(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-15
(45)【発行日】2023-02-24
(54)【発明の名称】管路補修方法
(51)【国際特許分類】
F16L 1/00 20060101AFI20230216BHJP
F16L 53/30 20180101ALI20230216BHJP
F16L 55/165 20060101ALI20230216BHJP
B29C 63/36 20060101ALI20230216BHJP
【FI】
F16L1/00 K
F16L53/30
F16L55/165
B29C63/36
(21)【出願番号】P 2021160630
(22)【出願日】2021-09-30
(62)【分割の表示】P 2017193120の分割
【原出願日】2017-10-02
【審査請求日】2021-09-30
(73)【特許権者】
【識別番号】508165490
【氏名又は名称】アクアインテック株式会社
(74)【代理人】
【識別番号】100107102
【氏名又は名称】吉延 彰広
(74)【代理人】
【識別番号】100172498
【氏名又は名称】八木 秀幸
(74)【代理人】
【識別番号】100164242
【氏名又は名称】倉澤 直人
(72)【発明者】
【氏名】梅田 卓佳
【審査官】渡邉 聡
(56)【参考文献】
【文献】特開2017-052228(JP,A)
【文献】特開2013-230598(JP,A)
【文献】特開2006-297615(JP,A)
【文献】特開平02-184421(JP,A)
【文献】特開平02-043024(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F16L 1/00
F16L 53/30
F16L 55/165
B29C 63/36
(57)【特許請求の範囲】
【請求項1】
加熱することで硬化が促進する硬化性樹脂を含浸させた筒状のライニング材を、本管から分岐した取付管内に反転挿入し、該ライニング材を加熱流体によって加熱することで該硬化性樹脂を硬化させて該取付管の内面を補修する管路補修方法において、
前記ライニング材を流体圧によって前記取付管内に向けて反転させながら、前記本管との接続部分まで送り出すとともに該ライニング材を該取付管の内面に圧接させる反転圧接工程と、
前記取付管内に反転させ先端が前記接続部分に達した前記ライニング材内に、供給された流体を加熱する加熱手段を、
該加熱手段に給電するための導線が中に通され該ライニング材の外から該加熱手段に流体を供給するホースによって該先端部分まで挿入する挿入工程と、
前記挿入工程で挿入された前記加熱手段に流体を供給し、該加熱手段によって前記ライニング材内で加熱された流体によって、前記ライニング材を前記取付管の内面に圧接させながら前記硬化性樹脂の硬化を促進させる加熱工程とを有することを特徴とする管路補修方法。
【請求項2】
前記挿入工程は、前記取付管に沿って折れ曲がった前記ライニング材内に前記加熱手段を挿入する工程であることを特徴とする請求項1記載の管路補修方法。
【請求項3】
前記加熱工程は、前記取付管内に反転された前記ライニング材内で前記加熱手段を該取付管の延在方向に移動させながら行う工程であることを特徴とする請求項1または2記載の管路補修方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ライニング材に含浸されている、加熱することで硬化が促進する硬化性樹脂を加熱することで該硬化性樹脂を硬化させて取付管の内面を補修する管路補修方法に関する。
【背景技術】
【0002】
下水を流す下水管路や電力ケーブルが収容された地中電線管路等の地中に埋設された管路が存在する。この管路は、地震や老朽化等により、ひび割れたり継ぎ手部分が離間して隙間を生じたり、あるいは継ぎ手部分がずれて段差を生じることがある。また、老朽化しなくても、管路を新たに敷設した際に、継ぎ手部分に隙間や段差が生じてしまうこともある。例えば、本管から分岐した取付管(枝管)を新たに敷設する場合には、本管と取付管の接続部分に隙間や段差が生じてしまうことがある。
【0003】
このひび割れや隙間が存在する管路を補修する場合、非開削で行うことが補修費用の低減や交通障害を最小限に抑える点からも好ましい。そこで、加熱することで硬化が促進する硬化性樹脂を含浸した筒状のライニング材を管路の内周面に押し付けてライニングする技術が提案されている(例えば特許文献1)。
【0004】
この特許文献1に記載された管路補修では、地表から例えば1m程度掘り下げられて形成された桝と本管を接続する取付管をライニングするにあたり、熱硬化性樹脂を含浸させた筒状のライニング材を圧縮空気によって、取付管の桝側の入口から取付管内に反転挿入させる。反転挿入された筒状のライニング材の先端は、本管と取付管の接続部分に達し、その内側には、地上のボイラからつながった耐熱ホースの吹出口が位置している。次いで、その吹出口から地上のヒータで加熱した加熱空気を吹き出させ、反転挿入された筒状のライニング材の内周面で囲まれた空間に加熱空気を供給し、ライニング材を管路の内周面に押し付けながら、そのライニング材に含浸された熱硬化性樹脂の硬化を、加熱空気の熱によって促進させる。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、取付管の全長は10mにも及ぶことがあり、耐熱ホースの長さはそれ以上になる。10m以上の耐熱ホースを通ってきた加熱空気は、上記空間の先端に位置する吹出口から吹き出される際には、かなり温度低下しており、ライニング材に含浸された熱硬化性樹脂の硬化を十分に促進させることができないといった不具合が確認されている。例えば、地上に設置されたボイラで空気を200℃まで加熱してから供給しても、上記空間の先端に位置する吹出口から吹き出される加熱空気は30℃まで低下している場合があることが報告されている。
【0007】
本発明は上記事情に鑑み、ライニング材に含浸された硬化性樹脂の硬化を十分に促進させることができる管路補修方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記目的を解決する本発明の管路補修方法は、
加熱することで硬化が促進する硬化性樹脂を含浸させた筒状のライニング材を、本管から分岐した取付管内に反転挿入し、該ライニング材を加熱流体によって加熱することで該硬化性樹脂を硬化させて該取付管の内面を補修する管路補修方法において、
前記ライニング材を流体圧によって前記取付管内に向けて反転させながら、前記本管との接続部分まで送り出すとともに該ライニング材を該取付管の内面に圧接させる反転圧接工程と、
前記取付管内に反転させ先端が前記接続部分に達した前記ライニング材内に、供給された流体を加熱する加熱手段を、該加熱手段に給電するための導線が中に通され該ライニング材の外から該加熱手段に流体を供給するホースによって該先端部分まで挿入する挿入工程と、
前記挿入工程で挿入された前記加熱手段に流体を供給し、該加熱手段によって前記ライニング材内で加熱された流体によって、前記ライニング材を前記取付管の内面に圧接させながら前記硬化性樹脂の硬化を促進させる加熱工程とを有することを特徴とする。
【0009】
また、前記挿入工程は、前記取付管に沿って折れ曲がった前記ライニング材内に前記加熱手段を挿入する工程であってもよい。
【0010】
さらに、前記加熱工程は、前記取付管内に反転された前記ライニング材内で前記加熱手段を該取付管の延在方向に移動させながら行う工程であってもよい。
【0011】
また、上記目的を解決する加熱装置は、
加熱することで硬化が促進する硬化性樹脂が含浸された筒状のライニング材の内周面で
囲まれた空間に挿入される加熱ヒータと、
前記加熱ヒータに接続し、前記空間の外から該加熱ヒータに流体を供給するホースと、
前記ホースから供給され前記加熱ヒータで加熱された流体を、前記空間内に吐出する吐
出口と、
前記吐出口から間隔をあけて該吐出口を覆ったメッシュ部材と、
前記メッシュ部材の網の目から放出される流体の温度を測定する温度測定手段とを有す
ることを特徴とする。
【0012】
また、
前記温度測定手段は、前記メッシュ部材の網の目から放出される流体の温度を、該メッ
シュ部材に係止された熱電対を用いて測定するものであってもよい。
【0013】
また、
加熱することで硬化が促進する硬化性樹脂が含浸された筒状のライニング材の内周面で
囲まれた空間に挿入される加熱ヒータと、
前記加熱ヒータに接続し、前記空間の外から該加熱ヒータに流体を供給するホースと、
前記ホースから供給され前記加熱ヒータで加熱された流体を、前記空間内に吐出する吐
出口とを有することを特徴とする加熱装置であってもよい。
【0014】
この加熱装置によれば、前記空間内に前記加熱ヒータが挿入される。前記空間内では、前記加熱ヒータと前記吐出口を近づけることができ、加熱された直後の流体が前記吐出口から吐出され、ライニング材に含浸された硬化性樹脂の硬化を十分に促進させることができる
なお、硬化性樹脂は、常温では硬化せず加熱しないと硬化しない樹脂であってもよいし、常温でも硬化するが加熱することで硬化が促進する樹脂であってもよい。また、前記ライニング材は、いわゆる有底筒状のライニング材であり、先端が閉じている。一方、後端は、閉じていてもよいし、開放されていてもよい。また、流体は、空気であってもよいし、水や水蒸気であってもよい。さらに、前記加熱ヒータと前記吐出口は隣接していてもよいし、一部分のみが重なっていてもよいし、全部が重なっていてもよい。
【0015】
また、前記吐出口が、該吐出口から間隔をあけてメッシュ部材によって覆われたものであることが好ましい。
【0016】
前記吐出口からは、高温な流体を吐出させることができ、前記ライニング材の内周面に、前記吐出口が直接当たると、その内周面が熱によって損傷してしまう場合もあることから、前記メッシュ部材を設けて、前記ライニング材の内周面に、前記吐出口が直接当たることを防止している。
【0017】
また、前記ライニング材の内周面を摺動する摺動部材を備え、
前記加熱ヒータは、前記摺動部材が前記ライニング材の内周面を摺動することで前記空間に挿入されるものであり、
前記摺動部材は、前記吐出口との距離が一定のままである態様であってもよい。
【0018】
この態様によれば、前記加熱ヒータは、前記摺動部材によって、前記空間内に容易に摺動することができ、しかも、摺動部材は複雑な機構ではなく、小型軽量化に向いている。すなわち、前記吐出口を中心にして、摺動部材が周方向に120度間隔で3つ、あるいは90度間隔で4つ設けられており、3つあるいは4つの摺動部材それぞれが前記吐出口との距離を変化させて、3つあるいは4つの摺動部材を結んだ外径が、前記ライニング材の内径に一致するように拡径や縮径するものに比べて、至って簡単な構造ですむ。これは、前記吐出口を前記空間の径方向中心位置に維持する必要がないからである。前記吐出口が前記空間の径方向のどの位置にあっても、すなわち径方向中心位置からずれた位置にあっても、該吐出口から十分に熱い流体が吐出されるため、前記ライニング材に含浸された硬化性樹脂の硬化は、該ライニング材の周方向に偏りなく十分に促進させることができる。
【0019】
なお、前記摺動部材は、回転自在なローラであってもよいし、そり形状の部材であってもよい。また、前記摺動部材は、周方向に複数(例えば、3つあるいは4つ)設けられたものであってもよいし、1つしか設けらていなくてもよい。
【0020】
また、前記ホースは、前記加熱ヒータを前記空間内に挿入する際に、該加熱ヒータを押し込むことができる強度を有するものであることが好ましい。
【0021】
すなわち、前記ホースは、前記加熱ヒータを前記空間内に挿入する際に、つっぱって、通常では座屈しない強度を有するものであることが好ましい。前記ホースに用いられる材料としては、耐熱温度が高い材料よりも強度が高い材料の方が適している。このホースによれば、前記加熱ヒータを前記空間内に効率よく挿入することができる。
【発明の効果】
【0022】
本発明の管路補修方法によれば、ライニング材に含浸された硬化性樹脂の硬化を十分に促進させることができる。
【図面の簡単な説明】
【0023】
【
図1】施工現場に設置された管路補修装置を示す図である。
【
図2】取付管を補修する管路補修方法の流れを示すフローチャートである。
【
図3】
図2に示す、ライニング材形成工程、格納工程および取付工程を説明するた めの図である。
【
図4】取付管内に挿入できる長さまでライニング材を反転口から反転させた様子を 示す図である。
【
図5】
図2に示す反転圧接工程(ステップS5)を開始した後の様子を示す図であ る。
【
図6】反転圧接工程(ステップS5)が完了した様子を示す図である。
【
図10】加熱装置の本体部を、ライニング材の内周面で囲まれた空間の先端部分か ら後端に向かって移動させている様子を示す図である。
【
図11】格納部を用いた回収工程を説明するための図である。
【発明を実施するための形態】
【0024】
以下、図面を参照して本発明の実施の形態を説明する。本実施形態の加熱装置は、下水管等の管路の内面の補修に用いることができ、特に、本管から分岐した取付管の内面の補修に好適に用いることができる。このため、以下の説明では、取付管の内面の補修に用いる態様を例にあげて説明する。
【0025】
図1は、施工現場に設置された管路補修装置を示す図であり、
図2は、取付管を補修する管路補修方法の流れを示すフローチャートである。
【0026】
ここでの説明では、本管72と桝73とを接続する取付管71を補修対象にする。取付管71は、延在方向の長さ、すなわち桝73側に位置する桝側開口71aから、本管72側に位置する本管側開口71bまでの長さが、5m~10m程度であり、10mを超える場合もある。
【0027】
まず、
図2のステップS1に示すように、補修する管路の周囲に、
図1に示す管路補修装置1を設置する装置設置工程を実施する。なお、装置設置工程を実施する前に、高圧洗浄車を用いて取付管71内の付着物等の除去を行い、TVカメラ等を用いて取付管71内の状況や、取付管71と本管72との接続状態等を確認しておくことが望ましい。
【0028】
図1では、補修対象になる取付管71が接続した桝73の近傍に管路補修装置1が設置されている。
図1に示す管路補修装置1は、ライニング材が格納される格納部2と、格納部2に連結した口部3を有する。また、
図1には、管路補修装置1の格納部2に接続した圧縮空気供給手段4も示されている。
【0029】
格納部2は、ライニング材を巻き取る巻取部材21と、圧縮空気供給手段4が接続し圧縮空気を受け入れる圧力調整器22を有する。本実施形態の格納部2は、巻取部材21のハンドル211を回転させることで巻取部材21にライニング材を巻き取った状態で格納する。なお、格納部2におけるライニング材の格納状態はこれに限定されるものではなく、例えば、ライニング材をつづら折りにして格納する格納状態であってもよい。
【0030】
口部3は、
図1では左側に開放した反転口31を有する。反転口31は、格納部2に格納されたライニング材の一端が外側に折り返された状態で取り付けられる開口であり、ライニング材の折り返された部分は、バンドまたはベルト等の端部固定具311により固定される。
【0031】
圧縮空気供給手段4は、コンプレッサ41とホース42を有する。ホース42は、格納部2の圧力調整器22とコンプレッサ41を接続している。コンプレッサ41で作り出された圧縮空気は、ホース42を流れて圧力調整器22から格納部2内に供給される。
【0032】
続いて、
図2に示すライニング材形成工程を実施する(ステップS2)。ここでは、工場から施工現場に運搬されてきた、ベースホースとキャリブレーションホースを使用する。ベースホースには、円筒状に加工した不織布の外側に不透過性フィルムをコーティングしたものや、特殊ニット織布を不透過性チューブ内に引き込んだもの、あるいはチョップドストランドマットを円筒状に加工し不透過性チューブ内に引き込んだもの等を用いることができる。また、キャリブレーションホースは、ポリエステル繊維織布に軟質塩化ビニルをコーティングしたものであり、施工時にはベースホースを内側から取付管に向かって押圧する役割を果たし、施工後に回収される。これらベースホースとキャリブレーションホースは、
図1に示す、取付管71の長さ、桝73の深さや大きさ等を考慮し、施工現場において、好的な長さに切断される。なお、キャリブレーションホースは、ベースホースよりもやや長いものを用意する。また、ベースホースには、施工現場において、ローラ等を用い熱硬化性樹脂を含浸させる。含浸させる熱硬化性樹脂は、特に限定されるものではないが、不飽和ポリエステル樹脂やエポキシ樹脂を例示することができ、硬化剤が添加される。不飽和ポリエステル樹脂には硬化促進剤、エポキシ樹脂には接着剤、脱泡剤が添加される。
【0033】
図3は、
図2に示す、ライニング材形成工程、格納工程および取付工程を説明するための図である。
図3(a)および同図(b)に示すように、熱硬化性樹脂が含浸したベースホース81の先端をロープ等の紐状体80で縛り、その紐状体80を巻き取ることで、ベースホース81を、キャリブレーションホース82の一端側開口82eからキャリブレーションホース82内に完全に引き込み、ライニング材8を形成する(ステップS2)。ステップS2で形成されたライニング材8は、キャリブレーションホース82の方がベースホース81よりも長く、キャリブレーションホース82が外側に位置し、そのキャリブレーションホース82の内側にベースホース81が位置している。
【0034】
続いて、ベースホース81の先端を縛っていた紐状体80をほどき、今度は、
図3(c)に示すように、キャリブレーションホース82の一端を結んで閉塞する。ここで閉塞した一端は、キャリブレーションホース82が反転が終えると、先端になるため、以下、先端82aと称する。次に、結んだ先端82aに反転ベルト83の一端を結び付ける。反転ベルト83の他端は、格納部2の巻取部材21に取り付けられており、ハンドル211を回転させることで反転ベルト83が巻取部材21に巻き取られ、やがてライニング材8も反転口31から入り込んで、
図3(d)に示すように巻取部材21に巻き取られる。これによって、ライニング材8が格納部2に格納される(ステップS3)。
【0035】
また、
図3(d)に示すように、ライニング材8における、巻取部材21に巻き取られた側とは反対側の端部は、反転口31から外側に折り返された状態で端部固定具311によって口部3に取付られる(ステップS4)。
図3(e)は、ライニング材8が口部3の反転口31に取り付けられた部分を拡大して示す断面図である。
図3(e)に示すように、ライニング材8が口部3の反転口31に取り付けられると、口部3内では、キャリブレーションホース82の内側にベースホース81が位置し、反転口31で外側に折り返された部分では、キャリブレーションホース82の外側にベースホース81が位置する状態になる。
【0036】
続いて、
図2に示す反転圧接工程(ステップS5)を実施する準備を行う。
【0037】
図4は、取付管内に挿入できる長さまでライニング材を反転口から反転させた様子を示す図である。
【0038】
圧縮空気供給手段4のコンプレッサ41を作動させ、
図4の円弧状の矢印で示すように圧力調整器22から格納部2内に圧縮空気を供給すると、
図3(d)および同図(e)に示すように反転口31にとりつけられたライニング材8は、供給された圧縮空気の圧力によって反転口31から反転しながら送り出されていく。ここでは、ライニング材8の、反転口31から反転しながら送り出された長さが、桝側開口71aから取付管71内にわずかに挿入できる程度に達した時点で圧力調整器22を操作し、圧縮空気の供給を一旦停止する。
【0039】
図5は、
図2に示す反転圧接工程(ステップS5)を開始した後の様子を示す図であり、
図6は、反転圧接工程(ステップS5)が完了した様子を示す図である。
【0040】
途中まで反転したライニング材8の先端を、桝側開口71aから取付管71内に挿入し、
図2に示す反転圧接工程(ステップS5)を実施する準備が整ったことになる。
【0041】
次いで、圧力調整器22を操作し、格納部2内への圧縮空気の供給を再開し、反転圧接工程(ステップS5)を開始する。格納部2内に圧縮空気が再び供給され始めると、
図5に示すように、供給された圧縮空気の圧力によって取付管71内に挿入されたライニング材8は反転しながら本管72に向かって伸びていく。やがて、
図6に示すように、ベースホース81の先端は、本管側開口71bの縁付近に留まるのに対して、キャリブレーションホース82の先端部分は、本管側開口71bから本管72内に突出した状態になり、反転圧接工程(ステップS5)が完了する。キャリブレーションホース82の先端82aは、結んで閉塞されており、そこには、反転ベルト83の一端が結び付けらている。
図6に示すライニング材8の内周面で囲まれた空間(キャリブレーションホース82で囲まれた空間)Sには、先端82aから延びた反転ベルト83が走っており、この反転ベルト83は巻取部材21までつながっている。なお、圧縮空気の圧力によって取付管71内に挿入されていくライニング材8に対して、反転ベルト83がつながった巻取部材21を手動操作することによって適度な張力を与えることができる。また、ライニング材8が円滑に進まないときには巻取部材21によって巻き取り操作を行うことが好ましい。これにより、ライニング材8をスムーズに取付管71内に反転挿入させることが可能になる。
【0042】
また、
図6において、円で囲んだ部分を拡大して示すように、反転して取付管71内に挿入されたライニング材8は、取付管71の内面にベースホース81が重ねられ、そのベースホース81の内側にキャリブレーションホース82が位置する状態になる。このキャリブレーションホース82に対して、供給された圧縮空気の圧力がかかり、
図6の拡大図内に矢印で示すように、キャリブレーションホース82を介してベースホース81が取付管71に向けて圧接される。この圧接が、
図2に示す反転圧接工程(ステップS5)における圧接に相当する。
【0043】
次いで、
図2に示す分離工程(ステップS6)が実施される。
【0044】
【0045】
口部3は、格納部2に、締め付けリング32によって固定されている。
図7(a)は、締め付けリング32を示す平面図である。この締め付けリング32は、レバー321とリング部材322を有する。レバー321は、クランプ位置とアンクランプ位置の間で回動させることができ、
図7(a)には、クランプ位置にあるレバー321が示されている。レバー321をクランプ位置まで回動させると、リング部材322の径が縮径し、締め付け状態になる。一方、レバー321をアンクランプ位置まで回動させると、リング部材322の径が拡径し、解除状態になる。格納部2に口部3を固定する場合は、レバー321をアンクランプ位置まで回動させてから、
図1に示す、格納部2の開口23に、反転口31とは反対側の接続開口33を合致させた状態で、レバー321をクランプ位置まで回動させる。
【0046】
反対に、
図2に示す分離工程(ステップS6)では、口部3が格納部2に固定されている状態で、レバー321をアンクランプ位置まで回動させ、格納部2から口部3を外す。次いで、口部3の接続開口33を蓋体で塞ぐ。この分離工程で口部3が外された格納部2は、他の取付管の管路補修における、格納工程(ステップS3)から挿入工程(ステップS6)までの工程に使い回すことができ、複数の取付管を並行して補修することが容易になる。
【0047】
図7(b)には蓋体の平面図が示されており、同図(c)には蓋体の正面図が示されている。
【0048】
蓋体35には、ここでは不図示の加熱装置のホースを通すホース用孔350と、3つの孔351~353と、のぞき窓354と、一対の持ち手355が設けられ、裏面側には、反転ベルト83が結び付けられるUボルト356が設けられている。各孔350~353には、おもて側に突出したソケットが設けられている。3つの孔351~353のうちいずれか一つの孔には、不図示の圧力計が装着される。また、もう一つの孔からは補助空気が供給され、残りの一つの孔は、排気用の孔として用いられる。
【0049】
【0050】
本実施形態の加熱装置5は、本体部51とその本体部51の後ろ側に接続したホース52からなるものである。本体部51は、正三角形の筒状フレーム510を有し、その筒状フレーム510の先端(前端)には、メッシュ部材511が取り付けられている。
図8(a)は、本体部51を後ろ側から見た図(背面図)である。この
図8(a)に示すように、本体部51には、摺動ローラ512が、筒状フレーム510を中心にして、周方向に120度間隔で3か所に設けられている。
図8(b)は、同図(a)に示す12時の位置の摺動ローラ512と、4時の位置の摺動ローラ512のちょうど中間の位置(2時の位置)から加熱装置5を見た側面図に相当する。この
図8(b)では、図の左側が前側(先端側)になり、右側が後ろ側になる。摺動ローラ512は、前後方向にはそれぞれ2つ設けられている。なお、摺動ローラ512を、そり形状の摺動部材に代えてもよい。
図8(a)に示す1点鎖線は、ライニング材8の内周面8uを表す線である。周方向に120度間隔で3か所に設けられた摺動ローラ512を結んだ外径は、ライニング材8の内周面8uの径よりはるかに小さく、
図8(a)に示すように、4時の位置の摺動ローラ512と8時の位置の摺動ローラ512が、ライニング材8の内周面8uに接触する。なお、場合によっては、いずれか一種類の摺動ローラ512のみ(例えば、12の位置の摺動ローラ512のみ)が、ライニング材8の内周面8uに接触する場合もある。各摺動ローラ512は、正三角形の筒状フレーム510に固定された取付ステー513によって回転自在に取り付けられており、取付ステー513は撓んだり、拡がったりするものではない。このため、各摺動ローラ512は、ライニング材8の内周面8uを摺動するにあたり、筒状フレーム510との距離が変化することはなく、一定のままである。これに対して、筒状フレーム510が、ライニング材8の内周面8uで囲まれた空間Sの中心点と常に一致するよう、摺動ローラ512の取付ステー513が、撓んだり、拡がったりして、周方向に120度間隔で3か所に設けられた摺動ローラ512を結んだ外径が、拡径したり縮径したりする構造も考えられる。しかしながら、この構造を採用すると、構造が複雑になるばかりか、故障しやすくなる。また、装置が大型化したり重くなったりして、コストも上昇してしまう。本実施形態では、筒状フレーム510の中心軸の延長線上に、加熱空気を吐出する吐出口515aが設けられているが、この吐出口515aからは、十分に熱い空気が吐出されるため、ライニング材8に含浸された硬化性樹脂の硬化は、ライニング材8の周方向に偏りなく十分に促進させることができる。そのため、この吐出口515aを、上記空間Sの中心点と常に一致させておく必要はなく、上記構造を採用する必要もないため、加熱装置5を、小型軽量化することができ、コストも抑えることができる。
【0051】
図8(b)に示すように、筒状フレーム510の内部には、点線で示すように、ヒータユニット515が配置されている。このヒータユニット515は、取付管内径φ100mm~300mmの場合、50~5000L/分の流量の空気が供給され、供給された空気を、内蔵された電気式加熱機構(不図示)により、最高数百℃まで加熱して、先端の吐出口515aから吐出することができるものである。吐出口515aは、筒状フレーム510の中心軸の先端側の延長線上に設けられたものであり、電気式加熱機構の先端とは1cmも離れていない。なお、吐出口515aと電気式加熱機構の位置関係は、隣接していてもよい。あるいは、電気式加熱機構の一部が露出し、その露出した一部の周りが吐出口515aになっていてもよいし、電気式加熱機構の全部が露出し、その露出した電気式加熱機構全部の周りが吐出口515aになっていてもよい。この吐出口515aは、吐出口515aから間隔をあけてメッシュ部材511によって覆われている。このため、吐出口515aがライニング材8の内周面8uに直接接することはなく、吐出口515aから吐出された加熱空気は、メッシュ部材511の多数の網の目から放出される。吐出口515aからは、高温な加熱空気を吐出させることができ、ライニング材8の内周面8u(ここではキャリブレーションホース82)に、吐出口515aが直接当たると、その内周面8uが熱によって損傷してしまう場合もあることから、メッシュ部材511を設けて、ライニング材8の内周面8uに、吐出口515aが直接当たることを防止している。
【0052】
また、筒状フレーム510から出た端子には、熱電対516が接続されている。この熱電対516の先端は、メッシュ部材511に係止されており、熱電対516は、メッシュ部材511の網の目から放出される加熱空気の温度を直に計測することができる。
【0053】
本体部51の後ろ側に接続したホース52には、ヒータユニット515に内蔵された電気式加熱機構に供給する空気が流れる。また、このホース52の中には、ヒータユニット515に内蔵された電気式加熱機構に給電するための導線も入れられており、さらには、熱電対516の導線も入れられている。なお、導線をホース52の外に出してもよい。
【0054】
図2に示す分離工程(ステップS6)では、格納部2から口部3を外す際に、巻取部材21に取り付けられていた反転ベルト83の他端を、巻取部材21から外し、
図7に示す蓋体35のUボルト356に結び付ける。また、口部3の接続開口33を蓋体35で塞ぐ前に、
図8に示す加熱装置5の本体部51に先端を接続させたホース52を後端から、蓋体35に設けられたホース用孔350に通しておき、ライニング材8の内周面8uで囲まれた空間Sに本体部51を入れ込んだ上で、口部3の接続開口33を蓋体35で塞ぎ、分離工程(ステップS6)を完了する。
【0055】
分離工程(ステップS6)が完了すると、今度は、
図2に示す挿入工程(ステップS7)が実施され、
図8に示す加熱装置5の本体部51が、ライニング材8の内周面8uで囲まれた空間(キャリブレーションホース82で囲まれた空間)Sの先端部分まで挿入される。
【0056】
先の分離工程において、格納部2から口部3を外してから、口部3の接続開口33を蓋体35で塞ぐまでの間、ライニング材8の内周面8uで囲まれた空間Sの圧力が一旦低下することになるが、挿入工程では、
図7(b)に示す蓋体35の3つの孔351~353のうちいずれか一つの孔から補助空気を供給し、上記空間Sの圧力を高め、上記空間Sの容積が十分に大きくなる。こうした上で、加熱装置5の本体部51を、ホース52によって徐々に上記空間S内に押し込んでいく。ホース52は、ナイロン製のものであり硬質なものである。このため、本体部51を空間S内に押し込む際、ホース52は、つっぱって、通常では座屈することがない。すなわち、ホース52は、本体部51を空間S内に挿入する際に、本体部51を押し込むことができる強度を有するものである。なお、ホース52は、ナイロン製に限らず、一定の強度がある材料で作られたものであればよい。すなわち、ホース52に用いられる材料としては、耐熱温度が高い材料よりも強度が高い材料の方が適している。
【0057】
加熱装置5の本体部51が、上記空間Sの先端部分まで挿入されると、挿入工程が完了し、
図2に示す加熱工程(ステップS8)が開始される。
【0058】
【0059】
図9に示すライニング材8の内周面8uで囲まれた空間(キャリブレーションホース82で囲まれた空間)Sの先端部分には、加熱装置5の本体部51が達している。ライニング材8の後端部分である、桝側開口71aから桝73内、さらには地上側に出た部分は、略垂直に立ち上げられており、ライニング材8の後端は口部3の反転口31に接続されたままである。口部3は、接続開口33が蓋体35で塞がれている。
【0060】
図9に示すキャリブレーションホース82の先端82aには、反転ベルト83の一端が結び付けられており、この反転ベルト83の他端は、蓋体35のUボルト356(
図7(c)参照)に結び付けられている。
【0061】
また、
図9に示す加熱装置5の本体部51から延びたホース52は、蓋体35のホース用孔350を通って地上側に出て、圧縮空気供給手段4のコンプレッサ41に接続されている。さらに、
図9に示す蓋体35には圧力計36が装着されている。
【0062】
また、ホース52の中を通っていた、電気式加熱機構に給電するための導線は、地上側でホース52から取り出され、電気式加熱機構の加熱温度を調整するコントローラ(不図示)を介して、図示省略した発電機に接続されている。また、ホース52の中を通っていた、熱電対516の導線も、地上側でホース52から取り出され、不図示の温度測定手段に接続されており、メッシュ部材511の網の目から放出される加熱空気の温度が監視されている。
【0063】
加熱工程(ステップS8)では、圧縮空気を、先端部分に達した加熱装置5の本体部51にホース52を通して供給する。また、
図8(b)に示すヒータユニット515に内蔵された電気式加熱機構(不図示)に給電を開始し、ホース52から供給された圧縮空気をライニング材8の先端部分で加熱し、加熱された空気は、吐出口515aからすぐに吐出され、メッシュ部材511の多数の網の目から、上記空間S内の先端部分に放出される。メッシュ部材511の多数の網の目から放出される加熱空気の温度は、熱電対516によって監視されており、加熱空気の温度が、キャリブレーションホース82が溶けない温度であって、熱硬化性樹脂の硬化が促進される温度(例えば、60℃~80℃)となるように、不図示の温度測定手段を見ながら、電気式加熱機構の加熱温度を調整するコントローラ(不図示)を操作する。また、上記空間S内の圧力は、蓋体35に装着された圧力計36によって計測することができ、圧力計36の値を見て、圧力調整器22を操作し、圧縮空気の圧力を調整する。
図9に、円で囲んだ部分を拡大して示すように、空間S内で加熱されたばかりの加熱空気によって、キャリブレーションホース82を介してベースホース81が取付管71に向けて押圧されるとともに、ベースホース81が加熱され、ベースホース81に含浸された熱硬化性樹脂の硬化が促進される。
【0064】
なお、本実施形態では、空間S内の空気は、蓋体35に設けられた3つの孔351~353のうちのいずれか一つの排気用の孔から大気中に開放されるが、排気用の孔から排気される加熱空気を、コンプレッサ41に戻し、循環させるようにしてもよい。
【0065】
また、本実施形態では、加熱装置5の本体部51を、上記空間S内で、取付管71の延在方向に移動させる。
【0066】
図10は、加熱装置の本体部を、ライニング材の内周面で囲まれた空間の先端部分から後端に向かって移動させている様子を示す図である。
【0067】
蓋体35における排気用の孔から空間S内の空気が大気中に開放されていることで、加熱空気は、メッシュ部材511の多数の網の目から放出された後、蓋体35側に移動していく。空間S内において、メッシュ部材511の多数の網の目の近傍では、熱硬化性樹脂の硬化を促進するために必要な熱量は十分にあるが、メッシュ部材511の多数の網の目から一定距離以上離れた場所では、熱硬化性樹脂の硬化を促進するために必要な熱量は失われている。そのため、所定時間ごとに所定距離だけ、本体部51に接続したホース52を引っ張り、メッシュ部材511の多数の網の目の位置を、後端側に移動させる。あるいは、本体部51(メッシュ部材511の多数の網の目)の移動は、こういった段階的な移動ではなく、移動速度を遅くして連続的に移動させてもよい。いずれにしても、熱硬化性樹脂が完全に硬化するか、ほぼ硬化するまで、メッシュ部材511の多数の網の目の位置を、一定の領域内に留めることで、ベースホース81に含浸された熱硬化性樹脂は、先端側(本管72側)から後端側に向かって徐々に硬化されていく。
図10では、本体部51は、桝側開口71aの近傍まで引き上げられている。本体部51は、蓋体35側に移動される際(引き上げられる際)にも、
図8(a)に示すように、4時の位置の摺動ローラ512と8時の位置の摺動ローラ512が、ライニング材8の内周面8uに接触し、摺動する。あるいは、いずれか一種類の摺動ローラ512のみ(例えば、12の位置の摺動ローラ512のみ)が、ライニング材8の内周面8uに接触し、摺動する場合もある。
【0068】
本体部51が、桝側開口71aから完全に出されるまで引き上げられた後、ステップS8の加熱工程は終了になる。すなわち、本体部51が、桝側開口71aから完全に出された後、本体部51の電気式加熱機構(不図示)への給電を先に停止させ、その後に、コンプレッサ41を停止させる。
【0069】
また、熱硬化性樹脂が硬化する際に重合反応によってかなり高い温度まで硬化熱が発生する場合は、この硬化熱を利用して樹脂の硬化を促進させることができる。例えば、キャリブレーションホース82の耐熱温度を上げ、100℃の加熱蒸気を吐出口515aから吐出させた場合、硬化発熱温度が120℃にもなる場合がある。ライニング材の内周面で囲まれた空間の先端部分から加熱を始めると、先端部分で発生した硬化熱が後端に向かって徐々に伝播(伝熱)していき、桝側開口71a部分まで硬化が進む。この際、先端部分で一度、硬化熱を発生させれば、後端に向かって伝播していく硬化熱だけで、熱硬化性樹脂を硬化させることができる場合もあれば、加熱装置5を後端側に移動させながら加熱することで、硬化熱の後端側への伝播を促進させることができたり、あるいは加熱そのものを補助することができたりもする。また、加熱装置5は、後端側に向かって連続的に移動させてもよいし、後端側に向けての移動と停止を繰り返してもよい。特に、後者の場合には、停止した箇所で確実に硬化熱を発生させ、次に停止する位置までの短い距離での硬化熱の伝播を繰り替えし、硬化熱の伝播を利用して効率よく熱硬化性樹脂の硬化を促進させることができる。
【0070】
ここで、光硬化樹脂を用いた場合には、光硬化樹脂は光が照射された箇所だけ硬化するため、後端側が硬化していても中間部分に光が硬化するまで照射されたかは分からず、取付管全長にわたって光硬化樹脂の硬化が完了しているかを判定することが難しい。一方、以上説明した、熱硬化性樹脂において生じる硬化熱が先端側から後端側へ伝播する性質を利用すれば、後端側の樹脂が硬化していれば、それより先端側の樹脂も硬化していることになり、取付管全長にわたって熱硬化性樹脂の硬化完了を、後端側の硬化完了を確認するだけで判定することができるようになる。すなわち、ここでの硬化方法は、加熱することで硬化が促進する熱硬化性樹脂が含浸された筒状のライニング材の該硬化性樹脂を、該ライニング材の先端部分から後端側の硬化完了位置まで硬化させる硬化方法であって、前記ライニング材の先端部分を加熱する加熱工程と、前記加熱工程実施後に、前記ライニング材の先端部分よりも後端側に含浸されている前記硬化性樹脂を硬化させる硬化工程と、前記ライニング材の前記硬化完了位置における硬化性樹脂が硬化していることを確認する硬化確認工程を有することを特徴とする硬化方法になる。この硬化方法では、前記硬化完了位置における硬化性樹脂が、未硬化である場合には前記硬化工程を継続し、硬化していることが確認できた場合には該硬化工程を終了する。また、前記硬化工程は、先端部分から前記硬化完了位置に向けて前記硬化性樹脂を加熱する工程であってもよいし、先端部分で発生した硬化熱が該先端部分から前記硬化完了位置まで伝播していくことを待つ工程であってもよいし、硬化熱の伝播を加熱することで補助したり、硬化熱の伝播による硬化を加熱することで補助したりする工程であってもよい。
【0071】
取付管71内の温度が常温程度まで低下した後、
図2に示す回収工程(ステップS9)が実施される。この回収工程では、一番簡単な方法としては、反転ベルト83を人力によって引っ張る。これによってキャリブレーションホース82の先端82aが、地上側に引きずり出される。ベースホース81は取付管71に圧接された状態で熱硬化性樹脂が硬化しているため、キャリブレーションホース82がベースホース81から引き剥がされ、取付管71の内側にはベースホース81が残る。
【0072】
キャリブレーションホース82が取付管71から完全に取り出されたら、桝側開口71aにおいてベースホース81を切断し、キャリブレーションホース82や切断したベースホース81を回収する。
【0073】
また、格納部2を用いて回収工程を実施することもできる。
【0074】
図11は、格納部を用いた回収工程を説明するための図である。
【0075】
図11に示すように、口部3から蓋体35を取り外し、格納部2に口部3を連結する。また、格納部2には、圧縮空気供給手段4も連結されている。さらに、反転ベルト83は巻取部材21に取り付けられている。次いで、圧縮空気供給手段4から、今度は非常に弱い圧力でライニング材8内に空気を供給しながら、ハンドル211を回転させることで巻取部材21によって反転ベルト83を巻取り、キャリブレーションホース82の先端82aが、地上側に引き込まれていく。
図11に示す、円で囲んだ部分の拡大図には、取付管71の内側にベースホース81が残り、取付管71の内周面はそのベースホース81によってライニングされている様子が示されている。
【0076】
格納部2を用いた回収工程でも、キャリブレーションホース82が取付管71から完全に取り出されたら、桝側開口71aにおいてベースホース81を切断し、キャリブレーションホース82や切断したベースホース81を回収する。格納部2を用いた回収工程では、弱い圧力の空気をライニング材8内に供給しながらキャリブレーションホース82を引き剥がしていくため、キャリブレーションホース82に適当な圧力がかかり、回収時にキャリブレーションホース82がよじれたり、形状が崩れてしまうような事態を避けることができる。
【0077】
なお、回収工程では口部3を閉塞する必要がないため、格納部2とは別に、キャリブレーションホース82の回収専用の巻取手段を用いてもよい。
【0078】
最後に、必要に応じて、桝側開口71aを管口仕上材で仕上げ、本管側開口71bに硬化したベースホース81が突出している場合にはそれを切削することで管路補修が完了する。
【0079】
以上説明した、
図8に示す加熱装置5を用いた管路補修では、電気式加熱機構が、ライニング材8の内周面で囲まれた空間S内に挿入されており、その電気式加熱機構のすぐ近くから加熱空気がその空間S内に供給されるため、加熱された直後の空気によって、ライニング材に含浸された硬化性樹脂の硬化が十分に促進される。その結果、
図2に示すステップS8の加熱工程が短縮され、管路補修全体の時間も短くなる。
【0080】
本発明は上述の実施の形態に限られることなく特許請求の範囲に記載した範囲で種々の変更を行うことができる。例えば、加熱する樹脂は、熱硬化性樹脂に限らず、常温でも硬化するが加熱することで硬化が促進する樹脂であってもよい。また、ライニング材は、工場内でキャリブレーションホースをベースホース内に反転挿入しておき、施工現場では、キャリブレーションホースが反転挿入されているベースホースを管内にそのまま引き込んでから、キャリブレーションホース内に加熱装置5を挿入してもよい。さらに、取付管71の例について説明したが、取付管71以外の管路についても、加熱装置5を用いて施工することができる。また、空気に代えて水を、加熱装置5の電気式加熱機構に供給し、吐出口515aから水蒸気を吐出させるようにしてもよい。
【0081】
最後に、これまで説明したことを含めて付記する。
【0082】
(付記1)
加熱することで硬化が促進する硬化性樹脂を含浸させた筒状のライニング材を管路内に反転挿入し、該ライニング材を加熱流体によって加熱することで該硬化性樹脂を硬化させて該管路の内面を補修する管路補修システムにおいて、
前記ライニング材を格納する格納部と、
前記格納部に連結し、該格納部に格納された前記ライニング材の一端が開口した状態で取り付けられる反転口を有する口部と、
前記格納部に圧縮流体を供給し、前記反転口に一端が取り付けられた前記ライニング材を流体圧によって該反転口から前記管路内に向けて反転させながら送り出すとともに該ライニング材を該管路の内面に圧接させる圧縮流体供給手段と、
前記管路内に反転した前記ライニング材内に挿入され、供給された流体を該ライニング材内で加熱する加熱手段と、
前記加熱手段に接続し、前記ライニング材の外から該加熱手段に流体を供給するホースとを備えたことを特徴とする管路補修システム。
【0083】
(付記2)
前記格納部は、前記ライニング材内に前記加熱手段が挿入されたままの状態で、該ライニング材の一端が取り付けられている前記口部を該ライニング材側に残して、該口部と分離可能なものであることを特徴とする付記1記載の管路補修システム。
【0084】
(付記3)
前記加熱手段は、前記管路内に反転された前記ライニング材内を該管路の延在方向に移動可能なものであることを特徴とする付記1又は2記載の管路補修システム。
【0085】
(付記4)
加熱することで硬化が促進する硬化性樹脂を含浸させた筒状のライニング材を管路内に反転挿入し、該ライニング材を加熱流体によって加熱することで該硬化性樹脂を硬化させて該管路の内面を補修する管路補修方法において、
前記ライニング材を格納部に格納する格納工程と、
前記格納部に連結された口部の反転口に、該格納部に格納された前記ライニング材の一端を開口した状態で取り付ける取付工程と、
圧縮流体供給手段から圧縮流体を前記格納部に供給し、前記反転口に一端が取り付けられた前記ライニング材を流体圧によって該反転口から前記管路内に向けて反転させながら送り出すとともに該ライニング材を該管路の内面に圧接させる反転圧接工程と、
前記管路内に反転した前記ライニング材内に、供給された流体を加熱する加熱手段を挿入する挿入行程と、
前記挿入工程で挿入された加熱手段に流体を供給し、該加熱手段によって前記ライニング材内で加熱された流体によって、前記ライニング材を前記管路の内面に圧接させながら前記硬化性樹脂の硬化を促進させる加熱工程とを有することを特徴とする管路補修方法。
【0086】
(付記5)
前記ライニング材内に前記加熱手段が挿入されたままの状態で、該ライニング材の一端が取り付けられている前記口部を該ライニング材側に残して、前記格納部を該口部と分離させる分離工程を有することを特徴する付記4記載の管路補修方法。
【0087】
(付記6)
前記加熱工程は、前記管路内に反転された前記ライニング材内で前記加熱手段を該管路の延在方向に移動させながら行う工程であることを特徴とする付記4又は5記載の管路補修方法。
【0088】
(付記7)
前記反転圧接工程は、前記硬化性樹脂を含浸させたベースホースがキャリブレーションホースに挿入された前記ライニング材を、該キャリブレーションホースが該ベースホースの内側に位置するように反転する工程であり、
前記加熱工程を実施することで前記硬化性樹脂が硬化した後、前記キャリブレーションホースを回収する回収工程を有することを特徴とする付記4から6のうちいずれか一記載の管路補修方法。
(付記8)
加熱することで硬化が促進する硬化性樹脂を含浸させた筒状のライニング材を、本管から分岐した取付管内に反転挿入し、該ライニング材を加熱流体によって加熱することで該硬化性樹脂を硬化させて該取付管の内面を補修する管路補修方法において、
前記ライニング材を流体圧によって前記取付管内に向けて反転させながら、前記本管との接続部分まで送り出すとともに該ライニング材を該取付管の内面に圧接させる反転圧接工程と、
前記取付管内に反転させ先端が前記接続部分に達した前記ライニング材内に、供給された流体を加熱する加熱手段を、該先端部分まで挿入する挿入工程と、
前記挿入工程で挿入された前記加熱手段に流体を供給し、該加熱手段によって前記ライニング材内で加熱された流体によって、前記ライニング材を前記取付管の内面に圧接させながら前記硬化性樹脂の硬化を促進させる加熱工程とを有することを特徴とする管路補修方法。
【符号の説明】
【0089】
1 管路補修装置
2 格納部
21 巻取部材
3 口部
31 反転口
35 蓋体
4 圧縮空気供給手段
5 加熱装置
51 本体部
511 メッシュ部材
512 摺動ローラ
515 ヒータユニット
515a 吐出口
52 ホース
71 取付管
71a 桝側開口
71b 本管側開口
72 本管
73 桝
8 ライニング材
8u 内周面
81 ベースホース
82 キャリブレーションホース
83 反転ベルト