IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本特殊陶業株式会社の特許一覧

<>
  • 特許-遮熱膜 図1
  • 特許-遮熱膜 図2
  • 特許-遮熱膜 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-20
(45)【発行日】2023-03-01
(54)【発明の名称】遮熱膜
(51)【国際特許分類】
   C23C 26/00 20060101AFI20230221BHJP
   C03C 3/14 20060101ALI20230221BHJP
   C03C 3/16 20060101ALI20230221BHJP
【FI】
C23C26/00 C
C03C3/14
C03C3/16
【請求項の数】 5
(21)【出願番号】P 2018044477
(22)【出願日】2018-03-12
(65)【公開番号】P2019157191
(43)【公開日】2019-09-19
【審査請求日】2021-02-02
【審判番号】
【審判請求日】2022-06-17
(73)【特許権者】
【識別番号】000004547
【氏名又は名称】日本特殊陶業株式会社
(74)【代理人】
【識別番号】110000578
【氏名又は名称】名古屋国際弁理士法人
(72)【発明者】
【氏名】高岡 勝哉
(72)【発明者】
【氏名】品川 拓也
(72)【発明者】
【氏名】田中 邦治
【合議体】
【審判長】粟野 正明
【審判官】宮部 裕一
【審判官】土屋 知久
(56)【参考文献】
【文献】特開平11-80922(JP,A)
【文献】特開昭62-303049(JP,A)
【文献】特開昭60-176946(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C23C 26/00-30/00
C23D 5/00- 5/08
(57)【特許請求の範囲】
【請求項1】
基材上に形成される遮熱膜であって、
前記遮熱膜は、ガラス及び無機繊維を含み、前記遮熱膜を厚み方向に貫通する連続気孔を有する多孔質体からなり、
前記遮熱膜の断面において、前記ガラスの面積と前記無機繊維の面積との合計面積に対し、前記無機繊維の面積の比率は、15%以上である遮熱膜。
【請求項2】
請求項1に記載の遮熱膜であって、
前記ガラスはTe及びBiの少なくとも一方を含む遮熱膜。
【請求項3】
請求項1又は2に記載の遮熱膜であって、
前記無機繊維は、Al繊維、SiO繊維、及びZrO繊維から成る群から選択される1以上を含み、
前記遮熱膜の断面において、前記ガラスの面積と前記無機繊維の面積との合計面積に対し、前記無機繊維の面積の比率は、20~60%である遮熱膜。
【請求項4】
請求項1~3のいずれか1項に記載の遮熱膜であって、
前記無機繊維の平均アスペクト比は10以上である遮熱膜。
【請求項5】
請求項1~4のいずれか1項に記載の遮熱膜であって、
前記遮熱膜の平均厚みが80~400μmであり、
前記遮熱膜の平均気孔率が25~50%である遮熱膜。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は遮熱膜に関する。
【背景技術】
【0002】
防火ガラス等の基材上に遮熱膜を形成する技術が知られている。特許文献1には、3層膜構造の遮熱膜が記載されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特許第4284694号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
遮熱膜は、遮熱性が高い必要がある。また、遮熱膜は、基材に対する密着性が良好である必要がある。従来の遮熱膜は、遮熱性と密着性とを両立させることが困難であった。本開示の一局面は、遮熱性が高く、基材に対する密着性が良好である遮熱膜を提供することを目的とする。
【課題を解決するための手段】
【0005】
本開示の一局面は、基材上に形成される遮熱膜であって、前記遮熱膜は、ガラス及び無機繊維を含み、前記遮熱膜を厚み方向に貫通する連続気孔を有する多孔質体からなる遮熱膜である。
【0006】
本開示の一局面である遮熱膜は、ガラス及び無機繊維を含む多孔質体により構成され、熱伝導率が低く、遮熱性に優れる。そのため、本開示の一局面である遮熱膜は、基材への熱伝導を抑制できる。
【0007】
遮熱膜を形成するとき、一般的に、遮熱膜を加熱し、その後、冷却する。加熱されるとき、遮熱膜は、基材に引っ張られて膨張する。その後、遮熱膜が冷却されるとき、一般的に、遮熱膜の収縮量は基材の収縮量より小さいので、遮熱膜と基材との界面に応力が生じる。応力によって遮熱膜が割れると、遮熱膜が基材から剥がれてしまう。
【0008】
本開示の一局面である遮熱膜は、加熱し、その後冷却しても、基材から剥がれ難い。その理由は以下のように推測される。遮熱膜は多孔質体により構成され、気孔を含む。冷却時に遮熱膜に応力が加わると、気孔がつぶれることで、遮熱膜は縮むことができる。そのため、冷却時に遮熱膜は割れ難く、基材から剥がれ難い。また、遮熱膜は無機繊維を含むので、界面の応力が、遮熱膜において界面から離れた部位にまで伝わり易い。そのため、界面付近に応力が集中し難いので、冷却時に遮熱膜は割れ難く、基材から剥がれ難い。
【0009】
本開示の一局面である遮熱膜は、遮熱膜の厚み方向に貫通する連続気孔を有する。そのため、本開示の一局面である遮熱膜は、連続気孔を通じて、適度に熱を基材に伝導させることができる。
【図面の簡単な説明】
【0010】
図1】遮熱膜の製造方法を表す説明図である。
図2】遮熱膜の断面を表す写真である。
図3】遮熱膜の熱伝導度を測定する方法を表す説明図である。
【発明を実施するための形態】
【0011】
本開示の例示的な実施形態を説明する。
1.遮熱膜の構成
【0012】
本開示の遮熱膜は基材上に形成される。基材として、例えば、金属製の基材が挙げられる。基材を構成する金属は、純金属であってもよいし、合金であってもよい。純金属として、例えば、Fe、Ti、Al等が挙げられる。合金として、例えば、Fe合金、Ti合金、Al-Si合金等が挙げられる。
【0013】
遮熱膜は、基材の表面のうち一部に設けられていてもよいし、基材の全表面に設けられていてもよい。遮熱膜は、ガラス及び無機繊維を含む多孔質体からなる。多孔質体は、例えば、主にガラスと無機繊維との骨格からなる多孔質体である。遮熱膜は、多孔質体により構成されるため、熱伝導率が小さく、遮熱性が高い。遮熱膜は、例えば、基材よりも熱伝導率が小さい。
【0014】
本開示の遮熱膜は、加熱し、その後冷却しても、基材から剥がれ難い。その理由は上述したとおりである。
遮熱膜は、ガラス及び無機繊維以外の成分をさらに含んでもよいし、含まなくてもよい。遮熱膜は、例えば、無機繊維同士が絡み合う構造を有する。ガラスは、例えば、無機繊維と接合している。ガラスの少なくとも一部は、例えば、絡み合う無機繊維同士の接点に接合している。
【0015】
遮熱膜における気孔は、例えば、ガラス及び無機繊維のいずれにも占められていない空間である。遮熱膜は、遮熱膜を厚み方向に貫通する連続気孔を有する。本開示の遮熱膜は、連続気孔を通じて、適度に熱を基材に伝導させることができる。遮熱膜は、連続気孔に加えて、独立気孔をさらに有していてもよい。
【0016】
ガラスは、公知のガラスの中から適宜選択することができる。ガラスは、Te及びBiの少なくとも一方を含むことが好ましい。Te及びBiの少なくとも一方を含むガラスは、それらを含まないガラスより熱膨張係数が大きい。そのため、ガラスがTe及びBiの少なくとも一方を含む場合、遮熱膜の熱膨張係数は一層大きくなり、遮熱膜の熱膨張係数と、基材の熱膨張係数との差は一層小さくなる。その結果、ガラスがTe及びBiの少なくとも一方を含む場合、遮熱膜と基材との密着性が一層良好である。
【0017】
ガラスとして、例えば、(a)P及びBの少なくとも一方と、(b)RO及びR’Oと、を含み、(a)及び(b)の合計モル数に対する、(b)のモル数の比率(以下ではRR’比率とする)が40~60%であるガラスが挙げられる。RはLi、Na、及びKから成る群から選択される1以上であり、R’は、Mg、Ca、及びCuから成る群から選択される1以上である。ガラスが上記のガラスである場合、遮熱膜の熱膨張係数は一層大きくなり、遮熱膜の熱膨張係数と、基材の熱膨張係数との差は一層小さくなる。その結果、遮熱膜と基材との密着性が一層良好である。
【0018】
無機繊維は、公知の無機繊維から適宜選択することができる。無機繊維として、例えば、セラミック繊維、金属繊維等が挙げられる。無機繊維の具体例として、Al繊維、SiO繊維、ZrO繊維、BN繊維、SiC繊維、TiO繊維、CNF繊維、グラスウール等が挙げられる。無機繊維は、Al繊維、SiO繊維、及びZrO繊維から成る群から選択される1以上を含むことが好ましい。無機繊維が、Al繊維、SiO繊維、及びZrO繊維から成る群から選択される1以上を含む場合、遮熱膜を構成する多孔質体の状態を制御することが容易である。また、遮熱膜の強度が高い。
【0019】
無機繊維として、例えば、結晶質酸化物繊維が挙げられる。結晶質酸化物繊維として、例えば、α-アルミナ繊維、γ-アルミナ繊維、ムライト繊維等が挙げられる。無機繊維が結晶質酸化物繊維である場合、遮熱膜に熱衝撃が加えられても、遮熱膜が破損し難い。
【0020】
遮熱膜の断面において、ガラスの面積と無機繊維の面積との合計面積に対する、無機繊維の面積の比率(以下では繊維面積比とする)は、20~60%であることが好ましい。繊維面積比が20~60%である場合、遮熱膜を構成する多孔質体の状態を制御することが容易である。また、遮熱膜の強度が高い。無機繊維が結晶質酸化物繊維であり、繊維面積比が20~60%である場合、遮熱膜に熱衝撃が加えられても、遮熱膜が破損し難い。
【0021】
繊維面積比の測定方法は以下のとおりである。遮熱膜を切断し、断面を形成する。EPMAを用いて断面のうち、200μm×100μmの範囲を組成分析し、ガラスの部分と、無機繊維の部分とをそれぞれ同定する。ガラスの部分の面積を測定し、測定値をS1とする。無機繊維の部分の面積を測定し、測定値をS2とする。以下の式(1)で表されるSfを、繊維面積比(%)とする。
【0022】
式(1) Sf=(S2/(S1+S2))×100
無機繊維の平均アスペクト比は10以上であることが好ましい。平均アスペクト比が10以上である場合、遮熱膜において無機繊維同士が絡み易い。そのため、遮熱膜の強度が高い。
【0023】
平均アスペクト比の測定方法は以下のとおりである。遮熱膜を切断し、断面を形成する。断面のうち、200μm×200μmの領域に存在する全ての無機繊維について、アスペクト比を測定する。アスペクト比は、無機繊維の直径に対する無機繊維の長さの比である。アスペクト比の算出に用いる直径は、1本の無機繊維のうち、最も直径が小さい部分での値である。長さは、無機繊維の形状に沿って測定した長さである。200μm×200μmの領域に存在する全ての無機繊維におけるアスペクト比の平均値を、平均アスペクト比とする。
【0024】
遮熱膜の平均厚みは、80~400μmであることが好ましい。遮熱膜の平均厚みが80μm以上である場合、基材への熱伝導を遮熱膜によって一層抑制できる。遮熱膜の平均厚みが400μm以下である場合、遮熱膜にクラックが生じ難く、遮熱膜が基材から剥がれ難い。
【0025】
遮熱膜の平均厚みの測定方法は以下のとおりである。遮熱膜を切断し、断面を形成する。断面のうち、長さ500μmの範囲における複数の場所でそれぞれ遮熱膜の厚みを測定する。遮熱膜の厚みを測定する複数の場所は、いずれも、遮熱膜の端部以外の場所である。複数の場所における遮熱膜の厚みの平均値を遮熱膜の平均厚みとする。
【0026】
遮熱膜の断面での幅0.5mmの範囲における遮熱膜の厚みの最大値と最小値との差(以下では厚み差とする)が70μm以下であることが好ましい。厚み差が70μm以下である場合、遮熱膜に熱衝撃が加えられても、遮熱膜が破損し難い。
【0027】
遮熱膜の平均気孔率は25~50%であることが好ましい。平均気孔率が25%以上である場合、基材への熱伝導を遮熱膜によって一層抑制できる。遮熱膜の平均気孔率が50%以下である場合、遮熱膜にクラックが生じ難く、遮熱膜が基材から剥がれ難い。
【0028】
遮熱膜の平均気孔率の測定方法は以下のとおりである。遮熱膜を切断し、断面を形成する。SEMを用いて断面の反射電子像を取得する。反射電子像内の10の視野において、それぞれ、ガラスの部分、無機繊維の部分、及び気孔の部分をそれぞれ同定する。それぞれの視野は、200μm×50μmの大きさを有する。なお、反射電子像において、ガラスの部分、無機繊維の部分、及び気孔の部分は、コントラストの濃淡により区別することができる。
【0029】
10の視野に含まれるガラスの部分の面積を測定し、測定値をS1とする。また、10の視野に含まれる無機繊維の部分の面積を測定し、測定値をS2とする。また、10の視野に含まれる気孔の部分の面積を測定し、測定値をS3とする。以下の式(2)で表されるSpを、平均気孔率(%)とする。
【0030】
式(2) Sp=(S3/(S1+S2+S3))×100
2.遮熱膜の製造方法
本開示の遮熱膜は、例えば、以下のように製造できる。ガラス粉末と、無機繊維と、水とを含むスラリーを調製する。スラリーは、さらに他の成分を含んでもよいし、含まなくてもよい。
【0031】
次に、図1のSTEP1に示すように、基材1の表面にスラリーを塗布し、塗布層3を形成する。
次に、STEP2において、60~120℃の温度で1~2時間保持して塗布層3を乾燥させ、遮熱膜5を形成する。次に、STEP3において、400~600℃の温度で0.5~2時間保持し、遮熱膜5を焼き付ける。以上の工程により、遮熱膜5が完成する。
【0032】
遮熱膜の断面を図2に示す。基材の表面に遮熱膜が形成されている。遮熱膜は、ガラス及び無機繊維を含む多孔質体により構成されている。遮熱膜は、遮熱膜を厚み方向に貫通する連続気孔を有する。
【0033】
3.実施例
(3-1)遮熱膜の製造
実施例1~23、及び比較例1の遮熱膜を以下のようにして製造した。ガラス粉末と、無機繊維と、水とを含むスラリーを調製した。ガラス粉末の組成は、以下の表1における「ガラス組成」の列に記載したものである。無機繊維の種類は、表1における「無機繊維」のうち「種類」の列に記載したものである。スラリーにおけるガラス粉末と無機繊維との配合比は、繊維面積比が表1における「繊維面積比」の列に記載した値となる配合比である。
【0034】
【表1】
次に、基材の表面にスラリーを塗布し、塗布層を形成した。基材の材質は、上記表1における「基材の材質」の列に記載したものである。次に、50~100℃の温度で30分間~6時間保持して塗布層を乾燥させ、遮熱膜を形成した。次に、350~500℃の温度で5分間~2時間保持し、遮熱膜を焼き付けた。以上の工程により、遮熱膜が完成した。
【0035】
(3-2)遮熱膜の評価
実施例1~23、及び比較例1の遮熱膜の評価を以下のように行った。
無機繊維の平均アスペクト比と、遮熱膜の平均厚みと、遮熱膜の平均気孔率とを測定した。測定方法は上述した方法である。無機繊維の平均アスペクト比の測定結果を上記表1における「無機繊維」のうち「平均アスペクト比」の列に示す。遮熱膜の平均厚みの測定結果を上記表1における「厚み」の列に示す。遮熱膜の平均気孔率の測定結果を上記表1における「気孔率」の列に示す。
X線CTにより作成した3次元モデリングを画像解析し、遮熱膜が連続気孔を有するか否かを確認した。なお、水銀圧入法により、遮熱膜が連続気孔を有するか否かを確認してもよい。連続気孔とは、遮熱膜を厚み方向に貫通する気孔である。遮熱膜が連続気孔を有する場合は、上記表1における「連続気孔の有無」の列に「○」と記載し、連続気孔を有さない場合は「×」と記載した。
【0036】
基材と遮熱膜との接合強度を以下の方法で測定した。基材と、その基材上に形成された遮熱膜とを備えるサンプルを用意した。そのサンプルを水中に入れ、水圧を所定値まで増加させ、10分間保持する。その後、遮熱膜が基材から剥離しているか否かを確認する。この工程を、上記の所定値の値を少しずつ大きくしながら、遮熱膜が基材から剥離するまで繰り返す。遮熱膜が基材から剥離したときの上記の所定値を接合強度とする。接合強度の測定結果を上記表1における「評価」のうち「接合評価」の列に示す。
【0037】
遮熱膜の熱伝導度を以下の方法で測定した。図3に示すように、基材1と、その基材1の一方の面に形成された遮熱膜5と、を備えるサンプル7を用意した。サンプル7を構成する基材1のうち、遮熱膜5とは反対側の面9を赤外線で加熱した。このとき、熱電対11を用いて、遮熱膜5の温度を継続的に測定し、温度の推移を取得した。また、遮熱膜5を備えず、基材1のみから成る比較サンプルについても、同様に、基材1の一方の面に対する赤外線による加熱と、反対側の面における継続的な温度測定とを行い、温度の推移を取得した。サンプル7における遮熱膜5の温度の推移と、比較サンプルにおける温度の推移とに基づき、シミューレーションによって遮熱膜5の熱伝導度を算出した。算出した熱伝導度を以下の基準に当てはめて、遮熱性を評価した。評価結果を上記表1における「評価」のうち「熱伝導」の列に示す。
【0038】
◎:熱伝導度が0.3W/(m・k)以下である。
○:熱伝導度が0.3W/(m・k)を超え、0.6W/(m・k)以下である。
×:熱伝導度が0.6W/(m・k)を超える。
【0039】
実施例1~23の遮熱膜では、基材と遮熱膜との接合強度が高く、遮熱膜の遮熱性が良好であった。比較例1の遮熱膜では、遮熱性が不良であった。
4.他の実施形態
以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
【0040】
(1)上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
【0041】
(2)上述した遮熱膜の他、当該遮熱膜を構成要素とするシステム、遮熱膜の製造方法等、種々の形態で本開示を実現することもできる。
【符号の説明】
【0042】
1…基材、3…塗布層、5…遮熱膜、9…反対側の面、11…熱電対
図1
図2
図3