IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ウシオ電機株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-15
(45)【発行日】2023-02-24
(54)【発明の名称】光照射装置
(51)【国際特許分類】
   H01L 33/60 20100101AFI20230216BHJP
   H01L 33/38 20100101ALI20230216BHJP
   H01L 33/46 20100101ALI20230216BHJP
【FI】
H01L33/60
H01L33/38
H01L33/46
【請求項の数】 6
(21)【出願番号】P 2021093387
(22)【出願日】2021-06-03
(62)【分割の表示】P 2016130625の分割
【原出願日】2016-06-30
(65)【公開番号】P2021129121
(43)【公開日】2021-09-02
【審査請求日】2021-06-03
(73)【特許権者】
【識別番号】000102212
【氏名又は名称】ウシオ電機株式会社
(74)【代理人】
【識別番号】110000729
【氏名又は名称】弁理士法人ユニアス国際特許事務所
(72)【発明者】
【氏名】松島 竹夫
(72)【発明者】
【氏名】山口 真典
【審査官】大和田 有軌
(56)【参考文献】
【文献】特開2009-158309(JP,A)
【文献】特開2012-222196(JP,A)
【文献】特開2016-018974(JP,A)
【文献】国際公開第2006/104063(WO,A1)
【文献】特開2015-055647(JP,A)
【文献】特開2016-039365(JP,A)
【文献】特開2015-177132(JP,A)
【文献】特開2015-050293(JP,A)
【文献】特開2014-236070(JP,A)
【文献】特開2014-170815(JP,A)
【文献】特開2014-150177(JP,A)
【文献】特開2014-060294(JP,A)
【文献】特表2014-507779(JP,A)
【文献】特開2013-258277(JP,A)
【文献】特開2013-243254(JP,A)
【文献】特開2012-124306(JP,A)
【文献】特開2012-004501(JP,A)
【文献】特開2008-210900(JP,A)
【文献】特開2006-324511(JP,A)
【文献】特開2006-066449(JP,A)
【文献】特開2005-091491(JP,A)
【文献】米国特許出願公開第2014/0264411(US,A1)
【文献】韓国公開特許第10-2014-0006626(KR,A)
【文献】中国実用新案第202585519(CN,U)
【文献】韓国公開特許第10-2012-0031718(KR,A)
【文献】米国特許出願公開第2012/0025244(US,A1)
【文献】米国特許出願公開第2011/0220937(US,A1)
【文献】中国特許出願公開第102339922(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 33/00 - 33/64
H01S 5/00 - 5/50
F21K 9/00 - 9/90
F21S 2/00 - 45/70
F21V 1/00 - 99/00
F21W 102/00 -131/411
F21Y 101/00 -115/30
(57)【特許請求の範囲】
【請求項1】
半導体発光素子を含む光照射装置であって、
前記半導体発光素子は、
基板と、
前記基板の上層に形成された、n型又はpの第一半導体層、活性層、及び前記第一半導体層とは導電型の異なる第二半導体層を含み、前記基板に近い側から順に、前記第二半導体層、前記活性層、及び前記第一半導体層の順に積層されてなる半導体層と、
前記第一半導体層に対して前記活性層とは反対側の面において接触し、Au又はAu合金を含んでなる光吸収電極と、
前記半導体層の面のうちの前記基板とは反対側に位置する面で構成されている光取り出し面の上層であって、前記基板の面に直交する方向に関して前記光吸収電極よりも前記基板から離れた位置にのみ形成された、前記活性層から射出される光と同波長の光に対する反射率が40%以上を示す材料からなる反射層と、
前記第二半導体層の面のうち、前記活性層とは反対側の面に接触して形成された反射電極を備え、
前記光照射装置は、更に、前記半導体発光素子の前記光取り出し面に直交する軸を取り囲むように配置されて、前記光取り出し面から射出された光の一部を前記反射層に戻すためのミラー部を備え、
前記活性層は、主たる発光波長が410nm以下である窒化物半導体材料で構成されていることを特徴とする、光照射装置。
【請求項2】
前記反射層は、前記ミラー部から戻された光に対して拡散反射面を構成することを特徴とする、請求項1に記載の光照射装置。
【請求項3】
前記半導体発光素子が、前記反射層の上層に形成され、前記活性層から射出される光を透過する材料からなる第一保護層を備えたことを特徴とする請求項1又は2に記載の光照射装置。
【請求項4】
前記光吸収電極は、前記第一半導体層の上層において、前記基板の面に平行な方向に複数延伸して形成されていることを特徴とする請求項1~3のいずれか1項に記載の光照射装置。
【請求項5】
前記反射層は、前記第一半導体層の上層において、前記基板の面に平行な方向に複数延伸して形成されていることを特徴とする請求項4に記載の光照射装置。
【請求項6】
前記基板の面に直交する方向から見て、前記反射層は枠形状を呈していることを特徴とする、請求項5に記載の光照射装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光照射装置に関する。
【背景技術】
【0002】
近年、放電ランプに代えて、LED等の固体光源素子を用いた光照射装置の用途が拡大している。このような光照射装置は、例えば複数のLED素子を用いて光源部が構成されている。
【0003】
放電ランプは光源面積あたりの光度が高く、高い輝度が実現される。これに対し、LED等の固体光源素子は、放電ランプに比べると輝度が低く、更に面発光であるために輝度を上げるのが原理的に難しいという課題を有している。
【0004】
例えば、下記特許文献1には、放電ランプを用いた場合に輝度を高める技術が開示されている。この放電ランプは、光源体の背面側に楕円反射鏡を設けており、楕円反射鏡の第一焦点に光源体を配置させ、第二焦点側に光を集光させる構成である。光源体の前方側には球面反射鏡が設けられており、光源体の前方に射出された光は、球面反射鏡を介して再び輝点に戻される。このような構成により、光源体からの全ての光が楕円反射鏡を介して第二焦点に集められ、これによって同一視角内に全ての射出光を集めることができ、高輝度化が実現できる。
【先行技術文献】
【特許文献】
【0005】
【文献】特開平6-250288号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、上記特許文献1の方法は、光源がLED素子などの固体光源素子である場合には、面発光をするために採用することができない。本発明は、半導体発光素子を含み、従来よりも輝度の高い光照射装置を実現することを目的とする。
【課題を解決するための手段】
【0007】
本発明に係る光照射装置は、半導体発光素子を含む。
前記半導体発光素子は、
基板と、
前記基板の上層に形成された、n型又はp側の第一半導体層、活性層、及び前記第一半導体層とは導電型の異なる第二半導体層を含む半導体層と、
前記第一半導体層と電気的に接続された、前記活性層から射出される光と同波長の光を吸収する材料からなる光吸収電極と、
前記基板の面のうちの前記半導体層とは反対側に位置する面、又は前記半導体層の面のうちの前記基板とは反対側に位置する面のいずれかの面で構成されている光取り出し面の上層であって、前記光吸収電極に対して前記基板の面に直交する方向に対向する位置に形成された、前記活性層から射出される光と同波長の光を反射する材料からなる反射層と、を備える。
前記光照射装置は、更に、前記半導体発光素子の前記光取り出し面に直交する軸を取り囲むように配置されて、前記光取り出し面から射出された光の一部を前記反射層に戻すためのミラー部を備える。
【0008】
半導体発光素子は、半導体層に電流を供給するための電極を必要とする。第一半導体層に電気的に接続される電極は、接触抵抗の低減、材料の安定性などの観点から材料が選択される。ただし、このような材料は、活性層から射出される光と同波長の光を吸収してしまうものが多い。一例として、このような電極はAu、又はAuを含む合金が用いられる。このように、活性層から射出される光と同じ波長の光を吸収する電極を、本明細書では「光吸収電極」と呼ぶ。
【0009】
光吸収電極を有する半導体発光素子においては、光取り出し面において、当該面に直交する方向に対向する位置に光吸収電極が形成されている領域が非発光領域となる。このため、従来の発光素子においては、光取り出し面全体を発光させることができない。
【0010】
ところで、半導体発光素子は、所定のケースに収容されたり、射出された光を利用する対象となるアプリケーションに光を導くための種々の光学系と組み合わせられて利用される。このため、半導体発光素子が通常状態で利用される際、活性層から射出された光の一部が、これらのケースや光学系の表面で反射される。この反射光は、半導体発光素子の光取り出し面側へと導かれる戻り光を構成する。
【0011】
上記構成の半導体発光素子は、光取り出し面の上層であって、光吸収電極に対して基板の面に直交する方向に対向する位置に、反射層が形成されている。このため、従来の発光素子では非発光領域を形成していた箇所に、上記戻り光の一部が入射されると、この反射層によって反射され、再び素子から射出される。つまり、従来の発光素子では非発光領域を形成していた箇所が発光領域を構成することになる。この結果、従来よりも輝度の高い発光素子が実現される。
【0012】
ところで、半導体発光素子の分野においては、光取り出し面よりも活性層に近い位置、すなわち発光素子の内部領域において、反射電極を備えた構成が知られている。このような構成を採用した場合においても、上記戻り光が発生した場合に、当該反射電極によって反射させることで光を取り出し方向に導くことができるため、上記と同等の効果が得られるようにも思われる。しかし、かかる構成の場合には、光取り出し面側には依然として非発光領域が存在するため、発光面における輝度を向上させる効果は低い。また、反射電極の面で光を反射させるためには、上記戻り光を、光取り出し面から半導体層を介して反射電極まで導いた後、反射電極の表面で反射させてから、さきほどとは逆向きに同じ光路を経由して取り出す必要があり、この過程で光の吸収が起こり得る。
【0013】
本発明の構成によれば、光取り出し面の上層に反射層が設けられているため、非発光領域を発光領域に変更させることが可能となり、また、戻り光が再び取り出されるまでに吸収される光量は上記の反射電極を備えた構成よりも低下する。この結果、従来よりも輝度の高い発光素子が実現される。
【0014】
ここで、前記光取り出し面の上層に形成されている前記反射層は、前記光取り出し面に平行な方向に関して回転非対称の形状を有して配置されているものとしても構わない。このような構成によれば、光取り出し面のうち、光吸収電極に対して基板の面に直交する方向に対向しない位置における領域から射出された光の一部を、光吸収電極に対して基板の面に直交する方向に対向する位置、すなわち反射層が形成されている位置に戻しやすくなる。この結果、輝度を高める効果が向上する。
【0015】
前記反射層は、前記活性層から射出される光と同波長の光に対して40%以上の反射率を有する材料で構成されているのが好ましい。また、この反射率は、60%以上であればより好ましく、90%以上であれば更に好ましい。
【0016】
例えば、活性層から射出される光の波長が410nm以下の紫外領域である場合には、反射層をAl、Ag、Cu、Ni、Pt、Rh、Cr、Coのうちの少なくともいずれか一つを含む材料で構成することができる。反射層を構成する材料は、活性層から射出される光の波長帯に応じて適宜選択されることができる。
【0017】
前記半導体発光素子は、前記反射層の上層に形成され、前記活性層から射出される光を透過する材料からなる第一保護層を備える構成とすることができる。
【0018】
かかる構成とすることで、反射層の反射面が大気に暴露されることが防止されるため、反射層を構成する材料が酸化や硫化されにくくなり、経時的に反射率が低下することが抑制される。また、この構成によれば、反射層として安定性が比較的低い材料(Agを含む合金など)を利用することも可能になり、材料選択の自由度が増す。
【0019】
前記光取り出し面は、前記第一半導体層の面のうちの前記基板とは反対側に位置する面で構成され、
前記光吸収電極は、前記第一半導体層の上層に形成されるものとしても構わない。この場合において、前記半導体発光素子は、前記第二半導体層の面のうち、前記活性層とは反対側の面に接触して形成された反射電極を備える構成としても構わない。
【0020】
これにより、いわゆる縦型構造の半導体発光素子において、従来と比較して輝度を高めることができる。
【0021】
前記光吸収電極は、前記第一半導体層の上層において、前記基板の面に平行な方向に複数延伸して形成されているものとしても構わない。この場合において、前記光取り出し面の上層に形成されている前記反射層は、前記光取り出し面に平行な方向に関して回転非対称の形状を有して配置されるのが好ましい。
【0022】
前記半導体発光素子は、前記第一半導体層と前記光吸収電極との間に、前記活性層から射出される光を透過する材料からなる第二保護層を備えることができる。
【0023】
光吸収電極が安定性の低い材料で構成されている場合、当該電極材料が反射層に拡散(例えばマイグレーション)し、反射層の反射率を低下させるおそれがある。上記構成によれば、電極材料の反射層側への拡散が抑制されるため、反射層の反射率が経時的に低下するのを防止できる。
【0024】
前記光取り出し面は、前記基板の面のうちの前記半導体層とは反対側に位置する面で構成され、
前記半導体層は、前記基板の面に平行な方向に関し、前記第一半導体層、前記活性層、及び前記第二半導体層が積層されてなる第一領域と、前記活性層及び前記第二半導体層を有さずに前記第一半導体層が形成されてなる第二領域とを有し、
前記光吸収電極は、前記第二領域内において、前記第一半導体層と電気的に接続された第一電極で構成されているものとしても構わない。
【0025】
これにより、いわゆるフリップチップ構造の半導体発光素子において、従来と比較して輝度を高めることができる。
【0026】
前記光取り出し面が、前記基板の面のうちの前記半導体層とは反対側に位置する面で構成されている場合において、
前記第二半導体層の面のうち、前記活性層とは反対側の面に接触して形成された反射電極と、
少なくとも前記第一半導体層及び前記活性層を貫通し、前記第二半導体層に達する凹部とを有し、
前記光吸収電極は、前記活性層、前記第一半導体層、及び前記反射電極との間の絶縁状態を保持した状態で前記凹部内に挿入されて前記第一半導体層に接触するように形成されているものとしても構わない。
【0027】
また、前記光取り出し面は、前記第一半導体層の面のうちの前記基板とは反対側に位置する面で構成されるものとしても構わない。この場合において、
前記半導体発光素子は、
前記第二半導体層の面のうち、前記活性層とは反対側の面に接触して形成された反射電極と、
少なくとも前記第一半導体層及び前記活性層を貫通し、前記第二半導体層に達する凹部とを有し、
前記光吸収電極は、前記活性層、前記第一半導体層、及び前記反射電極との間の絶縁状態を保持した状態で前記凹部内に挿入されて前記第一半導体層に接触するように形成されているものとしても構わない。
【0028】
これにより、いわゆるビア型構造の半導体発光素子において、従来と比較して輝度を高めることができる。
【発明の効果】
【0029】
本発明によれば、輝度を高めた半導体発光素子が実現される。
【図面の簡単な説明】
【0030】
図1A】第一実施形態の半導体発光素子の構成を模式的に示す断面図である。
図1B】第一実施形態の半導体発光素子を光取り出し面側から見たときの平面図である。
図1C】第一実施形態の半導体発光素子を光取り出し面側から見たときの平面図である。
図2】半導体発光素子を含む光源部の一例を模式的に示した図面である。
図3A】第一実施形態の半導体発光素子の製造方法における一工程を模式的に示す断面図である。
図3B】第一実施形態の半導体発光素子の製造方法における一工程を模式的に示す断面図である。
図3C】第一実施形態の半導体発光素子の製造方法における一工程を模式的に示す断面図である。
図3D】第一実施形態の半導体発光素子の製造方法における一工程を模式的に示す断面図である。
図3E】第一実施形態の半導体発光素子の製造方法における一工程を模式的に示す断面図である。
図3F】第一実施形態の半導体発光素子の製造方法における一工程を模式的に示す断面図である。
図3G】第一実施形態の半導体発光素子の製造方法における一工程を模式的に示す断面図である。
図3H】第一実施形態の半導体発光素子の製造方法における一工程を模式的に示す断面図である。
図4A】第一実施形態の半導体発光素子の別の構成を模式的に示す断面図である。
図4B】第一実施形態の半導体発光素子の別の構成を模式的に示す断面図である。
図4C】第一実施形態の半導体発光素子の別の構成を模式的に示す断面図である。
図4D】第一実施形態の半導体発光素子の別の構成を模式的に示す断面図である。
図4E】第一実施形態の半導体発光素子の別の構成を模式的に示す断面図である。
図4F】第一実施形態の半導体発光素子の別の構成を模式的に示す断面図である。
図5】第一実施形態の半導体発光素子の別の構成を光取り出し面側から見たときの平面図である。
図6】第二実施形態の半導体発光素子の構成を模式的に示す断面図である。
図7A】第二実施形態の半導体発光素子の製造方法における一工程を模式的に示す断面図である。
図7B】第二実施形態の半導体発光素子の製造方法における一工程を模式的に示す断面図である。
図8】第三実施形態の半導体発光素子の構成を模式的に示す図面である。
図9A】第三実施形態の半導体発光素子の製造方法における一工程を模式的に示す断面図である。
図9B】第三実施形態の半導体発光素子の製造方法における一工程を模式的に示す断面図である。
図10】第三実施形態の半導体発光素子の別の構成を模式的に示す図面である。
【発明を実施するための形態】
【0031】
本発明の半導体発光素子につき、図面を参照して説明する。各図において図面の寸法比と実際の寸法比は必ずしも一致しない。以下で説明する製造条件や膜厚等の寸法はあくまで一例であって、これらの数値に限定されるものではない。
【0032】
本明細書において、「AlGaN」という記述は、AlmGa1-mN(0<m<1)という記述と同義であり、AlとGaの組成比の記述を単に省略して記載したものであって、AlとGaの組成比が1:1である場合に限定する趣旨ではない。「InGaN」等の記述についても同様である。
【0033】
本明細書において、「ある層X1が別の層X2の上層に形成されている」とは、層X2が層X1に直接接触して形成されている場合はもちろん、層X2が別の層X3を介して層X1に接触して形成されている場合を含む意図である。更に、前記の記載は、素子を回転させることで、層X2が層X1の上方に位置する構成を含む意図である。
【0034】
(第一実施形態)
半導体発光素子の第一実施形態につき、説明する。
【0035】
[構造]
図1Aは、本発明の半導体発光素子の第一実施形態の構成を模式的に示す断面図である。半導体発光素子1は、基板3、基板3の上層に形成された半導体層5と、第一電極15と、第二電極13と、反射層31とを備える。以下では、半導体発光素子1を単に「発光素子1」と適宜略記することがある。
【0036】
図1Bは、半導体発光素子1を光取り出し面側から見たときの平面図である。ただし、説明の都合上、反射層31の図示を省略している。図1Aは、図1B内におけるX1-X1線で切断したときの断面図に対応する。以下では、光取り出し面をX-Y平面とし、このX-Y平面に直交する方向をZ方向と規定する。
【0037】
以下において、発光素子1の構造を詳細に説明する。
【0038】
(基板3)
基板3は、例えばCuW、W、Moなどの導電性基板、又はSiなどの半導体基板で構成される。
【0039】
(半導体層5)
本実施形態では、半導体層5は、基板3に近い側からp型半導体層11、活性層9、及びn型半導体層7が順に積層されて形成されている。本実施形態では、n型半導体層7が「第一半導体層」に対応し、p型半導体層11が「第二半導体層」に対応する。
【0040】
p型半導体層11は、例えばMg、Be、Zn、又はCなどのp型不純物がドープされた窒化物半導体層で構成される。窒化物半導体層としては、例えばGaN、AlGaN、AlInGaN等を利用することができる。
【0041】
活性層9は、例えばInGaNで構成される発光層及びn型AlGaNで構成される障壁層が周期的に繰り返されてなる半導体層で構成される。これらの層はアンドープでもp型又はn型にドープされていても構わない。活性層9は、少なくともエネルギーバンドギャップの異なる2種類の材料からなる層が積層されて構成されていればよい。活性層9の構成材料は、生成したい光の波長に応じて適宜選択される。本実施形態の発光素子1は、活性層9における主たる発光波長を410nm以下とすることができる。例えば、主たる発光波長が365nmの場合、活性層9は、In0.05Ga0.95NとAl0.09Ga0.91Nとが繰り返し積層されて構成される。
【0042】
n型半導体層7は、例えばSi、Ge、S、Se、Sn、又はTeなどのn型不純物がドープされた窒化物半導体層で構成される。この窒化物半導体層としては、例えばGaN、AlGaN、AlInGaN等を利用することができる。なお、n型半導体層7のn型不純物濃度は、例えば3×1019/cm3程度に設定される。n型半導体層7のn型不純物濃度は、1×1018/cm3以上であるのが好ましく、1×1019/cm3以上であるのがより好ましく、3×1019/cm3以上であるのが更により好ましい。
【0043】
なお、n型半導体層7は、p型半導体層11と異なる組成の材料で構成されているものとしても構わない。本実施形態の発光素子1は、n型半導体層7が光取り出し面28aを構成する。
【0044】
(第一電極15)
第一電極15は、半導体層5の面のうち、基板3に対して遠い側の面に接触して形成されている。より詳細には、第一電極15は、n型半導体層7の面に接触して形成されている。
【0045】
本実施形態では、第一電極15はn側の電極を構成する。第一電極15は、例えば、Ni/Al/Ni/Ti/Auの多層構造の他、Cr/Au、Ti/Pt/Au、Ti/Pt/Cr/Au/Cr/Pt/Au等で構成することができる。第一電極15としては、n型半導体層7との間でオーミックコンタクトが形成でき、接触抵抗が低い材料が好ましく、これに加えて、化学的に安定的な材料であるのがより好ましい。このような材料として、上記のように、Auを含む合金が好適である。
【0046】
ただし、このような金属材料は、活性層9から例えば410nm以下の波長の光が射出される場合、この波長帯の光に対する反射率が極めて低く、入射された光の大半を吸収してしまう。つまり、第一電極15は「光吸収電極」を構成する。
【0047】
ところで、本実施形態においては、図1Bに示すように、第一電極15は、Z方向(基板3の面に直交する方向)に見たときに枠形状を示す。より詳細には、第一電極15の外縁部は、半導体層5の外縁部に沿って枠形状を有して構成されている。なお、図1Aに示す発光素子1は、枠形状を示す第一電極15の外縁部の内側の2箇所で、外縁部からX方向に離間した位置に、Y方向に延伸した2本の第一電極15を有している。しかし、枠形状を示す領域の内側において、第一電極15の延伸する本数は2本に限られるものではなく、1本でもよいし、3本以上であっても構わない。図1Bに示した第一電極15の形状はあくまで一例であり、設計に応じて任意に変更可能である。
【0048】
第一電極15は、一部の箇所において、電流供給線14が連結される電流供給部15aを含んで構成される。電流供給部15aは、第一電極15の他の領域と比較して幅広の領域を示す。電流供給線14は、例えばAu、Cuなどで構成されている。電流供給線14は、電流供給部15aが連結されている端部とは反対側の端部は、例えばパッケージ基板の給電パターンなどに接続されている。
【0049】
(第二電極13)
第二電極13は、p型半導体層11に接触して形成されており、p型半導体層11との間でオーミック接触が形成されている。本実施形態では、第二電極13はp側電極を構成する。第一電極15と第二電極13との間に電圧が印加されることで、活性層9内を電流が流れ、活性層9が発光する。
【0050】
第二電極13は、活性層9から放射される光に対して高い反射率(例えば80%以上であり、より好ましくは90%以上)を示す導電性の材料で構成されるのが好ましい。より具体的には、第二電極13は、例えばAg、Al、又はRhを含む材料で構成される。図1Aに示す発光素子1は、活性層9から放射された光をn型半導体層7側に取り出すことが想定されている。第二電極13が高い反射率を示す材料で構成されることで、活性層9から基板3側に向けて放射された光がn型半導体層7に向けて反射されるため、光取り出し効率が高められる。このとき、第二電極13は「反射電極」を構成する。
【0051】
なお、第一電極15は、第二電極13と違って、活性層9から放射される光(と同波長の光)に対して高い反射率を示す導電性材料を選択するのが難しい。これは、p型半導体層11との間でオーミック接触が実現できる材料と比べて、n型半導体層7との間でオーミック接触が実現できる材料の選択の幅が狭いためである。
【0052】
(導電層20)
導電層20は、基板3の上層に形成されている。本実施形態では、導電層20は、保護層23、接合層21、接合層19、及び保護層17の多層構造で構成されている。
【0053】
接合層19及び接合層21は、例えばAu-Sn、Au-In、Au-Cu-Sn、Cu-Sn、Pd-Sn、Snなどで構成される。後述するように、これらの接合層19と接合層21は、基板3上に形成された接合層21と、別の基板(後述する成長基板25)上に形成された接合層19を対向させた後に、両者を貼り合わせることで形成されたものである。これらの接合層19及び接合層21は、単一の層として一体化されているものとしても構わない。
【0054】
保護層17は、例えばNi/Ti/Pt、TiW/Pt等の多層構造で構成されており、接合層(19,21)を構成する材料が第二電極13側に拡散して、第二電極13の反射率が低下することを抑制する目的で設けられている。ただし、発光素子1が保護層17を備えるか否かは任意である。
【0055】
保護層23は、例えば保護層17と同一の材料で構成され、接合層(19,21)を構成する材料が基板3側に拡散するのを抑制する目的で設けられている。ただし、発光素子1が保護層23を備えるか否かは任意である。
【0056】
(電流遮断層24)
本実施形態の発光素子1は、Z方向に関して第一電極15と対向する位置であって、第二電極13に接触するように形成された、電流遮断層24を備える。電流遮断層24は、例えばSiO2、SiN、Zr23、AlN、Al23などで構成される。電流遮断層24は、活性層9を流れる電流を、XY平面に平行な方向に拡げる役割を果たしている。ただし、発光素子1が電流遮断層24を備えるか否かは任意である。
【0057】
(反射層31)
本実施形態の発光素子1は、第一電極15の上層に反射層31を備える。この反射層31は、活性層9から射出される光と同波長の光に対して高い反射率を示す材料で構成される。一例として、活性層9から例えば410nm以下の波長の光が射出される場合、反射層31は、Al、Ag、Cu,Ni,Pt,Rh,Cr,Coのうちの少なくともいずれか一つを含む材料で構成でき、特にAl又はAgを含む材料で構成するのが好ましい。
【0058】
発光素子1が反射層31を備えていない場合、すなわち、図1Bの平面図に示されるような構造を有する場合、光吸収電極を構成する第一電極15が形成されている領域は、非発光領域を構成する。しかし、上述したように、第一電極15の上層に反射層31が形成されている。図1Cは、発光素子1の構成を光取り出し面から見たときの平面図を、反射層31を含めて模式的に示したものである。このような構成によれば、発光素子1の光取り出し面28aから射出された光のうちの一部の戻り光が反射層31に入射され、反射層31で再反射されて取り出し方向に導かれる。
【0059】
図2は、発光素子1を含む光源部の一例を模式的に示した図面である。光源部40は、発光素子1の光取り出し面に直交する方向を軸として、当該軸を取り囲むようにミラー部41を有している。発光素子1から射出された光は、光源部40の光射出面42から射出される。
【0060】
ここで、発光素子1の光取り出し面28aから射出された光L1の一部がミラー部41で反射され、その反射光L1’の一部が領域28bに入射される。この領域28bには反射層31が形成されているため、反射層31で反射されて光射出面42に導かれる。反射層31が形成されていない場合、領域28bは非発光領域を構成していたが、本実施形態の発光素子1によれば、領域28bも発光領域を構成するため、従来よりも輝度が高められる。
【0061】
なお、図2の光源部40はミラー部41を備える構成としているが、必ずしもミラー部41を備えていなくても構わない。すなわち、発光素子1を含む光源装置は、発光素子1から射出された光を利用するために、種々の光学系を備えるのが通常である。このような光学系に入射される際、一部の光が不可避的に反射される。この反射光の一部の光が領域28bに向けて戻り光として導かれると、領域28bに形成されている反射層31によって反射される。よって、領域28bを発光領域とすることができ、高輝度の発光素子が実現される。
【0062】
[製造方法]
以下、半導体発光素子1の製造方法の一例につき、図3A図3H及び図1Aを参照して説明する。
【0063】
(ステップS1)
まず、図3Aに示すように、成長基板25を準備する。成長基板25としては、一例としてC面を有するサファイア基板を用いることができる。
【0064】
準備工程として、成長基板25のクリーニングを行う。このクリーニングは、より具体的な一例としては、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属化学気相蒸着)装置の処理炉内に成長基板25を配置し、処理炉内に所定の流量の水素ガスを流しながら、炉内温度を例えば1150℃に昇温することにより行われる。
【0065】
(ステップS2)
図3Bに示すように、成長基板25の上層に、下地層27、n型半導体層7、活性層9、及びp型半導体層11を順に形成する。このステップS2は、例えば以下の手順で行われる。
【0066】
まず、МОCVD装置の炉内圧力を100kPa、炉内温度を480℃とする。そして、処理炉内にキャリアガスとして流量がそれぞれ5slmの窒素ガス及び水素ガスを流しながら、原料ガスとして、流量が50μmol/minのトリメチルガリウム(TMG)及び流量が250000μmol/minのアンモニアを処理炉内に68秒間供給する。これにより、成長基板25の表面に、厚みが20nmのGaNよりなる低温バッファ層を形成する。
【0067】
次に、MOCVD装置の炉内温度を1150℃に昇温する。そして、処理炉内に、キャリアガスとして、流量が20slmの窒素ガス及び流量が15slmの水素ガスを流しながら、原料ガスとして、流量が100μmol/minのTMG及び流量が250000μmol/minのアンモニアを処理炉内に30分間供給する。これにより、低温バッファ層の表面に、厚みが1.7μmのGaNよりなるバッファ層を形成する。これらのバッファ層により下地層27が形成される。
【0068】
次に、下地層27の上層にn型半導体層7を形成する。n型半導体層7の具体的な形成方法は、例えば以下の通りである。
【0069】
引き続き炉内温度を1150℃とした状態で、MOCVD装置の炉内圧力を30kPaとする。そして、処理炉内にキャリアガスとして流量が20slmの窒素ガス及び流量が15slmの水素ガスを流しながら、原料ガスとして、流量が94μmol/minのTMG、流量が6μmol/minのトリメチルアルミニウム(TMA)、流量が250000μmol/minのアンモニア、及びn型不純物をドープするための流量が0.013μmol/minのテトラエチルシランを処理炉内に60分間供給する。これにより、例えばAl0.06Ga0.94Nの組成を有し、厚みが2μm、n型不純物濃度が3×1019/cm3のn型半導体層7が第三半導体層28の上層に形成される。なお、n型半導体層7をGaN又はAlGaNで構成する場合、Alの組成比は、0%以上15%以下であるのが好ましく、2%以上11%以下であるのがより好ましく、5%以上9%以下であるのが更により好ましい。
【0070】
なお、この後、TMAの供給を停止すると共に、それ以外の原料ガスを6秒間供給することにより、n型AlGaN層の上層に、厚みが5nm程度のn型GaNよりなる保護層を有してなるn型半導体層7を実現してもよい。
【0071】
上記の説明では、n型半導体層7に含まれるn型不純物をSiとする場合について説明したが、n型不純物としては、Si以外にGe、S、Se、Sn又はTe等を用いることができる。
【0072】
次に、n型半導体層7の上層に活性層9を形成する。活性層9の具体的な形成方法は、例えば以下の通りである。
【0073】
まずMOCVD装置の炉内圧力を100kPa、炉内温度を830℃とする。そして、処理炉内にキャリアガスとして流量が15slmの窒素ガス及び流量が1slmの水素ガスを流しながら、原料ガスとして、流量が10μmol/minのTMG、流量が12μmol/minのトリメチルインジウム(TMI)及び流量が300000μmol/minのアンモニアを処理炉内に48秒間供給するステップを行う。その後、流量が10μmol/minのTMG、流量が1.6μmol/minのTMA、0.002μmol/minのテトラエチルシラン及び流量が300000μmol/minのアンモニアを処理炉内に120秒間供給するステップを行う。以下、これらの2つのステップを繰り返すことにより、厚みが2nmのInGaNよりなる発光層、及び厚みが7nmのn型AlGaNよりなる障壁層が15周期積層されてなる活性層9が、n型半導体層7の上層に形成される。
【0074】
なお、活性層9から放射される光の波長を410nm以下とする場合には、発光層を構成するInGaNのIn組成比を10%以下とするのが好ましい。この場合、障壁層を構成するGaN又はAlGaNのAl組成比を、0%以上15%以下とするのが好ましく、2%以上13%以下とするのがより好ましく、5%以上10%以下とするのが更により好ましい。
【0075】
次に、活性層9の上層にp型半導体層11を形成する。p型半導体層11の具体的な形成方法は、例えば以下の通りである。
【0076】
具体的には、MOCVD装置の炉内圧力を100kPaに維持し、処理炉内にキャリアガスとして流量が15slmの窒素ガス及び流量が25slmの水素ガスを流しながら、炉内温度を1025℃に昇温する。その後、原料ガスとして、流量が35μmol/minのTMG、流量が20μmol/minのTMA、流量が250000μmol/minのアンモニア、及びp型不純物をドープするための流量が0.1μmol/minのビスシクロペンタジエニルマグネシウム(Cp2Mg)を処理炉内に60秒間供給する。これにより、活性層33の表面に、厚みが20nmのAl0.3Ga0.7Nの組成を有する正孔供給層を形成する。その後、TMAの流量を4μmol/minに変更して原料ガスを360秒間供給することにより、厚みが120nmのAl0.13Ga0.87Nの組成を有する正孔供給層を形成する。これらの正孔供給層によりp型半導体層11が形成される。なお、これらの正孔供給層のp型不純物濃度は、例えば3×1019/cm3/cm3程度に設定される。
【0077】
なお、この工程の後、TMAの供給を停止すると共に、Cp2Mgの流量を0.2μmol/minに変更して原料ガスを20秒間供給することにより、厚みが5nm程度で、p型不純物濃度が1×1020/cm3程度のp型GaN層を有してなるp型半導体層11を実現してもよい。
【0078】
上記の説明では、p型半導体層11に含まれるp型不純物をMgとする場合について説明したが、p型不純物としては、Mg以外に、Be、Zn、又はC等を用いることもできる。
【0079】
(ステップS3)
ステップS2で得られたウェハに対して活性化処理を行う。具体的な一例としては、RTA(Rapid Thermal Anneal:急速加熱)装置を用いて、窒素雰囲気下中650℃で15分間の活性化処理を行う。
【0080】
(ステップS4)
図3Cに示すように、p型半導体層11の所定の領域の上面に電流遮断層24を形成する。電流遮断層24は、例えば、SiO2、SiN、Zr23、AlN、又はAl23等をスパッタリング法等によって成膜することで形成される。なお、本ステップS4において、電流遮断層24は、後のステップS12で第一電極15を形成する予定の領域に対して、Z方向に対向する位置に形成される。
【0081】
(ステップS5)
次に、図3Cに示すように、p型半導体層11の所定の領域の上面に第二電極13を形成する。ここでは、第二電極13を電流遮断層24の上面にも形成しているが、第二電極13の形状は任意に選択される。第二電極13は、例えば、スパッタリング装置にてNi/Agを成膜した後、RTA装置を用いてドライエア雰囲気中でコンタクトアニールを行うことで形成される。ここでは、一例として、第二電極13の材料としてNiとAgの合金を挙げたが、Al、Rh、AgとPdとCuの合金等を用いることもできる。上述したように、第二電極13の材料としては、活性層9から放射される光に対する反射率の高い材料を用いるのが好ましい。
【0082】
(ステップS6)
次に、図3Cに示すように、第二電極13の上面に保護層17を形成し、保護層17の上面に接合層19を形成する。
【0083】
保護層17は、例えば、電子線蒸着装置(EB装置)を用いて、膜厚80nmのNi、膜厚100nmのTi、及び膜厚200nmのPtを成膜することで形成される。なお、保護層17の材料としては、Ni/Ti/Pt以外にも、TiW/Pt等を用いることができる。
【0084】
その後、保護層17の上面に、膜厚10nmのTiを蒸着させた後、Au80%Sn20%で構成されるAu-Snハンダを膜厚3μm蒸着させることで、接合層19が形成される。なお、接合層19としては、Au-Snハンダの他、Au-In、Au-Cu-Sn、Cu-Sn、Pd-Sn、Sn等を利用することができる。
【0085】
(ステップS7)
図3Dに示すように、成長基板25とは別に準備された基板3の上面に、保護層23及び接合層21を形成する。基板3としては、上述したようにCuW、W、Mo等の導電性基板、又はSi等の半導体基板を利用することができる。保護層23は、保護層17と同様に形成することができ、接合層21は、接合層19と同様に形成することができる。保護層23を設けるか否かは任意である。
【0086】
(ステップS8)
図3Eに示すように、成長基板25の上層に形成された接合層19と、基板3の上層に形成された接合層21を貼り合わせることで、成長基板25と基板3の貼り合わせを行う。具体的な一例としては、280℃の温度、0.2MPaの圧力下で、貼り合わせ処理が行われる。
【0087】
この工程により、接合層19及び接合層21が溶融して接合されることで、基板3と成長基板25が表裏面に貼り合わされた構造が形成される。つまり、接合層19と接合層21は、本ステップ以後においては一体化されているものとして構わない。そして、本ステップS8の実行前の段階で保護層23及び保護層17が形成されていることで、接合層(19,21)の構成材料の拡散が抑制されている。
【0088】
(ステップS9)
図3Fに示すように、成長基板25を剥離する。より具体的には、成長基板25側からレーザ光を照射する。ここで、照射するレーザ光を、成長基板25の構成材料(本実施形態ではサファイア)を透過し、下地層27の構成材料(本実施形態ではGaN)によって吸収されるような波長の光とする。これにより、下地層27でレーザ光が吸収されるため、成長基板25と下地層27の界面が高温化してGaNが分解され、成長基板25が剥離される。
【0089】
(ステップS10)
ウェハ上に残存している金属Gaを塩酸等を用いて除去した後、GaN(下地層27)をICP装置を用いたドライエッチングによって除去し、n型半導体層7を露出させる(図3G参照)。
【0090】
(ステップS11)
図3Hに示すように、隣接する素子同士を分離する。具体的には、隣接素子との境界領域に対し、ICP装置を用いて、素子分離領域に形成された電流遮断層24の上面が露出するまで半導体層5をエッチングする。このとき、電流遮断層24がエッチングストッパー層として機能する。なお、図3Hでは、半導体層5の側面が鉛直方向に対して傾斜を有するように図示しているが、これは一例であって、このような形状に限定する趣旨ではない。
【0091】
(ステップS12)
図1Aに示すように、n型半導体層7の上面のうち、電流遮断層24に対してZ方向に対向する位置に第一電極15を形成する。具体的には、n型半導体層7の面のうち、第一電極15を形成する対象外の領域をレジストなどでマスクした状態で、例えば、電子線蒸着装置によって例えばNi/Al/Ni/Ti/Auからなる導電性材料を膜厚3μm程度蒸着させる。その後、マスクを剥離する。
【0092】
(ステップS13)
図1Aに示すように、第一電極15の上面に反射層31を形成する。具体的には、レジスト等で電流供給部15a及び光取り出し面28aを構成するn型半導体層7の上面をマスクした状態で、第一電極15の上面に、例えばAlを膜厚10nm~1μm程度蒸着させる。その後、マスクを剥離する。
【0093】
なお、反射層31は、スパッタ法によって材料層を塗布しても構わない。この方法によれば、マスクを使うことなく反射層31が形成される。この方法によれば、噴霧する対象となる材料の粒子径を調整することで、拡散反射面を有する反射層31が形成されるため、反射率を更に高めることができる。
【0094】
(後の工程)
ウェハをチップ単位に分割する。具体的な一例としては、各素子同士を例えばレーザダイシング装置によって分離する。
【0095】
その後、基板3の裏面を例えばAgペーストにてパッケージと接合し、電流供給部15aに対して電流供給線14を連結させる。例えば、電流供給部15aに、AuからなるΦ100μmの電流供給線14を、50gの荷重で連結させることで、ワイヤボンディングを行う。これにより、発光素子1が形成される。
【0096】
[別構成]
以下、本実施形態の発光素子1の別構成例について説明する。
【0097】
〈1〉 反射層31の上層に保護層32を設けても構わない(図4A参照)。図4Aは、第一電極15の近傍を拡大した図面である。この保護層32は、活性層9から射出された光と同波長の光を透過する性質を有する材料で構成され、例えば、SiO2、SiN、Zr23、ZrO2、HfO2、Hf23、AlN、Al23などで構成される。この保護層32は、「第一保護層」に対応する。この構成によれば、反射層31の上面が保護されるため、反射層31を構成する材料が酸化や硫化されにくくなり、経時的に反射率が低下することが抑制される。
【0098】
なお、図4Bに示すように、保護層32の表面に微細な凹凸を形成しても構わない。このような構成とすることで、反射層31の表面で反射された戻り光L1’の取り出し効率が高められる。
【0099】
更に、図4Cに示すように、保護層32を、反射層31の上面及び側面を覆うように形成しても構わない。このように構成されることで、反射層31の反射率の経時的な低下を防止する効果が更に高められる。なお、図4Cでは、保護層32が第一電極15の外側面も覆うように構成されているが、反射層31の上面及び外側面のみを覆うように構成しても構わない。
【0100】
〈2〉 反射層31と第一電極15の間に保護層34を設けても構わない(図4D参照)。この保護層34は、保護層32とは異なり、必ずしも活性層9から射出された光と同波長の光を透過する性質を有さなくても構わない。保護層34としては、例えば、SiO2、SiN、Zr23、ZrO2、HfO2、Hf23、AlN、Al23などで構成される。この保護層34は、「第二保護層」に対応する。
【0101】
第一電極15が安定性の低い材料で構成されている場合、第一電極15の電極材料が反射層に拡散し、反射層31の反射率を低下させるおそれがある。上記構成によれば、第一電極15の材料が反射層31側へに拡散されにくくなり、反射層31の反射率が経時的に低下するのを防止できる。
【0102】
なお、別構成例〈1〉と組み合わせる構成を採用しても構わない(例えば、図4E図4F参照)。
【0103】
〈3〉 図5に示すように、発光素子1に形成されている反射層31を、光取り出し面に直交する方向(Z方向)から見て回転非対称に配置するものとしても構わない。光取り出し面28aが、Z方向から見て回転対称の位置に配置されている場合、光取り出し面28aから射出された後に所定の箇所で反射された戻り光L1’のうち、再び光取り出し面28aに戻される割合が高まってしまう。図5に示すように、光取り出し面28aをZ方向から見て回転非対称に配置し、すなわち、反射層31をZ方向から見て回転非対称に配置することで、戻り光L1’のうち反射層31に戻される光量を高めることができる。これにより、更に発光素子1の輝度が高められる。
【0104】
実施例によれば、反射層31をZ方向から見て完全に回転対称に配置した場合に比べて、反射層31を所定の形状に配置することでZ方向から見て回転非対称にした場合は、発光素子1からの光量が3%向上したことが確認された。
【0105】
〈4〉 n型半導体層7の上面に凹凸加工を施しても構わない。これにより、光取り出し効率を更に向上させることができる。一例として、ステップS11以後において、n型半導体層7をKOH等の所定のアルカリ溶液に浸漬させてウェットエッチングすることで、凹凸加工を施すことができる。
【0106】
〈5〉 上記構成において、半導体層5を構成する層のうち、基板3に近い側をp型半導体層11とし、基板3から遠い側をn型半導体層7として説明したが、これらの導電型を反転させても構わない。
【0107】
(第二実施形態)
半導体発光素子の第二実施形態につき、説明する。なお、第一実施形態と同じ構成要素については、同一の符号を付して説明を適宜省略する。
【0108】
[構造]
図6は、本発明の半導体発光素子の第二実施形態の構成を模式的に示す断面図である。発光素子1は、基板25、基板25の上層に形成された半導体層5と、第一電極15と、第二電極13と、反射層31とを備える。図5に示す発光素子1は、いわゆる「フリップチップ」型の構造を有しており、基板25の面のうちの半導体層5とは反対側に位置する面に光取り出し面28aが形成されている。
【0109】
本実施形態の発光素子1は、半導体層5が、n型半導体層7と活性層9とp型半導体層11とが積層されてなる領域(「第一領域」に対応)と、活性層9及びp型半導体層11を有さずにn型半導体層7を有してなる領域(「第二領域」に対応)とを有する。第一電極15は、第二領域内に位置するn型半導体層7に接触して形成されている。第一電極15は、例えばAuを含む金属材料で構成されており、第一実施形態と同様に「光吸収電極」を構成する。第二電極13は、第一領域内に位置するp型半導体層11に接触して形成されており、活性層9から射出される光に対して高い反射率を示す材料で構成されるのが好ましい。
【0110】
第一電極15は、パッド電極52を介してボンディング電極54と連絡されている。第二電極13は、パッド電極51を介してボンディング電極53と連絡されている。これらのボンディング電極(53,54)は実装基板55と電気的に接続されている。
【0111】
本実施形態の発光素子1は、光取り出し面側において、第一電極15に対して、基板25に直交する方向に対向する領域28bに、反射層31が形成されている。もし反射層31が存在しない場合には、当該領域28bは非発光領域を構成する。しかし、本実施形態の発光素子1においても、光取り出し面28aから射出された光のうちの一部の戻り光が反射層31で再反射されて取り出し方向に導かれるため、領域28bを発光領域とすることができる。これにより、従来よりも輝度が高められる。
【0112】
[製造方法]
以下、本実施形態の発光素子1の製造方法の一例につき、図7A図7B及び図6を参照して説明する。
【0113】
第一実施形態と同様に、ステップS1~S3を実行する。
【0114】
(ステップS21)
図7Aに示すように、一部の領域内に形成されているp型半導体層11及び活性層9を、ICP装置を用いたドライエッチングによって除去し、n型半導体層7を露出させる。
【0115】
(ステップS22)
図7Bに示すように、露出されたn型半導体層7の上面に第一電極15を形成し、p型半導体層11の上面に第二電極13を形成する。第一電極15は、例えばステップS12と同様の方法で形成することができる。第二電極13は、例えばステップS5と同様の方法で形成することができる。
【0116】
(ステップS23)
基板25の、半導体層5とは反対側に位置する面のうち、上述した所定の領域28bに反射層31を形成する。反射層31は、例えばステップS13と同様の方法で形成することができる。
【0117】
(後の工程)
第一電極15の上面にパッド電極52を、第二電極13の上面にパッド電極51をそれぞれ形成する。その後、ボンディング電極54によってパッド電極52と実装基板55を接続し、ボンディング電極53によってパッド電極51と実装基板55を接続する。これにより、図6に示す発光素子1が形成される。
【0118】
[別構成]
上記構成において、半導体層5を構成する層のうち、基板25に近い側をn型半導体層7とし、基板25から遠い側をp型半導体層11として説明したが、これらの導電型を反転させても構わない。また、本実施形態においても、図4A図4Dを参照して説明したように、反射層31の表面を覆うように保護層32(第一保護層)を有する構成としても構わない。
【0119】
(第三実施形態)
半導体発光素子の第三実施形態につき、説明する。なお、第一実施形態と同じ構成要素については、同一の符号を付して説明を適宜省略する。
【0120】
[構造]
図8は、本発明の半導体発光素子の第三実施形態の構成を模式的に示す図面である。図8において、(a)が平面図に対応し、(b)が断面図に対応する。発光素子1は、基板25、基板25の上層に形成された半導体層5と、第一電極15と、第二電極13と、反射層31とを備える。図8に示す発光素子1は、いわゆる「ビア」型の構造を有しており、基板25の面のうちの半導体層5とは反対側に位置する面に光取り出し面28aが形成されている。
【0121】
本実施形態の発光素子1は、半導体層5が、n型半導体層7と活性層9とp型半導体層11とが積層されてなる領域(「第一領域」に対応)と、活性層9及びp型半導体層11を有さずにn型半導体層7を有してなる領域(「第二領域」に対応)とを有する。そして、この第二領域は、第一領域に取り囲まれるように構成されている。より詳細には、半導体層5が、p型半導体層11と活性層9とを貫通し、n型半導体層7に達する凹部を有している。そして、この凹部内に第一電極15が挿入されるように配置されている。第一電極15は、第一実施形態と同様に、Au等を含む金属材料で構成されており、「光吸収電極」を構成する。発光素子1は絶縁層58を有しており、第一電極15と、p型半導体層11、活性層9、及び第二電極13との絶縁性が確保されている。
【0122】
本実施形態の発光素子1は、p型半導体層11の上面に接触して配置された第二電極13を有する。この第二電極13は、第一実施形態と同様に、活性層9から射出される光に対して高い反射率を示す材料で構成されるのが好ましく、この場合に、第二電極13が「反射電極」を構成する。
【0123】
本実施形態の発光素子1は、光取り出し面側において、第一電極15に対して、基板25に直交する方向に対向する領域28bに、反射層31が形成されている。第一実施形態において上述したように、もし反射層31が存在しない場合には、当該領域28bは非発光領域を構成する。しかし、本実施形態の発光素子1においても、光取り出し面28aから射出された光のうちの一部の戻り光が反射層31で再反射されて取り出し方向に導かれるため、領域28bを発光領域とすることができる。これにより、従来よりも輝度が高められる。
【0124】
[製造方法]
以下、本実施形態の発光素子1の製造方法の一例につき、図9A図9B及び図8を参照して説明する。
【0125】
第一実施形態と同様に、ステップS1~S3を実行する。
【0126】
(ステップS31)
図9Aに示すように、p型半導体層11の上面の所定の箇所に第二電極13を形成する。具体的には、p型半導体層11の上面のうち、一以上の島状領域以外の領域に対して選択的に第二電極13を形成する。このステップS31を経たウェハは、p型半導体層11が島状に露出した領域と、第二電極13が露出した領域を上面に有する。第二電極13は、例えばステップS5と同様の方法で形成することができる。
【0127】
(ステップS32)
図9Bに示すように、ステップS31を経て露出しているp型半導体層11の面に対してエッチングを行ってn型半導体層7の上面を露出させる。これにより、p型半導体層11及び活性層9を貫通し、n型半導体層7に達する凹部が形成される。その後、この凹部の内側面を覆うように絶縁層58を形成する。絶縁層58としてはSiO2、SiN、Zr23、AlN、Al23等を用いることができる。
【0128】
(ステップS33)
凹部内を充填するように、導電性材料を成膜して第一電極15を形成する。第一電極15は、例えばステップS12と同様の方法で形成することができる。
【0129】
(ステップS34)
基板25の、半導体層5とは反対側に位置する面のうち、第一電極15に対して基板25に直交する方向に対向する領域に反射層31を形成する。反射層31は、例えばステップS13と同様の方法で形成することができる。
【0130】
(後の工程)
露出している第一電極15,第二電極13の上面に保護層56、接合層57を形成し、接合層57を介して実装基板55を接合する(図8参照)。具体的な一例としては、電子線蒸着装置(EB装置)にて、TiとPtを3周期成膜することで保護層56を形成し、その後、保護層56の上面(Pt表面)に、Ti及びAu-Snハンダを蒸着させることで接合層57を形成する。そして、この接合層57を介して、各電極(13,15)に対して電圧を印加するための実装基板55を貼り合わせる。実装基板55としては、CuW、W、Mo等の導電性基板、Si等の半導体基板、又はAlN等の絶縁性基板に配線パターンを設けたものを利用することができる。
【0131】
[別構成]
以下、本実施形態の発光素子1の別構成例について説明する。
【0132】
〈1〉 図10に示すように、基板25を剥離する構成を採用することも可能である。この場合、n型半導体層7が光取り出し面を構成し、反射層31は、n型半導体層の面のうち、第一電極15に対して光取り出し面に直交する方向に対応する位置に配置される。この構成によっても、光取り出し面28aから射出された光のうちの一部の戻り光が反射層31で再反射されて取り出し方向に導かれるため、領域28bを発光領域とすることができる。これにより、従来よりも輝度が高められる。
【0133】
図10に示す発光素子1を製造するに際しては、例えば、以下の方法で製造することができる。ステップS33を実行後、上述した方法で、保護層56、接合層57を介して実装基板55を接合する。その後、例えばステップS9~S10と同様の方法で、成長基板25及び下地層27を除去する。そして、露出されたn型半導体層7の面のうち、第一電極15に対して光取り出し面に直交する方向に対向する位置に反射層31を形成する。
【0134】
〈2〉 上記構成において、半導体層5を構成する層のうち、実装基板55に近い側をp型半導体層11とし、実装基板55から遠い側をn型半導体層7として説明したが、これらの導電型を反転させても構わない。また、本実施形態においても、図4A図4Dを参照して説明したように、反射層31の表面を覆うように保護層32(第一保護層)を有する構成としても構わない。
【符号の説明】
【0135】
1 : 半導体発光素子
3 : 基板
5 : 半導体層
7 : n型半導体層
9 : 活性層
11 : p型半導体層
13 : 第二電極
14 : 電流供給線
15 : 第一電極
15a : 電流供給部
17 : 保護層
19 : 接合層
20 : 導電層
21 : 接合層
23 : 保護層
24 : 電流遮断層
25 : 成長基板
27 : 下地層
28a : 光取り出し面
28b : 領域
31 : 反射層
32 : 保護層(第一保護層)
34 : 保護層(第二保護層)
40 : 光源部
41 : ミラー部
42 : 光射出面
51,52 : パッド電極
53,54 : ボンディング電極
55 : 実装基板
56 : 保護層
57 : 接合層
58 : 絶縁層
図1A
図1B
図1C
図2
図3A
図3B
図3C
図3D
図3E
図3F
図3G
図3H
図4A
図4B
図4C
図4D
図4E
図4F
図5
図6
図7A
図7B
図8
図9A
図9B
図10