(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-15
(45)【発行日】2023-02-24
(54)【発明の名称】半導体装置製造方法
(51)【国際特許分類】
H01L 21/52 20060101AFI20230216BHJP
【FI】
H01L21/52 C
H01L21/52 E
(21)【出願番号】P 2020516125
(86)(22)【出願日】2019-03-27
(86)【国際出願番号】 JP2019013149
(87)【国際公開番号】W WO2019208072
(87)【国際公開日】2019-10-31
【審査請求日】2021-09-15
(31)【優先権主張番号】P 2018086474
(32)【優先日】2018-04-27
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003964
【氏名又は名称】日東電工株式会社
(74)【代理人】
【識別番号】110002239
【氏名又は名称】弁理士法人G-chemical
(72)【発明者】
【氏名】三田 亮太
(72)【発明者】
【氏名】市川 智昭
【審査官】加藤 芳健
(56)【参考文献】
【文献】国際公開第2017/195399(WO,A1)
【文献】国際公開第2014/129626(WO,A1)
【文献】国際公開第2017/057485(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/52
B23K 35/363
B23K 35/14
H01L 25/07
H01L 25/18
(57)【特許請求の範囲】
【請求項1】
第1面およびこれとは反対の第2面を有する基板、前記第1面側に配され且つ接合されることとなる複数の半導体チップ、および、各半導体チップと前記基板との間にそれぞれが介在する焼結性粒子含有の複数の焼結接合用材料層、を含む積層構成を有する焼結接合ワークを用意する工程と、
厚さ5~5000μmかつ引張弾性率2~150MPaの緩衝材シートおよび前記焼結接合ワークを重ねて一対のプレス面の間に挟持させた状態で、当該一対のプレス面間にて前記焼結接合ワークをその積層方向に
、前記緩衝材シートが前記半導体チップ周りに閉空間を形成しないように加圧しつつ加熱過程を経ることにより、前記焼結接合用材料層から焼結層を形成する、焼結接合工程と、を含
み、
前記焼結接合用材料層が、熱分解性高分子バインダーを含む、半導体装置製造方法。
【請求項2】
前記熱分解性高分子バインダーが、ポリカーボネート樹脂及びアクリル樹脂から選択される少なくとも1種である、請求項1に記載の半導体装置製造方法。
【請求項3】
前記焼結接合用材料層における前記熱分解性高分子バインダーの含有量が0.5~10質量%である、請求項1または2に記載の半導体装置製造方法。
【請求項4】
前記緩衝材シートは、大気雰囲気下、基準重量温度25℃、および昇温速度10℃/分の条件での重量減少測定における350℃での重量減少率が0.1%以下である、請求項1
から3のいずれか一つに記載の半導体装置製造方法。
【請求項5】
前記焼結接合工程における加熱温度は200℃以上であり且つ加圧力は5MPa以上である、請求項1
から4のいずれか一つに記載の半導体装置製造方法。
【請求項6】
前記焼結性粒子は、銀粒子、銅粒子、酸化銀粒子、および酸化銅粒子からなる群より選択される少なくとも一種を含む、請求項1から
5のいずれか一つに記載の半導体装置製造方法。
【請求項7】
前記焼結接合用材料層における前記焼結性粒子の含有割合は60~99質量%である、請求項1から
6のいずれか一つに記載の半導体装置製造方法。
【請求項8】
前記焼結層の厚さは5~200μmである、請求項1から
7のいずれか一つに記載の半導体装置製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、いわゆるパワー半導体装置などの半導体装置を製造する方法に関する。
【背景技術】
【0002】
半導体装置の製造において、リードフレームや絶縁回路基板など基板に対し、半導体チップを基板側との電気的接続をとりつつダイボンディングするための手法として、基板とチップとの間にAu-Si共晶合金層を形成して接合状態を実現する手法や、接合材としてハンダや導電性粒子含有樹脂を利用する手法が、知られている。
【0003】
一方、電力の供給制御を担うパワー半導体装置の普及が近年では顕著である。パワー半導体装置は、動作時の通電量が大きいことに起因して発熱量が大きい場合が多い。そのため、パワー半導体装置の製造においては、半導体チップを基板側との電気的接続をとりつつ基板にダイボンディングする手法について、高温動作時にも信頼性の高い接合状態を実現可能であることが求められる。半導体材料としてSiCやGaNが採用されて高温動作化の図られたパワー半導体装置においては特に、そのような要求が強い。そして、そのような要求に応えるべく、電気的接続を伴うダイボンディング手法として、焼結性粒子と溶剤等を含有する焼結接合用の組成物を使用する技術が提案されている。
【0004】
焼結性粒子含有の焼結接合用材料が用いられて行われるダイボンディングでは、まず、基板のチップ接合予定箇所に対して半導体チップが焼結接合用材料を介して所定の温度・荷重条件で載置される。その後、基板とその上の半導体チップとの間において焼結接合用材料中の溶剤の揮発などが生じ且つ焼結性粒子間で焼結が進行するように、所定の温度・加圧条件での焼結工程が行われる。これにより、基板と半導体チップとの間に焼結層が形成されて、基板に対して半導体チップが電気的に接続されつつ機械的に接合されることとなる。このような技術は、例えば下記の特許文献1,2に記載されている。
【先行技術文献】
【特許文献】
【0005】
【文献】国際公開第2008/065728号
【文献】特開2013-039580号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
焼結接合によるダイボンディングがなされる半導体装置製造過程におけるその焼結接合の工程では、加熱プレス用の一対の平行平板を備える加熱プレス機が使用される場合がある。当該工程では、具体的には、焼結接合用材料層を介して仮固定されている基板と半導体チップ、即ちワークを、基板と半導体チップの積層方向に開く一対の平行平板の間に挟持させた状態で、当該一対の平行平板によって加圧しつつ加熱する。このような過程を経ることにより、焼結接合用材料層から焼結層が形成されて基板に対して半導体チップが焼結接合されることとなる。
【0007】
また、焼結接合によるダイボンディングがなされる半導体装置製造過程におけるその焼結接合の工程では、基板に対して複数の半導体チップが一括的に焼結接合される場合がある。しかしながら、上述の加熱プレス機を使用して一括的な焼結接合工程を行う場合、形成される複数の焼結層において、その周縁部が基板や半導体チップに接合していないものが見られることがある。このような接合不良は、焼結接合工程にて平行平板間に挟持されるワークに作用する荷重についての、複数の焼結接合用材料層の間での非均一性に、起因するものと考えられる。ワークにおける半導体チップや焼結接合用材料層の厚さは数μm~数百μm程度と小さく、一対の平行平板を備える加熱プレス機を使用して行う焼結接合工程においては、平行平板における理想的な平行姿勢からの逸脱ないし傾きは、半導体チップないし焼結接合用材料層ごとの荷重の差異を招きやすい。平行平板における平行度や姿勢制御の確度が半導体チップや焼結接合用材料層の薄さに見合わない場合に、上述の接合不良が生じやすいと考えられる。
【0008】
本発明は、以上のような事情のもとで考え出されたものであって、その目的は、加圧条件下で行われる半導体チップの焼結接合工程を経る半導体装置製造方法において、基板に対して複数の半導体チップを一括して焼結接合するのに適した手法を提供することにある。
【課題を解決するための手段】
【0009】
本発明により提供される半導体装置製造方法は、以下のような用意工程および焼結接合工程を含む。本方法は、半導体チップの焼結接合箇所を備えるパワー半導体装置などの半導体装置を製造するのに適するものである。
【0010】
用意工程では焼結接合ワークが用意される。焼結接合ワークは、第1面およびこれとは反対の第2面を有する基板、第1面側に配され且つ接合されることとなる複数の半導体チップ、および、各半導体チップと基板との間にそれぞれが介在する焼結性粒子含有の複数の焼結接合用材料層を含む。例えば、焼結接合用材料層付き半導体チップをその焼結接合用材料層を介して基板に対して圧着して仮固定することにより、焼結接合ワークを用意することができる。焼結接合用材料層の供給材としては、例えば、焼結性粒子とともに熱分解性の高分子バインダーを含む組成物のシート体(焼結接合用シート)を用いることができる。
【0011】
焼結接合工程では、緩衝材シートが使用されつつ焼結接合ワークにおける基板に対して各半導体チップが焼結接合される。使用される緩衝材シートは、5~5000μmの厚さを有し且つ2~150MPaの引張弾性率を有する。本発明において、緩衝材シートの引張弾性率とは、幅10mm×長さ40mm×厚さ100μmの緩衝材シート試料片について初期チャック間距離10mm、23℃および引張速度50mm/分の条件で行われる引張試験における測定に基づいて求められる値とする。焼結接合工程では、このような緩衝材シートと焼結接合ワークとを重ねて加熱プレス機における一対のプレス面の間に挟持させた状態で、当該プレス面間にて焼結接合ワークをその積層方向に加圧しつつ加熱過程を経ることにより、ワークにおける各焼結接合用材料層から焼結層を形成する。一対のプレス面は、例えば、加熱プレス用の一対の平行平板における一対の対向面である。緩衝材シートは、焼結接合ワークに対し、その半導体チップ配設側に重ねられるか、或いは基板の第2面側に重ねられる。基板と各半導体チップとの間での焼結層の形成により、基板に対して各半導体チップが焼結接合されることとなる。
【0012】
本半導体装置製造方法において、その焼結接合工程では、上述のように、厚さ5~5000μmかつ引張弾性率2~150MPaの緩衝材シートと焼結接合ワークとを重ねて加熱プレス機のプレス面間に挟持させた状態で、焼結接合ワークを加圧しつつ加熱する。このような構成は、焼結接合工程にて平行平板間に挟持される焼結接合ワークに作用する加圧力ないし荷重について、複数の焼結接合用材料層の間での高い均一性を実現するのに適する。焼結接合工程において、5~5000μmの厚さを有し且つ2~150MPaの引張弾性率を有して焼結接合ワークと重ねられる緩衝材シートが、一対のプレス面における理想的な平行姿勢からの逸脱ないし傾きや、基板第1面から半導体チップ頂面までの高さについて半導体チップ間で差異がある場合にはその差異を、実質的に吸収して低減・解消するクッション機能を発揮しうるからである。
【0013】
加えて、厚さ5~5000μmかつ引張弾性率2~150MPaの緩衝材シートは、充分な形状保持性を有し、半導体装置製造プロセスにおいて取り扱いやすい。このような緩衝材シートは、上述の焼結接合工程において焼結接合ワークに対して効率よく且つ適切な配置で重ねやすい。
【0014】
以上のように、本発明に係る半導体装置製造方法は、基板に対して複数の半導体チップを一括して焼結接合するのに適する。
【0015】
上述の焼結接合工程にて使用される緩衝材シートは、大気雰囲気下、基準重量温度25℃、および昇温速度10℃/分の条件での重量減少測定における350℃での重量減少率が0.1%以下である。このような構成は、高温加熱過程を経る焼結接合工程において、緩衝材シートについてそのクッション機能などの機能を充分に発揮させるうえで好適である。緩衝材シートの重量減少率は、例えば、約10mgの緩衝材シート試料について示差熱-熱重量同時測定装置を使用して測定することができる。
【0016】
上述の焼結接合工程では、好ましくは、加熱温度は200℃以上であり且つ加圧力は5MPa以上である。すなわち、焼結接合工程では、一対のプレス面間にて焼結接合ワークをその積層方向に好ましくは5MPa以上の圧力で加圧しつつ好ましくは200℃以上の温度での加熱過程を経ることにより、焼結接合用材料層から焼結層を形成する。このような構成は、焼結接合される基板と各半導体チップとの間に強固な焼結層を形成するうえで好適である。
【0017】
上述の焼結接合用材料層内の焼結性粒子は、好ましくは、銀粒子、銅粒子、酸化銀粒子、および酸化銅粒子からなる群より選択される少なくとも一種を含む。このような構成は、焼結接合される基板と半導体チップとの間に強固な焼結層を形成するうえで好適である。
【0018】
焼結接合用材料層における焼結性粒子の含有割合は、信頼性の高い焼結接合を実現するという観点からは、好ましくは60~99質量%、より好ましくは65~98質量%、より好ましくは70~97質量%である。
【図面の簡単な説明】
【0019】
【
図1】本発明の一の実施形態に係る半導体装置製造方法における一部の工程を表す。
【
図5】焼結接合工程における緩衝材シートの使用態様についてのバリエーションを表す。
【
図6】焼結接合工程における緩衝材シートの使用態様についてのバリエーションを表す。
【
図7】焼結接合工程における緩衝材シートの使用態様についてのバリエーションを表す。
【
図8】焼結接合工程における緩衝材シートの使用態様についてのバリエーションを表す。
【発明を実施するための形態】
【0020】
図1から
図4は、本発明の一の実施形態に係る半導体装置製造方法を表す。本実施形態の半導体装置製造方法は、半導体チップの焼結接合箇所を備えるパワー半導体装置などの半導体装置を製造するための方法であって、以下のような用意工程および焼結接合工程を少なくとも含むものである。
【0021】
用意工程では、焼結接合工程に付されることとなる
図1に示すような焼結接合ワークXが用意される。焼結接合ワークXは、基板Sと、複数のチップCと、複数の焼結接合用材料層11とを含む積層構成を有する。
【0022】
基板Sは、面Saおよびこれとは反対の面Sbを有する。基板Sとしては、例えば、銅配線など配線を表面に伴う絶縁回路基板、および、リードフレームが挙げられる。基板Sにおけるチップ搭載箇所は、銅配線やリードフレームなどの素地表面であってもよいし、素地表面上に形成されためっき膜の表面であってもよい。当該めっき膜としては、例えば、金めっき膜、銀めっき膜、ニッケルめっき膜、パラジウムめっき膜、および白金めっき膜が挙げられる。
【0023】
各チップCは、半導体チップであり、半導体素子が作り込まれている側の素子形成面とこれとは反対の裏面を有する。裏面には、外部電極としての平面電極(図示略)が形成されている。このチップ裏面(
図1では下面)側が焼結接合用材料層11を介して基板Sの面Sa側に仮固定されている。チップCにおけるチップ本体をなすための構成材料としては、例えば、炭化ケイ素(SiC)や窒化ガリウム(GaN)など、パワー半導体装置用の半導体材料が挙げられる。また、チップCの厚さは例えば20~1000μmである。
【0024】
各焼結接合用材料層11は、本実施形態では導電性金属含有の焼結性粒子とバインダー成分とを含む組成物の層であり、チップCごとに当該チップCと基板Sの間に介在する。
【0025】
以上のような積層構成の焼結接合ワークXは、以下のようにして作製することができる。
【0026】
まず、
図2(a)に示すように、複数のチップCおよび焼結接合用シート10が用意される。複数のチップCのそれぞれは、所定の半導体素子が既に作り込まれたものであり、チップ固定用テープT1の粘着面T1a上に固定されている。各チップCにおいて、焼結接合用シート10が貼り合わせられる側の表面(
図2では上面)には既に外部電極として平面電極(図示略)が形成されている。各チップCの他方の面(
図2では下面)には、必要に応じて他の電極パッド等(図示略)が形成されている。焼結接合用シート10は、導電性金属含有の焼結性粒子とバインダー成分とを少なくとも含む組成物のシート体であり、その片面に剥離ライナーLを伴う。
【0027】
次に、
図2(b)に示すように、複数のチップCに対して焼結接合用シート10が貼り合わせられる。具体的には、焼結接合用シート10がその剥離ライナーLの側からチップC側に押圧されつつ、複数のチップCに対して焼結接合用シート10が貼り合わせられる。押圧手段としては、例えば圧着ロールが挙げられる。貼合せ温度は、例えば、室温から200℃の範囲内である。貼合せ用の荷重は例えば0.01~10MPaである。
【0028】
次に、
図2(c)に示すように、剥離ライナーLの剥離が行われる。これにより、焼結接合用シート10の各所が各チップCの表面に転写され、焼結接合用材料層11を伴うチップCが得られる。
【0029】
次に、
図2(d)に示すように、上述の基板SへのチップCの仮固定が行われる。具体的には、例えばチップマウンターを使用して、焼結接合用材料層付きチップCをその焼結接合用材料層11を介して基板Sに対して押圧して仮固定する。以上のようにして、焼結接合ワークXを用意することができる。
【0030】
焼結接合ワークXを作製するうえで使用した焼結接合用シート10は、焼結接合用材料の供給材であって、上述のように、導電性金属含有の焼結性粒子とバインダー成分とを少なくとも含む組成物のシート体である。
【0031】
焼結接合用シート10中の焼結性粒子は、導電性金属元素を含有して焼結可能な粒子である。導電性金属元素としては、例えば、金、銀、銅、パラジウム、スズ、およびニッケルが挙げられる。このような焼結性粒子の構成材料としては、例えば、金、銀、銅、パラジウム、スズ、ニッケル、および、これらの群から選択される二種以上の金属の合金が挙げられる。焼結性粒子の構成材料としては、酸化銀や、酸化銅、酸化パラジウム、酸化スズなどの金属酸化物も挙げられる。また、焼結性粒子は、コアシェル構造を有する粒子であってもよい。例えば、焼結性粒子は、銅を主成分とするコアと、金や銀などを主成分とし且つコアを被覆するシェルとを有する、コアシェル構造の粒子であってもよい。本実施形態において、焼結性粒子は、好ましくは銀粒子、銅粒子、酸化銀粒子、および酸化銅粒子からなる群より選択される少なくとも一種を含む。形成される焼結層において高い導電性および高い熱伝導性を実現するという観点からは、焼結性粒子としては銀粒子および銅粒子が好ましい。加えて耐酸化性の観点からは、銀粒子は扱いやすくて好ましい。例えば、銀めっき付銅基板への半導体チップの焼結接合において、焼結性粒子として銅粒子を含む焼結材を用いる場合には、窒素雰囲気下など不活性環境下で焼結プロセスを行う必要があるものの、銀粒子が焼結性粒子をなす焼結材を用いる場合には、空気雰囲気下であっても適切に焼結プロセスを実行することが可能である。
【0032】
用いられる焼結性粒子の平均粒径は、焼結性粒子について低い焼結温度を実現するなどして良好な焼結性を確保するという観点からは、好ましくは2000nm以下、より好ましくは800nm以下、より好ましくは500nm以下である。焼結接合用シート10ないしそれを形成するための組成物における焼結性粒子について良好な分散性を実現するという観点からは、焼結性粒子の平均粒径は、好ましくは1nm以上、好ましくは10nm以上、より好ましくは50nm以上、より好ましくは100nm以上である。焼結性粒子の平均粒径は、走査型電子顕微鏡(SEM)を使用して行う観察によって計測することが可能である。
【0033】
焼結接合用シート10における焼結性粒子の含有割合は、信頼性の高い焼結接合を実現するという観点からは、好ましくは60~99質量%、より好ましくは65~98質量%、より好ましくは70~97質量%である。
【0034】
焼結接合用シート10中のバインダー成分は、本実施形態では、熱分解性高分子バインダーと低沸点バインダーとを少なくとも含み、可塑剤など他の成分を更に含んでもよい。熱分解性高分子バインダーは、焼結接合用の高温加熱過程で熱分解され得るバインダー成分であり、当該加熱過程前までにおいて、焼結接合用シート10のシート形状の保持に寄与する要素である。本実施形態では、シート形状保持機能を担保するという観点から、熱分解性高分子バインダーは常温(23℃)で固形の材料である。そのような熱分解性高分子バインダーとしては、例えば、ポリカーボネート樹脂およびアクリル樹脂を挙げることができる。
【0035】
熱分解性高分子バインダーとしてのポリカーボネート樹脂としては、例えば、主鎖の炭酸エステル基(-O-CO-O-)間にベンゼン環など芳香族化合物を含まずに脂肪族鎖からなる脂肪族ポリカーボネート、および、主鎖の炭酸エステル基(-O-CO-O-)間に芳香族化合物を含む芳香族ポリカーボネートが挙げられる。脂肪族ポリカーボネートとしては、例えば、ポリエチレンカーボネートおよびポリプロピレンカーボネートが挙げられる。芳香族ポリカーボネートとしては、主鎖にビスフェノールA構造を含むポリカーボネートが挙げられる。
【0036】
熱分解性高分子バインダーとしてのアクリル樹脂としては、例えば、炭素数4~18の直鎖状または分岐状のアルキル基を有するアクリル酸エステルおよび/またはメタクリル酸エステルの重合体が挙げられる。以下では、「(メタ)アクリル」をもって「アクリル」および/または「メタクリル」を表し、「(メタ)アクリレート」をもって「アクリレート」および/または「メタクリレート」を表す。熱分解性高分子バインダーとしてのアクリル樹脂をなすための(メタ)アクリル酸エステルのアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、ヘキシル基、へプチル基、シクロヘキシル基、2-エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、およびオクタデシル基が挙げられる。
【0037】
熱分解性高分子バインダーとしてのアクリル樹脂は、上記(メタ)アクリル酸エステル以外の他のモノマーに由来するモノマーユニットを含む重合体であってもよい。そのような他のモノマーとしては、例えば、カルボキシ基含有モノマー、酸無水物モノマー、ヒドロキシ基含有モノマー、スルホン酸基含有モノマー、およびリン酸基含有モノマーが挙げられる。具体的に、カルボキシ基含有モノマーとしては、例えば、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、およびクロトン酸が挙げられる。酸無水物モノマーとしては、例えば、無水マレイン酸や無水イタコン酸が挙げられる。ヒドロキシ基含有モノマーとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、および、(メタ)アクリル酸4-(ヒドロキシメチル)シクロヘキシルメチルが挙げられる。スルホン酸基含有モノマーとしては、例えば、スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、および(メタ)アクリロイルオキシナフタレンスルホン酸が挙げられる。リン酸基含有モノマーとしては、例えば2-ヒドロキシエチルアクリロイルホスフェートが挙げられる。
【0038】
熱分解性高分子バインダーの重量平均分子量は、好ましくは10000以上である。熱分解性高分子バインダーの重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)により測定してポリスチレン換算により算出される値とする。
【0039】
焼結接合用シート10における熱分解性高分子バインダーの含有割合は、上述のシート形状保持機能を適切に発揮させるという観点からは、好ましくは0.5~10質量%、より好ましくは0.8~8質量%、より好ましくは1~6質量%である。
【0040】
焼結接合用シート10中の低沸点バインダーは、動的粘弾性測定装置(商品名「HAAKE MARS III」,Thermo Fisher Scientfic社製)を使用して測定される23℃での粘度が1×105Pa・s以下を示す液状または半液状であるものとする。本粘度測定においては、治具として20mmφのパラレルプレートを使用し、プレート間ギャップを100μmとし、回転せん断におけるせん断速度を1s-1とする。
【0041】
焼結接合用材料層11に含まれる低沸点バインダーとしては、例えば、テルペンアルコール類、テルペンアルコール類を除くアルコール類、アルキレングリコールアルキルエーテル類、および、アルキレングリコールアルキルエーテル類を除くエーテル類が、挙げられる。テルペンアルコール類としては、例えば、イソボルニルシクロヘキサノール、シトロネロール、ゲラニオール、ネロール、カルベオール、およびα-テルピネオールが挙げられる。テルペンアルコール類を除くアルコール類としては、例えば、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、1-デカノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、および2,4-ジエチル-1,5ペンタンジオールが挙げられる。アルキレングリコールアルキルエーテル類としては、例えば、エチレングリコールブチルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールイソブチルエーテル、ジエチレングリコールヘキシルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールブチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールメチルエーテル、およびトリプロピレングリコールジメチルエーテルが挙げられる。アルキレングリコールアルキルエーテル類を除くエーテル類としては、例えば、エチレングリコールエチルエーテルアセテート、エチレングリコールブチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート、およびジプロピレングリコールメチルエーテルアセテートが挙げられる。焼結接合用シート10中の成分として、一種類の低沸点バインダーを用いてもよいし、二種類以上の低沸点バインダーを用いてもよい。焼結接合用シート10中の低沸点バインダーとしては、常温での安定性という観点からは、テルペンアルコール類が好ましく、イソボルニルシクロヘキサノールがより好ましい。
【0042】
焼結接合用シート10の23℃での厚さは、好ましくは5μm以上、より好ましくは10μm以上であり、且つ、好ましくは300μm以下、より好ましくは200μm以下、より好ましくは150μm以下である。また、焼結接合用シート10ないしこれをなす焼結接合用組成物の70℃での粘度は、例えば5×103~1×107Pa・sであり、好ましくは1×104~1×106Pa・sである。
【0043】
焼結接合用シート10は、例えば、上述の各成分を溶剤中にて混合してワニスを調製し、基材としてのセパレータの上に当該ワニスを塗布して塗膜を形成し、その塗膜を乾燥させることによって、作製することができる。ワニス調製用の溶剤としては有機溶剤やアルコール溶剤を用いることができる。
【0044】
本発明の半導体装置製造方法においては、上述の用意工程の後に、焼結接合ワークXにおける基板Sに対して各チップCが焼結接合される(焼結接合工程)。具体的には次のとおりである。
【0045】
まず、
図3(a)および
図3(b)に示すように、焼結接合ワークXと緩衝材シート20とを重ねて、加熱プレス機の具備する加熱プレス用の一対の平行平板P,Pにおける一対のプレス面Pa,Paの間に挟持させる。
図3(b)では、緩衝材シート20は、焼結接合ワークXに対してそのチップ配設側に重ねられている。緩衝材シート20の構成材料としては、例えば、テトラフルオロエチレン樹脂(PTFE)などのフッ素樹脂、ポリメチルシロキサンなどのシリコーン樹脂、およびカーボンシートが挙げられる。
【0046】
使用される緩衝材シート20の厚さは5~5000μmである。緩衝材シート20の剛性ひいては形状保持性を確保するという観点からは、緩衝材シート20の厚さは、好ましくは10μm以上、より好ましくは20μm以上、より好ましくは30μm以上である。緩衝材シート20に関するコスト、ひいては半導体装置の製造コストを抑制するという観点からは、緩衝材シート20の厚さは、好ましくは3000μm以下、より好ましくは1500μm以下、より好ましくは1000μm以下、より好ましくは500μm以下である。また、緩衝材シート20の平面視形状のサイズは、焼結接合ワークXの平面視形状のサイズと同じであってもよいし、焼結接合ワークXの平面視形状のサイズより大きくてもよい。
【0047】
緩衝材シート20の引張弾性率は2~150MPaである。緩衝材シートの引張弾性率とは、幅10mm×長さ40mm×厚さ100μmの緩衝材シート試料片について初期チャック間距離10mm、23℃および引張速度50mm/分の条件で行われる引張試験における測定に基づいて求められる値とする。具体的には、本測定によって得られる応力-歪み曲線における測定初期期間の立ち上がり直線部分の傾きから引張弾性率を求めることができる。このような引張試験は、例えば、引張試験機(商品名「オートグラフAGS-50NX」,株式会社島津製作所製)を使用して実施することができる。緩衝材シート20の剛性ひいては形状保持性を確保するという観点からは、緩衝材シート20の引張弾性率は、好ましくは5MPa以上、より好ましくは15MPa以上、より好ましくは30MPa以上である。緩衝材シート20において高いクッション性を実現するという観点からは、緩衝材シート20の引張弾性率は、好ましくは150MPa以下、より好ましくは120MPa以下、より好ましくは100MPa以下である。
【0048】
緩衝材シート20は、大気雰囲気下、基準重量温度25℃、および昇温速度10℃/分の条件での重量減少測定における350℃での重量減少率が0.1%以下である。緩衝材シートの重量減少率は、約10mgの緩衝材シート試料について示差熱-熱重量同時測定装置を使用して測定することができる。同装置としては、例えば、株式会社リガク製の示差熱天秤 TG-DTA TG8120が挙げられる。
【0049】
焼結接合工程では、次に、所定の高温加熱過程を経ることにより、
図3(c)に示すように、焼結接合ワークXにおける各焼結接合用材料層11から焼結層12を形成する。具体的には、緩衝材シート20と焼結接合ワークXとを重ねて一対のプレス面Pa,Paの間に挟持させた状態で、プレス面Pa,Pa間にて焼結接合ワークXをその厚さ方向ないし積層方向に加圧しつつ所定の高温加熱過程を経る。これにより、基板SとチップCとの間において、焼結接合用材料層11中の低沸点バインダーを揮発させ、熱分解性高分子バインダーを熱分解させて揮散させ、そして、焼結性粒子の導電性金属を焼結させる。本工程では、基板Sと各チップCとの間に焼結層12が形成されて、基板Sないしその面Saに対し、チップCが基板S側との電気的接続がとられつつ焼結接合されることとなる。
【0050】
本工程において、焼結接合のための加熱温度は、例えば150~400℃であり、好ましくは200~400℃、より好ましくは250~350℃である。焼結接合のための加圧力は、好ましくは5MPa以上であって、例えば60MPa以下であり、好ましくは40MPa以下である。このような温度条件および圧力条件は、焼結接合される基板Sと各チップCとの間に強固な焼結層12を形成するうえで好適である。焼結接合の加圧加熱時間は、例えば0.3~300分間であり、好ましくは0.5~240分間である。また、焼結接合に関与する金属の酸化防止の観点からは、本工程は、窒素雰囲気下、減圧下、または還元ガス雰囲気下で行われるのが好ましい。
【0051】
本工程で形成される焼結層12の平均厚さは、好ましくは5~200μm、より好ましくは10~150μmである。このような構成は、焼結層12において熱ストレスに起因する内部応力を緩和して充分な熱衝撃信頼性を確保するとともに、焼結接合に関するコスト、ひいては半導体装置の製造コストを抑制するうえで、好ましい。
【0052】
本半導体装置製造方法においては、次に、
図4(a)に示すように、チップCの端子部(図示略)と基板Sの有する端子部(図示略)とを必要に応じてボンディングワイヤーWを介して電気的に接続する(ワイヤーボンディング工程)。チップCの端子部や基板Sの端子部とボンディングワイヤーWとの結線は、例えば、加熱を伴う超音波溶接によって実現される。ボンディングワイヤーWとしては、例えば金線、アルミニウム線、または銅線を用いることができる。ワイヤーボンディングにおけるワイヤー加熱温度は、例えば80~250℃であり、好ましくは80~220℃である。また、その加熱時間は数秒~数分間である。
【0053】
次に、
図4(b)に示すように、基板S上のチップCやボンディングワイヤーWを保護するための封止樹脂Rを形成する(封止工程)。本工程では、例えば、金型を使用して行うトランスファーモールド技術によって封止樹脂Rが形成される。封止樹脂Rの構成材料としては、例えばエポキシ系樹脂を用いることができる。本工程において、封止樹脂Rを形成するための加熱温度は例えば165~185℃であり、加熱時間は例えば60秒~数分間である。本封止工程で封止樹脂Rの硬化が充分には進行しない場合には、本工程の後に封止樹脂Rを完全に硬化させるための後硬化工程が行われる。
【0054】
以上のようにして、半導体チップの焼結接合箇所を備える半導体装置を製造することができる。
【0055】
本半導体装置製造方法において、
図3を参照して上述した焼結接合工程では、厚さ5~5000μmかつ引張弾性率2~150MPaの緩衝材シート20と焼結接合ワークXとを重ねて加熱プレス機の一対の平行平板P,Pのプレス面Pa,Pa間に挟持させた状態で、焼結接合ワークXを加圧しつつ加熱する。このような構成は、焼結接合工程にて平行平板P,P間に挟持される焼結接合ワークXに作用する加圧力ないし荷重について、複数の焼結接合用材料層11の間での高い均一性を実現するのに適する。焼結接合工程において、5~5000μmの厚さを有し且つ2~150MPaの引張弾性率を有して焼結接合ワークXと重ねられる緩衝材シート20が、一対のプレス面Pa,Paにおける理想的な平行姿勢からの逸脱ないし傾きや、基板Sの面SaからチップCの頂面までの高さについてチップC間で差異がある場合にはその差異を、実質的に吸収して低減・解消するクッション機能を発揮しうるからである。
【0056】
加えて、厚さ5~5000μmかつ引張弾性率2~150MPaの緩衝材シート20は、充分な形状保持性を有し、半導体装置製造プロセスにおいて取り扱いやすい。このような緩衝材シート20は、上述の焼結接合工程において焼結接合ワークXに対して効率よく且つ適切な配置で重ねやすい。また、このような緩衝材シート20は、高温加圧過程を経る上述の焼結接合工程において、過度の圧縮変形や、垂れ下がる変形を、生じにくい。高温加圧過程において、使用緩衝材シートが基板S上のチップCを包埋するような過度の圧縮変形や垂れ下がる変形を生じてチップC周りに閉空間(基板SとチップCと緩衝材シートとにより閉ざされた空間)が形成されると、焼結接合用材料層11から揮発して逸出した成分が基板Sに対して沈着してしまう場合がある。このような沈着が生じると、沈着箇所を清浄化するための洗浄工程が別途必要となり、好ましくない。高温加圧過程を経る上述の焼結接合工程において過度の圧縮変形や垂れ下がる変形を生じにくい上述の緩衝材シート20は、このような問題を回避するのに適するのである。
【0057】
以上のように、本実施形態に係る半導体装置製造方法は、基板Sに対して複数のチップCを一括して焼結接合するのに適する。
【0058】
緩衝材シート20における25~350℃の重量減少率は、上述のように、好ましくは0.1%以下である。このような構成は、高温加熱過程を経る焼結接合工程において、緩衝材シート20についてそのクッション機能などの機能を充分に発揮させるうえで好適である。
【0059】
本半導体装置製造方法における焼結接合工程では、複数の焼結接合ワークXについて一括して焼結接合を行ってもよい。具体的には、
図5に示すように、それぞれが複数のチップCを伴う複数の焼結接合ワークXと緩衝材シート20とを重ねて一対のプレス面Pa,Paの間に挟持させた状態で、プレス面Pa,Pa間にて複数の焼結接合ワークXをその厚さ方向ないし積層方向に加圧しつつ所定の高温加熱過程を経てもよい。焼結接合工程において緩衝材シート20と重ねられる複数の焼結接合ワークXは、例えば3行×3列の配列について
図6に示すように、複数行かつ複数列に配列されたものであってもよい。このような焼結接合工程において、5~5000μmの厚さを有し且つ2~150MPaの引張弾性率を有して複数の焼結接合ワークXと重ねられる緩衝材シート20は、基板Sの厚さを含む焼結接合ワークXの厚さについて焼結接合ワークX間で差異がある場合にはその差異を、実質的に吸収して低減・解消するクッション機能を発揮しうる。このようなクッション機能の発揮により、当該焼結接合工程にて平行平板P,P間に挟持される複数の焼結接合ワークXに作用する加圧力ないし荷重について、複数の焼結接合用材料層11の間での均一化が図られる。
【0060】
本半導体装置製造方法における焼結接合工程では、
図7(a)および
図7(b)に示すように、緩衝材シート20を焼結接合ワークXに対して基板Sの面Sb側に重ねてもよい。このような構成によっても、緩衝材シート20のクッション機能の発揮により、平行平板P,P間に挟持される焼結接合ワークXに作用する加圧力ないし荷重について、複数の焼結接合用材料層11の間での均一化が図られる。
【0061】
本半導体装置製造方法における焼結接合工程では、
図8に示すように、チップ配設側が下方に向けられた配向をとる焼結接合ワークXに対してそのチップ配設側に緩衝材シート20を重ねてもよい。このような構成によっても、緩衝材シート20のクッション機能の発揮により、平行平板P,P間に挟持される焼結接合ワークXに作用する加圧力ないし荷重について、複数の焼結接合用材料層11の間での均一化が図られる。加えて、このような構成は、焼結接合用材料層11由来成分の基板Sへの沈着を招く上述の閉空間の形成を回避するうえで、好適である。
【0062】
また、本半導体装置製造方法に使用される上述の緩衝材シート20には、それを厚さ方向に貫通する複数の貫通孔が形成されていてもよい。このような構成は、焼結接合用材料層11由来成分の基板Sへの沈着を招く上述の閉空間の形成を回避するうえで、好適である。
【実施例】
【0063】
〔焼結接合用シートの作製〕
焼結性粒子としての第1の銀粒子(平均粒径60nm,DOWAエレクトロニクス株式会社製)35.86質量部と、焼結性粒子としての第2の銀粒子(平均粒径1100nm,三井金属鉱業株式会社製)23.90質量部と、熱分解性高分子バインダーとしてのポリカーボネート樹脂(商品名「QPAC40」,重量平均分子量は150000,常温で固体,Empower Materials社製)0.87質量部と、低沸点バインダーとしてのイソボルニルシクロヘキサノール(商品名「テルソルブMTPH」,常温で液体,日本テルペン化学工業株式会社製)3.47質量部と、溶剤としてのメチルエチルケトン 35.91質量部とを、ハイブリッドミキサー(商品名「HM-500」,株式会社キーエンス製)をその撹拌モードで使用して混合し、ワニスを調製した。撹拌時間は3分間とした。そして、得られたワニスを、離型処理フィルム(商品名「MRA50」,三菱樹脂株式会社製)に塗布した後に乾燥させて、焼結接合用組成物の厚さ40μmのシート体を形成した。乾燥温度は110℃とし、乾燥時間は3分間とした。以上のようにして、焼結性粒子と、熱分解性高分子バインダーと、低沸点バインダーとを含む焼結接合用シートを作製した。
【0064】
[実施例1]
以下のような焼結接合用材料層付きシリコンチップの作製、当該チップの銅基板への仮固定による焼結接合ワークの作製、および当該ワークにおける一括焼結接合を行った。そして、焼結接合箇所についての観察を行った。
【0065】
〔焼結接合用材料層付きシリコンチップの作製〕
まず、平面電極(5mm角)を一方の面に有するシリコンチップ(5mm角,厚さ350μm)を用意した。平面電極は、シリコンチップ表面上のTi層(厚さ50nm)とその上のAu層(厚さ100nm)との積層構造を有する。次に、シリコンチップの平面電極に対し、圧着ロールを備えるラミネータを使用して焼結接合用シートを貼り合わせた。貼合せ温度は70℃であり、貼合せ用の荷重(圧着ロールによる圧力)は0.3MPaであり、圧着ロールの速度は10mm/秒である。貼り合わせの後、焼結接合用シートにおいてシリコンチップの平面電極に圧着された部分を当該電極上に残して同シートにおける他の部分を取り除き、5mm角の焼結接合用材料層を片面に伴うシリコンチップを得た。このようにして、必要数の焼結接合用材料層付きシリコンチップを作製した。
【0066】
〔焼結接合ワークの作製〕
Ag膜(厚さ5μm)で全体が覆われた銅板(厚さ3mm)に対し、二つの焼結接合用材料層付きシリコンチップをその焼結接合用材料層側にて圧着させて仮固定し、焼結接合ワークを得た。このようにして、二つの焼結接合ワークを作製した。
【0067】
〔一括焼結接合〕
加熱プレス用の一対の平行平板を備える焼結装置(商品名「HTM-3000」,伯東株式会社製)を使用して、複数の焼結接合ワークについて一括焼結接合を行った。具体的には、複数の焼結接合ワーク(それぞれ二つの焼結接合用材料層付き半導体チップが仮固定されている)とその上に重ねられた厚さ30μmの第1緩衝材シート(商品名「900UL」,日東電工株式会社製)とを、一対の平行平板における一対のプレス面の間に挟持させた状態で、当該プレス面間にて焼結接合ワークをその積層方向に加圧しつつ加熱過程を経て、各焼結接合ワークにおける各焼結接合用材料層から焼結層を形成した。このような焼結接合工程において、加圧力は10MPaとした。加熱過程では、昇温速度1.5℃/秒で80℃から300℃まで昇温して、300℃にて2.5分間保持した。その後、空冷によって170℃まで降温させ、そして水冷によって80℃まで降温させた。水冷は、平行平板内に設けられている水冷機構によるものである。
【0068】
〔焼結接合箇所の観察〕
超音波映像装置(商品名「FineSAT FS200」,株式会社日立パワーソリューションズ製)を使用して、焼結接合ワークにおける各焼結接合箇所を観察した。各焼結接合ワークにおいて、二つのシリコンチップのそれぞれと銅基板との間に形成された各焼結層に接合不良(焼結層の周縁部が基板や半導体チップに接合していない状態)は見られなかった。その結果を表1に掲げる。
【0069】
[実施例2]
焼結接合工程において、厚さ30μmの第1緩衝材シートに代えて厚さ100μmの第2緩衝材シート(商品名「900UL」,日東電工株式会社製)を使用したこと以外は、実施例1と同様にして、焼結接合用材料層付きシリコンチップの作製から一括焼結接合までを行い、且つ焼結接合箇所の観察を行った。各焼結接合ワークにおいて、二つのシリコンチップのそれぞれと銅基板との間に形成された各焼結層に接合不良(焼結層の周縁部が基板や半導体チップに接合していない状態)は見られなかった。その結果を表1に掲げる。
【0070】
[実施例3]
焼結接合工程において、厚さ30μmの第1緩衝材シートに代えて厚さ30μmの第3緩衝材シート(商品名「920UL」,日東電工株式会社製)を使用したこと以外は、実施例1と同様にして、焼結接合用材料層付きシリコンチップの作製から一括焼結接合までを行い、且つ焼結接合箇所の観察を行った。各焼結接合ワークにおいて、二つのシリコンチップのそれぞれと銅基板との間に形成された各焼結層に接合不良(焼結層の周縁部が基板や半導体チップに接合していない状態)は見られなかった。その結果を表1に掲げる。
【0071】
[比較例1]
焼結接合工程において緩衝材シートを使用しなかったこと以外は、実施例1と同様にして、焼結接合用材料層付きシリコンチップの作製から一括焼結接合までを行い、且つ焼結接合箇所の観察を行った。焼結接合ワークにおいて焼結層に接合不良(焼結層の周縁部が基板や半導体チップに接合していない状態)を生じるものがあった。その結果を表1に掲げる。
【0072】
[比較例2]
焼結接合工程において、厚さ30μmの第1緩衝材シートに代えて厚さ30μmの第4緩衝材シートを使用したこと以外は、実施例1と同様にして、焼結接合用材料層付きシリコンチップの作製から一括焼結接合までを行い、且つ焼結接合箇所の観察を行った。第4緩衝材シートは次のようにして作製した。
【0073】
まず、シラノール基を両末端に有する所定のポリジメチルシロキサン(数平均分子量11500)2031gと、ビニルトリメトキシシラン15.71gと、(3-グリシドキシプロピル)トリメトキシシラン2.80gとを撹拌して混合物を得た。次に、この混合物について、縮合触媒である水酸化テトラメチルアンモニウムのメタノール溶液0.97mL(濃度10質量%,触媒含量0.88ミリモル)を加えた後、40℃にて1時間、撹拌した(縮合反応)。次に、こうして得られた組成物について40℃の減圧下(10mmHg)で1時間撹拌した。これにより、当該組成物中のメタノールなど揮発分を除去した。次に、常圧下において、当該組成物に、オルガノハイドロジェンシロキサン(信越化学工業株式会社製,ジメチルポリシロキサン-co-メチルハイドロジェンポリシロキサン,平均分子量2000)44.5gを加えて40℃にて1時間撹拌した後、付加触媒である白金-カルボニル錯体のシロキサン溶液(白金濃度2質量%)0.13gを加えて40℃にて10分間撹拌した(付加反応)。これにより、熱硬化型シリコーン樹脂組成物を得た。次に、熱硬化型シリコーン樹脂組成物に対してポリメチルシルセスキオキサン微粒子(商品名「トスパール2000B」,平均粒子径6.0μm,モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)を配合し(配合量は20質量%)、当該組成物を室温(25℃)にて10分間撹拌した。撹拌後、当該組成物について、真空乾燥機を使用して室温で30分以上脱泡した。こうして調製された緩衝材シート形成用の樹脂組成物を、離型シートとしてのポリエステルフィルム(商品名「SS4C」,厚み50μm,ニッパ株式会社製)上に塗布した後、135℃にて9分間加熱した。これにより、厚さ30μmの半硬化状態のシリコーン樹脂シートを離型シート上に形成した。比較例2で使用した第4緩衝材シートは以上のようにして作製したものである。
【0074】
[比較例3]
焼結接合工程において、厚さ30μmの第1緩衝材シートに代えて厚さ30μmの第5緩衝材シート(商品名「9700UL」,日東電工株式会社製)を使用したこと以外は、実施例1と同様にして、焼結接合用材料層付きシリコンチップの作製から一括焼結接合までを行い、且つ焼結接合箇所の観察を行った。焼結接合ワークにおいて焼結層に接合不良(焼結層の周縁部が基板や半導体チップに接合していない状態)を生じるものがあった。その結果を表1に掲げる。
【0075】
〔緩衝材シートの引張弾性率〕
実施例1~3および比較例1~3で使用した各緩衝材シートについて、引張弾性率を調べた。具体的には、同一組成の緩衝材シート試料片(幅10mm×長さ40mm×厚さ100μm)について、引張試験機(商品名「オートグラフAGS-50NX」,株式会社島津製作所製)を使用して、初期チャック間距離10mm、23℃および引張速度50mm/分の条件で、引張試験を行った。そして、同試験の測定により得られた応力-歪み曲線における測定初期期間の立ち上がり直線部分の傾きから引張弾性率(MPa)を求めた。その結果を表1に掲げる。
【0076】
〔緩衝材シートの耐熱性〕
実施例1~3および比較例1~3で使用した各緩衝材シートについて、耐熱性を調べた。その結果を表1に掲げる。具体的には、緩衝材シートから約10mgの試料を切り出し、この試料について、示差熱-熱重量同時測定装置(商品名「示差熱天秤 TG-DTA TG8120」,株式会社リガク製)を使用して、昇温過程での重量減少を測定した。本測定は、大気雰囲気下、基準重量温度である25℃から500℃まで昇温速度10℃/分にて昇温を行った。試料における25℃での重量(基準重量)から350℃での重量への減少率(%)を表1に掲げる。
【0077】
〔一括焼結接合における作業性〕
比較例2で使用した第4緩衝材シートは、焼結接合工程を進めるにあたり、柔らかすぎて焼結接合ワーク上に重ね合わせるのが困難であった。これに対し、他の緩衝材シートでは、そのような問題を生じなかった。その結果を表1に掲げる。
【0078】
〔チップダメージの観察〕
比較例1,3では、一括焼結を経た焼結接合ワークにおいて割れや欠けの生じているシリコンチップがあった。実施例1~3および比較例2では、そのような割れや欠けは生じなかった。その結果を表1に掲げる。
【0079】
【0080】
以上のまとめとして、本発明の構成およびそのバリエーションを以下に付記として列挙する。
【0081】
〔付記1〕
第1面およびこれとは反対の第2面を有する基板、前記第1面側に配され且つ接合されることとなる複数の半導体チップ、および、各半導体チップと前記基板との間にそれぞれが介在する焼結性粒子含有の複数の焼結接合用材料層、を含む積層構成を有する焼結接合ワークを用意する工程と、
厚さ5~5000μmかつ引張弾性率2~150MPaの緩衝材シートおよび前記焼結接合ワークを重ねて一対のプレス面の間に挟持させた状態で、当該一対のプレス面間にて前記焼結接合ワークをその積層方向に加圧しつつ加熱過程を経ることにより、前記焼結接合用材料層から焼結層を形成する、焼結接合工程と、を含む半導体装置製造方法。
〔付記2〕
前記緩衝材シートの前記厚さは、10μm以上であり、好ましくは20μm以上であり、より好ましくは30μm以上である、付記1に記載の半導体装置製造方法。
〔付記3〕
前記緩衝材シートの前記厚さは、3000μm以下であり、好ましくは1500μm以下、より好ましくは1000μm以下、より好ましくは500μm以下である、付記1または2に記載の半導体装置製造方法。
〔付記4〕
前記緩衝材シートの前記引張弾性率は、5MPa以上であり、好ましくは15MPa以上、より好ましくは30MPa以上である、付記1から3のいずれか一つに記載の半導体装置製造方法。
〔付記5〕
前記緩衝材シートの前記引張弾性率は、120MPa以下であり、好ましくは100MPa以下である、付記1から4のいずれか一つに記載の半導体装置製造方法。
〔付記6〕
前記緩衝材シートは、大気雰囲気下、基準重量温度25℃、および昇温速度10℃/分の条件での重量減少測定における350℃での重量減少率が0.1%以下である、付記1から5のいずれか一つに記載の半導体装置製造方法。
〔付記7〕
前記焼結接合工程における加熱温度は200℃以上であり且つ加圧力は5MPa以上である、付記1から6のいずれか一つに記載の半導体装置製造方法。
〔付記8〕
前記焼結性粒子は、銀粒子、銅粒子、酸化銀粒子、および酸化銅粒子からなる群より選択される少なくとも一種を含む、付記1から7のいずれか一つに記載の半導体装置製造方法。
〔付記9〕
前記焼結接合用材料層における前記焼結性粒子の含有割合は、60~99質量%であり、好ましくは65~98質量%、より好ましくは70~97質量%である、付記1から8のいずれか一つに記載の半導体装置製造方法。
〔付記10〕
前記焼結層の厚さは、5~200μmであり、好ましくは10~150μmである、付記1から9のいずれか一つに記載の半導体装置製造方法。
【符号の説明】
【0082】
X 焼結接合ワーク
S 基板
C チップ(半導体チップ)
10 焼結接合用シート
11 焼結接合用材料層
12 焼結層
20 緩衝材シート
Pa プレス面