IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 北京小米移動軟件有限公司の特許一覧

<>
  • 特許-移動端末 図1
  • 特許-移動端末 図2
  • 特許-移動端末 図3
  • 特許-移動端末 図4
  • 特許-移動端末 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-17
(45)【発行日】2023-02-28
(54)【発明の名称】移動端末
(51)【国際特許分類】
   G01J 1/02 20060101AFI20230220BHJP
   H10K 50/00 20230101ALI20230220BHJP
   H05B 33/02 20060101ALI20230220BHJP
   G02B 5/30 20060101ALI20230220BHJP
   G01J 1/42 20060101ALI20230220BHJP
【FI】
G01J1/02 S
H05B33/14 A
H05B33/02
G02B5/30
G01J1/42 J
【請求項の数】 5
(21)【出願番号】P 2019561292
(86)(22)【出願日】2019-10-15
(65)【公表番号】
(43)【公表日】2022-01-06
(86)【国際出願番号】 CN2019111310
(87)【国際公開番号】W WO2021035897
(87)【国際公開日】2021-03-04
【審査請求日】2019-11-07
(31)【優先権主張番号】201910818544.1
(32)【優先日】2019-08-30
(33)【優先権主張国・地域又は機関】CN
(73)【特許権者】
【識別番号】516180667
【氏名又は名称】北京小米移動軟件有限公司
【氏名又は名称原語表記】Beijing Xiaomi Mobile Software Co.,Ltd.
【住所又は居所原語表記】No.018, Floor 8, Building 6, Yard 33, Middle Xierqi Road, Haidian District, Beijing 100085, China
(74)【代理人】
【識別番号】110000729
【氏名又は名称】弁理士法人ユニアス国際特許事務所
(72)【発明者】
【氏名】▲陳▼ 朝喜
【審査官】田中 洋介
(56)【参考文献】
【文献】米国特許出願公開第2015/0122978(US,A1)
【文献】国際公開第2019/148931(WO,A1)
【文献】米国特許出願公開第2018/0164850(US,A1)
【文献】米国特許出願公開第2010/0273530(US,A1)
【文献】中国特許出願公開第109425427(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01J 1/00-1/60
H04M 1/02-1/23
(57)【特許請求の範囲】
【請求項1】
本体と、OLEDスクリーンユニットと、第1光センサーと、第2光センサーと、を含み、
前記OLEDスクリーンユニットは、前記本体の表面に設置され、前記OLEDスクリーンユニットは、自発光層と、前記自発光層の上方に位置する光透過機能層と、を含み、前記自発光層には、光透過機能を有する2つ以上の光学的微細孔が形成され、
前記第1光センサーと前記第2光センサーは、前記自発光層の下方に設置され、且つ前記自発光層に垂直な方向における投影が対応する光学的微細孔の前記自発光層に垂直な方向における投影と重なり合っており、
前記自発光層が発した光線が前記光透過機能層に到達する入射光路と、前記光線が前記光透過機能層で反射される反射光路は、第1光路を構成し、前記第1光路には、第1偏光板と四分の一位相差板が設置され、
環境光が前記第1光センサーに到達する入射光路は、前記第1偏光板及び第2偏光板を通過し、且つ、前記第1偏光板と前記第2偏光板の偏光方向は互いに垂直であり、前記環境光が前記第2光センサーに到達する入射光路は、前記第1偏光板を通過し、
前記第1光センサーと前記第2光センサーは、同じ検出対象を前記第1光センサーと前記第2光センサーで検出するように隣接して配置される
ことを特徴とする移動端末。
【請求項2】
前記第1偏光板は、前記自発光層の上方に設置され、前記四分の一位相差板は、前記第1偏光板の上方に設置される
ことを特徴とする請求項1に記載の移動端末。
【請求項3】
前記第2偏光板は、前記第1光センサーと前記自発光層との間に設置される
ことを特徴とする請求項1に記載の移動端末。
【請求項4】
前記光透過機能層は、ガラスカバー板及びタッチパネルのいずれか1つ又は複数の組み合わせを含む
ことを特徴とする請求項1に記載の移動端末。
【請求項5】
前記移動端末は、処理ユニットをさらに含み、前記処理ユニットは、
前記第1光センサーの第1測定値及び前記第2光センサーの第2測定値を取得し、
前記第2測定値と前記第1測定値の2倍との間の差を計算し、
前記差に応じて前記環境光の光強度を決定するように構成される
ことを特徴とする請求項1から請求項4のいずれか1項に記載の移動端末。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の実施例は、端末技術分野に関し、特に、移動端末に関する。
【背景技術】
【0002】
通常、携帯電話などの移動端末には、光線の強さを感知するための光センサーが配置される。
【0003】
関連技術において、移動端末のスクリーンの下方には、光センサーが設置される。光センサーは、移動端末のスクリーンの前方領域の環境光の強度を取得し、ユーザにより優れた視覚効果を提供するように、環境光の強度に応じてスクリーンの輝度を適応的に調整することができる。
【0004】
しかしながら、移動端末のスクリーンがOLED(Organic Light-Emitting Diode、有機発光ダイオード)スクリーンである場合、OLEDスクリーンが自発光の特性を有するので、OLEDスクリーンから発生した光強度は、環境光の強度に対する光センサーの測定精度に影響を与える。
【発明の概要】
【発明が解決しようとする課題】
【0005】
本開示の実施例は、移動端末を提供する。本開示の技術的案は以下の通りである。
【課題を解決するための手段】
【0006】
本開示の実施例の一態様によれば、移動端末を提供し、前記移動端末は、本体と、OLEDスクリーンユニットと、第1光センサーと、第2光センサーと、を含み、
前記OLEDスクリーンユニットは、前記本体の表面に設置され、前記OLEDスクリーンユニットは、自発光層と、前記自発光層の上方に位置する光透過機能層と、を含み、前記自発光層には、少なくとも1つの光学的微細孔が形成され、
前記第1光センサーと前記第2光センサーは、前記自発光層の下方且つ前記光学的微細孔に対応する位置に設置され、
ここで、前記自発光層が発した光線が前記光透過機能層に到達する入射光路と、前記光線が前記光透過機能層で反射される反射光路は、第1光路を構成し、前記第1光路には、第1偏光板と四分の一位相差板が設置され、
環境光が前記第1光センサーに到達する入射光路は、前記第1偏光板及び第2偏光板を通過し、且つ、前記第1偏光板と前記第2偏光板の偏光方向は互いに垂直であり、前記環境光が前記第2光センサーに到達する入射光路は、前記第1偏光板を通過する。
【0007】
選択的に、前記第1偏光板は、前記自発光層の上方に設置され、前記四分の一位相差板は、前記第1偏光板の上方に設置される。
【0008】
選択的に、前記第2偏光板は、前記第1光センサーと前記自発光層との間に設置される。
【0009】
選択的に、前記第1光センサーと前記第2光センサーの感光領域は重なり合っている。
【0010】
選択的に、前記光透過機能層は、ガラスカバー板及びタッチパネルのいずれか1つ又は複数の組み合わせを含む。
【0011】
選択的に、前記移動端末は、処理ユニットをさらに含み、前記処理ユニットは、
前記第1光センサーの第1測定値及び前記第2光センサーの第2測定値を取得し、
前記第2測定値と前記第1測定値の2倍との間の差を計算し、
前記差に応じて前記環境光の光強度を決定するように構成される。
【0012】
本開示の実施例の他の態様によれば、移動端末を提供し、前記移動端末は、本体と、OLEDスクリーンユニットと、光センサーと、を含み、
前記OLEDスクリーンユニットは、前記本体の表面に設置され、前記OLEDスクリーンユニットは、自発光層と、前記自発光層の上方に位置する光透過機能層と、を含み、前記自発光層には、少なくとも1つの光学的微細孔が形成され、
前記光センサーは、前記自発光層の下方且つ前記光学的微細孔に対応する位置に設置され、
ここで、前記自発光層が発した光線が前記光透過機能層に到達する入射光路と、前記光線が前記光透過機能層で反射される反射光路は、第1光路を構成し、前記第1光路には、偏光板と四分の一位相差板が設置される。
【0013】
環境光が前記光センサーに到達する入射光路は、前記光透過機能層、前記四分の一位相差板、前記偏光板及び前記光学的微細孔を通過する。
【0014】
選択的に、前記偏光板は、前記自発光層の上方に設置され、前記四分の一位相差板は、前記偏光板の上方に設置される。
【0015】
選択的に、前記光透過機能層は、ガラスカバー板及びタッチパネルのいずれか1つ又は複数の組み合わせを含む。
【0016】
選択的に、前記移動端末は、処理ユニットをさらに含み、前記処理ユニットは、
前記光センサーの測定値を取得し、
前記測定値に応じて前記環境光の光強度を決定するように構成される。
【発明の効果】
【0017】
本開示の実施例に提供された技術的案によれば、以下のような技術効果が奏される。
【0018】
自発光層の下方に2つの光センサーが設置され、本体の内部に2つの偏光板が設置されることにより、環境光は、第1偏光板及び第2偏光板によりフィルタリングされて第1光センサーに到達できなく、自発光層が発した光線は、第1偏光板及び四分の一位相差板によりフィルタリングされて第1光センサー及び第2光センサーに到達できなく、第2光センサーは、環境光の強度及び自発光層から漏れた光強度を取得でき、第1光センサーは、自発光層から漏れた光強度しか取得できない。2つの光センサーの測定値に応じて計算して環境光の強度が得られ、環境光の強度の測定精度に対する自発光層が発した光線の影響を効果的に低減し、これにより、環境光の強度に対する光センサーの測定精度を向上させることができる。
【図面の簡単な説明】
【0019】
以下、本開示の実施例に係る技術案をより明確に説明するために、実施例の記載に使用する必要がある図面に対して簡単に紹介する。なお、以下の記載における図面はただ本開示の一部の実施例に過ぎず、当業者の場合、創造的な労働を付与しない前提で、これらの図面によって他の図面を得ることができる。
図1】一例示的な実施例に係る移動端末の模式図である。
図2】一例示的な実施例に係る光路設計の模式図である。
図3】一例示的な実施例に係るOLEDスクリーンユニットの構造の模式図である。
図4】他の一例示的な実施例に係る光路設計の模式図である。
図5】一例示的な実施例に係る電界ベクトルの端点の軌跡の模式図である。
【発明を実施するための形態】
【0020】
以下、例示的な実施例を詳しく説明し、その例示を図面に示す。以下の記載が図面に関わる場合、特に別の説明がない限り、異なる図面における同一符号は、同じ又は類似する要素を示す。以下の例示的な実施例に記載の実施形態は、本開示と一致する全ての実施形態を代表するものではない。逆に、それらは、添付の特許請求の範囲に記載されているように、本開示の一部の側面に一致する装置及び方法の例に過ぎない。
【0021】
図1及び図2を参照すると、移動端末の構造の模式図は例示的に示されている。移動端末は、本体10と、OLEDスクリーンユニット11と、第1光センサー12と、第2光センサー13と、を含む。
【0022】
本体10は、ボディとも呼ばれ、移動端末の本体フレームである。本体10は、一般的に、6面体の形状をなし、この6面体の稜又は角の一部に弧状面取りが形成されてもよい。本体10の正面は、一般的に、丸みを帯びた矩形又は直角を帯びた矩形をなす。
【0023】
OLEDスクリーンユニット11は、本体10の表面に設置される。選択的に、OLEDスクリーンユニット11は、本体10の正面に設置される。いくつかの他の実施例において、OLEDスクリーンユニット11は、本体10の裏面又は側面に設置されてもよく、本開示の実施例は、本体10におけるOLEDスクリーンユニット11の設置位置に対して限定しない。
【0024】
本実施例において、第1光センサー12及び第2光センサー13の2つの光センサーを設置することにより、この2つの光センサーの測定値を計算して、環境光の測定精度に対するOLEDスクリーンから発生した光強度の影響を解消し、環境光の測定精度を向上させる。
【0025】
図2に示すように、OLEDスクリーンユニット11は、自発光層111と、自発光層111の上方に位置する光透過機能層112と、を含み、自発光層111には、少なくとも1つの光学的微細孔113が形成される。図2は、単に自発光層111に1つの光学的微細孔113が形成された場合を例に挙げたが、本開示の実施例は、光学的微細孔113の数に対して限定しない。
【0026】
自発光層111とは、OLEDスクリーンユニット11において自発光の特性を持つ層を指す。自発光層111は、有機発光層とも呼ばれ、有機発光材料から作製される。自発光層111の発光原理は以下の通りである。印加電圧の駆動によって、正孔と電子は、それぞれ正極と負極から自発光層111に注入され、自発光層111で互いに出会って再結合し、エネルギーを放出し、このエネルギーを有機発光材料の分子に伝達して基底状態から励起状態へ遷移させ、励起状態が非常に不安定であるので、励起分子は励起状態から基底状態に戻り、放射遷移により発光現象を発生させる。
【0027】
光透過機能層112とは、OLEDスクリーンユニット11において光透過性能を持つ層を指し、即ち、光透過機能層112の光透過率は0より大きい。光透過率とは、媒体(例えば本開示の実施例における光透過機能層112)を透過する光束が入射光束に占める割合を指す。光透過率は、透過率とも呼ばれる。選択的に、光透過機能層112の光透過率は、予め設定の閾値より大きい。例えば、光透過機能層112の光透過率は30%より大きい。光透過機能層112は、例えばガラス、光透過性インク又は光透過性プラスチックなどの光透過性材料から作製されてもよい。
【0028】
選択的に、光透過機能層112は、ガラスカバー板及びタッチパネルのいずれか1つ又は複数の組み合わせを含む。ガラスカバー板は、移動端末の内部構造を保護する機能を備え、タッチパネルは、ユーザのタッチ操作(クリック、スライド、押圧などの操作)を受信する機能を備える。
【0029】
光学的微細孔113とは、光透過機能を有し、自発光層111を上下に貫通する貫通孔を指す。選択的に、光学的微細孔113は、ミクロンレベル又はそれ以下のレベルの貫通孔である。即ち、この光学的微細孔113は、肉眼では見えない貫通孔である。
【0030】
選択的に、図3に示すように、OLEDスクリーンユニット11は、金属陰極層115と、電子伝送層116と、正孔伝送層117と、ITO(Indium Tin Oxide、酸化インジウム錫)陽極層118と、をさらに含む。ここで、上記のOLEDスクリーンユニット11の階層構造において、ITO陽極層118は最上層にあり、正孔伝送層117はITO陽極層118の下方にあり、自発光層111は正孔伝送層117の下方にあり、電子伝送層116は、自発光層111の下方にあり、金属陰極層115は、電子伝送層116の下方に位置する。上記の金属陰極層115とITO陽極層118は、電源に接続され、OLEDスクリーンユニット11は、電源投入後、その金属陰極層115に電子が発生し、そのITO陽極層118に正孔が発生し、電界の力によって、電子は電子伝送層116を通過し、正孔は正孔伝送層117を通過し、自発光層111に到達し、電子が正電荷を持ち、正孔が負電荷を持つので、電子と正孔はクーロン力によって互いに引き合って、束縛状態になって励起子を形成し、励起子は、発光分子が励起状態になるように発光分子を励起し、光エネルギーを放出して透明な正孔伝送層117及びITO陽極層118を透過させて、OLEDスクリーンユニット11のスクリーン光が形成される。
【0031】
本実施例において、図2に示すように、第1光センサー12と第2光センサー13は、自発光層111の下方且つ光学的微細孔113に対応する位置に設置される。第1光センサー12が光学的微細孔113に対応することは、自発光層111に垂直な方向における第1光センサー12と光学的微細孔113の投影が重なり合っていることを意味する。第2光センサー13が光学的微細孔113に対応することは、自発光層111に垂直な方向における第2光センサー13と光学的微細孔113の投影が重なり合っていることを意味する。第1光センサー12は、自発光層111から漏れた光強度しか取得できない。第2光センサー13は、その感知範囲(例えばOLEDスクリーンの前方領域)内の環境光の強度及び自発光層111から漏れた光強度を取得することができる。
【0032】
光センサーの動作原理は、以下の通りである。光センサーは、受信された光線信号を電流信号に変換するが、この電流信号が比較的弱いので、CA(Current Amplifier、電流増幅器)によりこの電流信号を増幅して増幅された電流を出力し、増幅された電流信号に雑音が含まれる場合、この電流信号をフィルタリングした後、接地抵抗により電流信号を電圧信号に変換し、デジタル・アナログ変換モジュールにより変換された電圧信号に対してADC(Analog-to-Digital Converter、アナログ・デジタル変換器)信号を収集し、且つ、バスインターフェイスとロジック制御によりADC信号をAP(Application Processor、アプリケーションプロセッサ)に入力し、APは、バス制御によりIC(Integrated Circuit、集積回路)を配置し、ICの積分時間やオペアンプの利得などのパラメータを向上させ、光線情報の収集及び変換を実現する。
【0033】
本実施例において、図2に示すように、自発光層111が発した光線が光透過機能層112に到達する入射光路と、光線が光透過機能層112で反射される反射光路は、第1光路を構成し、第1光路には、第1偏光板14と四分の一位相差板15が設置される。
【0034】
四分の一位相差板15は、四分の一波長板とも呼ばれる。四分の一位相差板15は、互いに垂直な方向に振動する2つの光線の間にπ/2の位相差を発生させ、一般的に、正確な厚さを有する石英、方解石又はマイカなどの複屈折ウェハから構成され、その光軸は、ウェハの表面に垂直である。直線偏光が四分の一位相差板15を通過すると、円偏光又は楕円偏光となり得る。
【0035】
環境光1が第1光センサー12に到達する入射光路は、第1偏光板14及び第2偏光板16を通過し、且つ、第1偏光板14と前記第2偏光板16の偏光方向は互いに垂直である。第1偏光板14と第2偏光板16の偏光方向が互いに垂直であるので、環境光は、第1偏光板14及び第2偏光板16によりフィルタリングされて第1光センサー13に到達できない。環境光が第2光センサー13に到達する入射光路は、第1偏光板14を通過する。
【0036】
選択的に、第1偏光板14は、自発光層111の上方に設置され、四分の一位相差板15は、第1偏光板14の上方に設置される。自発光層111が発した光線が第1偏光板14を通過すると、振動方向が第1偏光板14の偏光方向と一致する光線は残って四分の一位相差板15を通過した後、反射光線の振動方向はπ/2変化し、振動方向が変化した光は、光透過機能層112で反射されて反射光線を形成し、反射光線は、四分の一位相差板15を通過した後、反射光線の振動方向はπ/2変化する。上記の振動方向が2回変化した後、第1偏光板14に到達する光線は、その振動方向が第1偏光板14の偏光方向に垂直であるので、第1偏光板14によってフィルタリングされ、このため、自発光層111が発した光線は、第1光センサー12に到達することができない。光強度は、マリュスの法則I(θ)=I(0)cos(θ)によって計算されてもよい。ここで、I(θ)が光強度を表し、I(0)が元の光強度を表し、θが光線の振動方向と偏光板の偏光方向の間の角度を表し、第1偏光板14及び四分の一位相差板15を通過してから第2光センサー13に達する環境光は、元の環境光の四分の一に過ぎない。
【0037】
選択的に、第2偏光板16は、第1光センサー12と自発光層111との間に設置される。環境光は、第1偏光板14及び第2偏光板16によりフィルタリングされて第1光センサー12に到達できなく、自発光層111から漏れた光線が第2偏光板16を通過すると、振動方向が第2偏光板16の偏光方向と一致する光だけが残るので、第1光センサー12が受信した光線は、自発光層111から漏れた光強度の半分となる。例示的に、第2偏光板16は、第1光センサー12の感光面側に貼り付けられたPET(Polyethylenetthalate、ポリエチレンテレフタレート)フィルムであってもよく、例えば、第1光センサー12が複数の感光ユニットからなるアレイである場合、上記の複数の感光ユニットに第1偏光フィルム14の偏光方向に垂直なPETフィルムを1層めっきすることにより、第2偏光板16が形成される。
【0038】
選択的に、第1光センサー12と第2光センサー13の感光領域は重なり合っている。第1光センサー12の感光領域とは、第1光センサー12が光強度を測定する領域を指し、第2光センサー13の感光領域とは、第2光センサー13が光強度を測定する領域を指す。自発光層111が画像を表示する時に異なる領域が異なる表示パラメータを有することを考慮すると、第1光センサー12及び第2光センサー13の感光領域が相補的に重なり合っている場合、両者が実際に受信した自発光層111から漏れた光線の強度が異なるおそれがあり、第1光センサー12と第2光センサー13の感光領域を重なり合わせることにより、第1光センサー12と第2光センサー13が受信した自発光層111から漏れた光線の強度を均一にでき、これにより、最終的に測定された環境光の強度はより正確になる。第1光センサー12と第2光センサー13の感光角度は一般的に120°であり、第1光センサー12を第2光センサー13に隣接して配置することにより、第1光センサー12と第2光センサー13の感光領域を可能な限り重なり合わせることができる。
【0039】
選択的に、移動端末は、処理ユニットをさらに含み、前記処理ユニットは、第1光センサー12の第1測定値及び第2光センサー13の第2測定値を取得し、第2測定値と第1測定値の2倍との間の差を計算し、その差に応じて環境光の光強度を決定するように構成される。
【0040】
偏光板の位置が図2に示すものである場合、第1測定値は、自発光層111から漏れる光線の光強度の半分であり、第2測定値は、環境光の光強度の四分の一と、自発光層111から漏れた光線の光強度との合計値であり、このため、第2測定値から第1測定値の2倍を引いたものを4で乗じることにより、環境光の光強度が得られる。例えば、第2測定値が10であり、第1測定値が3であると仮定すれば、環境光の光強度は(10-2*3)*4=16となる。
【0041】
なお、移動端末は、処理ユニットが計算した環境光の光強度に応じてスクリーンの輝度を調整してもよいし、差に応じてスクリーンの輝度を直接に調整してもよい。
本実施例において、第1偏光板14と四分の一位相差板15は、OLEDスクリーンが提供するものであってもよく、別途設置されるものであってもよい。第2偏光板16は、別途設置されるものであってもよい。
【0042】
つまり、本開示の実施例で提供される技術的案において、自発光層の下方に2つの光センサーが設置され、本体の内部に2つの偏光板が設置されることにより、環境光は、第1偏光板及び第2偏光板によりフィルタリングされて第1光センサーに到達できなく、自発光層が発した光線は、第1偏光板及び四分の一位相差板によりフィルタリングされて第1光センサー及び第2光センサーに到達できなく、第2光センサーは、環境光の強度及び自発光層から漏れた光強度を取得でき、第1光センサーは、自発光層から漏れた光強度しか取得できない。2つの光センサーの測定値に応じて計算して環境光の強度が得られ、環境光の強度の測定精度に対する自発光層が発した光線の影響を効果的に低減し、これにより、環境光の強度に対する光センサーの測定精度を向上させることができる。
【0043】
図1及び図4を参照すると、他の移動端末の構造の模式図は例示的に示されている。この移動端末は、本体10と、OLEDスクリーンユニット11と、光センサー22と、を含む。
【0044】
本体10は、ボディとも呼ばれ、移動端末の本体フレームである。本体10は、一般的に、6面体の形状をなし、この6面体の稜又は角の一部に弧状面取りが形成されてもよい。本体10の正面は、一般的に、丸みを帯びた矩形又は直角を帯びた矩形をなす。
【0045】
OLEDスクリーンユニット11は、本体10の表面に設置される。選択的に、OLEDスクリーンユニット11は、本体10の正面に設置される。いくつかの他の実施例において、OLEDスクリーンユニット11は、本体10の裏面又は側面に設置されてもよく、本開示の実施例は、本体10におけるOLEDスクリーンユニット11の設置位置に対して限定しない。
【0046】
光センサー22は、その感知範囲(例えばOLEDスクリーンの前方領域)内の環境光の強度を取得することができる。選択的に、移動端末は、ユーザにより優れた視覚効果を提供するように、環境光の強度に応じてスクリーンの輝度を適応的に調整する。
【0047】
図4に示すように、OLEDスクリーンユニット11は、自発光層211と、自発光層211の上方に位置する光透過機能層212と、を含み、自発光層211には、少なくとも1つの光学的微細孔213が形成される。
【0048】
自発光層211とは、OLEDスクリーンユニット21において自発光の特性を持つ層を指す。自発光層211は、有機発光層とも呼ばれ、有機発光材料から作製される。自発光層211の発光原理は以下の通りである。印加電圧の駆動によって、正孔と電子はそれぞれ正極と負極から自発光層211に注入され、自発光層211で互いに出会って再結合し、エネルギーを放出し、このエネルギーを有機発光材料の分子に伝達して基底状態から励起状態へ遷移させ、励起状態が非常に不安定であるので、励起分子は、励起状態から基底状態に戻り、放射遷移により発光現象を発生させる。
【0049】
光透過機能層212とは、OLEDスクリーンユニット21において光透過性能を持つ層を指し、即ち、光透過機能層212の光透過率は0より大きい。光透過率とは、媒体(例えば本開示の実施例における光透過機能層212)を透過する光束が入射光束に占める割合を指す。光透過率は、透過率とも呼ばれる。選択的に、光透過機能層212の光透過率は、予め設定の閾値より大きく、例えば、光透過機能層212の光透過率は30%より大きい。光透過機能層212は、例えばガラス、光透過性インク又は光透過性プラスチックなどの光透過性材料から作製されてもよい。
【0050】
選択的に、光透過機能層212は、ガラスカバー板及びタッチパネルのいずれか1つ又は複数の組み合わせを含む。ガラスカバー板は、移動端末の内部構造を保護する機能を備え、タッチパネルは、ユーザのタッチ操作(クリック、スライド、押圧などの操作)を受信する機能を備える。
【0051】
光学的微細孔213とは、光透過機能を有し、自発光層111を上下に貫通する貫通孔を指す。選択的に、光学的微細孔113は、ミクロンレベル又はそれ以下のレベルの貫通孔である。即ち、光学的微細孔113は、肉眼では見えない貫通孔である。
【0052】
本実施例において、図4に示すように、光センサー22は、自発光層211の下方且つ光学的微細孔213に対応する位置に設置される。
【0053】
光センサー22は、光学的微細孔213に対応する位置に配置され、光学的微細孔213が光透過性能を持つので、環境光が光学微細孔213を透過して光センサー22に到達できることが確保される。
【0054】
自発光層211が光透過機能層212の下方に位置するので、自発光層211が発した光線が光透過機能層212に到達してから、反射光線が発生する。この反射光線は光センサー22により受信されて環境光の強度に対する光センサー22の測定精度に影響を与えるおそれがある。本実施例において、図5に示すように、自発光層211が発した光線が光透過機能層212に到達する入射光路と、この光線が光透過機能層212で反射される反射光路は、第1光路を構成する。第1光路には、偏光板23及び四分の一位相差板24が設置される。
【0055】
偏光板23は、特定方向(偏光方向)に偏光した光波だけに限って通過させる光学フィルターであり、即ち、入射光を遮断及び透過する機能を有する。光波が偏光板23を通過すると、直交する偏光成分の一方が偏光板23に強く吸収されるが、他方の成分が弱く吸収されるので、偏光板23は、入射光、複合光又は単色光を直線偏光に変換することができる。本実施例において、第1光路に少なくとも1つの偏光板23が設置され、偏光板23が入射光路及び/又は反射光路における振動方向が偏光板23の偏光方向に垂直な光強度を吸収できることにより、光センサー22が受信した自発光層211が発した光強度を低減し、光センサー22の測定精度に対するOLEDスクリーンから発生した光強度の影響を低下させ、光センサー22の測定精度を向上させる。
【0056】
環境光が光センサー22に到達する入射光路は、光透過機能層212、四分の一位相差板24、偏光板23及び光学的微細孔213を通過する。
【0057】
選択的に、偏光板23は、自発光層211の上方に設置され、四分の一位相差板24は、偏光板23の上方に設置される。
【0058】
移動端末は、処理ユニットをさらに含み、前記処理ユニットは、光センサー22の測定値を取得し、その測定値に応じて環境光の光強度を決定するように構成される。実施例において、環境光の光強度は、光センサー22の測定値の4倍である。
【0059】
なお、移動端末は、処理ユニットが計算した環境光の光強度に応じてスクリーンの輝度を調整してもよいし、光センサー22の測定値に応じてスクリーンの輝度を調整してもよい。
【0060】
また、本実施例において、偏光板23は、OLEDスクリーンが提供するものであってもよく、別途設置されるものであってもよい。
【0061】
つまり、本開示の実施例で提供される技術的案において、第1光路に偏光板が設置されることにより、偏光板23が入射光路及び/又は反射光路における振動方向が偏光板23の偏光方向に垂直な光強度を吸収でき、光線が四分の一位相差板を2回通過しててから偏光方向が変化できるので、光センサーは、自発光層が発した光強度を受信できなく、光センサーに対する自発光層が発した光線の影響を効果的に低減し、これにより、環境光の強度に対する光センサーの測定精度を向上させることができる。
【0062】
以下、光の偏光について説明する。
【0063】
光は、電磁波且つ横波であり、即ち、光の電界と磁界の方向は、光の伝送方向に垂直である。そこで、z軸方向に伝播する電磁波がEx及びEyからなると仮定すれば、
ここで、
が自発光層が発した光線を表し、
が環境光を表し、
がx軸の単位ベクトルを表し、
がy軸の単位ベクトルを表し、
がx軸の振動成分を表し、
がy軸の振動成分を表し、φ1x、φ2xがx軸の振動成分の位相を表し、φ1y、φ2yがy軸の振動成分の位相を表し、E0xがx成分の振幅を表し、E0yがy成分の振幅を表し、β、αが電磁波の移動速度を表し、E0xがx軸の振動成分の最大振幅を表し、E0yがy軸の振動成分の最大振幅を表す。
【0064】
式(1)を実部で乗じて、電磁波のx軸とy軸の振動瞬時成分を展開して、自発光層が発した光線のx軸とy軸成分及び環境光のx軸とy軸成分が得られる。
oledx(t)=E0xcos(ωαt+βz+φ1x
oledy(t)=E0ycos(ωαt+βz+φ1) (2)
ここで、Eoledx(t)が自発光層が発した光線のx軸成分を表し、Eoledy(t)が自発光層が発した光線のy軸成分を表し、ωが角周波数を表す。
【0065】
ambientx(t)=E0xcos(ωαt+αz+φ2x
ambienty(t)=E0ycos(ωαt+αz+φ2y) (3)
ここで、Eambientx(t)が環境光のx軸成分を表し、Eambienty(t)が環境光のy軸成分を表し、ωαが角周波数を表す。
【0066】
式(2)においてz=0時の関数式により電磁波の振動を解析して、式(4)が得られる。
oledx(t)=E0xcos(ωαt+φ1x
oledy(t)=E0ycos(ωαt+φ1) (4)
【0067】
式(3)においてz=0時の関数式により電磁波の振動を解析して、式(5)が得られる。
ambientx(t)=E0xcos(ωαt+φ2x
ambienty(t)=E0ycos(ωαt+φ2y) (5)
(t)とE(t)の位相は、必ずしも同一ではなく、特に外界の自然光については電磁波の位相が異なり、実際の光波
は、時間(t)及び空間(x、y、z)によって変化し、即ち、
であり、
は、光波の電界強度ベクトルの配向が経時的に変化する傾向を表し、その軌跡は、電界強度ベクトルの端点の経時変化曲線により記述され、光波の伝播方向、即ちz軸の伝播方向に沿って見ると、その端点が直線的に振動する光波は直線偏光であり、その軌跡が円である場合、円偏光と呼ばれ、x軸とy軸成分の位相差Δφ=φ-φに応じて、直線偏光であるか又は円偏光であるかを区別することができる。
【0068】
式(4)における変数ωtを削除して、次の式が得られる。
(t)/E0x -2(E(t)E(t))cos(Δφ)/(E0x0y
+E (t)/E0y =sin(Δφ) (6)
Δφ=φ-φ=nπ、n=0、1、2、3……である場合、光波偏光は直線偏光となり、電界ベクトルEの端点の軌跡は直線となる。
【0069】
Δφ=φy-φx=nπ/2、n=2k+1、k=1、2、3、4、5……である場合、光波偏光は円偏光となり、この時、式(6)は、次の式となる。
(t)/E0x +E (t)/E0y =1 (7)
0x=E0yである場合、光波偏光は円偏光となり、z軸の方向から見ると、電界ベクトルEの端点の軌跡は円周となる。
【0070】
0x≠E0yである場合、光波偏光は楕円偏光となり、z軸の方向から見ると、電界ベクトルEの端点の軌跡は楕円となる。図5に示すように、電界ベクトルの端点の軌跡の模式図が示されている。図5の太線は、電界ベクトルの端点の軌跡を表す。図5の左側の画像は直線偏光を表し、その中間の画像は楕円偏光を表し、その右側の画像は円偏光を表す。
上記の導出及び理論的分析に基づいて、第1光路に少なくとも1つの偏光板が設置されることにより、自発光層が発した光線の光センサーへの影響を効果的に低減することができる。
【0071】
結晶は、異方性という属性を有し、異方性結晶に入射した光波は、振動方向が垂直で位相速度が不等な偏光に分解され、位相速度の違いは、2種類の光波の屈折率の違いによるものであり、屈折率の違いは、結晶の誘電率の違いによるものであり、屈折率は、誘電率の平方根に等しい。
【0072】
異方体に入射した電磁波は、電界の振動方向が互いに垂直な光波、即ちo光とe光に分解され、o光は通常光と呼ばれ、e光は異常光と呼ばれ、結晶の各方向におけるo光の位相速度は同一であり、異なる方向におけるe光の位相速度は異なる。
【0073】
OLEDスクリーンの偏光板の厚さをL、結晶を通過するo光の光路をL、その波ベクトルをK=2πn/λ、e光の光路をLとすれば、その波ベクトルはK=2πn/λとなり、両者の位相差はφ=2π(n-n)/λとなり、n-n及びλを調整して四分の一波長の変化を実現し、これにより、直線偏光は円偏光又は楕円偏光となる。
【0074】
理解すべきことは、本文に記載されている「複数個」は、2つ又は2つ以上を指す。「及び/又は」は、関連対象の関連関係を説明し、これは3つの関係が存在する。例えば、A及び/又はBは、Aが単独で存在するか、AとBが同時に存在するか、Bが単独で存在する3つの状況を示すことができ、文字「/」は、一般的に、前後に関連付けられた対象が「又は」の関係であることを表す。
【0075】
当業者は、明細書に対する理解、及び明細書に記載された本開示に対する実施を介して、本開示の他の実施形態を容易に取得することができる。本願は、本開示に対する任意の変形、用途、又は適応的な変化を含み、このような変形、用途、又は適応的な変化は、本開示の一般的な原理に従い、本開示では開示していない本技術分野の公知知識、又は通常の技術手段を含む。明細書及び実施例は、単に例示的なものであって、本開示の本当の範囲と主旨は、以下の特許請求の範囲により示される。
【0076】
本開示は、上記で記述され、図面で図示した特定の構成に限定されず、その範囲を離脱しない状況で、様々な修正や変更を実施してもよい。本開示の範囲は、添付される特許請求の範囲のみにより限定される。
図1
図2
図3
図4
図5