態の測定値を含むいくつかの例では、入力ベクトル938は、CT画像、MRI画像、又は他のタイプの画像のような患者の医用画像に基づいて測定値を決定し得る。例えば、コンピューティングシステム902は、現在の患者の医用画像(例えば、患者固有の画像データ)を取得し得る。例えば、コンピューティングシステム902は、撮像マシン(例えば、CTマシン、MRIマシン、又は他のタイプの撮像マシン)、患者の電子医療記録、又は別のデータソースから医用画像を取得し得る。この例では、コンピューティングシステム902は、軟組織及び骨のような現在の患者の内部構造を識別するために医用画像をセグメント化し得、いくつかの例では、本明細書で説明されるような骨及び/又は軟組織の患者固有の形状を生成し得る。更に、この例では、コンピューティングシステム902は、現在の患者の識別された内部構造の相対位置に基づいて複数の測定値を決定し得る。この例では、複数の入力要素は、複数の測定中の各測定のための入力要素を含み得る。他の入力は、脂肪浸潤値、萎縮率、及び/又は関節の可動域値のような、患者固有の画像データからの他の決定を含み得る。
【0202】
[0252]本開示の他の箇所で述べたように、コンピューティングシステム902は、1つ又は複数のコンピューティングデバイスを含み得る。従って、コンピューティングシステム902の様々な機能は、コンピューティングシステム902のコンピューティングデバイスの様々な組合せによって実行され得る。例えば、いくつかの例では、コンピューティングシステム902の第1のコンピューティングデバイスが画像をセグメント化し得、コンピューティングシステム902の第2のコンピューティングデバイスがDNNをトレーニングし得、コンピューティングシステム902の第3のコンピューティングデバイスがDNNを適用し得る。他の例では、コンピューティングシステム902の単一のコンピューティングデバイスが、画像をセグメント化し、DNNをトレーニングし、DNNを適用し得る。
【0203】
[0253]いくつかの例では、入力ベクトル938は、患者の回旋腱板評価に基づく情報を(例えば、本明細書で説明される0個以上の他の例となるタイプの入力データと組み合わせて)含み得る。例えば、入力ベクトル938は、回旋腱板の脂肪浸潤、回旋腱板の萎縮に関する情報及び/又は患者の回旋腱板に関する他の情報を、単独で又は上で説明した形態学的入力と組み合わせて含み得る。いくつかの例では、ニューラルネットワークへの入力として使用される軟組織の脂肪浸潤測定値及び萎縮測定値は、例えば、本願で説明される軟組織モデリング技法のいずれかによって導出され得る。いくつかの例では、患者の回旋腱板に関する情報は、Warner分類システム又はGoutallier分類システムのよう肩病変分類システムにおけるクラスに関して表され得る。
【0204】
[0254]いくつかの例では、入力ベクトル938は、患者の可動域情報を(例えば、本明細書で説明される0個以上の他の例となるタイプの入力データと組み合わせて)含み得る。いくつかの例では、患者の可動域情報は、本開示の他の箇所で説明されるように、モーショントラッキングデバイスを使用して生成され得る。他の例では、1つ又は複数の可動域値は、本明細書で説明されるように、患者固有の画像データの分析から決定され得る。
【0205】
[0255]更に、いくつかの例では、入力ベクトル938は、1つ又は複数の肩病変分類システムにおけるクラスを指定する情報を(例えば、本明細書で説明される0個以上の他の例となるタイプの入力データと組み合わせて)含み得る。そのような例では、出力ベクトルは、肩関節治療についての1つ又は複数の異なる肩関節推奨におけるクラスに対応する出力要素を含み得る。例えば、入力ベクトル938は、回旋腱板分類システムにおけるクラスを指定する情報を含み得、出力ベクトル940は、推奨されるタイプの肩関節治療(例えば、解剖学的肩関節置換術又はリバース型肩関節置換術)に対応する出力要素を含み得る。
【0206】
[0256]いくつかの例では、入力ベクトル938は、上腕骨及び/又は関節窩の骨密度スコアを指定する情報を(例えば、形態入力及び/又は回旋腱板入力を含む、本明細書で説明される0個以上の他の例となるタイプの入力データと組み合わせて)含み得る。入力ベクトル938に含まれる他の情報には、患者の年齢、患者の活動、患者の性別、患者の体格指数(BMI)などの人口統計情報が含まれ得る。いくつかの例では、入力ベクトル938は、症状の発症速度に関する情報(例えば、緩やか又は突然)を含み得る。入力ベクトル938内の複数の入力要素はまた、特定の運動/スポーツタイプ、可動域などの活動に参加するための患者の目標を含み得る。
【0207】
[0257]いくつかの例では、出力ベクトルは、複数の手術タイプ出力要素を含み得る。手術タイプ出力要素の各々は、異なるタイプの肩関節手術に対応し得る。出力として提示され得る肩関節手術タイプの例となるタイプには、ステムレス標準肩関節全形成術、ステム付き標準肩関節全形成術、ステムレスリバース型肩関節形成術、ステム付きリバース型肩関節形成術、拡張関節窩標準肩関節全形成術、拡張関節窩リバース型肩関節形成術、及び他のタイプの整形外科的肩関節手術が含まれ得る。肩関節手術は、手術後に、患者の肩関節が、肩関節の肩甲骨側が凹面を有し、肩関節手術の上腕骨側が凸面を有する標準的な解剖学的構成を有するという意味で「標準」であり得る。一方、「リバース型」肩関節手術では、凸状表面が肩甲骨に取り付けられ、凹状表面が上腕骨に取り付けられる反対の構成になる。
【0208】
[0258]加えて、コンピューティングシステム902は、現在の出力ベクトルに基づいて、患者に対する推奨される肩関節手術のタイプを決定し得る。例えば、コンピューティングシステム902は、出力ベクトル中のどの出力要素が、最大の信頼値を有する肩関節手術のタイプに対応するかを決定し得る。
【0209】
[0259]図31は、本開示の技法による、患者に対する肩関節手術の推奨されるタイプを決定するためにDNNを使用するコンピューティングシステムの例となる動作を例示するフローチャートである。図31の例では、コンピューティングシステム902は、複数のトレーニングデータセットを生成する(950)。この例では、DNNは、入力層と、出力層と、入力層と出力層との間の1つ又は複数の隠れ層とを有する。入力層は、複数の入力層ニューロンを含む。複数の入力層ニューロン中の各入力層ニューロンは、複数の入力要素中の異なる入力要素に対応する。出力層は、複数の出力層ニューロンを含む。
【0210】
[0260]複数の出力層ニューロン中の各出力層ニューロンは、複数の出力要素中の異なる出力要素に対応する。複数の出力要素は、複数の手術タイプ出力要素を含む。複数の手術タイプ出力要素中の各手術タイプ出力要素は、複数のタイプの肩関節手術中の異なるタイプの肩関節手術に対応する。各それぞれのトレーニングデータセットは、複数のトレーニングデータ患者中の異なるトレーニングデータ患者に対応し、それぞれのトレーニング入力ベクトル及びそれぞれのターゲット出力ベクトルを含む。各それぞれのトレーニングデータセットについて、それぞれのトレーニングデータセットのトレーニング入力ベクトルは、複数の入力要素の各要素の値を含む。各それぞれのトレーニングデータセットについて、それぞれのトレーニングデータセットのターゲット出力ベクトルは、複数の出力要素の各要素の値を含む。
【0211】
[0261]更に、図31の例では、コンピューティングシステム902は、複数のトレーニングデータセットを使用して、DNNをトレーニングする(952)。加えて、コンピューティングシステム902は、現在の患者に対応する現在の入力ベクトルを取得し得る(954)。コンピューティングシステム902は、DNNを現在の入力ベクトルに適用して、現在の出力ベクトルを生成し得る(956)。コンピューティングシステム902は、現在の出力ベクトルに基づいて、現在の患者に対する推奨される肩関節手術のタイプを決定し得る(958)。コンピューティングシステム902は、本開示の他の箇所で提供される例に従ってこれらの活動を実行し得る。
【0212】
[0262]図32は、患者の肩関節1000に関する例となる骨の図である。図32の例に示されるように、肩関節1000は、上腕骨1004と、肩甲骨1010と、鎖骨1016とを含む。上腕骨1004のシャフト1006は、上腕骨頭1008に連結されており、上腕骨頭1008は、関節窩1012と共に関節窩上腕関節1002を形成する。肩甲骨1010の肩峰1014は、肩峰-鎖骨関節において鎖骨1016に繋がっている。
【0213】
[0263]経時的に、上腕骨頭1008、関節窩1012、及び/又は上腕骨頭1008と関節窩1012との間の結合組織は、摩耗及び/又は疾患により劣化し得る。場合によっては、関節窩上腕関節1002の劣化を患っている患者には、上腕骨頭1008、関節窩1012、又はその両方の少なくとも一部が人工インプラントと置換される肩関節置換手術が有効であり得る。例えば、上腕骨頭1008を切断して、上腕骨頭1008内の低密度の骨梁を露出させ得る。上腕骨インプラントは、新たな上腕骨インプラントを上腕骨1004のシャフト1006に固定するために、骨梁に挿入され得る。
【0214】
[0264]図33A図33B、及び図33Cは、上腕骨インプラントのために準備された例となる上腕骨頭1022の概念図である。図33Aに示されるように、肩関節形成処置の一部として、臨床医は、上腕骨頭1022の解剖頸1024を視覚的に推定(例えば、「視認」)し、マーキングすることによって、上腕骨1020の上腕骨頭1022の切除という外科的ステップを実行し得る。解剖頸1024は、上腕骨インプラントを上腕骨1020に取り付けることができる表面を生成又は露出させるように上腕骨頭1022の一部を二分する平面を指し得る。図33Bの例に示されるように、臨床医は次いで、臨床医のフリーハンドで、すなわち機械的又は視覚的ガイダンスなしで、マーキングされた解剖頸1024に沿って切断ツール1026(例えば、振動鋸のブレード)を誘導することによって、上腕骨頭1022の切除を実行し得る。上腕骨頭1022の切除が完了した後、解剖頸1024に対応する平面に沿って骨梁領域1028が露出する。一般に、上腕骨インプラントは、骨梁領域1028の一部に挿入され、所定の位置に固定され得る。骨梁領域1028の密度、又は骨梁領域1028の体積内の密度の変動は、どのタイプの上腕骨インプラントを上腕骨1020に使用することができるかに影響を与え得る。例えば、より高密度の骨梁領域1028は、上腕骨インプラント上により長いステムを必要とし得るより低密度又はより軟質の骨梁よりも短い上腕骨インプラントの「ステム」で上腕骨インプラントを支持し得る。
【0215】
[0265]図34は、解剖学的肩関節置換処置を対象とした例となる上腕骨インプラントの概念図である。肩関節全形成手術(例えば、あるタイプの肩関節置換術又は肩関節治療)では、上腕骨のシャフト内の上腕骨インプラントの機械的固定強度は、主に、インプラントの骨幹ステムの固定によって決定され得る。ステムの埋め込みは、上腕骨インプラントのステムを導入するときの穿孔、リーミング、ブローチ加工、及び他の鈍的衝撃力の間、シャフトに高い機械的力を受けさせる可能性がある。これらの処置の結果、術中の骨折(上腕骨の骨幹)に関連する合併症及び術後の弛緩や応力遮蔽が起きる可能性があり、これは、しばしば、再置換手術を招く。特に骨セメントを使用して埋め込まれているときには、再置換のために上腕骨頭インプラントを抜去することも困難であり得る。
【0216】
[0266]ステムレス上腕骨インプラント、又はより短いステムを有する上腕骨インプラントは、上腕骨のシャフト又はシャフトの一部への埋め込みを回避することによって、シャフト骨折の可能性を排除し、生まれつきの骨ストックの保存を可能にすることができ、これは、再置換の場合に有益であり得る。ステムレス設計により、外科医は、上腕骨のシャフトの向きから独立して関節窩上腕の回転中心を復元し、ステムの埋め込みに関連した合併症を回避することもできる。ステムレス上腕骨インプラントの骨固定は、主に、上腕骨頭及びその中の骨梁ネットワーク内で達成され得る。
【0217】
[0267]管温存型ステムレス上腕骨インプラントの禁忌には、骨質の低下(骨減少症、骨粗鬆症)、他の代謝性骨疾患(嚢胞、腫瘍など)、又は金属部品の骨の支持、内方成長、及び統合に影響を与え得る以前の骨折の存在が含まれ得る。このように、異なる骨密度の密度及び/又は位置のような上腕骨頭内の骨の密度は、より短いステム又はステムレス上腕骨インプラントタイプを支持するのに十分である必要があり得る。外科医は、上腕骨頭のネックカット(近位の上腕骨の骨幹端)の表面を親指で圧迫して、埋め込みのための基体バイアビリティを決定することができる「親指テスト」を主要な術中評価ツールとして使用し得る。この基体バイアビリティは、上腕骨頭内の骨梁の密度に関連するか、又はそれを表し得る。換言すると、上腕骨頭内の骨梁の骨密度を外科医の親指で評価することができる。最小限の力で容易に圧迫可能な(例えば、低密度の)骨は、ステムレス部品の埋込みには適していないと考えられる。容易に圧迫可能でない、すなわちより高い弾性(例えば、高密度)を提供する骨は、ステムレスタイプの上腕骨インプラントに適していると考えられ得る。
【0218】
[0268]このように、外科医は、「親指テスト」の結果に基づいて、ステムレスかステム付きか(更にはステムの長さ)の選択を行うことができる。本明細書で説明されるように、上腕骨頭の骨質に関する履歴データ(例えば、密度、圧縮性、ステム付きインプラント又はステムレスインプラントの選択、又はインプラントを支持するための上腕骨頭の適切なそれ以外の性質など)は、それらの患者に関する患者固有の撮像データと相関され得る。例えば、相関は、特定の患者に関するCTデータからの上腕骨頭におけるボクセルからの強度の強度閾値、ハウンスフィールド単位の範囲、又は標準偏差を、それらのそれぞれの患者について患者によって選択された上腕骨インプラントのタイプにマッピングし得る。相関が完了すると、システムは、各タイプの上腕骨インプラントへのCTデータマッピングに基づいて特定のタイプの上腕骨インプラントを推奨するために相関を使用し得る。このように、本明細書で説明されるように、システムは、患者固有の画像データ(例えば、ボクセル又はボクセルのグループの強度の大きさ及び/又は大きさの位置)の分析に基づいて、特定のタイプの上腕骨インプラント(例えば、ステム付き、ステムなし、及び/又はステムの長さ)を推奨することができる。
【0219】
[0269]図34の例に示されるように、上腕骨インプラント1040は、関節窩又は関節窩インプラントに接するように構成された滑り面1042を有する「ステムレス」上腕骨インプラントの一例である。固定構造1044は、上腕骨インプラント1040を固定するために骨梁1028に埋め込まれるように構成された突起を含むが、上腕骨のシャフトの近くに又はシャフトへと下方に延びるステムは存在しない。
【0220】
[0270]上腕骨インプラント1050は、「ステム付き」上腕骨インプラントの一例であり、ステム固定構造1054は、上腕骨インプラント1050を上腕骨の骨梁内に固定することを容易にする短いステムを含む。上腕骨インプラント1050は、関節窩又は関節窩インプラントと接するように構成された滑り面1052を含む。上腕骨インプラント1060は、「ステム付き」上腕骨インプラントの一例であり、ステム固定構造1064は、上腕骨インプラント1060を上腕骨の骨梁内に固定することを容易にする長いステムを含む。上腕骨インプラント1060は、関節窩又は関節窩インプラントと接するように構成された滑り面1062を含む。上腕骨インプラント1050及び1060は、骨梁が健康な骨から悪化し、上腕骨インプラントの十分な固定を提供するためにステムが必要なときに使用され得る。例えば、骨梁は、上腕骨インプラント1040を固定するのに十分な骨密度を提供しないことがあり、そのため、代わりに、上腕骨インプラント1050又は1060のような「ステム付き」上腕骨インプラントが患者に対して推奨又は選択され得る。
【0221】
[0271]長いステムの固定構造1064は、最も密度の低い骨梁を有するか、又は他の理由でより高い安定性を必要とする上腕骨に使用され得る。対照的に、上腕骨インプラント1040は、骨梁の密度が、ステムレス固定構造1044を用いて上腕骨インプラントを十分に固定することができるほど高いときに使用され得る。固定構造1044のものと同様のステムレス設計の利点は、除去される必要がある上腕骨内の骨梁がより少ないこと、治癒がより迅速であること、並びにリーミング及び/又は上腕骨内へのステムの挿入の間の皮質骨への損傷のリスクがより少ないことであり得る。
【0222】
[0272]しかしながら、臨床医は、上腕骨頭が切除されて手動で操作されるまで、上腕骨頭内の骨梁が上腕骨インプラント1040のようなステムレス設計を支持することができるかどうかを判断することができない場合がある。本明細書で説明されるように、システムは、手術前の肩関節置換計画を支援するために、患者固有の画像データ(例えば、CTデータ)を使用して上腕骨頭骨梁骨密度メトリックを決定し得る。このように、例となる技法は、コンピュータ分析を使用して、手術時間を短縮するために骨密度を決定する方法を改善する(例えば、どの上腕骨頭タイプを使用すべきかの決定がすでに行われている)、及び/又は手術前の上腕骨頭ンプラントタイプの選択の精度を改善する(例えば、術前計画を改善する)技法の様々な実用的な用途を提供する。
【0223】
[0273]図35は、上腕骨1072に埋め込まれた例となるステム付き上腕骨インプラント1080の概念図1070である。図35の例に示されるように、ステム付き上腕骨インプラント1080は、滑り面1084とステム1080とを含む。ステム1080は、上腕骨インプラント1080を上腕骨頭1076に固定するために骨梁1078内に挿入されている。ステム1080は、図34の上腕骨インプラント1050に類似した短いステムであり得るが、それでもステム1080は、少なくとも部分的に上腕骨のシャフト1074内に挿入され得る。例となる上腕骨インプラント1080は、テネシー州のメンフィスのWright Medical Group N.V.によって製造されたAequalis Ascend(登録商標)Flexに類似し得る。
【0224】
[0274]図36は、上腕骨頭1110に埋め込まれた例となるステムレス上腕骨インプラント1112の概念図1100である。図36の例に示されるように、ステムレス上腕骨インプラント1112は、滑り面1116と固定構造1114とを含む。固定構造1114は、ステムなしで上腕骨頭1110内の骨梁に埋め込まれている。上腕骨インプラント1112は、図34の上腕骨インプラント1040に類似し得る。例となる上腕骨インプラント1112は、テネシー州のメンフィスのWright Medical Group N.V.によって製造されたSimpliciti(登録商標)肩システムに類似し得る。滑り面1116は、肩甲骨1102の関節窩表面に埋め込まれた関節窩インプラント1106に接するように構成され得る。ステムレス上腕骨インプラント1112及び関節窩インプラント1106は、上腕骨インプラント1112が健康な上腕骨頭の球面に類似した球面を含むため、解剖学的肩関節置換術の一部であり得る。
【0225】
[0275]図37は、例となるリバース型上腕骨インプラント1124の概念図である。リバース型上腕骨インプラント1124は、(上腕骨インプラント1050又は1060と同様に)ステム付きで、又は(インプラント1040と同様に)ステムレス設計で構築され、上腕骨1020の上腕骨頭1122に埋め込まれ得る。しかしながら、リバース型上腕骨インプラント1124は、凹状であり、対応する関節窩インプラントの球状又は凸状の接触面に接するように意図された滑り面を有する。システムは、軟組織構造(例えば、回旋腱板の1つ又は複数の筋肉又は他の肩の筋肉)の特性及び/又は上腕骨頭1122の骨密度に基づいて、リバース型上腕骨インプラント1124を含み得るリバース型肩関節置換術を推奨し得る。
【0226】
[0276]図38は、本開示の一例による、患者固有の画像データから推定骨密度を決定するように構成されたシステム1140の例となる構成要素を例示するブロック図である。システム1140及びその中の構成要素は、図6で説明したシステム540及び構成要素及び/又は図1の仮想計画システム102に類似し得る。このように、システム540又は仮想計画システム102は、本明細書におけるシステム1140に帰する機能を実行し得る。
【0227】
[0277]図38の例に示されるように、システム1140は、処理回路1142と、電源1146と、ディスプレイデバイス(複数可)1148と、入力デバイス(複数可)1150と、出力デバイス(複数可)1152と、記憶デバイス(複数可)1154と、通信デバイス1144とを含み得る。ディスプレイデバイス(複数可)1148は、不透明又は少なくとも部分的に透明な画面のような、ユーザインターフェースをユーザに提示するための画像を表示し得る。ディスプレイデバイス1148は、視覚情報を提示し得、いくつかの例では、オーディオ情報又はユーザに提示される他の情報を提示し得る。例えば、ディスプレイデバイス1148は、1つ又は複数のスピーカ、触覚デバイスなどを含み得る。他の例では、出力デバイス(複数可)1152は、1つ又は複数のスピーカ及び/又は触覚デバイスを含み得る。ディスプレイデバイス(複数可)1148は、不透明な画面(例えば、LCD又はLEDディスプレイ)を含み得る。代替的に、ディスプレイデバイス(複数可)1148は、例えば、プロジェクタと組み合わせてシースルーホログラフィックレンズを含むMR視覚化デバイスを含み得、それは、ユーザが、現実世界の環境において、レンズを通して現実世界のオブジェクトを見ることと、例えば、Microsoft HOLOLENS(登録商標)デバイスのようなホログラフィック投影システムによって、レンズ内に及びユーザの網膜上に投影された仮想3Dホログラフィック画像を見ることとを可能にする。この例では、仮想3Dホログラフィックオブジェクトは、現実世界の環境内に配置されているように見え得る。いくつかの例では、ディスプレイデバイス1148は、LCD表示画面、OLED表示画面などの1つ又は複数の表示画面を含む。ユーザインターフェースは、骨密度に関する情報のような、特定の患者のための仮想手術計画の詳細の仮想画像を提示し得る。
【0228】
[0278]入力デバイス1150は、1つ又は複数のマイクロフォンと、関連する音声認識処理回路又はソフトウェアとを含み得、ユーザが発した音声コマンドを認識し、それに応答して、手術計画、術中ガイダンスなどに関連する様々な機能の選択、アクティブ化、又は非アクティブ化のような様々な動作のいずれかを実行し得る。別の例として、入力デバイス1150は、上で説明したような動作を実行するためにジェスチャを検出及び解釈する1つ又は複数のカメラ又は他の光学センサを含み得る。更なる例として、入力デバイス1150は、注視方向を感知し、本開示の他の箇所で説明されるような様々な動作を実行する1つ又は複数のデバイスを含む。いくつかの例では、入力デバイス1150は、例えば、1つ又は複数のボタン、キーパッド、キーボード、タッチスクリーン、ジョイスティック、トラックボール、及び/又は他の手動入力媒体を含むハンドヘルドコントローラを介して、ユーザから手動入力を受け取り、手動ユーザ入力に応答して、上で説明したような様々な動作を実行し得る。
【0229】
[0279]通信デバイス1144は、他のデバイスとのデータ通信を容易にする1つ又は複数の回路又は他の構成要素を含み得る。例えば、通信デバイス1144は、システム1140に物理的に接続されたときにドライブとシステム1140との間のデータの移送を可能にする1つ又は複数の物理ドライブ(例えば、DVD、ブルーレイ、又はユニバーサルシリアルバス(USB)ドライブ)を含み得る。他の例では、通信デバイス1144がそれを含み得る。通信デバイス1144はまた、別のコンピューティングデバイス及び/又はネットワークとのワイヤード及び/又はワイヤレス通信をサポートし得る。
【0230】
[0280]記憶デバイス1154は、共通及び/又は別個のデバイスにそれぞれのタイプのデータを記憶する1つ又は複数のメモリ及び/又はリポジトリを含み得る。例えば、ユーザインターフェースモジュール1156は、上腕骨の骨密度に関する情報又は関連する外科治療についての推奨のような情報をユーザに提示するためにシステム1140がディスプレイデバイス1148をどのように制御するかを定義する命令を含み得る。術前モジュール1158は、撮像データのような患者データの分析、及び/又は患者データに基づく治療選択肢の決定に関する命令を含み得る。術中モジュール1160は、計画された手術に関する詳細及び/又は外科手術に関するフィードバックのような情報を表示のために臨床医に提供する際にシステム1140がどのように動作するかを定義する命令を含み得る。患者データ1166は、患者固有の画像データを記憶するリポジトリであり得る。
【0231】
[0281]骨密度モデリングモジュール1162は、処理回路1142が上腕骨頭のような1つ又は複数の骨の少なくとも一部の1つ又は複数の骨密度メトリックをどのように決定するかを定義する命令を含み得る。例えば、骨密度モデリングモジュール1162は、患者固有の患者データ(例えば、CT画像データ)内のボクセルの強度に基づいて骨密度メトリックを決定し得る。処理回路1142は、ピクセル又はボクセルの個々又はグループについての強度の所定の範囲(例えば、ハウンスフィールド単位)に従ってピクセル又はボクセルのグループの異なる骨密度カテゴリを決定するために、骨密度モデリングモジュール1162を実行し得る。いくつかの例では、処理回路1142は、患者固有の画像データ内のボクセルの標準偏差に基づいて骨密度メトリックを生成し得る。骨密度メトリックは、上腕骨頭の2次元又は3次元領域にわたって異なる骨密度値を含み得る。いくつかの例では、骨密度メトリックは、上腕骨頭全体又は上腕骨頭の特定のエリアにわたる平均ピクセル又はボクセル強度に基づいて決定される単一の値であり得る。いくつかの例では、骨密度モデリングモジュール1162は、上腕骨インプラントを上腕骨頭内に埋め込むことができる上腕骨インプラントのタイプ(例えばステム付き又はステムレス)及び/又は位置を決定する命令を含み得る。骨密度メトリックは、実際に骨の密度を示すものではなく、骨密度を表すメトリックであり得る。例えば、骨密度メトリックは、単に、分析された患者固有の画像データに対応するインプラントのタイプ(例えば、ステム付き又はステムなし)を示し得る。別の例として、骨密度メトリックは、実際に骨の密度の測定値を提供するのではなく、画像データからのボクセル強度、画像データからのボクセル強度の標準偏差、圧縮性、インデックス、又は密度に関し得るかもしくはそれを表し得る何らかの他の指示を含み得る。
【0232】
[0282]処理回路1142は、患者固有の画像データ及び過去の手術における他の患者からの選択されたインプラントタイプ(例えば、その手術の間の親指テスト情報に基づいて過去に選択されたインプラントタイプ)に合わせて骨密度メトリックを較正するために、キャリブレーションモジュール1164を実行し得る。歴史的に、臨床医は、自分の親指を使用して、(頭部切断によって露出した)上腕骨頭内の骨梁を圧迫し、骨梁の剛性、ひいては密度を決定し得る。この親指テストは、いくつかあるとき、どのようなタイプのステムが上腕骨インプラントに必要であるかを識別するために実行され得る。キャリブレーションモジュール1164は、過去の患者から得られたこの親指テストデータを使用して、親指テスト手順に基づいて行われた上腕骨インプラントタイプの既知の外科的決定を、同じそれぞれの患者の患者固有の画像データと相関させ、現在の患者の骨密度メトリックを決定し得る。このように、キャリブレーションモジュール1164は、それぞれの上腕骨インプラントタイプに対応する骨密度メトリックの1つ又は複数の範囲を識別するために使用され得る。例えば、キャリブレーションモジュール1164を用いて、処理回路1142は、ステムレス上腕骨インプラント1040が第1の範囲内の骨密度メトリック用であり、短いステム付き上腕骨インプラント1050が第2の範囲内の骨密度メトリック用であり、長いステム付き上腕骨インプラント1060が第3の範囲内の骨密度メトリック用であると決定し得る。
【0233】
[0283]上述したように、外科的ライフサイクル300は、術前段階302(図3)を含み得る。1人以上のユーザは、術前段階302において整形外科手術システム100を使用し得る。例えば、整形外科手術システム100は、1人以上のユーザが、特定の患者の対象の解剖学的構造に合わせてカスタマイズされ得る仮想手術計画を生成するのを助けるために、仮想計画システム102(システム1140に類似し得る)を含み得る。本明細書で説明されるように、仮想手術計画は、特定の患者の対象の解剖学的構造に対応する3次元仮想モデルと、対象の解剖学的構造を修復するために特定の患者に適合しているか、又は対象の解剖学的構造を修復するために選択された1つ又は複数の人工部品(例えば、インプラント)の3次元モデルとを含み得る。仮想手術計画はまた、外科医が外科手術を行う際、例えば、骨表面又は組織を準備し、そのような骨表面又は組織に対して埋込型の補綴具を埋植する際の指針となるガイダンス情報の3次元仮想モデルを含み得る。
【0234】
[0284]本明細書で説明されるように、処理回路1142は、患者の上腕骨頭の少なくとも一部についての骨密度メトリックを、その患者に関する患者固有の画像データに基づいて決定するように構成され得る。例えば、骨密度メトリックは、上腕骨頭又は上腕骨頭の一部の全体的な密度の単一の指示であり得る。別の例として、骨密度メトリックは、患者の上腕骨頭のそれぞれの部分の骨密度値を含み得る。システムは、(骨密度を直接又は間接的に示し得る)骨密度メトリックのグラフィカル表現を提示するように、及び/又は、骨密度メトリックに基づいて上腕骨頭のインプラントタイプに関する推奨を生成するように、ユーザインターフェースモジュール1156を介してユーザインターフェースを制御し得る。例えば、骨密度メトリックが上腕骨頭の十分な骨梁密度を示すと、システムは、ステム付き上腕骨インプラントとは対照的にステムレス上腕骨インプラントを推奨し得る。
【0235】
[0285]一例では、処理回路1142は、例えば、骨をセグメント化することによって、又は他の方法で上腕骨頭を示すランドマークもしくは形状を識別することによって、患者固有の画像データ内の上腕骨頭を識別するように構成され得る。次いで、処理回路1142は、患者固有の画像データに基づいて、上腕骨頭の少なくとも一部の骨密度を表す骨密度メトリックを決定し得る。この骨密度メトリックに基づいて、処理回路1142は、患者に対する上腕骨インプラントタイプの推奨を生成し得る。例えば、処理回路1142は、骨密度メトリックがより低密度の骨を示す場合、ステム付き上腕骨インプラント(ステム付きインプラントタイプ)を推奨し得、処理回路1142は、骨密度メトリックがより高密度の骨を示す場合、ステムレス上腕骨インプラント(ステムレスインプラントタイプ)を推奨し得る。次いで、処理回路1142は、ユーザインターフェースを介した表示のために、患者に対する上腕骨インプラントタイプの推奨を出力し得る。
【0236】
[0286]いくつかの例では、処理回路1142は、ステムを含む上腕骨インプラントタイプのステム長を決定し得る。処理回路1142は、上腕骨への十分な固定を提供するためにより低密度の骨により長いステムが必要であることを決定し得るか、又は上腕骨内のより低密度の骨梁の位置により長いステムが必要であることを決定し得る。ステム長自体が識別されてユーザに提示され得るか、又は処理回路1142が、推奨される長さ範囲を満たす特定の上腕骨インプラントを推奨し得る。このように、処理回路1142は、患者固有の画像データから決定された骨密度メトリックに基づいて、3つ以上の異なるタイプの上腕骨インプラントから選択された特定のインプラント又はインプラントタイプを推奨し得る。
【0237】
[0287]いくつかの例では、骨密度メトリックは、上腕骨頭の少なくとも一部内の骨梁の総合的な密度スコア(例えば、画像データからのボクセル又はピクセル値に基づく値、指数、又はカテゴリ)を表し得る。例えば、処理回路1142は、上腕骨頭の領域の平均密度又は加重平均密度を決定し、特定のメトリック値を上腕骨頭のその領域に割り当て得る。他の例では、骨密度メトリックは、そのエリア内の骨密度に対する下限を設けるために、その領域内で見られる骨の最も低い密度を示すように決定され得る。反対に、骨密度メトリックは、上腕骨頭のその領域における最も高い密度を示し得る。骨密度メトリックは、上腕骨頭内のそれぞれの部分についての複数の骨密度値を含み得る。例えば、骨密度メトリックは、上腕骨頭の領域内のそれぞれのボクセル又はボクセルのグループについての特定の骨密度値を含む密度値の行列を含み得る。このように、骨密度メトリックは、上腕骨頭内の骨密度のより高い分解能表現を提供し得る。いずれの場合も、骨密度メトリックは、実際の骨密度値、画像データ強度、及び/又は推奨されるインプラントタイプを示し得る)。
【0238】
[0288]処理回路1142は、様々な技法を使用して骨密度メトリックを決定し得る。一例では、処理回路1142は、患者固有の画像データに基づいて、上腕骨頭の少なくとも一部内のそれぞれのボクセルの強度を識別することと、それぞれのボクセルの強度を2つ以上の強度レベルのうちの1つに分類することと、2つ以上の強度レベルの各々に分類されたボクセルの数又は2つ以上の強度レベルの各々に分類されたボクセルの上腕骨頭における位置のうちの少なくとも1つに基づいて、骨密度メトリックを決定することとによって、骨密度メトリックを決定し得る。このように、処理回路1142は、骨密度メトリックを決定するために、患者固有の画像データ内の異なる強度を異なる強度レベル及び/又はそれらの強度レベルの位置として分類するように構成され得る。例えば、強度レベルの位置は、骨梁の密度がステムレス上腕骨インプラントを支持するのに十分であるか否かに関連し得る。骨梁の全体的な骨密度はより低いが、依然として上腕骨頭の中心がステムレス上腕骨インプラントを支持するために必要とされる閾値密度を上回る場合、処理回路1142は、依然として、骨密度メトリックがステムレス上腕骨インプラントを支持するのに十分であると決定し得る。他の例では、処理回路1142は、ステムレス上腕骨インプラントが埋め込まれるであろう位置において低密度骨密度のポケットが識別された場合、何らかの比較的高い骨密度レベルであっても、ステム付き上腕骨インプラントを必要とすることを示すものとして、骨密度メトリックを決定し得る。
【0239】
[0289]いくつかの例では、処理回路1142は、上腕骨頭全体内の骨梁の体積についての骨密度メトリックを決定し得る。他の例では、処理回路1142は、上腕骨インプラントを受け入れるように上腕骨を準備するために上腕骨に行われる上腕骨切断を表す上腕骨頭を通る平面を決定し得る。この上腕骨切断は、上腕骨インプラントが埋め込まれることとなる骨梁の表面を露出させるであろう。次いで、処理回路1142は、平面によって二分された上腕骨頭の少なくとも一部についての骨密度メトリックを決定するであろう。いくつかの例では、処理回路1142は、平面に対応する(例えば、平面によって露出されるか、又は平面によって二分される)ピクセル又はボクセルについての骨密度メトリックを決定し得る。他の例では、処理回路1142は、平面から開始し、上腕骨のシャフトに向かって延在する骨梁の体積についての骨密度メトリックを決定し得る。いくつかの例では、分析される骨梁の体積は、上腕骨の外面を画定する皮質骨まで延在し得る。
【0240】
[0290]骨密度メトリックは、いくつかの例では、例えばユーザインターフェースモジュール1156を使用して、ユーザインターフェースを介して表示され得る。処理回路1142は、ディスプレイデバイス1148又は別のシステムのディスプレイデバイスによる表示のために、患者の上腕骨頭の少なくとも一部の表現上に骨密度メトリックのグラフィカル表現を含むユーザインターフェースを出力し得る。骨密度メトリックのグラフィカル表現は、上腕骨の骨梁の上又は代わりに表示される1つ又は複数の形状又は色を含み得る2次元又は3次元グラフィックを含み得る。一例では、骨密度メトリックは、複数の色のヒートマップを含み得、ここで、複数の色の各色は、骨密度値の異なる範囲を表す。このように、異なる色は、骨梁のその体積内の骨密度の変動の空間的表現を示すために異なる骨密度の大きさを表し得る。骨密度メトリックのグラフィカル表現は、上腕骨頭の平面内の骨密度変動の2次元表現を含み得る。他の例では、骨密度メトリックのグラフィカル表現は、上腕骨頭の少なくとも骨梁内の骨密度変動の3次元表現を含み得る。いくつかの例では、ディスプレイデバイス1148は、複合現実ディスプレイを含み得、処理回路1142は、骨密度メトリックのグラフィカル表現を含むユーザインターフェースを提示するように複合現実ディスプレイを制御し得る。
【0241】
[0291]いくつかの例では、骨密度メトリックは、他の過去の患者からの骨密度データ(例えば、上腕骨頭内の骨構造を示す画像データ又は他のデータ)と、その特定の骨密度データについて臨床医によって選択された上腕骨インプラントのタイプとに関連付けられ得る。骨密度データは、各患者に関する患者固有の画像データと、それぞれの各患者に対して外科医によって選択された結果として得られる上腕骨インプラントのタイプ(例えば、これは、臨床医が自分の親指を使用して上腕骨頭内の骨梁を圧迫し、骨梁をステムレス上腕骨インプラントに対して十分であるか又は不十分であると分類する「親指テスト」に基づき得る)とを使用して、これらの過去の患者に対して生成され得る。処理回路1142は、親指テストに基づくこれらの選択されたインプラントタイプを活用して、骨密度メトリックを、将来の患者においてステムレス上腕骨インプラントに適切であるか又は適切でないと分類し得る。このように、処理回路1142は、骨密度メトリックを、他の被験者に対して以前に行われた手術において外科医によって選択された上腕骨インプラントのタイプと相関させ得、ここで、親指テストデータは、他の被験者のそれぞれの上腕骨頭内の骨梁の手動で決定された密度範囲(又は骨密度を表す圧縮性)を示す。この相関に基づいて、処理回路1142は、患者に対する上腕骨インプラントタイプの推奨を決定し得る。いくつかの例では、処理回路1142は、前に選択されたインプラントタイプとそれぞれの患者固有の画像データとを相関させて、将来の患者に利用可能なインプラントの各タイプを示す骨密度メトリックを決定するために、1つ又は複数のニューラルネットワークを採用し得る。例えば、処理回路1142は、骨密度メトリック、患者固有の画像データ、及び選択された上腕骨インプラントタイプ(ステム付き、ステムレス、及び/又はステムの長さ)を、ニューラルネットワークへの入力として使用し得る。ニューラルネットワークの出力は、どちらかの上腕骨インプラントタイプに対応するそれらの骨密度メトリックであり得る。
【0242】
[0292]いくつかの例では、処理回路1142は、軟組織特性と骨密度メトリックとを使用して、患者に対する肩関節手術の推奨を生成し得る。例えば、処理回路1142は、患者固有の撮像データに基づいて、1つ又は複数の軟組織特性(例えば、軟組織量、脂肪浸潤率、萎縮率、及び/又は可動域値)と、患者の上腕骨に関連する骨密度メトリックとを決定し得る。本明細書で説明されるように、処理回路1142は、患者に対して行われるべき肩関節手術タイプ(例えば、解剖学的肩関節手術又はリバース型肩関節手術)の推奨を生成し、上腕骨に関連する骨密度メトリックに基づいて、患者に対する上腕骨インプラントタイプの推奨を生成し得る。次いで、処理回路1142は、表示のために、患者に対する肩関節手術タイプ及び上腕骨インプラントタイプの推奨を出力し得る。いくつかの例では、ユーザインターフェースは、複合現実ユーザインターフェースの一部として、1つ又は複数の軟組織特性及び/又は上腕骨に関連する骨密度メトリックの表現を含み得る。
【0243】
[0293]図39Aは、骨密度に基づいて上腕骨インプラントのタイプを決定するための例となる手順を例示するフローチャートである。システム1140の処理回路1142は、図39Aの例を実行するものとして説明されるが、システム542又は仮想計画システム102のような他のデバイス又はシステムが、本技法の1つ又は複数の部分を実行し得る。更に、本技法のいくつかの部分は、分散システムを介して2つ以上のデバイス及び/又はシステムの組合せによって実行され得る。図39Aのプロセスは、3次元データセットに関して説明されるが、他の例では、データのいくつかの2次元スライスが同様の方法で分析され得る。
【0244】
[0294]図39Aの例に示されるように、処理回路1142は、3次元CT画像データのような患者固有の画像データを(例えば、メモリ又は他のシステムから)取得し得る(1200)。次いで、処理回路1142は、患者固有の画像データ内の上腕骨頭を識別し得る(1202)。例えば、処理回路1142は、上腕骨頭を識別するか、又は上腕骨頭を示すランドマークもしくは形状を決定するために、骨をセグメント化し得る。上腕骨頭の患者固有の画像データを使用して、処理回路1142は、患者固有の画像データ内のボクセル又はボクセルのグループの強度に基づいて、上腕骨頭の少なくとも一部についての骨密度メトリックを決定し得る(1204)。骨密度メトリックは、上腕骨頭内の骨梁の全体的な密度を示す全体メトリックであり得るか、又は骨密度メトリックは、上腕骨頭の領域内のボクセルのグループの各ボクセルの密度を表す値を含み得る。
【0245】
[0295]次いで、処理回路1142は、骨密度メトリックに基づいて、上腕骨インプラントタイプについての推奨を決定し得る(1206)。例えば、処理回路1142は、骨梁の密度がステムレス上腕骨インプラントを支持するのに十分に高いことを骨密度メトリックが示す又は表す場合、推奨がステムレス上腕骨インプラントであると決定し得る。推奨は、上腕骨インプラントを以前に受けた患者に関する履歴データに基づいて、おそらく処理回路1142によって開発される選択アルゴリズム(例えば、1つ又は複数の表、方程式、又はニューラルネットワークのような機械学習アルゴリズム)に基づき得る。例えば、履歴データは、患者固有の画像データ(例えば、CTデータ)と、(例えば、上腕骨頭内の骨梁の骨質又は密度を決定するための親指テストの使用を介して)それぞれの患者に対して外科医によって選択された上腕骨インプラントのタイプ(例えば、ステムレス又はステム付き)とを含み得る。一例では、表は、ボクセル強度又はボクセルのグループ強度をステム付きインプラントタイプ又はステムレスインプラントタイプの推奨にマッピングし得る。別の例では、第1の表は、ボクセル強度を密度値にマッピングし得、第2の表は、密度値をステム付きインプラントタイプ又はステムレスインプラントタイプの推奨にマッピングし得る。システムは、インプラント選択に対する画像データのこのマッピングを使用して、新たな患者の画像データに基づいてその患者に対するインプラントタイプの推奨を通知することができる。次いで、処理回路1142は、上腕骨インプラントタイプの推奨を出力し得る(1208)。推奨は、別の推奨で使用するために送られ得るか、又はユーザに表示され得る。
【0246】
[0296]図39Bは、上腕骨インプラントのステムサイズを決定するために患者固有の画像データにニューラルネットワークを適用するための例となる手順を例示するフローチャートである。システム1140の処理回路1142は、図39Bの例を実行するものとして説明されるが、システム542又は仮想計画システム102のような他のデバイス又はシステムが、本技法の1つ又は複数の部分を実行し得る。更に、本技法のいくつかの部分は、分散システムを介して2つ以上のデバイス及び/又はシステムの組合せによって実行され得る。図39Bのプロセスは、3次元データセットに関して説明されるが、他の例では、データのいくつかの2次元スライスが同様の方法で分析され得る。
【0247】
[0297]図39Bの例に示されるように、処理回路1142は、3次元CT画像データのような患者固有の画像データを(例えば、メモリ又は他のシステムから)取得し得る(1210)。次いで、処理回路1142は、ニューラルネットワークによる適用のために患者固有の画像データの1つ又は複数のサブセットを選択する(1212)。例えば、処理回路1142は、上腕骨の1つ又は複数の解剖学的領域に対応する3次元CT画像データの特定の部分を選択し得る。3次元CT画像データは、いくつかの例では骨密度を示し得る。次いで、処理回路1142は、患者固有の画像データの選択されたサブセットにニューラルネットワークを適用する(1214)。
【0248】
[0298]ニューラルネットワークは、畳み込みニューラルネットワーク(CNN)を含み得るか、又はそれに基づき得る。上述したように、畳み込みニューラルネットワークは、学習されたフィルタを使用して入力データ上で畳み込みを実行する1つ又は複数の畳み込み層を含むことができる。フィルタはカーネルとも呼ばれ得る。畳み込みニューラルネットワークは、例えば、入力データが3次元CTデータのような静止画像又はMRIデータのような他の撮像モダリティを含むときの視覚問題に特に有用であり得る。
【0249】
[0299]例となるCNNは、インセプションネットワーク(例えば、Inception V Net)、残差ニューラルネットワーク(例えば、ResNet)、又は以前の上腕骨診断に関する以前のデータ及び/又は上腕骨インプラントデータに基づいて適用される転移学習技法を含む他のタイプのネットワークを含み得る。いくつかの例では、CNNは、N個の畳み込み層と、それに続くM個の全結合層とから構成され得る。各層は、1つ又は複数のフィルタを含み得、これらの層は、スタックされた畳み込み層であり得る。いくつかの例では、1つ又は複数のフィルタが皮質骨に対して指定され得るが、他の1つ又は複数のフィルタが海綿質骨(すなわち骨梁)に対して指定される。CNNの層は、上腕骨の骨幹端から骨幹までのいくつかの骨の領域を評価するように構築され得る。
【0250】
[0300]処理回路1132又は別のプロセッサは、上腕骨ステムサイズ予測のためにCNNをトレーニングし得、数十、数百、又は数千のテスト画像(例えば、CTスキャン画像)に対してモデルをトレーニングすることを含み得る。出力は、ステムサイズ及び充填比(すなわち、上腕骨インプラントのステムが充填された上腕骨管の比率)など、手術中又は手術後に収集された臨床データであり得る。ステムサイズは、上腕骨インプラントの長さ及び/又は断面面の幅もしくは面積を指定し得る。短いステムサイズは、ステムレス上腕骨インプラントと呼ばれ得、長いステムサイズは、ステム付き上腕骨インプラントと呼ばれ得る。CNNはまた、1つ又は複数のハイパーパラメータを含み得る。いくつかの異なるタイプのハイパーパラメータが、平均分類レートを低減するために使用され得る。1つの例となるハイパーパラメータは、双曲線正接関数又はシグモイド関数のような従来のより遅い解法の代わりに、非線形部分のために正規化線形関数(rectified linear unit)を含み得る。CNNの学習率は、CNNに供給されたデータのタイプに基づいて学習率が適応するAdagrad、Adadelta、RMSprop、又はAdamのような、本質的に適応可能な勾配降下アルゴリズムの1つ又は複数の変形例に依存し得る。データのバッチサイズは、CNNのために選択された学習率に依存し得る。CNNは、パフォーマンスに従ってテストされた運動量値を利用し得る。一例では、運動量値は、0.90~0.99の範囲から選択され得る。しかしながら、他の例では他の運動量値が選択され得る。CNNは、比較的小さいトレーニングデータセットに起因して、より大きい重み値を含み得る。しかしながら、これらの重みは、他のタイプのトレーニングデータセットについては異なり得る。
【0251】
[0301]CNNは、CNNが適用された3次元の患者固有の画像データに従って上腕骨インプラントのステムサイズを出力し得る(1216)。ステムサイズは、ステム長及び/又は断面寸法(例えば、直径、円周、面積、又は他のそのようなパラメータ)を含み得る。このように、決定されたステムサイズは、患者の骨梁及び/又は上腕骨の海綿骨の特定の寸法及び/又は骨密度に対応するように選択され得る。ステムサイズに基づいて、処理回路1132は、患者に対する上腕骨インプラントタイプの推奨を出力し得る(1218)。このように、処理回路1132は、患者を治療するのに適切となるのがステム付き上腕骨インプラントであるかステムレス上腕骨インプラントであるかを決定し得る。いくつかの例では、CNNは、患者固有の撮像データから決定された骨密度メトリックに適用され得る。他の例では、CNNを骨密度メトリックの代わりに使用して、CNNが患者固有の撮像データに従って上腕骨インプラントのステムサイズを直接出力することができるようにし得る。いくつかの例では、骨密度モデリングモジュール1162は、CNN及び関連パラメータを含み得る。
【0252】
[0302]上述したように、処理回路1132は、畳み込みニューラルネットワークをトレーニングし、畳み込みニューラルネットワークを患者固有の画像データ(例えば、3D撮像データ)に適用して、患者固有の画像データが取得された患者の上腕骨インプラントの推奨ステムサイズを生成することができる。一例では、システムは、患者に関する患者固有の画像データを記憶するように構成されたメモリと、畳み込みニューラルネットワークを患者固有の画像データ(又はそのサブセット)に適用することと、患者固有の画像データに適用された畳み込みニューラルネットワークに基づいて、患者の上腕骨インプラントのステムサイズを出力することとを行うように構成された処理回路(例えば、処理回路1132)とを含み得る。処理回路はまた、ステムサイズを含む上腕骨インプラントタイプの推奨を出力するように構成され得る。患者固有の画像データは、上腕骨のような、患者の1つ又は複数の骨の一部又は全部の骨密度を表し得る。いくつかの例では、処理回路はまた、上腕骨頭の少なくとも一部の骨密度を表す骨密度メトリックの表現を出力し得るが、CNNが患者固有の画像データに適用される場合、骨密度メトリックは、ステムサイズ推奨を生成するために採用されてもされなくてもよい。
【0253】
[0303]図39Cは、患者固有の画像データから決定された軟組織構造及び骨密度に基づいて肩関節治療についての推奨を決定するための例となる手順を例示するフローチャートである。システム1140の処理回路1142は、図39Cの例を実行するものとして説明されるが、システム542又は仮想計画システム102のような他のデバイス又はシステムが、本技法の1つ又は複数の部分を実行し得る。更に、本技法のいくつかの部分は、分散システムを介して2つ以上のデバイス及び/又はシステムの組合せによって実行され得る。図39Cのプロセスは、3次元データセットに関して説明されるが、他の例では、データのいくつかの2次元スライスが同様の方法で分析され得る。
【0254】
[0304]図39Cの例に示されるように、処理回路1142は、患者固有の画像データに基づいて、1つ又は複数の軟組織構造の特性を決定し得る(1220)。これらの特性は、例えば、図23A、23B、24、25、26、及び27に関して説明されるような1つ又は複数の軟組織構造の体積、脂肪浸潤率、萎縮率、及び/又は可動域を含み得る。処理回路1142はまた、図39Aにあるように本明細書で説明されるように、患者固有の画像データの強度に基づいて、上腕骨頭の少なくとも一部についての骨密度メトリックを決定し得る(1222)。
【0255】
[0305]処理回路1142は、軟組織特性と骨密度メトリックとに基づいて肩関節治療についての1つ又は複数の推奨を決定し得る(1224)。例えば、処理回路1142は、軟組織特性のうちの1つ又は複数に基づいて、肩関節置換術がリバース型肩関節置換術であるべきか解剖学的肩関節置換術であるべきかを決定し得る。加えて、処理回路1142は、肩関節置換術に使用される上腕骨インプラントタイプがステムレス上腕骨インプラントタイプであるべきか又はステム付き上腕骨インプラントタイプであるべきかを決定し得る。いくつかの例では、処理回路1142は、軟組織特性及び/又は骨密度メトリックに基づいて、上腕骨インプラント又は関節窩インプラントのうちの少なくとも1つの位置を決定し得る。次いで、処理回路1142は、患者の肩関節の治療についての決定された1つ又は複数の推奨を出力し得る(1226)。このように、処理回路1142は、肩関節治療に関する推奨を提供するために、患者固有の画像データ及び他の患者情報から導出された特性、メトリック、又は他の情報のいずれかを使用し得る。
【0256】
[0306]図40は、骨密度情報を表示するための例となる手順を例示するフローチャートである。システム1140の処理回路1142は、図40の例を実行するものとして説明されるが、システム542又は仮想計画システム102のような他のデバイス又はシステムが、本技法の1つ又は複数の部分を実行し得る。更に、本技法のいくつかの部分は、分散システムを介して2つ以上のデバイス及び/又はシステムの組合せによって実行され得る。図40のプロセスは、3次元データセットに関して説明されるが、他の例では、データのいくつかの2次元スライスが同様の方法で分析され得る。
【0257】
[0307]図40の例に示されるように、処理回路1142は、図39Aで説明したプロセスのように、患者固有の画像データの強度に基づいて上腕骨頭の少なくとも一部についての骨密度メトリックを決定し得る(1230)。次いで、処理回路1142は、骨密度メトリックのグラフィカル表現を決定し得る(1232)。これらのグラフィカル表現は、図42及び図43で説明される骨密度メトリックのグラフィカル表現に類似し得る。次いで、処理回路1142は、上腕骨頭の少なくとも一部上に骨密度メトリックのグラフィカル表現を提示するようにユーザインターフェースを制御し得る(1234)。
【0258】
[0308]図41は、上腕骨1332と切断面1338とを含む例となるユーザインターフェース1300の概念図である。図41の例に示されるように、ユーザインターフェース1300は、ナビゲーションバー1301とツールバー1318及び1320とを含む。ナビゲーションバー1301は、ユーザによって選択されると、ユーザインターフェース1300を、肩関節置換術を計画することといった肩関節治療に関する異なる機能性又は情報のビューに変化させる選択可能なボタンを含み得る。
【0259】
[0309]ナビゲーションバー1301は、患者に関する情報又は治療のタイプに関する可能なアクションを示す初期画面にユーザを誘導する初期画面ボタン1302を含み得る。計画ボタン1304は、ユーザインターフェース130のビューを、上腕骨1332を含むビュー1330のような骨及び/又は軟組織構造の表現を含み得る肩関節手術の仮想計画に変更し得る。グラフトボタン1306は、手術に関する潜在的な骨又は軟組織移植片のビューを示し得、上腕骨切断ボタン1308は、内部の骨梁を露出させるように切断された上腕骨頭1332の表現を示し得る。インストールガイドボタン1310は、可能な又は推奨される上腕骨インプラントを示し得る。関節窩リーミングボタン1314は、関節窩に対して行われる例となるリーミングのビューを示し得、関節窩インプラントボタン1316は、患者のために埋め込むことができる可能な又は推奨される関節窩インプラントの例を示し得る。ツールバー1318は、選択されると、ユーザインターフェース1300に、ビュー1330のビュー、回転、又はサイズを変更させる選択可能なボタンを含み得る。ツールバー1320は、選択されると、ユーザインターフェース1300を、解剖学的構造の腹側ビュー又は側方ビューのようなビュー1330に示された解剖学的構造の解剖学的平面の間で変更させる選択可能なボタンを含み得る。
【0260】
[0310]ビュー1330は、シャフト1334と上腕骨頭1336とを示す上腕骨1332の斜視図を含む。切断面1338は、上腕骨インプラントを埋め込む前に、上腕骨頭1336をどのように切断することができるかを示すために示されている。ユーザインターフェース1300は、最初に、切断面1338の推奨位置を示し得るが、ユーザインターフェース1300は、ユーザが、計画プロセス中、好きなように切断面1338を移動させることを可能にし得る。ユーザが切断面1338の位置に満足すると、ユーザインターフェース1300は、上腕骨頭1336の上部を除去して、図42及び図43に示されるように、上腕骨インプラントが埋め込まれ得る骨梁の表現を露出させることができる。
【0261】
[0311]図42は、上腕骨頭1342と骨密度メトリック1344の表現とを含む例となるユーザインターフェース1300の概念図である。図42の例に示されるように、ユーザインターフェース1300は、図41の切断面1338に沿って上腕骨頭の上部を除去した後の上腕骨頭1342が示されるビュー1340を含み得る。上腕骨頭1342は、患者の上腕骨の表現であり、患者固有の画像データから導出され得る。骨密度メトリック1344は、上腕骨1332の骨梁に対して生成された骨密度メトリックのグラフィカル表現であり得る。
【0262】
[0312]骨密度メトリック1344は、各色の強度のそれぞれの範囲1346A及び1346B内に入る強度のボクセルを表す異なる色を含み得る。このように、骨密度メトリック1344は、上腕骨頭1342内の骨梁のボクセルの異なるグループについての骨密度値を含み得る。例えば、範囲1346Aは、0.30g/cmよりも高い骨密度の表現であり、範囲1346Bは、0.15g/cm~0.30g/cmの骨密度の表現である。骨密度キー1347は、患者固有の画像データから決定された骨密度の可能な範囲に対する異なる色を示す。骨密度キー1347に示される3つの範囲は単なる例であり、他の例では、異なる数の範囲又は異なる下限及び上限を有する範囲が使用され得る。
【0263】
[0313]他の例では、ビュー1340は、患者固有の画像データからのボクセル強度の範囲を表す画像、又はボクセルの個々もしくはグループからの強度の表現である骨密度メトリック1344を提示し得る。一例として、骨密度メトリック1344は、単に、同じ切断面1338に対応する患者固有の画像データからのボクセル強度を含み得る。換言すると、ビュー1340は、上腕骨1332の露出した表現に重ね合わされた切断面1338に対応する2D平面に関するCTデータのピクチャを含み得る。別の例として、ビュー1340は、例えば、ハウンスフィールド単位の異なる範囲(CTデータの例の場合)に対応する異なる色又はパターンを有するヒートマップを含み得る。このように、骨密度メトリック1344のような骨密度メトリックは、骨密度に関連するか、又はそれを表し得るが、実際の骨密度メトリックは、そのエリアにおける骨の密度の測定値を実際に反映しない場合がある。
【0264】
[0314]図43は、上腕骨頭1342と、上腕骨インプラントの推奨のタイプに関連する骨密度メトリック1352の表現とを含む例となるユーザインターフェース1300の概念図である。図43の例に示されるように、ユーザインターフェース1300は、図42と同様に、図41の切断面1338に沿って上腕骨頭の上部を除去した後の上腕骨頭1342が示されるビュー1350を含み得る。上腕骨頭1342は、患者の上腕骨の表現であり、患者固有の画像データから導出され得る。骨密度メトリック1352は、上腕骨1332の骨梁に対して生成された骨密度メトリックのグラフィカル表現であり得る。
【0265】
[0315]骨密度メトリック1352は、上腕骨1332について決定された骨密度に基づいて、骨梁に埋め込むことができる上腕骨インプラントのタイプを示す。このように、骨密度メトリック1352は、患者固有の患者データからの決定された骨密度を、上腕骨1332内のその密度の骨によって支持される上腕骨インプラントのタイプに関連するカテゴリの一部として含む。メトリックキー1354は、いずれかのタイプの上腕骨インプラントに対応する骨密度メトリック1352の色を示す。例えば、より明るい色は、ステムレス上腕骨インプラントを埋め込むことができることを示し、より暗い色は、ステム付き上腕骨インプラントを上腕骨1332に埋め込むことができることを示す。図43の例に示されるように、骨密度メトリック1352は、骨梁の密度がステムレス上腕骨インプラントの埋め込みを支持するのに十分であることを示す。いくつかの例では、骨密度メトリック1352は、異なる色、パターン、形状、又は他のグラフィカル表現によって、異なるタイプの上腕骨インプラントを区別し得る。一例では、骨密度メトリック1352は、上腕骨インプラントのステムの長さを表す画像又はステムレスタイプのような上腕骨インプラント自体のタイプのグラフィカル表現であり得る。
【0266】
[0316]以下の実施例が本明細書で説明される。実施例1:患者の軟組織構造をモデル化するためのシステムであって、患者に関する患者固有の画像データを記憶するように構成されたメモリと、患者固有の画像データを受け取ることと、患者固有の画像データの強度に基づいて、患者の軟組織構造を表す患者固有の形状を決定することと、患者固有の形状を出力することとを行うように構成された処理回路とを備えるシステム。
【0267】
[0317]実施例2:処理回路は、初期形状を受け取ることと、初期形状上の複数の表面点を決定することと、初期形状を患者固有の画像データに位置合わせすることと、患者の軟組織構造の少なくとも部分的な境界を表す患者固有の画像データ内の1つ又は複数の輪郭を識別することと、1つ又は複数の輪郭のそれぞれの位置に向かって複数の表面点を反復的に移動させて初期形状を患者の軟組織構造を表す患者固有の形状に変化させることとを行うように構成される、実施例1に記載のシステム。
【0268】
[0318]実施例3:処理回路は、複数の表面点の各表面点から、それぞれの表面点から外向き又は内向きのうちの少なくとも1つにベクトルを伸ばすことと、各表面点からのベクトルについて、閾値強度値を超える患者固有の画像データ内のそれぞれの位置を決定することと、ここにおいて、複数の表面点の少なくとも1つの表面点についてのそれぞれの位置が1つ又は複数の輪郭を少なくとも部分的に画定する、によって、1つ又は複数の輪郭を識別するように構成される、実施例2に記載のシステム。
【0269】
[0319]実施例4:処理回路は、患者固有の画像データから、2つ以上のボクセル間のより高い強度勾配を含む患者固有の画像データの領域を示すヘシアン特徴画像を決定することと、ヘシアン特徴画像に基づいて、軟組織構造と隣接する軟組織構造との間の1つ又は複数の分離ゾーンを識別することと、1つ又は複数の輪郭の少なくとも一部を、1つ又は複数の分離ゾーンを通過するものとして決定することとによって、1つ又は複数の輪郭を識別するように構成される、実施例2又は3に記載のシステム。
【0270】
[0320]実施例5:処理回路は、所定の強度値超の患者固有の画像データ内のそれぞれの位置を決定することによって、閾値強度値を超える患者固有の画像データ内のそれぞれの位置を決定するように構成される、実施例2~4のいずれかに記載のシステム。
【0271】
[0321]実施例6:所定の閾値強度値は、患者固有の画像データにおける骨を表し、処理回路は、骨を表す所定の閾値強度値を超える患者固有の画像データ内の各それぞれの位置について、表面点をそれぞれの位置に移動させるように構成される、実施例5に記載のシステム。
【0272】
[0322]実施例7:処理回路は、所定の強度値未満の患者固有の画像データ内のそれぞれの位置を決定することによって、閾値強度値を超える患者固有の画像データ内のそれぞれの位置を決定するように構成される、実施例2~6のいずれかに記載のシステム。
【0273】
[0323]実施例8:処理回路は、それぞれの表面点に関連する強度と患者固有の画像データ内のそれぞれの位置の強度との間の差分閾値超の患者固有の画像データ内のそれぞれの位置を決定することによって、閾値強度値を超える患者固有の画像データ内のそれぞれの位置を決定するように構成される、実施例2~7のいずれかに記載のシステム。
【0274】
[0324]実施例9:処理回路は、複数の表面点を移動させる反復ごとに、複数の表面点の各表面点から、それぞれの表面点から及びそれぞれの表面点を含む表面に対して垂直なベクトルを伸ばすことと、各表面点からのベクトルについて、閾値強度値を超える患者固有の画像データ内のそれぞれの点を決定することと、各それぞれの点について、患者固有の画像データ内の閾値強度値を超える、それぞれの点の包絡線内の複数の潜在的位置を決定することと、ここにおいて、複数の潜在的位置は、1つ又は複数の輪郭の表面を少なくとも部分的に画定する、複数の潜在的位置の各々ついて、表面に対して垂直なそれぞれの法線ベクトルを決定することと、それぞれの法線ベクトルの各々について、それぞれの法線ベクトルとそれぞれの表面点からのベクトルとの間の角度を決定することと、各それぞれの表面点について、それぞれの表面点からのベクトルと複数の潜在的位置の各々からのそれぞれの法線ベクトルとの間の最小角度を構成する1つの潜在的位置を複数の潜在的位置の中から選択することと、各それぞれの表面点について、少なくとも部分的に、選択された1つの潜在的位置に向かってそれぞれの表面点を移動させることと、ここにおいて、それぞれの表面点を移動させることで、初期形状を患者固有の形状に向かって修正する、によって、1つ又は複数の輪郭のそれぞれの位置に向かって複数の表面点を反復的に移動させるように構成される、実施例2~8のいずれかに記載のシステム。
【0275】
[0325]実施例10:処理回路は、それぞれの表面点と選択された1つの潜在的位置との間の距離の少なくとも半分だけそれぞれの表面点を移動させるように構成される、実施例9に記載のシステム。
【0276】
[0326]実施例11:処理回路は、第1の反復において、初期形状から、複数の表面点の各表面点を第1の修正距離の第1の許容範囲内で第1のそれぞれの距離だけ移動させて第2の形状を生成することと、ここで、第1の許容範囲は、第2の形状の平滑性を維持するように選択される、第1の反復に続く第2の反復において、複数の表面点の各表面点を第2の修正距離の第2の許容範囲内で第2のそれぞれの距離だけ移動させて第2の形状から第3の形状を生成することと、ここにおいて、第2の許容範囲は、第1の許容範囲よりも大きい、によって、1つ又は複数の輪郭のそれぞれの潜在的位置に向かって複数の表面点を反復的に移動させるように構成される、実施例9又は10に記載のシステム。
【0277】
[0327]実施例12:処理回路は、患者固有の画像データから、2つ以上のボクセル間のより高い強度勾配を含む患者固有の画像データの領域を示すヘシアン特徴画像を決定することと、ヘシアン特徴画像に基づいて、軟組織構造と隣接する軟組織構造との間の1つ又は複数の分離ゾーンを識別することと、1つ又は複数の輪郭の少なくとも一部を、1つ又は複数の分離ゾーンを通過するものとして決定することとによって、1つ又は複数の輪郭を識別するように構成される、実施例2~11のいずれかに記載のシステム。
【0278】
[0328]実施例13:処理回路は、初期形状上の複数の位置を、患者固有の画像データにおいて識別された1つ又は複数の骨上の対応する挿入位置に位置合わせすることによって、初期形状を位置合わせするように構成される、実施例2~12のいずれかに記載のシステム。
【0279】
[0329]実施例14:初期形状及び患者固有の形状は3次元形状である、実施例2~13のいずれかに記載のシステム。
【0280】
[0330]実施例15:初期形状は幾何学的形状を含む、実施例1~14のいずれかに記載のシステム。
【0281】
[0331]実施例16:初期形状は、患者とは異なる複数の被験者の軟組織構造を表す解剖学的形状を含む、実施例1~15のいずれかに記載のシステム。
【0282】
[0332]実施例17:解剖学的形状は、複数の被験者について撮像された軟組織構造から生成された統計的平均形状を含む、実施例16に記載のシステム。
【0283】
[0333]実施例18:患者固有の画像データは、患者から生成されたコンピュータ断層撮影(CT)画像データを含む、実施例1~17のいずれかに記載のシステム。
【0284】
[0334]実施例19:軟組織構造は筋肉を含む、実施例1~18のいずれかに記載のシステム。
【0285】
[0335]実施例20:筋肉は、患者の回旋腱板に関連する、実施例19に記載のシステム。
【0286】
[0336]実施例21:患者固有の形状は、3次元形状を含む、実施例1~20のいずれかに記載のシステム。
【0287】
[0337]実施例22:処理回路は、患者固有の形状の脂肪体積比を決定することと、患者固有の形状の萎縮率を決定することと、患者の軟組織構造の患者固有の形状の脂肪体積比及び萎縮率に基づいて、患者の上腕骨の可動域を決定することと、上腕骨の可動域に基づいて、患者の肩関節治療のタイプを決定することとを行うように構成される、実施例1~21のいずれかに記載のシステム。
【0288】
[0338]実施例23:処理回路は、患者の回旋腱板の各筋肉の脂肪体積比及び萎縮率に基づいて、患者の上腕骨の可動域を決定することによって、上腕骨の可動域を決定するように構成される、実施例22に記載のシステム。
【0289】
[0339]実施例24:肩関節治療のタイプは、解剖学的肩関節置換手術又はリバース型肩関節置換手術のうちの1つから選択される、実施例22又は23に記載のシステム。
【0290】
[0340]実施例25:処理回路は、患者固有の形状にマスクを適用することと、マスク下のボクセルに閾値を適用することと、閾値未満のボクセルに基づいて脂肪体積を決定することと、脂肪体積と軟組織構造の患者固有の形状の体積とに基づいて脂肪浸潤値を決定することと、軟組織構造の脂肪浸潤値を出力することとを行うように構成される、実施例1~24のいずれかに記載のシステム。
【0291】
[0341]実施例26:処理回路は、患者の軟組織構造の骨対筋肉寸法を決定することと、軟組織構造の統計的平均形状(SMS)を取得することと、アルゴリズムの閾値を満たすことによってSMSを変形させて、SMSの変形バージョンを軟組織構造の骨対筋肉寸法に適合させることと、SMS体積を軟組織構造体積で割ることによって軟組織構造の萎縮率を決定することと、軟組織構造の萎縮率を出力することとを行うように構成される、実施例1~25のいずれかに記載のシステム。
【0292】
[0342]実施例27:患者の軟組織構造をモデル化するための方法であって、メモリによって、患者に関する患者固有の画像データを記憶することと、処理回路によって、患者固有の画像データを受け取ることと、処理回路によって、患者固有の画像データの強度に基づいて、患者の軟組織構造を表す患者固有の形状を決定することと、処理回路によって、患者固有の形状を出力することとを含む方法。
【0293】
[0343]実施例28:初期形状を受け取ることと、初期形状上の複数の表面点を決定することと、初期形状を患者固有の画像データに位置合わせすることと、患者の軟組織構造の境界を表す患者固有の画像データ内の1つ又は複数の輪郭を識別することと、1つ又は複数の輪郭のそれぞれの位置に向かって複数の表面点を反復的に移動させて初期形状を患者の軟組織構造を表す患者固有の形状に変化させることとを更に含む、実施例27に記載の方法。
【0294】
[0344]実施例29:1つ又は複数の輪郭を識別することは、複数の表面点の各表面点から、それぞれの表面点から外向き又は内向きのうちの少なくとも1つにベクトルを伸ばすことと、各表面点からのベクトルについて、閾値強度値を超える患者固有の画像データ内のそれぞれの位置を決定することと、ここにおいて、複数の表面点の少なくとも1つの表面点についてのそれぞれの位置が1つ又は複数の輪郭を少なくとも部分的に画定する、によるものである、実施例28に記載の方法。
【0295】
[0345]実施例30:1つ又は複数の輪郭を識別することは、患者固有の画像データから、2つ以上のボクセル間のより高い強度勾配を含む患者固有の画像データの領域を示すヘシアン特徴画像を決定することを含む、実施例28又は29に記載の方法。
【0296】
[0346]ヘシアン特徴画像に基づいて、軟組織構造と隣接する軟組織構造との間の1つ又は複数の分離ゾーンを識別することと、1つ又は複数の輪郭の少なくとも一部を、1つ又は複数の分離ゾーンを通過するものとして決定すること。
【0297】
[0347]実施例31:閾値強度値を超える患者固有の画像データ内のそれぞれの位置を決定することは、所定の強度値超の患者固有の画像データ内のそれぞれの位置を決定することを含む、実施例28~30のいずれかに記載の方法。
【0298】
[0348]実施例32:所定の閾値強度値は、患者固有の画像データにおける骨を表し、方法は、骨を表す所定の閾値強度値を超える患者固有の画像データ内の各それぞれの位置について、表面点をそれぞれの位置に移動させることを更に含む、実施例31の方法。
【0299】
[0349]実施例33:閾値強度値を超える患者固有の画像データ内のそれぞれの位置を決定することは、所定の強度値未満の患者固有の画像データ内のそれぞれの位置を決定することを含む、実施例28~32のいずれかに記載の方法。
【0300】
[0350]実施例34:閾値強度値を超える患者固有の画像データ内のそれぞれの位置を決定することは、それぞれの表面点に関連する強度と患者固有の画像データ内のそれぞれの位置の強度との間の差分閾値超の患者固有の画像データ内のそれぞれの位置を決定することを含む、実施例28~33のいずれかに記載の方法。
【0301】
[0351]実施例35:1つ又は複数の輪郭のそれぞれの位置に向かって複数の表面点を反復的に移動させることは、複数の表面点を移動させる反復ごとに、複数の表面点の各表面点から、それぞれの表面点から及びそれぞれの表面点を含む表面に対して垂直なベクトルを伸ばすことと、各表面点からのベクトルについて、閾値強度値を超える患者固有の画像データ内のそれぞれの点を決定することと、各それぞれの点について、患者固有の画像データ内の閾値強度値を超える、それぞれの点の包絡線内の複数の潜在的位置を決定することと、ここにおいて、複数の潜在的位置は、1つ又は複数の輪郭の表面を少なくとも部分的に画定する、複数の潜在的位置の各々ついて、表面に対して垂直なそれぞれの法線ベクトルを決定することと、それぞれの法線ベクトルの各々について、それぞれの法線ベクトルとそれぞれの表面点からのベクトルとの間の角度を決定することと、各それぞれの表面点について、それぞれの表面点からのベクトルと複数の潜在的位置の各々からのそれぞれの法線ベクトルとの間の最小角度を構成する1つの潜在的位置を複数の潜在的位置の中から選択することと、各それぞれの表面点について、少なくとも部分的に、選択された1つの潜在的位置に向かってそれぞれの表面点を移動させることと、ここにおいて、それぞれの表面点を移動させることで、初期形状を患者固有の形状に向かって修正する、を含む、実施例28~34のいずれかに記載の方法。
【0302】
[0352]実施例36:それぞれの表面点と選択された1つの潜在的位置との間の距離の少なくとも半分だけそれぞれの表面点を移動させることを更に含む、実施例35に記載の方法。
【0303】
[0353]実施例37:1つ又は複数の輪郭のそれぞれの潜在的位置に向かって複数の表面点を反復的に移動させることは、第1の反復において、初期形状から、複数の表面点の各表面点を第1の修正距離の第1の許容範囲内で第1のそれぞれの距離だけ移動させて第2の形状を生成することと、ここで、第1の許容範囲は、第2の形状の平滑性を維持するように選択される、第1の反復に続く第2の反復において、複数の表面点の各表面点を第2の修正距離の第2の許容範囲内で第2のそれぞれの距離だけ移動させて第2の形状から第3の形状を生成することと、ここにおいて、第2の許容範囲は、第1の許容範囲よりも大きい、を含む、実施例35又は36に記載の方法。
【0304】
[0354]実施例38:処理回路は、患者固有の画像データから、2つ以上のボクセル間のより高い強度勾配を含む患者固有の画像データの領域を示すヘシアン特徴画像を決定することと、ヘシアン特徴画像に基づいて、軟組織構造と隣接する軟組織構造との間の1つ又は複数の分離ゾーンを識別することと、1つ又は複数の輪郭の少なくとも一部を、1つ又は複数の分離ゾーンを通過するものとして決定することとによって、1つ又は複数の輪郭を識別するように構成される、実施例28~37のいずれかに記載の方法。
【0305】
[0355]実施例39:初期形状を位置合わせすることは、初期形状上の複数の位置を、患者固有の画像データにおいて識別された1つ又は複数の骨上の対応する挿入位置に位置合わせすることを含む、実施例28~38のいずれかに記載の方法。
【0306】
[0356]実施例40:初期形状及び患者固有の形状は3次元形状である、実施例28~39のいずれかに記載の方法。
【0307】
[0357]実施例41:初期形状は幾何学的形状を含む、実施例27~40のいずれかに記載の方法。
【0308】
[0358]実施例42:初期形状は、患者とは異なる複数の被験者の軟組織構造を表す解剖学的形状を含む、実施例27~41のいずれかに記載の方法。
【0309】
[0359]実施例43:解剖学的形状は、複数の被験者について撮像された軟組織構造から生成された統計的平均形状を含む、実施例42に記載の方法。
【0310】
[0360]実施例44:患者固有の画像データは、患者から生成されたコンピュータ断層撮影(CT)画像データを含む、実施例27~43のいずれかに記載の方法。
【0311】
[0361]実施例45:軟組織構造は筋肉を含む、実施例27~44のいずれかに記載の方法。
【0312】
[0362]実施例46:筋肉は、患者の回旋腱板に関連する、実施例45に記載の方法。
【0313】
[0363]実施例47:患者固有の形状は、3次元形状を含む、実施例27~46のいずれかに記載の方法。
【0314】
[0364]実施例48:患者固有の形状の脂肪体積比を決定することと、患者固有の形状の萎縮率を決定することと、患者の軟組織構造の患者固有の形状の脂肪体積比及び萎縮率に基づいて、患者の上腕骨の可動域を決定することと、上腕骨の可動域に基づいて、患者の肩関節治療のタイプを決定することとを更に含む、実施例27~47のいずれかに記載の方法。
【0315】
[0365]実施例49:上腕骨の可動域を決定することは、患者の回旋腱板の各筋肉の脂肪体積比及び萎縮率に基づいて、患者の上腕骨の可動域を決定することを含む、実施例48に記載の方法。
【0316】
[0366]実施例50:肩関節治療のタイプは、解剖学的肩関節置換手術又はリバース型肩関節置換手術のうちの1つから選択される、実施例48又は49に記載の方法。
【0317】
[0367]実施例51:患者固有の形状にマスクを適用することと、マスク下のボクセルに閾値を適用することと、閾値未満のボクセルに基づいて脂肪体積を決定することと、脂肪体積と軟組織構造の患者固有の形状の体積とに基づいて脂肪浸潤値を決定することと、軟組織構造の脂肪体積値を出力することとを更に含む、実施例27~50のいずれかに記載の方法。
【0318】
[0368]実施例52:患者の軟組織構造の骨対筋肉寸法を決定することと、軟組織構造の統計的平均形状(SMS)を取得することと、アルゴリズムの閾値を満たすことによってSMSを変形させて、SMSの変形バージョンを軟組織構造の骨対筋肉寸法に適合させることと、SMS体積を軟組織構造体積で割ることによって軟組織構造の萎縮率を決定することと、軟組織構造の萎縮率を出力することとを更に含む、実施例27~51のいずれかに記載の方法。
【0319】
[0369]実施例53:命令を含むコンピュータ可読記憶媒体であって、命令は、処理回路によって実行されると、処理回路に、患者に関する患者固有の画像データをメモリに記憶することと、患者固有の画像データを受け取ることと、患者固有の画像データの強度に基づいて、患者の軟組織構造を表す患者固有の形状を決定することと、患者固有の形状を出力することとを行わせる、コンピュータ可読記憶媒体。
【0320】
[0370]実施例54:患者の軟組織構造をモデル化するためのシステムであって、患者に関する患者固有の画像データを記憶するための手段と、患者固有の画像データを受け取るための手段と、患者固有の画像データの強度に基づいて、患者の軟組織構造を表す患者固有の形状を決定するための手段と、患者固有の形状を出力するための手段とを備えるシステム。
【0321】
[0371]実施例101:患者の軟組織構造をモデル化するためのシステムであって、患者に関する患者固有のコンピュータ断層撮影(CT)データを記憶するように構成されたメモリと、患者固有のCTデータを受け取ることと、患者固有のCTデータ内の1つ又は複数の骨構造に関連する1つ又は複数の位置を識別することと、初期形状を1つ又は複数の位置に位置合わせすることと、初期形状を患者の軟組織構造を表す患者固有の形状に修正することと、患者固有の形状を出力することとを行うように構成された処理回路とを備えるシステム。
【0322】
[0372]実施例102:1つ又は複数の骨構造に関連する1つ又は複数の位置は、患者固有のCTデータにおいて識別された1つ又は複数の骨構造の1つ又は複数の挿入位置を含む、実施例101に記載のシステム。
【0323】
[0373]実施例103:処理回路は、患者の軟組織構造の少なくとも部分的な境界を表す患者固有のCTデータ内の1つ又は複数の輪郭を識別することと、1つ又は複数の輪郭に基づいて、初期形状を患者の軟組織構造を表す患者固有の形状に修正することとを行うように構成される、実施例102に記載のシステム。
【0324】
[0374]実施例104:処理回路は、初期形状上の複数の表面点を決定することと、1つ又は複数の輪郭のそれぞれの位置に向かって複数の表面点を反復的に移動させて初期形状を患者の軟組織構造を表す患者固有の形状に変化させることによって初期形状を修正することとを行うように構成される、実施例103に記載のシステム。
【0325】
[0375]実施例105:処理回路は、複数の表面点の各表面点から、それぞれの表面点から外向き又は内向きのうちの少なくとも1つにベクトルを伸ばすことと、各表面点からのベクトルについて、閾値強度値を超える患者固有のCTデータ内のそれぞれの位置を決定することと、ここにおいて、複数の表面点の少なくとも1つの表面点についてのそれぞれの位置が1つ又は複数の輪郭を少なくとも部分的に画定する、によって、初期形状を修正するように構成される、実施例103又は104に記載のシステム。
【0326】
[0376]実施例106:処理回路は、患者固有のCTデータから、2つ以上のボクセル間のより高い強度勾配を含む患者固有のCTデータの領域を示すヘシアン特徴画像を決定することと、ヘシアン特徴画像に基づいて、軟組織構造と隣接する軟組織構造との間の1つ又は複数の分離ゾーンを識別することと、1つ又は複数の輪郭の少なくとも一部を、1つ又は複数の分離ゾーンを通過するものとして決定することとによって、1つ又は複数の輪郭を識別するように構成される、実施例103~105のいずれかに記載のシステム。
【0327】
[0377]実施例107:処理回路は、1つ又は複数の位置の各々と初期形状上のそれぞれの点との間の対応関係を決定することと、患者固有のCTデータ内の対応関係の各々に沿って強度プロファイルを決定することと、1つ又は複数の位置の各位置について、それぞれの対応関係についての強度プロファイルに基づいて、位置と初期形状上のそれぞれの点との間の距離を決定することと、1つ又は複数の位置と初期形状上の点との間のそれぞれの距離に従って、患者固有のCTデータ内の初期形状を方向付けることとによって、初期形状を1つ又は複数の位置に位置合わせするように構成される、実施例101~106のいずれかに記載のシステム。
【0328】
[0378]実施例108:処理回路は、初期形状と軟組織構造を表す患者固有のCTデータの分散との間の差を最小化するように初期形状をスケーリングすることによって、初期形状を患者固有の形状に修正するように構成される、実施例107に記載のシステム。
【0329】
[0379]実施例109:処理回路は、以下のパラメトリック方程式に従って患者固有の形状(複数可)を決定するように構成され、
【数4】
ここにおいて、s’は患者とは異なる複数の被験者の軟組織構造を表す初期形状であり、λiは固有値であり、vは患者固有のCTデータの分散を表す共分散行列の固有ベクトルであり、bは初期形状を修正するスケーリング係数である、実施例108に記載のシステム。
【0330】
[0380]実施例110:初期形状は、患者とは異なる複数の被験者の軟組織構造を表す解剖学的形状を含む、実施例101~109のいずれかに記載のシステム。
【0331】
[0381]実施例111:解剖学的形状は、複数の被験者について撮像された軟組織構造から生成された統計的平均形状を含む、実施例110に記載のシステム。
【0332】
[0382]実施例112:軟組織構造は筋肉を含む、実施例101~111のいずれかに記載のシステム。
【0333】
[0383]実施例113:筋肉は、患者の回旋腱板に関連する、実施例112に記載のシステム。
【0334】
[0384]実施例114:患者固有の形状は、3次元形状を含む、実施例101~113のいずれかに記載のシステム。
【0335】
[0385]実施例115:処理回路は、患者固有の形状の脂肪体積比を決定することと、患者固有の形状の萎縮率を決定することと、患者の軟組織構造の患者固有の形状の脂肪体積比及び萎縮率に基づいて、患者の上腕骨の可動域を決定することと、上腕骨の可動域に基づいて、患者の肩関節治療のタイプを決定することとを行うように構成される、実施例101~114のいずれかに記載のシステム。
【0336】
[0386]実施例116:肩関節治療のタイプは、解剖学的肩関節置換手術又はリバース型肩関節置換手術のうちの1つから選択される、実施例115に記載のシステム。
【0337】
[0387]実施例117:患者の軟組織構造をモデル化するための方法であって、患者に関する患者固有のコンピュータ断層撮影(CT)データをメモリに記憶することと、処理回路によって、患者固有のCTデータを受け取ることと、処理回路によって、患者固有のCTデータ内の1つ又は複数の骨構造に関連する1つ又は複数の位置を識別することと、処理回路によって、初期形状を1つ又は複数の位置に位置合わせすることと、処理回路によって、初期形状を患者の軟組織構造を表す患者固有の形状に修正することと、処理回路によって、患者固有の形状を出力することとを含む方法。
【0338】
[0388]実施例118:1つ又は複数の骨構造に関連する1つ又は複数の位置は、患者固有のCTデータにおいて識別された1つ又は複数の骨構造の1つ又は複数の挿入位置を含む、実施例117に記載の方法。
【0339】
[0389]実施例119:患者の軟組織構造の少なくとも部分的な境界を表す患者固有のCTデータ内の1つ又は複数の輪郭を識別することと、1つ又は複数の輪郭に基づいて、初期形状を患者の軟組織構造を表す患者固有の形状に修正することとを更に含む、実施例118に記載の方法。
【0340】
[0390]実施例120:初期形状上の複数の表面点を決定することと、1つ又は複数の輪郭のそれぞれの位置に向かって複数の表面点を反復的に移動させて初期形状を患者の軟組織構造を表す患者固有の形状に変化させることによって初期形状を修正することとを更に含む、実施例119に記載の方法。
【0341】
[0391]実施例121:初期形状を修正することは、複数の表面点の各表面点から、それぞれの表面点から外向き又は内向きのうちの少なくとも1つにベクトルを伸ばすことと、各表面点からのベクトルについて、閾値強度値を超える患者固有のCTデータ内のそれぞれの位置を決定することと、ここにおいて、複数の表面点の少なくとも1つの表面点についてのそれぞれの位置が1つ又は複数の輪郭を少なくとも部分的に画定する、を含む、実施例119又は120に記載の方法。
【0342】
[0392]実施例122:1つ又は複数の輪郭を識別することは、患者固有のCTデータから、2つ以上のボクセル間のより高い強度勾配を含む患者固有のCTデータの領域を示すヘシアン特徴画像を決定することと、ヘシアン特徴画像に基づいて、軟組織構造と隣接する軟組織構造との間の1つ又は複数の分離ゾーンを識別することと、1つ又は複数の輪郭の少なくとも一部を、1つ又は複数の分離ゾーンを通過するものとして決定することとを含む、実施例119~121のいずれかに記載の方法。
【0343】
[0393]実施例123:初期形状を1つ又は複数の位置に位置合わせすることは、1つ又は複数の位置の各々と初期形状上のそれぞれの点との間の対応関係を決定することと、患者固有のCTデータ内の対応関係の各々に沿って強度プロファイルを決定することと、1つ又は複数の位置の各位置について、それぞれの対応関係についての強度プロファイルに基づいて、位置と初期形状上のそれぞれの点との間の距離を決定することと、1つ又は複数の位置と初期形状上の点との間のそれぞれの距離に従って、患者固有のCTデータ内の初期形状を方向付けることとを含む、実施例117~122のいずれかに記載の方法。
【0344】
[0394]実施例124:初期形状と軟組織構造を表す患者固有のCTデータの分散との間の差を最小化するように初期形状をスケーリングすることによって、初期形状を患者固有の形状に修正する、実施例123に記載の方法。
【0345】
[0395]実施例125:患者固有の形状(複数可)を決定することは、以下のパラメトリック方程式に従って患者固有の形状を決定することを含み、
【数5】
ここにおいて、s’は患者とは異なる複数の被験者の軟組織構造を表す初期形状であり、λiは固有値であり、vは患者固有のCTデータの分散を表す共分散行列の固有ベクトルであり、bは初期形状を修正するスケーリング係数である、実施例124に記載の方法。
【0346】
[0396]実施例126:初期形状は、患者とは異なる複数の被験者の軟組織構造を表す解剖学的形状を含む、実施例117~125のいずれかに記載の方法。
【0347】
[0397]実施例127:解剖学的形状は、複数の被験者について撮像された軟組織構造から生成された統計的平均形状を含む、実施例126に記載の方法。
【0348】
[0398]実施例128:軟組織構造は筋肉を含む、実施例117~127のいずれかに記載の方法。
【0349】
[0399]実施例129:筋肉は、患者の回旋腱板に関連する、実施例128に記載の方法。
【0350】
[0400]実施例130:患者固有の形状は、3次元形状を含む、実施例117~129のいずれかに記載の方法。
【0351】
[0401]実施例131:患者固有の形状の脂肪体積比を決定することと、患者固有の形状の萎縮率を決定することと、患者の軟組織構造の患者固有の形状の脂肪体積比及び萎縮率に基づいて、患者の上腕骨の可動域を決定することと、上腕骨の可動域に基づいて、患者の肩関節治療のタイプを決定することとを更に含む、実施例117~130のいずれかに記載の方法。
【0352】
[0402]実施例132:肩関節治療のタイプは、解剖学的肩関節置換手術又はリバース型肩関節置換手術のうちの1つから選択される、実施例131に記載の方法。
【0353】
[0403]実施例133:命令を含むコンピュータ可読記憶媒体であって、命令は、実行されると、プロセッサに、患者に関する患者固有のコンピュータ断層撮影(CT)データを記憶することと、患者固有のCTデータを受け取ることと、患者固有のCTデータ内の1つ又は複数の骨構造に関連する1つ又は複数の位置を識別することと、初期形状を1つ又は複数の位置に位置合わせすることと、初期形状を患者の軟組織構造を表す患者固有の形状に修正することと、患者固有の形状を出力することとを行わせる、コンピュータ可読記憶媒体。
【0354】
[0404]実施例201:患者に対する肩関節手術タイプの推奨を自動的に生成するためのシステムであって、患者に関する患者固有の画像データを記憶するように構成されたメモリと、メモリから患者固有の画像データを受け取ることと、患者固有の撮像データから1つ又は複数の軟組織特性を決定することと、患者に対して行われるべき肩関節手術タイプの推奨を生成することと、肩関節手術タイプの推奨を出力することとを行うように構成された処理回路とを備えるシステム。
【0355】
[0405]実施例202:1つ又は複数の軟組織特性は、患者の軟組織構造の脂肪浸潤率を含む、実施例201に記載のシステム。
【0356】
[0406]実施例203:処理回路は、軟組織構造を表す患者固有の形状にマスクを適用することと、マスク下のボクセルに閾値を適用することと、閾値未満のボクセルに基づいて脂肪体積を決定することと、脂肪体積と軟組織構造を表す患者固有の形状の体積とに基づいて脂肪浸潤値を決定することとによって、脂肪浸潤率を決定するように構成される、実施例202に記載のシステム。
【0357】
[0407]実施例204:1つ又は複数の軟組織特性は、患者の軟組織構造の萎縮率を含む、実施例201~203のいずれかに記載のシステム。
【0358】
[0408]実施例205:処理回路は、患者の軟組織構造の骨対筋肉寸法を決定することと、軟組織構造の統計的平均形状(SMS)を取得することと、アルゴリズムの閾値を満たすことによってSMSを変形させて、SMSの変形バージョンを軟組織構造の骨対筋肉寸法に適合させることと、SMS体積を軟組織構造体積で割ることによって軟組織構造の萎縮率を決定することとによって、萎縮率を決定するように構成される、実施例204に記載のシステム。
【0359】
[0409]実施例206:1つ又は複数の軟組織特性は、脂肪浸潤値又は萎縮率のうちの少なくとも1つを含み、処理回路は、患者の1つ又は複数の軟組織構造の脂肪浸潤値又は萎縮率のうちの少なくとも1つに基づいて、患者に対して行われるべき肩関節手術タイプの推奨を生成するように構成される、実施例201~205のいずれかに記載のシステム。
【0360】
[0410]実施例207:処理回路は、脂肪浸潤値又は萎縮率のうちの少なくとも1つに基づいて、1つ又は複数の軟組織構造のばね定数を決定するように構成される、実施例206に記載のシステム。
【0361】
[0411]実施例208:処理回路は、脂肪浸潤値及び萎縮率の両方に基づいて、1つ又は複数の軟組織構造のばね定数を決定するように構成される、実施例207に記載のシステム。
【0362】
[0412]実施例209:処理回路は、1つ又は複数の軟組織構造の脂肪浸潤値、萎縮率、又はばね定数のうちの少なくとも1つに基づいて、患者の上腕骨の可動域を決定するように構成される、実施例207又は208に記載のシステム。
【0363】
[0413]実施例210:1つ又は複数の軟組織構造は、患者の回旋腱板の1つ又は複数の筋肉を含む、実施例209に記載のシステム。
【0364】
[0414]実施例211:1つ又は複数の軟組織特性は、上腕骨の可動域を含む、実施例201~210のいずれかに記載のシステム。
【0365】
[0415]実施例212:処理回路は、ニューラルネットワークを使用して、1つ又は複数の軟組織特性を決定するように構成される、実施例201~211のいずれかに記載のシステム。
【0366】
[0416]実施例213:1つ又は複数の軟組織特性は、患者の1つ又は複数の軟組織構造の脂肪浸潤値、萎縮値、又は可動域値のうちの少なくとも1つを含み、処理回路は、脂肪浸潤値、萎縮値、又は可動域値のうちの少なくとも1つをニューラルネットワークに入力することと、ニューラルネットワークからの出力に基づいて肩関節手術タイプの推奨を生成することとを行うように構成される、実施例201~212のいずれかに記載のシステム。
【0367】
[0417]実施例214:処理回路は、患者の軟組織構造の初期形状を受け取ることと、初期形状上の複数の表面点を決定することと、初期形状を患者固有の画像データに位置合わせすることと、患者の軟組織構造の境界を表す患者固有の画像データ内の1つ又は複数の輪郭を識別することと、1つ又は複数の輪郭のそれぞれの位置に向かって複数の表面点を反復的に移動させて初期形状を患者の軟組織構造を表す患者固有の形状に変化させることと、患者固有の形状に基づいて、患者の軟組織構造の1つ又は複数の軟組織特性を決定することとによって、患者固有の撮像データから1つ又は複数の軟組織特性を決定するように構成される、実施例201~213のいずれかに記載のシステム。
【0368】
[0418]実施例215:処理回路は、1つ又は複数の軟組織特性の表現を表示するようにユーザインターフェースを制御するように構成される、実施例201~214のいずれかに記載のシステム。
【0369】
[0419]実施例216:処理回路は、複合現実ユーザインターフェースの一部として1つ又は複数の軟組織特性の表現を表示するようにユーザインターフェースを制御するように構成される、実施例215に記載のシステム。
【0370】
[0420]実施例217:肩関節手術タイプは、解剖学的肩関節置換術又はリバース型肩関節置換術のうちの1つを含む、実施例201~216のいずれかに記載のシステム。
【0371】
[0421]実施例218:患者に対する肩関節手術タイプの推奨を自動的に生成するための方法であって、メモリによって、患者に関する患者固有の画像データを記憶することと、処理回路によって、メモリから患者固有の画像データを受け取ることと、処理回路によって、患者固有の撮像データから1つ又は複数の軟組織特性を決定することと、処理回路によって、患者に対して行われるべき肩関節手術タイプの推奨を生成することと、処理回路によって、肩関節手術タイプの推奨を出力することとを含む、方法。
【0372】
[0422]実施例219:患者の軟組織構造の脂肪浸潤率を決定するための方法であって、患者に関する患者固有の画像データを受け取ることと、患者固有の画像データから、軟組織構造を表す患者固有の形状を決定することと、患者固有の形状にマスクを適用することと、マスク下のボクセルに閾値を適用することと、閾値未満のボクセルに基づいて脂肪体積を決定することと、脂肪体積と軟組織構造を表す患者固有の形状の体積とに基づいて脂肪浸潤値を決定することと、脂肪浸潤値を出力することと、を含む方法。
【0373】
[0423]実施例220:患者の軟組織構造の萎縮率を決定するための方法であって、患者に関する患者固有の画像データを受け取ることと、患者固有の画像データから、軟組織構造を表す患者固有の形状を決定することと、患者固有の画像データから、患者の軟組織構造の骨対筋肉寸法を決定することと、軟組織構造の統計的平均形状(SMS)を取得することと、アルゴリズムの閾値を満たすことによってSMSを変形させて、SMSの変形バージョンを軟組織構造の骨対筋肉寸法に適合させることと、SMS体積を軟組織構造体積で割ることによって軟組織構造の萎縮率を決定することと、軟組織構造の萎縮率を出力することとを含む方法。
【0374】
[0424]実施例221:患者の肩の上腕骨の可動域を決定するための方法であって、患者に関する患者固有の画像データを受け取ることと、患者固有の画像データから、患者の回旋腱板のそれぞれの軟組織構造を表す1つ又は複数の患者固有の形状を決定することと、1つ又は複数の患者固有の形状に基づいて、回旋腱板のそれぞれの軟組織構造の各々の脂肪浸潤率又は萎縮率のうちの少なくとも1つを決定することと、脂肪浸潤率又は萎縮率のうちの少なくとも1つに基づいて、肩の上腕骨の可動域を決定することと、上腕骨の可動域を出力することとを含む方法。
【0375】
[0425]実施例301:患者に関する患者固有の画像データを記憶するように構成されたメモリと、患者固有の画像データ内の上腕骨頭を識別することと、患者固有の画像データに基づいて、上腕骨頭の少なくとも一部の骨密度を表す骨密度メトリックを決定することと、骨密度メトリックに基づいて、患者に対する上腕骨インプラントタイプの推奨を生成することと、患者に対する上腕骨インプラントタイプの推奨を出力することとを行うように構成された処理回路とを備えるシステム。
【0376】
[0426]実施例302:上腕骨インプラントタイプは、ステム付きインプラントタイプ又はステムレスインプラントタイプのうちの1つを含む、実施例301に記載のシステム。
【0377】
[0427]実施例303:上腕骨インプラントタイプの推奨は、上腕骨インプラントのステムの長さを示す推奨を含む、実施例301又は302に記載のシステム。
【0378】
[0428]実施例304:骨密度メトリックは、上腕骨頭の少なくとも一部内の骨梁の総合的な密度スコアを表す、実施例301~303のいずれかに記載のシステム。
【0379】
[0429]実施例305:骨密度メトリックは、上腕骨頭内のそれぞれの部分についての複数の骨密度値を含む、実施例301~304のいずれかに記載のシステム。
【0380】
[0430]実施例306:処理回路は、患者固有の画像データに基づいて、上腕骨頭の少なくとも一部内のそれぞれのボクセルの強度を識別することと、それぞれのボクセルの強度を2つ以上の強度レベルのうちの1つに分類することと、2つ以上の強度レベルの各々に分類されたボクセルの数又は2つ以上の強度レベルの各々に分類されたボクセルの上腕骨頭における位置のうちの少なくとも1つに基づいて、骨密度メトリックを決定することとによって、骨密度メトリックを決定するように構成される、実施例301~305のいずれかに記載のシステム。
【0381】
[0431]実施例307:処理回路は、上腕骨頭を通る平面を決定することと、ここで、平面は、上腕骨インプラントを受け入れるために上腕骨を準備するであろう上腕骨における上腕骨切断を表す、平面によって露出した上腕骨頭の少なくとも一部についての骨密度メトリックを決定することとを行うように構成される、実施例301~306のいずれかに記載のシステム。
【0382】
[0432]実施例308:処理回路は、患者の上腕骨頭の少なくとも一部の表現上に骨密度メトリックのグラフィカル表現を含むユーザインターフェースを出力するように構成される、実施例301~307のいずれかに記載のシステム。
【0383】
[0433]実施例309:骨密度メトリックは、複数の色のヒートマップを含み、複数の色の各色は、骨密度値の異なる範囲を表す、実施例308に記載のシステム。
【0384】
[0434]実施例310:複合現実ディスプレイを更に備え、処理回路は、骨密度メトリックのグラフィカル表現を含むユーザインターフェースを提示するように複合現実ディスプレイを制御するように構成される、実施例308又は309に記載のシステム。
【0385】
[0435]実施例311:骨密度メトリックのグラフィカル表現は、上腕骨頭の平面内の骨密度変動の2次元表現を含む、実施例308~310のいずれかに記載のシステム。
【0386】
[0436]実施例312:骨密度メトリックのグラフィカル表現は、上腕骨頭の少なくとも骨梁内の骨密度変動の3次元表現を含む、実施例308~311のいずれかに記載のシステム。
【0387】
[0437]実施例313:処理回路は、上腕骨インプラントのステムサイズを生成するために畳み込みニューラルネットワークを患者固有の画像データに適用するように構成され、患者に対する上腕骨インプラントタイプの推奨は、畳み込みニューラルネットワークから生成されたステムサイズを有する上腕骨インプラントタイプを含む、実施例301~312のいずれかに記載のシステム。
【0388】
[0438]実施例314:処理回路によって、患者の患者固有の画像データ内の上腕骨頭を識別することと、処理回路によって、患者固有の画像データに基づいて、上腕骨頭の少なくとも一部の骨密度を表す骨密度メトリックを決定することと、処理回路によって、骨密度メトリックに基づいて、患者に対する上腕骨インプラントタイプの推奨を生成することと、処理回路によって、患者に対する上腕骨インプラントタイプの推奨を出力することとを含む方法。
【0389】
[0439]実施例315:上腕骨インプラントタイプは、ステム付きインプラントタイプ又はステムレスインプラントタイプのうちの1つを含む、実施例314に記載の方法。
【0390】
[0440]実施例316:上腕骨インプラントタイプの推奨は、上腕骨インプラントのステムの長さを示す推奨を含む、実施例314又は315に記載の方法。
【0391】
[0441]実施例317:骨密度メトリックは、上腕骨頭の少なくとも一部内の骨梁の総合的な密度スコアを表す、実施例314~316のいずれかに記載の方法。
【0392】
[0442]実施例318:骨密度メトリックは、上腕骨頭内のそれぞれの部分についての複数の骨密度値を含む、実施例314~317のいずれかに記載の方法。
【0393】
[0443]実施例319:骨密度メトリックを決定することは、患者固有の画像データに基づいて、上腕骨頭の少なくとも一部内のそれぞれのボクセルの強度を識別することと、それぞれのボクセルの強度を2つ以上の強度レベルのうちの1つに分類することと、2つ以上の強度レベルの各々に分類されたボクセルの数又は2つ以上の強度レベルの各々に分類されたボクセルの上腕骨頭における位置のうちの少なくとも1つに基づいて、骨密度メトリックを決定することとを含む、実施例314~318のいずれかに記載の方法。
【0394】
[0444]実施例320:上腕骨頭を通る平面を決定することと、ここで、平面は、上腕骨インプラントを受け入れるために上腕骨を準備するであろう上腕骨における上腕骨切断を表す、平面によって露出した上腕骨頭の少なくとも一部についての骨密度メトリックを決定することとを更に含む、実施例314~319のいずれかに記載の方法。
【0395】
[0445]実施例321:表示のために、患者の上腕骨頭の少なくとも一部の表現上に骨密度メトリックのグラフィカル表現を含むユーザインターフェースを出力することを更に含む、実施例314~320のいずれかに記載の方法。
【0396】
[0446]実施例322:骨密度メトリックは、複数の色のヒートマップを含み、複数の色の各色は、骨密度値の異なる範囲を表す、実施例321に記載の方法。
【0397】
[0447]実施例323:骨密度メトリックのグラフィカル表現を含むユーザインターフェースを提示するように複合現実ディスプレイを制御することを更に含む、実施例321又は322に記載の方法。
【0398】
[0448]実施例324:骨密度メトリックのグラフィカル表現は、上腕骨頭の平面内の骨密度変動の2次元表現を含む、実施例321~323のいずれかに記載の方法。
【0399】
[0449]実施例325:骨密度メトリックのグラフィカル表現は、上腕骨頭の少なくとも骨梁内の骨密度変動の3次元表現を含む、実施例321~324のいずれかに記載の方法。
【0400】
[0450]実施例326:上腕骨インプラントのステムサイズを生成するために畳み込みニューラルネットワークを患者固有の画像データに適用することを更に含み、患者に対する上腕骨インプラントタイプの推奨は、畳み込みニューラルネットワークから生成されたステムサイズを有する上腕骨インプラントタイプを含む、実施例314~325のいずれかに記載の方法。
【0401】
[0451]実施例327:命令を含むコンピュータ可読記憶媒体であって、命令は、実行されると、処理回路に、患者に関する患者固有の画像データ内の上腕骨頭を識別することと、患者固有の画像データに基づいて、上腕骨頭の少なくとも一部の骨密度を表す骨密度メトリックを決定することと、骨密度メトリックに基づいて、患者に対する上腕骨インプラントタイプの推奨を生成することと、表示のために、患者に対する上腕骨インプラントタイプの推奨を出力することとを行わせる、コンピュータ可読記憶媒体。
【0402】
[0452]実施例328:患者に関する患者固有の画像データを記憶するように構成されたメモリと、患者固有の画像データ内の上腕骨頭を識別することと、患者固有の画像データに基づいて、上腕骨頭の少なくとも一部の骨密度を表す骨密度メトリックを決定することと、患者の上腕骨頭の少なくとも一部の表現上に骨密度メトリックのグラフィカル表現を提示するようにユーザインターフェースを制御することとを行うように構成された処理回路とを備えるシステム。
【0403】
[0453]実施例329:処理回路は、骨密度メトリックに基づいて、患者に対する上腕骨インプラントタイプの推奨を生成することと、表示のために、患者に対する上腕骨インプラントタイプの推奨を出力することとを行うように構成される、実施例328に記載のシステム。
【0404】
[0454]実施例330:処理回路は、実施例313~324のいずれかに記載の方法を実行するように構成される、実施例328又は329に記載のシステム。
【0405】
[0455]実施例331:処理回路によって、患者に関する患者固有の画像データ内の上腕骨頭を識別することと、処理回路によって、患者固有の画像データに基づいて、上腕骨頭の少なくとも一部の骨密度を表す骨密度メトリックを決定することと、処理回路によって、患者の上腕骨頭の少なくとも一部の表現上に骨密度メトリックのグラフィカル表現を提示するようにユーザインターフェースを制御することとを含む方法。
【0406】
[0456]実施例332:骨密度メトリックに基づいて、患者に対する上腕骨インプラントタイプの推奨を生成することと、表示のために、患者に対する上腕骨インプラントタイプの推奨を出力することとを更に含む、実施例331に記載の方法。
【0407】
[0457]実施例333:命令を含むコンピュータ可読記憶媒体であって、命令は、実行されると、処理回路に、患者に関する患者固有の画像データ内の上腕骨頭を識別することと、患者固有の画像データに基づいて、上腕骨頭の少なくとも一部の骨密度を表す骨密度メトリックを決定することと、患者の上腕骨頭の少なくとも一部の表現上に骨密度メトリックのグラフィカル表現を提示するようにユーザインターフェースを制御することとを行わせる、コンピュータ可読記憶媒体。
【0408】
[0458]実施例334:処理回路は、骨密度メトリックに基づいて、患者に対する上腕骨インプラントタイプの推奨を生成することと、表示のために、患者に対する上腕骨インプラントタイプの推奨を出力することとを行うように構成される、実施例333に記載のシステム。
【0409】
[0459]実施例401:患者に対する肩関節手術の推奨を自動的に生成するためのシステムであって、患者に関する患者固有の画像データを記憶するように構成されたメモリと、メモリから患者固有の画像データを受け取ることと、患者固有の撮像データに基づいて、1つ又は複数の軟組織特性と患者の上腕骨に関連する骨密度メトリックとを決定することと、1つ又は複数の軟組織特性に基づいて、患者に対して行われるべき肩関節手術タイプの推奨を生成することと、上腕骨に関連する骨密度メトリックに基づいて、患者に対する上腕骨インプラントタイプの推奨を生成することと、患者に対する肩関節手術タイプ及び上腕骨インプラントタイプの推奨を出力することとを行うように構成された処理回路とを備えるシステム。
【0410】
[0460]実施例402:上腕骨インプラントタイプは、ステム付きインプラントタイプ又はステムレスインプラントタイプのうちの1つを含む、実施例401に記載のシステム。
【0411】
[0461]実施例403:上腕骨インプラントタイプの推奨は、上腕骨インプラントのステムの長さを示す推奨を含む、実施例401又は402に記載のシステム。
【0412】
[0462]実施例404:処理回路は、表示のために、患者の上腕骨の表現上に骨密度メトリックのグラフィカル表現を含むユーザインターフェースを出力するように構成される、実施例401~403のいずれかに記載のシステム。
【0413】
[0463]実施例405:1つ又は複数の軟組織特性は、患者の軟組織構造の脂肪浸潤率を含む、実施例401~404のいずれかに記載のシステム。
【0414】
[0464]実施例406:処理回路は、軟組織構造を表す患者固有の形状にマスクを適用することと、マスク下のボクセルに閾値を適用することと、閾値未満のボクセルに基づいて脂肪体積を決定することと、脂肪体積と軟組織構造を表す患者固有の形状の体積とに基づいて脂肪浸潤値を決定することとによって、脂肪浸潤率を決定するように構成される、実施例405に記載のシステム。
【0415】
[0465]実施例407:1つ又は複数の軟組織特性は、患者の軟組織構造の萎縮率を含む、実施例401~406のいずれかに記載のシステム。
【0416】
[0466]実施例408:処理回路は、患者の軟組織構造の骨対筋肉寸法を決定することと、軟組織構造の統計的平均形状(SMS)を取得することと、アルゴリズムの閾値を満たすことによってSMSを変形させて、SMSの変形バージョンを軟組織構造の骨対筋肉寸法に適合させることと、SMS体積を軟組織構造体積で割ることによって軟組織構造の萎縮率を決定することとによって、萎縮率を決定するように構成される、実施例407に記載のシステム。
【0417】
[0467]実施例409:1つ又は複数の軟組織特性は、脂肪浸潤値又は萎縮率のうちの少なくとも1つを含み、処理回路は、患者の1つ又は複数の軟組織構造の脂肪浸潤値又は萎縮率のうちの少なくとも1つに基づいて、患者に対して行われるべき肩関節手術タイプの推奨を生成するように構成される、実施例401~408のいずれかに記載のシステム。
【0418】
[0468]実施例410:処理回路は、脂肪浸潤値又は萎縮率のうちの少なくとも1つに基づいて、1つ又は複数の軟組織構造のばね定数を決定するように構成される、実施例409に記載のシステム。
【0419】
[0469]実施例411:1つ又は複数の軟組織構造は、患者の回旋腱板の1つ又は複数の筋肉を含む、実施例409又は410に記載のシステム。
【0420】
[0470]実施例412:1つ又は複数の軟組織特性は、上腕骨の可動域を含む、実施例401~411のいずれかに記載のシステム。
【0421】
[0471]実施例413:処理回路は、ニューラルネットワークを使用して、上腕骨に関連する骨密度メトリックの1つ又は複数の軟組織特性のうちの少なくとも1つを決定するように構成される、実施例401~412のいずれかに記載のシステム。
【0422】
[0472]実施例414:1つ又は複数の軟組織特性は、患者の1つ又は複数の軟組織構造の脂肪浸潤値、萎縮値、又は可動域値のうちの少なくとも1つを含み、処理回路は、脂肪浸潤値、萎縮値、又は可動域値のうちの少なくとも1つをニューラルネットワークに入力することと、ニューラルネットワークからの出力に基づいて肩関節手術タイプの推奨を生成することとを行うように構成される、実施例413に記載のシステム。
【0423】
[0473]実施例415:処理回路は、患者の軟組織構造の初期形状を受け取ることと、初期形状上の複数の表面点を決定することと、初期形状を患者固有の画像データに位置合わせすることと、患者の軟組織構造の境界を表す患者固有の画像データ内の1つ又は複数の輪郭を識別することと、1つ又は複数の輪郭のそれぞれの位置に向かって複数の表面点を反復的に移動させて初期形状を患者の軟組織構造を表す患者固有の形状に変化させることと、患者固有の形状に基づいて、患者の軟組織構造の1つ又は複数の軟組織特性を決定することとによって、患者固有の撮像データから1つ又は複数の軟組織特性を決定するように構成される、実施例401~414のいずれかに記載のシステム。
【0424】
[0474]実施例416:処理回路は、1つ又は複数の軟組織特性の表現を表示するようにユーザインターフェースを制御するように構成される、実施例401~415のいずれかに記載のシステム。
【0425】
[0475]実施例417:処理回路は、複合現実ユーザインターフェースの一部として、1つ又は複数の軟組織特性又は上腕骨に関連する骨密度メトリックの表現のうちの少なくとも1つを表示するようにユーザインターフェースを制御するように構成される、実施例416に記載のシステム。
【0426】
[0476]実施例418:肩関節手術タイプは、解剖学的肩関節置換術又はリバース型肩関節置換術のうちの1つを含む、実施例401~417のいずれかに記載のシステム。
【0427】
[0477]実施例419:患者に対する肩関節手術の推奨を自動的に生成するための方法であって、メモリから、患者固有の画像データを受け取ることと、処理回路によって、患者固有の撮像データに基づいて、1つ又は複数の軟組織特性と患者の上腕骨に関連する骨密度メトリックとを決定することと、処理回路によって、1つ又は複数の軟組織特性に基づいて、患者に対して行われるべき肩関節手術タイプの推奨を生成することと、処理回路によって、上腕骨に関連する骨密度メトリックに基づいて、患者に対する上腕骨インプラントタイプの推奨を生成することと、処理回路によって、患者に対する肩関節手術タイプ及び上腕骨インプラントタイプの推奨を出力することとを含む方法。
【0428】
[0478]実施例420:上腕骨インプラントタイプは、ステム付きインプラントタイプ又はステムレスインプラントタイプのうちの1つを含む、実施例419に記載の方法。
【0429】
[0479]実施例421:上腕骨インプラントタイプの推奨は、上腕骨インプラントのステムの長さを示す推奨を含む、実施例419又は420に記載の方法。
【0430】
[0480]実施例422:処理回路は、表示のために、患者の上腕骨の表現上に骨密度メトリックのグラフィカル表現を含むユーザインターフェースを出力するように構成される、実施例419~421のいずれかに記載の方法。
【0431】
[0481]実施例423:1つ又は複数の軟組織特性は、患者の軟組織構造の脂肪浸潤率を含む、実施例419~422のいずれかに記載の方法。
【0432】
[0482]実施例424:処理回路は、軟組織構造を表す患者固有の形状にマスクを適用することと、マスク下のボクセルに閾値を適用することと、閾値未満のボクセルに基づいて脂肪体積を決定することと、脂肪体積と軟組織構造を表す患者固有の形状の体積とに基づいて脂肪浸潤値を決定することとによって、脂肪浸潤率を決定するように構成される、実施例423に記載の方法。
【0433】
[0483]実施例425:1つ又は複数の軟組織特性は、患者の軟組織構造の萎縮率を含む、実施例419~424のいずれかに記載の方法。
【0434】
[0484]実施例426:処理回路は、患者の軟組織構造の骨対筋肉寸法を決定することと、軟組織構造の統計的平均形状(SMS)を取得することと、アルゴリズムの閾値を満たすことによってSMSを変形させて、SMSの変形バージョンを軟組織構造の骨対筋肉寸法に適合させることと、SMS体積を軟組織構造体積で割ることによって軟組織構造の萎縮率を決定することとによって、萎縮率を決定するように構成される、実施例425に記載の方法。
【0435】
[0485]実施例427:1つ又は複数の軟組織特性は、脂肪浸潤値又は萎縮率のうちの少なくとも1つを含み、処理回路は、患者の1つ又は複数の軟組織構造の脂肪浸潤値又は萎縮率のうちの少なくとも1つに基づいて、患者に対して行われるべき肩関節手術タイプの推奨を生成するように構成される、実施例419~426のいずれかに記載の方法。
【0436】
[0486]実施例428:処理回路は、脂肪浸潤値又は萎縮率のうちの少なくとも1つに基づいて、1つ又は複数の軟組織構造のばね定数を決定するように構成される、実施例427に記載の方法。
【0437】
[0487]実施例429:1つ又は複数の軟組織構造は、患者の回旋腱板の1つ又は複数の筋肉を含む、実施例427又は428に記載の方法。
【0438】
[0488]実施例430:1つ又は複数の軟組織特性は、上腕骨の可動域を含む、実施例419~429のいずれかに記載の方法。
【0439】
[0489]実施例431:処理回路は、ニューラルネットワークを使用して、上腕骨に関連する骨密度メトリックの1つ又は複数の軟組織特性のうちの少なくとも1つを決定するように構成される、実施例419~430のいずれかに記載の方法。
【0440】
[0490]実施例432:1つ又は複数の軟組織特性は、患者の1つ又は複数の軟組織構造の脂肪浸潤値、萎縮値、又は可動域値のうちの少なくとも1つを含み、処理回路は、脂肪浸潤値、萎縮値、又は可動域値のうちの少なくとも1つをニューラルネットワークに入力することと、ニューラルネットワークからの出力に基づいて肩関節手術タイプの推奨を生成することとを行うように構成される、実施例431に記載の方法。
【0441】
[0491]実施例433:処理回路は、患者の軟組織構造の初期形状を受け取ることと、初期形状上の複数の表面点を決定することと、初期形状を患者固有の画像データに位置合わせすることと、患者の軟組織構造の境界を表す患者固有の画像データ内の1つ又は複数の輪郭を識別することと、1つ又は複数の輪郭のそれぞれの位置に向かって複数の表面点を反復的に移動させて初期形状を患者の軟組織構造を表す患者固有の形状に変化させることと、患者固有の形状に基づいて、患者の軟組織構造の1つ又は複数の軟組織特性を決定することとによって、患者固有の撮像データから1つ又は複数の軟組織特性を決定するように構成される、実施例419~432のいずれかに記載の方法。
【0442】
[0492]実施例434:処理回路は、1つ又は複数の軟組織特性の表現を表示するようにユーザインターフェースを制御するように構成される、実施例419~433のいずれかに記載の方法。
【0443】
[0493]実施例435:処理回路は、複合現実ユーザインターフェースの一部として、1つ又は複数の軟組織特性又は上腕骨に関連する骨密度メトリックの表現のうちの少なくとも1つを表示するようにユーザインターフェースを制御するように構成される、実施例434に記載の方法。
【0444】
[0494]実施例436:肩関節手術タイプは、解剖学的肩関節置換術又はリバース型肩関節置換術のうちの1つを含む、実施例419~435のいずれかに記載の方法。
【0445】
[0495]実施例437:コンピュータ可読記憶媒体であって、実行されると、処理回路に、メモリから患者固有の画像データを受け取ることと、患者固有の撮像データに基づいて、1つ又は複数の軟組織特性と患者の上腕骨に関連する骨密度メトリックとを決定することと、1つ又は複数の軟組織特性に基づいて、患者に対して行われるべき肩関節手術タイプの推奨を生成することと、上腕骨に関連する骨密度メトリックに基づいて、患者に対する上腕骨インプラントタイプの推奨を生成することと、表示のために、患者に対する肩関節手術タイプ及び上腕骨インプラントタイプの推奨を出力することとを行わせる、コンピュータ可読記憶媒体。
【0446】
[0496]これらの要因のいずれか1つ又は複数は、患者のための治療計画に使用され得る。本開示で説明される技法は、他のタイプの治療の文脈でも使用され得る。例えば、人工足関節全形成術又は他の関節のような他の関節疾患のための治療が分析され得る。本技法は限られた数の例に関して開示されているが、当業者であれば、本開示の利益を得て、それらから多数の修正例及び変形例を理解するであろう。例えば、説明された例の任意の合理的な組合せが実行され得ることが企図される。添付の特許請求の範囲が、本発明の真の主旨及び範囲内に入るような修正例及び変形例をカバーすることは意図される。
【0447】
[0497]例に応じて、本明細書で説明される技法のいずれかの特定の行為又はイベントが異なる順序で実行され得、追加、マージ、又は完全に省略され得る(例えば、説明される行為又はイベントの全てが技法の実施に必要であるとは限らない)ことが認識されるべきである。更に、特定の例では、行為又はイベントは、連続的にではなく、例えば、マルチスレッド処理、割込み処理、又は複数のプロセッサを通して、同時に実行され得る。
【0448】
[0498]1つ又は複数の例では、説明される機能は、ハードウェア、ソフトウェア、ファームウェア、又はそれらの任意の組合せにより実装され得る。ソフトウェアにより実装される場合、これらの機能は、コンピュータ可読媒体上の1つ又は複数の命令又はコードとして記憶又は送信され、ハードウェアベースの処理ユニットによって実行され得る。コンピュータ可読媒体は、データ記憶媒体のような有形媒体に対応するコンピュータ可読記憶媒体、又は、例えば通信プロトコルに従って、ある場所から別の場所へのコンピュータプログラムの移動を容易にする任意の媒体を含む通信媒体を含み得る。このように、コンピュータ可読媒体は、一般に、(1)非一時的である有形コンピュータ可読記憶媒体、又は(2)信号もしくは搬送波のような通信媒体に対応し得る。データ記憶媒体は、本開示で説明される技法の実装のための命令、コード、及び/又はデータ構造を取り出すために、1つもしくは複数のコンピュータ又は1つもしくは複数のプロセッサによってアクセスされ得る任意の利用可能な媒体であり得る。コンピュータプログラム製品は、コンピュータ可読媒体を含み得る。
【0449】
[0499]限定ではなく例として、そのようなコンピュータ可読記憶媒体は、RAM、ROM、EEPROM(登録商標)、CD-ROMもしくは他の光ディスク記憶装置、磁気ディスク記憶装置もしくは他の磁気記憶デバイス、フラッシュメモリ、又は命令もしくはデータ構造の形態で所望のプログラムコードを記憶するために使用可能であり、コンピュータによってアクセスされ得る任意の他の媒体を含むことができる。また、いかなる接続もコンピュータ可読媒体と適切に称される。例えば、命令が、同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL)、又は赤外線、電波、及びマイクロ波のようなワイヤレス技術を使用して、ウェブサイト、サーバ、又は他の遠隔ソースから送信される場合、同軸ケーブル、光ファイバケーブル、ツイストペア、DSL、又は赤外線、電波、及びマイクロ波のようなワイヤレス技術は、媒体の定義に含まれる。しかしながら、コンピュータ可読記憶媒体及びデータ記憶媒体が、接続、搬送波、信号、又は他の一時的媒体を含まず、代わりに、非一時的有形記憶媒体を対象とすることは理解されるべきである。ディスク(disk)及びディスク(disc)は、本明細書で使用される場合、コンパクトディスク(CD)、レーザーディスク(登録商標)、光ディスク、デジタル多用途ディスク(DVD)、フロッピー(登録商標)ディスク、及びブルーレイディスクを含み、ディスク(disk)は通常磁気的にデータを再生し、ディスク(disc)はレーザで光学的にデータを再生する。上記の組合せもコンピュータ可読媒体の範囲に含まれるべきである。
【0450】
[0500]本開示で説明される動作は、1つ又は複数のデジタルシグナルプロセッサ(DSP)、汎用マイクロプロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、又は他の同等の集積回路もしくは個別論理回路のような、固定機能処理回路、プログラマブル回路、又はそれらの組合せとして実装され得る1つ又は複数のプロセッサによって実行され得る。固定機能回路とは、特定の機能性を提供し、実行可能な動作が予め設定されている回路を指す。プログラマブル回路とは、様々なタスクを実行し、実行可能な動作において柔軟な機能性を提供するようにプログラムされ得る回路を指す。例えば、プログラマブル回路は、ソフトウェア又はファームウェアの命令によって定義された方法でプログラマブル回路を動作させるソフトウェア又はファームウェアによって指定された命令を実行し得る。固定機能回路は、(例えば、パラメータを受け取るか、又はパラメータを出力するために)ソフトウェア命令を実行し得るが、固定機能回路が実行する動作のタイプは一般に不変である。従って、本明細書で使用される場合、「プロセッサ」及び「処理回路」という用語は、前述の構造のいずれか、又は本明細書で説明される技法の実装に適切な任意の他の構造を指し得る。
【0451】
[0501]様々な例を説明してきた。これらの例及び他の例は、以下の特許請求の範囲内である。
以下に、出願当初の特許請求の範囲に記載の事項を、そのまま、付記しておく。
[1] 患者に関する患者固有の画像データを記憶するように構成されたメモリと、
処理回路と、を備えるシステムであって、
前記処理回路は、
前記患者固有の画像データ内の上腕骨頭を識別することと、
前記患者固有の画像データに基づいて、前記上腕骨頭の少なくとも一部の骨密度を表す骨密度メトリックを決定することと、
前記骨密度メトリックに基づいて、前記患者に対する上腕骨インプラントタイプの推奨を生成することと、
前記患者に対する前記上腕骨インプラントタイプの前記推奨を出力することと
を行うように構成されている、システム。
[2] 前記上腕骨インプラントタイプは、ステム付きインプラントタイプ又はステムレスインプラントタイプのうちの1つを含む、[1]に記載のシステム。
[3] 前記上腕骨インプラントタイプの前記推奨は、上腕骨インプラントのステムの長さを示す推奨を含む、[1]又は[2]に記載のシステム。
[4] 前記骨密度メトリックは、前記上腕骨頭の少なくとも一部内の骨梁の総合的な密度スコアを表す、[1]~[3]のいずれか一項に記載のシステム。
[5] 前記骨密度メトリックは、前記上腕骨頭内のそれぞれの部分についての複数の骨密度値を含む、[1]~[4]のいずれか一項に記載のシステム。
[6] 前記処理回路は、
前記患者固有の画像データに基づいて、前記上腕骨頭の少なくとも一部内のそれぞれのボクセルの強度を識別することと、
前記それぞれのボクセルの前記強度を2つ以上の強度レベルのうちの1つに分類することと、
前記2つ以上の強度レベルの各々に分類されたボクセルの数又は前記2つ以上の強度レベルの各々に分類された前記ボクセルの前記上腕骨頭における位置のうちの少なくとも1つに基づいて、前記骨密度メトリックを決定することと
によって、前記骨密度メトリックを決定するように構成されている、[1]~[5]のいずれか一項に記載のシステム。
[7] 前記処理回路は、
上腕骨頭を通る平面を決定することと、ここで、前記平面は、上腕骨インプラントを受け入れるために上腕骨を準備するであろう前記上腕骨における上腕骨切断面を表すものであり、
前記平面によって露出した前記上腕骨頭の少なくとも一部についての前記骨密度メトリックを決定することと
を行うように構成されている、[1]~[6]のいずれか一項に記載のシステム。
[8] 前記処理回路は、前記患者の前記上腕骨頭の少なくとも一部の表現上に前記骨密度メトリックのグラフィカル表現を含むユーザインターフェースを出力するように構成されている、[1]~[7]のいずれか一項に記載のシステム。
[9] 前記骨密度メトリックは、複数の色のヒートマップを含み、前記複数の色の各色は、骨密度値の異なる範囲を表す、[8]に記載のシステム。
[10] 複合現実ディスプレイを更に備え、前記処理回路は、前記骨密度メトリックの前記グラフィカル表現を含む前記ユーザインターフェースを提示するように前記複合現実ディスプレイを制御するように構成されている、[8]又は[9]に記載のシステム。
[11] 前記骨密度メトリックの前記グラフィカル表現は、前記上腕骨頭の平面内の骨密度変動の2次元表現を含む、[8]~[10]のいずれか一項に記載のシステム。
[12] 前記骨密度メトリックの前記グラフィカル表現は、前記上腕骨頭の少なくとも骨梁内の骨密度変動の3次元表現を含む、[8]~[11]のいずれか一項に記載のシステム。
[13] 前記処理回路は、上腕骨インプラントのステムサイズを生成するために畳み込みニューラルネットワークを前記患者固有の画像データに適用するように構成され、前記患者に対する前記上腕骨インプラントタイプの前記推奨は、前記畳み込みニューラルネットワークから生成された前記ステムサイズを有する前記上腕骨インプラントタイプを含む、[1]~[12]のいずれか一項に記載のシステム。
[14] 処理回路によって、患者の患者固有の画像データ内の上腕骨頭を識別することと、
前記処理回路によって、前記患者固有の画像データに基づいて、前記上腕骨頭の少なくとも一部の骨密度を表す骨密度メトリックを決定することと、
前記処理回路によって、前記骨密度メトリックに基づいて、前記患者に対する上腕骨インプラントタイプの推奨を生成することと、
前記処理回路によって、前記患者に対する前記上腕骨インプラントタイプの前記推奨を出力することと
を備える方法。
[15] 前記上腕骨インプラントタイプは、ステム付きインプラントタイプ又はステムレスインプラントタイプのうちの1つを含む、[14]に記載の方法。
[16] 前記上腕骨インプラントタイプの前記推奨は、上腕骨インプラントのステムの長さを示す推奨を含む、[14]又は[15]に記載の方法。
[17] 前記骨密度メトリックは、前記上腕骨頭の少なくとも一部内の骨梁の総合的な密度スコアを表す、[14]~[16]のいずれか一項に記載の方法。
[18] 前記骨密度メトリックは、前記上腕骨頭内のそれぞれの部分についての複数の骨密度値を含む、[14]~[17]のいずれか一項に記載の方法。
[19] 前記骨密度メトリックを決定することは、
前記患者固有の画像データに基づいて、前記上腕骨頭の少なくとも一部内のそれぞれのボクセルの強度を識別することと、
前記それぞれのボクセルの前記強度を2つ以上の強度レベルのうちの1つに分類することと、
前記2つ以上の強度レベルの各々に分類されたボクセルの数又は前記2つ以上の強度レベルの各々に分類された前記ボクセルの前記上腕骨頭における位置のうちの少なくとも1つに基づいて、前記骨密度メトリックを決定することと
を含む、[14]~[18]のいずれか一項に記載の方法。
[20] 上腕骨頭を通る平面を決定することと、ここで、前記平面は、上腕骨インプラントを受け入れるために上腕骨を準備するであろう前記上腕骨における上腕骨切断面を表すものであり、
前記平面によって露出した前記上腕骨頭の少なくとも一部についての前記骨密度メトリックを決定することと
を更に含む、[14]~[19]のいずれか一項に記載の方法。
[21] 表示のために、前記患者の前記上腕骨頭の少なくとも一部の表現上に前記骨密度メトリックのグラフィカル表現を含むユーザインターフェースを出力することを更に含む、[14]~[20]のいずれか一項に記載の方法。
[22] 骨密度メトリックは、複数の色のヒートマップを含み、複数の色の各色は、骨密度値の異なる範囲を表す、[21]に記載の方法。
[23] 前記骨密度メトリックの前記グラフィカル表現を含む前記ユーザインターフェースを提示するように複合現実ディスプレイを制御することを更に含む、[21]又は[22]に記載の方法。
[24] 前記骨密度メトリックの前記グラフィカル表現は、前記上腕骨頭の平面内の骨密度変動の2次元表現を含む、[21]~[23]のいずれか一項に記載の方法。
[25] 前記骨密度メトリックの前記グラフィカル表現は、前記上腕骨頭の少なくとも骨梁内の骨密度変動の3次元表現を含む、[21]~[24]のいずれか一項に記載の方法。
[26] 上腕骨インプラントのステムサイズを生成するために畳み込みニューラルネットワークを前記患者固有の画像データに適用することを更に含み、前記患者に対する前記上腕骨インプラントタイプの前記推奨は、前記畳み込みニューラルネットワークから生成された前記ステムサイズを有する前記上腕骨インプラントタイプを含む、[14]~[25]のいずれか一項に記載の方法。
[27] 命令を含むコンピュータ可読記憶媒体であって、前記命令は、実行されると、処理回路に、
患者に関する患者固有の画像データ内の上腕骨頭を識別することと、
前記患者固有の画像データに基づいて、前記上腕骨頭の少なくとも一部の骨密度を表す骨密度メトリックを決定することと、
前記骨密度メトリックに基づいて、前記患者に対する上腕骨インプラントタイプの推奨を生成することと、
表示のために、前記患者に対する前記上腕骨インプラントタイプの前記推奨を出力することと
を行わせる、コンピュータ可読記憶媒体。
図1
図2
図3
図4
図5A
図5B
図6
図7
図8A
図8B
図8C
図9
図10
図11
図12
図13
図14
図15
図16A
図16B
図17
図18A
図18B
図19
図20
図21
図22
図23A
図23B
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33A
図33B
図33C
図34
図35
図36
図37
図38
図39A
図39B
図39C
図40
図41
図42
図43