IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社東芝の特許一覧 ▶ 東芝デバイス&ストレージ株式会社の特許一覧

<>
  • 特許-半導体装置 図1
  • 特許-半導体装置 図2
  • 特許-半導体装置 図3
  • 特許-半導体装置 図4
  • 特許-半導体装置 図5
  • 特許-半導体装置 図6
  • 特許-半導体装置 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-20
(45)【発行日】2023-03-01
(54)【発明の名称】半導体装置
(51)【国際特許分類】
   H01L 29/78 20060101AFI20230221BHJP
   H01L 29/41 20060101ALI20230221BHJP
【FI】
H01L29/78 652K
H01L29/78 653A
H01L29/78 652F
H01L29/78 652Q
H01L29/78 652S
H01L29/44 Y
【請求項の数】 2
(21)【出願番号】P 2019021248
(22)【出願日】2019-02-08
(65)【公開番号】P2020129595
(43)【公開日】2020-08-27
【審査請求日】2021-07-15
(73)【特許権者】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(73)【特許権者】
【識別番号】317011920
【氏名又は名称】東芝デバイス&ストレージ株式会社
(74)【代理人】
【識別番号】100108062
【弁理士】
【氏名又は名称】日向寺 雅彦
(74)【代理人】
【識別番号】100168332
【弁理士】
【氏名又は名称】小崎 純一
(74)【代理人】
【識別番号】100146592
【弁理士】
【氏名又は名称】市川 浩
(74)【代理人】
【識別番号】100157901
【弁理士】
【氏名又は名称】白井 達哲
(74)【代理人】
【識別番号】100172188
【弁理士】
【氏名又は名称】内田 敬人
(74)【代理人】
【識別番号】100197538
【弁理士】
【氏名又は名称】竹内 功
(72)【発明者】
【氏名】西口 俊史
【審査官】恩田 和彦
(56)【参考文献】
【文献】特開2018-078153(JP,A)
【文献】特開2017-017078(JP,A)
【文献】特開2017-162909(JP,A)
【文献】特表2002-533936(JP,A)
【文献】特開2010-182985(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 29/78
H01L 29/41
H01L 21/336
(57)【特許請求の範囲】
【請求項1】
第1導電形の第1半導体層を含む半導体部と、
前記半導体部の裏面上に設けられた第1電極と、
前記半導体部の表面側に設けられた第2電極と、
前記半導体部の表面側に設けられ、前記半導体部および前記第2電極から電気的に絶縁された第3電極と、
前記半導体部の前記表面に平行な第1方向に延伸する第1部分と、
前記半導体部の前記表面に平行な第2方向であって、前記第1方向と交差する第2方向に延伸する第2部分と、
を含み、前記半導体部と前記第2電極との間に位置し、前記半導体部との間には第1絶縁膜が設けられ、前記第2電極との間には第2絶縁膜が設けられた複数の制御電極と、
前記第3電極および前記複数の制御電極のそれぞれの前記第1部分に電気的に接続され、前記半導体部の前記表面に平行な第3方向であって、前記第1方向と交差する第3方向に延伸する第1制御配線と、
前記第3電極および前記複数の制御電極のそれぞれの第2部分に電気的に接続され、前記半導体部の前記表面に平行な第4方向であって、前記第2方向と交差する第4方向に延伸する第2制御配線と、
前記複数の制御電極のそれぞれにおける前記第1部分と前記第2部分との接続部の上方に位置し、前記半導体部の前記表面に沿って延伸し、前記接続部の少なくとも1つと前記第3電極を電気的に接続する第3制御配線と、
を備え、
前記半導体部は、第2導電形の第2半導体層と、第1導電形の第3半導体層と、をさらに含み、
前記第2半導体層は、前記第1半導体層と前記第2電極との間に設けられ、前記第1絶縁膜を介して前記複数の制御電極のいずれかに向き合い、
前記第3半導体層は、前記第2半導体層と前記第2電極との間に選択的に設けられ、且つ、前記第2電極に電気的に接続され、
前記複数の制御電極の前記第1部分は前記第3方向に並び、前記第2部分は前記第4方向に並ぶ、半導体装置。
【請求項2】
記半導体部内に設けられ、前記制御電極と前記第1半導体層との間に位置するフィールドプレートをさらに備え、
前記フィールドプレートは、前記制御電極に沿った方向に延伸し、前記第2電極に電気
的に接続される請求項記載の半導体装置。
【発明の詳細な説明】
【技術分野】
【0001】
実施形態は、半導体装置に関する。
【背景技術】
【0002】
電力制御用半導体装置は、電力損失を低減するために低いON抵抗を有することが望ましい。例えば、トレンチゲート型のMOSFETでは、ON電流が流れる活性領域におけるトレンチゲートの密度を高くすることにより、ON抵抗を低減することができる。しかしながら、その製造過程において、トレンチゲート内に設けられるポリシリコン、ゲート絶縁膜、フィールドプレート絶縁膜などと半導体との間の熱膨張率の違いに起因したウェーハの反りが大きくなり、製造効率を低下させる場合がある。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2008-4772号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
実施形態は、製造過程におけるウェーハの反りを低減できる半導体装置を提供する。
【課題を解決するための手段】
【0005】
実施形態に係る半導体装置は、第1導電形の第1半導体層を含む半導体部と、前記半導体部の裏面上に設けられた第1電極と、前記半導体部の表面側に設けられた第2電極と、前記半導体部の表面側に設けられ、前記半導体部および前記第2電極から電気的に絶縁された第3電極と、複数の制御電極と、第1乃至第3制御配線と、を備える。前記複数の制御電極は、前記半導体部の前記表面に平行な第1方向に延伸する第1部分と、前記半導体部の前記表面に平行な第2方向であって、前記第1方向と交差する第2方向に延伸する第2部分と、を含み、前記半導体部と前記第2電極との間に位置する。前記複数の制御電極と前記半導体部との間には第1絶縁膜が設けられ、前記複数の制御電極と前記第2電極との間には第2絶縁膜が設けられる。前記第1制御配線は、前記第3電極および前記複数の制御電極のそれぞれの前記第1部分に電気的に接続され、前記半導体部の前記表面に平行な第3方向であって、前記第1方向と交差する第3方向に延伸する。前記第2制御配線は、前記第3電極および前記複数の制御電極のそれぞれの第2部分に電気的に接続され、前記半導体部の前記表面に平行な第4方向であって、前記第2方向と交差する第4方向に延伸する。前記第3制御配線は、前記複数の制御電極のそれぞれにおける前記第1部分と前記第2部分との接続部の上方に位置し、前記半導体部の前記表面に沿って延伸し、前記接続部の少なくとも1つと前記第3電極を電気的に接続する。前記半導体部は、第2導電形の第2半導体層と、第1導電形の第3半導体層と、をさらに含む。前記第2半導体層は、前記第1半導体層と前記第2電極との間に設けられ、前記第1絶縁膜を介して前記複数の制御電極のいずれかに向き合う。前記第3半導体層は、前記第2半導体層と前記第2電極との間に選択的に設けられ、且つ、前記第2電極に電気的に接続される。前記複数の制御電極の前記第1部分は前記第3方向に並び、前記第2部分は前記第4方向に並ぶ。
【図面の簡単な説明】
【0006】
図1】実施形態に係る半導体装置を示す模式図である。
図2】実施形態の変形例に係る半導体装置を示す模式図である。
図3】実施形態の別の変形例に係る半導体装置を示す模式図である。
図4】実施形態の他の変形例に係る半導体装置を示す模式図である。
図5】実施形態のさらなる変形例に係る半導体装置を示す模式図である。
図6】実施形態の変形例に係る半導体装置の実装方法を示す模式図である。
図7】比較例に係る半導体装置を示す模式図である。
【発明を実施するための形態】
【0007】
以下、実施の形態について図面を参照しながら説明する。図面中の同一部分には、同一番号を付してその詳しい説明は適宜省略し、異なる部分について説明する。なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
【0008】
さらに、各図中に示すX軸、Y軸およびZ軸を用いて各部分の配置および構成を説明する。X軸、Y軸、Z軸は、相互に直交し、それぞれX方向、Y方向、Z方向を表す。また、Z方向を上方、その反対方向を下方として説明する場合がある。
【0009】
図1(a)および(b)は、実施形態に係る半導体装置1を示す模式図である。半導体装置1は、例えば、トレンチゲート構造を有するパワーMOSFETである。半導体装置1は、例えば、半導体部10の表面上に設けられたMOS(Metal Oxide Semiconductor)構造を有する。半導体部10は、例えば、シリコンである。図1(a)は、半導体装置1のゲート電極20およびゲートパッド30の配置を示す模式平面図である。図1(b)は、図1(a)中に示すA-A線に沿った断面を示す模式図である。
【0010】
図1(a)に示すように、ゲート電極20は、例えば、第1部分20aと第2部分20bとを含む。第1部分20aは、半導体部10の表面に沿った第1方向(例えば、X方向)に延在する。第2部分20bは、第1部分20aにつながり、半導体部10の表面に沿った第2方向(例えば、Y方向)に延在する。第1方向は、例えば、半導体部10の表面内において第2方向と交差する。
【0011】
ゲートパッド30は、例えば、半導体部10の表面の外縁に沿った4つ角の1つに配置される。ゲートパッド30は、半導体部10の表面の外縁に沿ってX方向およびY方向に延伸するゲート配線30PXおよび30PYに接続される。ゲート配線30PYは、ゲート電極20の第1部分20aに電気的に接続される。ゲート配線30PXは、ゲート電極20の第2部分20bに電気的に接続される。
【0012】
ゲート電極20は、例えば、複数配置される。複数のゲート電極20の第1部分20aは、Y方向に並び、ゲート配線30PYに電気的に接続される。また、複数のゲート電極の第2部分20bは、X方向に並び、ゲート配線30PXに電気的に接続される。
【0013】
図1(b)に示すように、半導体装置1は、ドレイン電極40(第1電極)と、ソース電極50(第2電極)とをさらに備える。ドレイン電極40は、半導体部10の裏面上に設けられる。ソース電極50は、半導体部10の表面側に設けられる。
【0014】
半導体部10は、例えば、n形ドリフト層11(第1半導体層)と、n形ドレイン層13と、p形拡散層15(第2半導体層)と、n形ソース層17(第3半導体層)と、p形コンタクト層19と、を含む。
【0015】
n形ドレイン層13は、n形ドリフト層11とドレイン電極40との間に設けられる。n形ドレイン層13は、n形ドリフト層11のn形不純物よりも高濃度のn形不純物を含む。ドレイン電極40は、n形ドレイン層13に接し、電気的に接続される。
【0016】
p形拡散層15は、n形ドリフト層11とソース電極50との間に設けられる。n形ソース層17は、p形拡散層15とソース電極50との間に選択的に設けられる。n形ソース層17は、n形ドリフト層11のn形不純物よりも高濃度のn形不純物を含み、ソース電極50に電気的に接続される。
【0017】
p形コンタクト層19は、例えば、p形拡散層15の中に設けられる。p形拡散層15は、p形拡散層15のp形不純物よりも高濃度のp形不純物を含む。ソース電極50は、層間絶縁膜33を貫いて半導体部10中に延伸するコンタクト部50CPを介してp形コンタクト層19に電気的に接続される。
【0018】
コンタクト部50CPは、層間絶縁膜33の表面からp形コンタクト層19に至る深さのコンタクトトレンチCTの内部に延在し、p形コンタクト層19に接する。また、コンタクト部50CPは、コンタクトトレンチCTの内壁に露出したn形ソース層17に接し、電気的に接続される。
【0019】
図1(b)に示すように、ゲート電極20は、半導体部10の表面側に設けられたゲートトレンチGTの内部に配置される。ゲートトレンチGTの内部には、ゲート電極20から電気的に絶縁されたフィールドプレート25も配置される。ゲート電極20およびフィールドプレート25は、絶縁膜27により半導体部10から電気的に絶縁される。さらに、ゲート電極20は、層間絶縁膜33によりソース電極50から電気的に絶縁される。絶縁膜27および層間絶縁膜33は、例えば、シリコン酸化膜である。
【0020】
ゲート電極20は、絶縁膜27の一部27gを介してp形拡散層15に向き合うように配置される。絶縁膜27の一部27gは、ゲート絶縁膜として機能する。フィールドプレート25は、例えば、Z方向においてn形ドリフト層11とゲート電極20との間に位置する。フィールドプレート25は、ゲート電極20と共にゲートトレンチGTの内部に延在する。フィールドプレート25は、例えば、図示しない部分でソース電極50に電気的に接続される。
【0021】
図1(a)に示すように、実施形態に係るゲート電極20は、第1部分20aおよび第2部分20bを含み、ゲートトレンチGTの内部において連続的に延在する。例えば、半導体部10の線熱膨張係数と、ゲートトレンチGTの内部に設けられる絶縁膜27の線熱膨張係数と、の差に起因してウェーハ内部に発生する応力は、第1部分20aおよび第2部分20bを設けることにより緩和される。これにより、半導体装置1の製造過程におけるウェーハの反りを抑制することができる。
【0022】
例えば、第1部分20aもしくは第2部分20bのいずれか一方だけを含む構成では、ゲート電極20と直交する方向におけるウェーハの反りが大きくなる。これに対し、第1部分20aと第2部分20bの両方を設けると、それぞれの部分が設けられる領域の面積が小さくなり、応力が低減される。また、図5(b)に示すような例では、第1部分20aが配置される領域の面積と第2部分20bが配置される領域の面積比を変化させることにより、ウェーハの反り量を制御することも可能である。
【0023】
フィールドプレート25をゲートトレンチGTの内部に配置したトレンチゲート構造では、ゲートトレンチGTはZ方向により深く設けられる。このため、ゲートトレンチGTの内部に設けられる絶縁膜27の体積が増加し、製造過程におけるウェーハの歪が大きくなる。その結果、ウェーハの反りが大きくなる。すなわち、本実施形態に係るゲート電極20は、ゲートトレンチGTがより深く形成される半導体装置の製造過程においてウェーハの反りを効果的に抑制する。
【0024】
さらに、本実施形態に係る半導体装置1では、ON抵抗を低減することができる。例えば、図7(a)に示す半導体装置8では、半導体部10に設けられた複数の第1部分20aおよび複数の第2部分20bを有する。これにより、半導体装置8の製造過程におけるウェーハの反りを抑制することができる。しかしながら、半導体装置8では、第1部分20aと第2部分20bは離間しており、それぞれ異なる領域に配置される。すなわち、複数の第1部分20aを含む第1領域GR1と、複数の第2部分20bを含む第2領域GR2と、が設けられる。このため、第1領域GR1と第2領域GR2との間にON電流に寄与しない部分が生じる。
【0025】
これに対し、実施形態に係る半導体装置1では、ゲート電極20の第1部分20aおよび第2部分20bをつなげて配置することにより、ON電流に寄与する面積を広くすることができる。すなわち、半導体装置1では、半導体装置8よりもON抵抗を低減することができる。
【0026】
また、図7(b)に示す半導体装置9では、複数の第1部分20aおよび複数の第2部分20bが相互に交差した格子状に配置される。これにより、半導体装置9の製造過程におけるウェーハの反りを抑制することができる。しかしながら、半導体装置9では、ゲートトレンチGTが微細化されると、第1部分20a間および第2部分20b間に位置する半導体部10の面積が縮小され、n形ドリフト層11中を流れる電流のゲート電極20間における流路が狭くなる。このため、ゲート電極20を微細化することによりチャネル抵抗が低減されても、トータルのON抵抗を十分に低減できない場合が生じる。さらに、p形拡散層15にソース電極50を電気的に接続するコンタクト構造を形成することが難しくなる。
【0027】
これに対し、実施形態に係る半導体装置1では、ゲート電極20は、ゲートトレンチGTの内部において分岐することなく延在する。これにより、ゲートトレンチGTの微細化に伴う、第1部分20a間および第2部分20b間に位置する半導体部10の面積の縮小を緩和することができる。すなわち、n形ドリフト層11におけるON抵抗の増加を抑制することができる。また、第1部分20a間および第2部分20b間にコンタクトトレンチCTを形成することも容易であり、p形拡散層15に対するソース電極50のコンタクト構造を形成することが容易である。
【0028】
図2(a)および(b)は、実施形態の変形例に係る半導体装置2を示す模式図である。図2(a)は、ゲート電極20、ゲートパッド30、ゲート配線30PX、30PYおよび30の配置を示す模式平面図である。図2(b)は、図2(a)中に示すCE方向に沿った模式断面図である。
【0029】
図2(a)に示すように、半導体装置2では、ゲート電極20の第1部分20aと第2部分20bの接続部の上方に位置するゲート配線30が設けられる。ゲート配線30は、ゲートパッド30からCE方向に延伸し、複数のゲート電極20の接続部の上方に位置する。
【0030】
図2(b)は、図2(a)中に示すコンタクト部30CPの断面図である。ゲート配線30は、半導体部10の上方に設けられる。ゲート配線30は、層間絶縁膜33により半導体部10から電気的に絶縁される。そして、ゲート配線30は、ゲートコンタクト30GCを介してゲート電極20に電気的に接続される。ゲートコンタクト30GCは、層間絶縁膜33中をゲート配線30からゲート電極20に至る深さまで延伸する。
【0031】
ゲートコンタクト30GCは、ゲート電極20の寄生抵抗を低減するために設けられる。例えば、ゲート配線30PXの接続部とゲート配線30PYの接続部との間のゲート電極20の寄生抵抗が所定の値よりも大きくなる場合に、ゲートコンタクト30GCを設ける。これにより、半導体装置2のゲートバイアスに対する応答速度を速くすることができる。
【0032】
図3(a)および(b)は、実施形態の変形例に係る半導体装置3を示す模式図である。図3(a)は、ゲート電極20、ゲートパッド30、ゲート配線30PXおよび30PYの配置を示す模式平面図である。図3(b)は、ゲートパッド30、ゲート配線30PX、30PYおよびソース電極50の配置を示す模式平面図である。
【0033】
図3(a)に示すように、半導体装置3では、ゲートパッド30は、活性領域の中央に配置される。ゲート配線30PXは、ゲートパッド30からX方向および-X方向に延伸する。ゲート配線30PXは、ゲートパッド30に電気的に接続される。ゲート配線30PYは、ゲートパッド30からY方向および-Y方向に延伸する。ゲート配線30PYは、ゲートパッド30に電気的に接続される。
【0034】
半導体装置3は、複数のゲート電極20を有する。ゲート電極20は、第1部分20aおよび第2部分20bをそれぞれ含む。第1部分20aは、ゲート配線30PYに電気的に接続され、X方向に延伸する。第2部分20bは、ゲート配線30PXに接続され、Y方向に延伸する。複数のゲート電極20の第1部分20aは、Y方向に並び、第2部分20bは、X方向に並ぶ。
【0035】
例えば、半導体部10の表面上における同じ位置に配置されたゲート電極20を比較すると、ゲート配線30PXとの接続部からゲート配線30PYとの接続部に至る長さは、半導体装置3のゲート電極20の長さの方が、半導体装置1のゲート電極20の長さよりも短くなる。すなわち、半導体装置3では、ゲート電極20の寄生抵抗を低減し、ゲートバイアスに対する応答速度を早くできる。
【0036】
図3(b)に示すように、ソース電極50は、ゲートパッド30、ゲート配線30PXおよび30PYと重ならないように、4つの部分に分けて配置される。ソース電極50は、半導体部10の表面上において離間して配置されることにより、ゲートパッド30、ゲート配線30PXおよび30PYから電気的に絶縁される。また、実施形態は、この例に限定される訳ではなく、例えば、ソース電極50が層間絶縁膜を介してゲート配線30PXおよび30PYの上に位置するように設けても良い。
【0037】
図4(a)~図5(b)は、実施形態の変形例に係る半導体装置4~7を示す模式図である。図4(a)~図5(b)は、ゲート電極20およびゲートパッド30の配置を示す模式図である。
【0038】
図4(a)に示す半導体装置4では、ゲート電極20は、複数の第1部分20aおよび複数の第2部分20bが一体につながった平面形状を有している。ゲート電極20は、複数の第1部分20aおよび複数の第2部分20bにより、例えば、渦状に構成される。複数の第1部分20aは、Y方向に並び、複数の第2部分20bは、X方向に並ぶ。ゲートパッド30は、半導体部10の表面の外縁に位置する4つの角の1つに配置され、ゲート電極20は、ゲートパッド30に電気的に接続される。
【0039】
図4(b)に示す半導体装置5では、ゲートパッド30は、半導体部10の表面の中央に配置され、2つのゲート電極20が、ゲートパッド30の両側に配置される。2つのゲート電極20は、それぞれ、複数の第1部分20aと複数の第2部分20bとを渦状に一体に配置した構成を有する。複数の第1部分20aは、Y方向に並び、複数の第2部分20bは、X方向に並ぶ。ゲート電極20は、半導体部10の中央において、ゲートパッド30に電気的に接続される。
【0040】
図5(a)に示す半導体装置6では、2つのゲート電極20をY方向に並べて配置した構造を有する。2つのゲート電極20は、それぞれ、複数の第1部分20aと複数の第2部分20bとを渦状に一体に配置した構成を有する。ゲートパッド30は、半導体部10の表面の外縁に位置する。2つのゲート電極20は、半導体部10の外縁において、ゲートパッド30に電気的に接続される。
【0041】
図5(b)に示す半導体装置7では、ゲート電極20は、複数の第1部分20a、複数の第2部分20b、複数の第3部分20cおよび複数の第4部分20dを含む。ゲート電極20は、複数の第1部分20aおよび複数の第2部分20bを第3部分20cおよび第4部分20dを介して一体につないだ構成を有する。第3部分20cは、例えば、第1部分20aに交差する方向(例えば、Y方向)に延伸する。第4部分20dは、例えば、第2部分20bに交差する方向(例えば、X方向)に延伸する。ゲート電極20は、半導体部10の表面の外縁に沿った4つの角の一に配置されたゲートパッド30に電気的に接続される。
【0042】
複数の第1部分20aは、第1領域GR1に配置され、第3部分20cを介して相互に接続される。複数の第2部分は、第2領域GR2に配置され、第4部分20dを介して相互に接続される。第1領域GR1および第2領域GR2は、半導体部10の表面においてY方向に並ぶ。複数の第1部分20aはY方向に並び、複数の第2部分はX方向に並ぶ。複数の第3部分20cおよび複数の第4部分20dもウェーハの反り低減に寄与する。
【0043】
半導体装置4~7は、複数の第1部分20aおよび複数の第2部分20bを含むことにより、その製造過程におけるウェーハの反りを効果的に抑制することができる。さらに、複数の第1部分20aおよび複数の第2部分20bを一体につなぐことにより、半導体部10の表面積を有効に使用し、ON電流を低減することができる。なお、半導体装置4~7においても、ゲート配線30およびコンタクト部30CPを適宜設けることによりゲート電極20の寄生抵抗を低減することができる。
【0044】
図6(a)~(c)は、実施形態に係る半導体装置3または半導体装置5(図4(b)参照)の実装方法を示す模式図である。半導体装置3および半導体装置5では、ゲートパッド30は、半導体部10の表面の中央に配置される。
【0045】
図6(a)は、半導体装置3の半導体部10の上方に配置されるコネクタ60および70の配置を示す模式平面図である。図6(b)は、図6(a)中に示すB-B線に沿った断面を示す模式図である。図6(c)は、図6(a)中に示すC-C線に沿った断面を示す模式図である。なお、図6(a)では、ソース電極50を省略しており、図6(b)および(c)では、半導体部10の各半導体層、ゲート電極20およびドレイン電極40を省略している。
【0046】
図6(a)に示すように、例えば、2つのコネクタ60およびコネクタ70が、半導体部10の上方に配置される。コネクタ60は、例えば、グランド電位に接続される。コネクタ70は、例えば、ゲートバイアスの供給回路に接続される。
【0047】
図6(b)に示すように、コネクタ60は、ソース電極50に接続される。ドレイン電極40(図1(b)参照)は、例えば、ドレインバイアスの供給回路に接続される。これによりドレイン・ソース間に所定の電圧が供給される。
【0048】
図6(c)に示すように、コネクタ70は、例えば、ソース電極50を跨いてゲートパッド30に接続される。コネクタ70は、ソース電極50から上方に離間して配置される。この例では、コネクタ70が、半導体部10の中央に位置するゲートパッド30に接続されるため、その両側にコネクタ60が配置される。
【0049】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0050】
1~8…半導体装置、 10…半導体部、 11…n形ドリフト層、 13…n形ドレイン層、 15…p形拡散層、 17…n形ソース層、 19…p形コンタクト層、 20…ゲート電極、 20a…第1部分、 20b…第2部分、 25…フィールドプレート、 27…絶縁膜、 30…ゲートパッド、 30CP、50CP…コンタクト部、 30GC…ゲートコンタクト、 30PX、30PY、30…ゲート配線、 33…層間絶縁膜、 40…ドレイン電極、 50…ソース電極、 60、70…コネクタ、 CT…コンタクトトレンチ、 GT…ゲートトレンチ
図1
図2
図3
図4
図5
図6
図7