IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ガーディアン・グラス・エルエルシーの特許一覧

特許7232267コイル強度が改善された電位駆動シェード、その製造方法、及びその操作方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-21
(45)【発行日】2023-03-02
(54)【発明の名称】コイル強度が改善された電位駆動シェード、その製造方法、及びその操作方法
(51)【国際特許分類】
   E06B 3/66 20060101AFI20230222BHJP
   C03C 27/06 20060101ALI20230222BHJP
【FI】
E06B3/66 E
C03C27/06 101J
【請求項の数】 25
(21)【出願番号】P 2020564588
(86)(22)【出願日】2019-07-05
(65)【公表番号】
(43)【公表日】2021-10-28
(86)【国際出願番号】 IB2019055760
(87)【国際公開番号】W WO2020008434
(87)【国際公開日】2020-01-09
【審査請求日】2022-05-27
(31)【優先権主張番号】16/028,593
(32)【優先日】2018-07-06
(33)【優先権主張国・地域又は機関】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】517413513
【氏名又は名称】ガーディアン・グラス・エルエルシー
【氏名又は名称原語表記】GUARDIAN GLASS, LLC
【住所又は居所原語表記】2300 Harmon Road, Auburn Hills, MI 48326-1714 United States of America
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【弁理士】
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100067013
【弁理士】
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100086771
【弁理士】
【氏名又は名称】西島 孝喜
(74)【代理人】
【識別番号】100109335
【弁理士】
【氏名又は名称】上杉 浩
(74)【代理人】
【識別番号】100120525
【弁理士】
【氏名又は名称】近藤 直樹
(74)【代理人】
【識別番号】100139712
【弁理士】
【氏名又は名称】那須 威夫
(72)【発明者】
【氏名】ブラッシュ ジェイソン
(72)【発明者】
【氏名】フレイ ティモシー
(72)【発明者】
【氏名】グー ヤベイ
(72)【発明者】
【氏名】ペトルミヒル ルドルフ
【審査官】秋山 斉昭
(56)【参考文献】
【文献】米国特許第8736938(US,B1)
【文献】米国特許出願公開第2013/0188235(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
E06B 3/66-3/677
E06B 9/24-9/50
C03C 27/06
(57)【特許請求の範囲】
【請求項1】
絶縁ガラスユニットであって、
それぞれが内部主表面及び外部主表面を有する第1及び第2の基材であって、前記第1の基材の前記内部主表面が、前記第2の基材の前記内部主表面に面している、第1及び第2の基材と、
前記第1及び第2の基材を互いに対して実質的に平行に離間した関係に維持し、それらの間に間隙を画定するスペーサシステムと、
前記第1の基材と前記第2の基材との間に介在する動的に制御可能なシェードであって、
前記第1の基材の前記内部主表面上に直接又は間接的に設けられた第1導電コーティングと、
前記第1導電コーティング上に直接又は間接的に設けられた誘電体膜又は絶縁体膜と、
第2導電コーティングを支持するポリマー材料を含むシャッタであって、前記ポリマー材料がシャッタ閉位置として機能し、且つシャッタ開位置として機能するように後退可能であり、前記第2導電コーティングが、Mo及び/又はTiを含む薄膜層を含む、シャッタと、を含むシェードと、を備え、
前記第1導電コーティング及び第2導電コーティングが、前記シャッタ開位置と前記シャッタ閉位置との間で前記ポリマー材料を駆動するために電位差を選択的に設定するように制御可能な電源に電気的に接続可能であり、
Mo及び/又はTiを含む前記薄膜層の上に、且つ前記ポリマー材料の反対側の表面上に腐食低減層が設けられている、絶縁ガラスユニット
【請求項2】
前記第2導電コーティング中の薄膜層は、開いた位置と閉じた位置との間で、Alを含む層のみを含む第2導電コーティングを有するシャッタのものよりも大きいばね力で前記シャッタを移動させるように選択及び形成される、請求項1に記載の絶縁ガラスユニット。
【請求項3】
前記腐食低減層が、Al、Ti、及び/又はステンレス鋼を含む、請求項1に記載の絶縁ガラスユニット。
【請求項4】
前記腐食低減層がAlを含む、請求項3に記載の絶縁ガラスユニット。
【請求項5】
前記腐食低減層が、375nm未満の厚さを有する、請求項3に記載の絶縁ガラスユニット。
【請求項6】
Mo及び/又はTiを含む前記薄膜層と前記ポリマー材料との間に下地層が設けられ、前記下地層は、下地層が存在しない状況と比較して、前記第2導電コーティングの応力プロファイルを変更するように形成されている、請求項1に記載の絶縁ガラスユニット。
【請求項7】
前記下地層が、前記第2導電コーティングの前記応力プロファイルを正味引張から正味圧縮に変化させるように形成される、請求項6に記載の絶縁ガラスユニット。
【請求項8】
前記下地層がAlを含む薄膜層である、請求項6に記載の絶縁ガラスユニット。
【請求項9】
前記下地層が、375nm未満の厚さを有する、請求項6に記載の絶縁ガラスユニット。
【請求項10】
前記腐食低減層及び前記下地層は両方とも、Alを含み、375nm未満の集合的厚さを有する薄膜層である、請求項6に記載の絶縁ガラスユニット。
【請求項11】
Mo及び/又はTiを含む前記薄膜層と前記ポリマー材料との間に設けられた下地層を更に含み、前記下地層は、下地層が存在しない状況と比較して、前記第2導電コーティングの応力プロファイルを変更するように形成されている、請求項1に記載の絶縁ガラスユニット。
【請求項12】
前記下地層が、前記第2導電コーティングの前記応力プロファイルを正味引張から正味圧縮に変化させるように形成されている、請求項11に記載の絶縁ガラスユニット。
【請求項13】
絶縁ガラスユニットの製造方法であって、
それぞれが内部主表面及び外部主表面を有する、第1及び第2の基材を提供する工程と、
前記第1の基材の前記内部主表面上に直接又は間接的に第1導電コーティングを形成する工程と、
前記第1導電コーティング上に直接又は間接的に誘電体膜又は絶縁体膜を提供する工程と、
前記誘電体又は絶縁体膜に隣接して、第2導電コーティングを支持するポリマー材料を含むシャッタを配置する工程であって、使用中のポリマー材料が、シャッタ閉位置として機能するように伸長可能であり、且つシャッタ開位置として機能するように後退可能であり、前記第2導電コーティングが、Mo及び/又はTiを含む薄膜層を含む、工程と、
前記第1導電コーティング及び第2導電コーティングを電源に電気的に接続する工程であって、前記第1導電コーティング、誘電体膜又は絶縁体膜、及びシャッタが、動的シェードを少なくとも部分的に形成し、前記電源は、電位差を選択的に設定し、それに応じて、前記シャッタ開位置と前記シャッタ閉鎖位置との間で前記ポリマー材料を駆動するよう制御可能である、工程と、
前記第1及び第2の基材を、前記絶縁ガラスユニットを作製する際に、前記第1及び第2の基材の前記内面が互いに対向するように、前記第1及び第2の基材を互いに実質的に平行に離間させた関係でスペーサシステムに関連して互いに接続する工程であって、前記第1及び第2の基材の間に間隙が画定され、前記間隙内の前記第1の基材と前記第2の基材との間に前記動的シェードが介在し、Mo及び/又はTiを含む前記薄膜層の上に、且つ前記ポリマー材料の反対側の表面上に腐食低減層が設けられている、工程と、を含む、方法。
【請求項14】
前記第2導電コーティング中の薄膜層は、開いた位置と閉じた位置との間で、Alを含む層のみを含む第2導電コーティングを有するシャッタのものよりも大きいばね力で前記シャッタを移動させるように選択及び形成される、請求項13に記載の方法。
【請求項15】
前記腐食低減層が、Al、Ti、及び/又はステンレス鋼を含む、請求項13に記載の方法。
【請求項16】
前記腐食低減層がAlを含む、請求項15に記載の方法。
【請求項17】
前記腐食低減層が、375nm未満の厚さを有する、請求項15に記載の方法。
【請求項18】
Mo及び/又はTiを含む前記薄膜層と前記ポリマー材料との間に下地層が設けられ、前記下地層は、下地層が存在しない状況と比較して、前記第2導電コーティングの応力プロファイルを変更するように形成されている、請求項13に記載の方法。
【請求項19】
前記下地層が、前記第2導電コーティングの前記応力プロファイルを正味引張から正味圧縮に変化させるように形成される、請求項18に記載の方法。
【請求項20】
前記下地層がAlを含む薄膜層である、請求項18に記載の方法。
【請求項21】
前記下地層が、375nm未満の厚さを有する、請求項18に記載の方法。
【請求項22】
前記腐食低減層及び前記下地層は両方とも、Alを含み、375nm未満の集合的厚さを有する薄膜層である、請求項18に記載の方法。
【請求項23】
Mo及び/又はTiを含む前記薄膜層と前記ポリマー材料との間に設けられた下地層を更に含み、前記下地層は、下地層が存在しない状況と比較して、前記第2導電コーティングの応力プロファイルを変更するように形成されている、請求項13に記載の方法。
【請求項24】
前記下地層が、前記第2導電コーティングの前記応力プロファイルを正味引張から正味圧縮に変化させるように形成されている、請求項23に記載の方法。
【請求項25】
絶縁ガラスユニット内で動的シェードを操作する方法であって、
請求項13に記載の方法に従って作製された絶縁ガラスユニットを有する工程と、
前記シャッタ開位置と前記シャッタ閉位置との間で前記ポリマー材料を移動させるために、前記電源を選択的に作動させる工程と、を含む、方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の特定の例示的実施形態は、絶縁ガラスユニット(IGユニット又はIGU)と共に使用され得るシェード、かかるシェードを含むIGユニット、及び/又はその製造方法に関する。より具体的には、本発明の特定の例示的実施形態は、IGユニットと共に使用され得る、電気的、潜在的に駆動されるシェード、かかるシェードを含むIGユニット、及び/又はその製造方法に関する。
【背景技術】
【0002】
建築部門は、世界の一次エネルギー消費の30~40%を表すことが示されている、そのエネルギー消費が高いことで知られている。特に、エネルギー効率の厳格性の低い建築基準で構築された古い構造体では、加熱、冷却、換気、及び照明などの運用コストが、この消費の大部分を占める。
【0003】
窓は、例えば、自然光、新鮮な空気、アクセス、及び外部世界への接続を提供する。しかしながら、それらはしばしば、無駄なエネルギーの重大な原因の典型でもある。建築用窓の使用を増加させる傾向が高まり、エネルギー効率及び人間の快適性の相反する利益をバランスさせることは、ますます重要になってきている。更に、地球温暖化及び二酸化炭素排出量に関する懸念が、新規なエネルギー効率の高いグレージングシステムの推進力になっている。
【0004】
この点に関して、窓は通常、建物の隔離において「弱いリンク」であり、ガラスのファサード全体を含むことが多い現代の建築設計を考慮すると、エネルギー浪費を制御及び低減する点で、より優れた絶縁窓を持つことが有利であろうことが明らかになる。したがって、絶縁性の高い窓の開発には、環境的にも経済的にも大きな利点がある。
【発明の概要】
【0005】
絶縁ガラスユニット(IGユニット又はIGU)が開発されており、建物及び他の構造物の絶縁性が向上している。図1は、例示的なIGユニットの断面概略図である。図1の例示的なIGユニットでは、第1及び第2の基材102及び104は、実質的に平行であり、互いに離間している。スペーサシステム106は、第1の基材102及び第2の基材104の周辺部に提供され、それらを互いに実質的に平行に離間した関係に維持し、それらの間に間隙又は間隙108を画定するのに役立つ。間隙108は、例えば、全体的なIGユニットの絶縁特性を改善するために、場合によっては不活性ガス(例えば、Ar、Kr、Xe、及び/又は同様のものなど)で少なくとも部分的に充填されてもよい。場合によっては、スペーサシステム106に加えて、任意選択の外側シールが提供されてもよい。
【0006】
窓は、冬の太陽光の利益及び一年中の昼光の形態で建物に「エネルギーを供給する」能力を有するという点で、ほとんどの建物において固有の要素である。しかしながら、現在の窓技術は、多くの場合、冬の過剰な加熱コスト、夏の過剰な冷却につながることが多く、多くの場合、光源の市販品の多くにおいて光が暗色化されるか又はオフにされることを可能にするという昼光の利益を捕捉し損ねている。
【0007】
薄膜技術は、窓性能を改善する1つの有望な方法である。薄膜は、例えば、製造中にガラス上に直接適用することができ、それに対応してより低コストで既に既存の窓に後付けすることができるポリマーウェブ上に適用することができる。過去20年間にわたって進歩が行われており、主に、静的又は「受動的」低放射率(低E)コーティングを使用することにより窓のU値を下げ、並びにスペクトル選択的低Eコーティングを使用することにより、太陽熱利得係数(SHGC)を低減することによって、進歩が行われてきた。低Eコーティングは、例えば、図1に示され、図1に関連して記載されているものなどのIGユニットと関連して使用され得る。しかしながら、更なる強化が可能である。
【0008】
例えば、建物等への改善された断熱を提供するという要望を考慮に入れたより動的なIGユニットオプションを提供することが望ましいであろうことは、太陽が建物の内部に「エネルギーを供給」する能力を利用し、また、より「オンデマンド」方式でプライバシーを提供することが望ましいことが理解されるであろう。このような製品は、美的外観も満足することが望ましいことが理解されるであろう。
【0009】
特定の例示的実施形態は、これら及び/又は他の懸念事項に対処する。例えば、本発明の特定の例示的実施形態は、IGユニットと共に使用され得る電気的、潜在的に駆動されるシェード、かかるシェードを含むIGユニット、及び/又はその製造方法に関する。
【0010】
特定の例示的実施形態では、絶縁ガラス(IG)ユニットが提供される。第1の基材及び第2の基材はそれぞれ、内部主表面及び外部主表面を有し、第1の基材の内部主表面は、第2の基材の内部主表面に面している。スペーサシステムは、第1の基材及び第2の基材を互いに対して実質的に平行に離間した関係に維持し、それらの間に間隙を画定するのに役立つ。第1の基材と第2の基材との間に介在する動的に制御可能なシェードは、第1の基材の内部主表面上に直接又は間接的に提供される第1導電コーティングと、第1導電コーティング上に直接的又は間接的に提供される誘電体又は絶縁体膜と、第2導電コーティングを支持するポリマー材料を含むシャッタであって、ポリマー材料は、シャッタ閉位置として機能するように伸長可能であり、且つシャッタ開位置として機能するように後退可能である、シャッタと、を備え、第2導電コーティングが、Mo及び/又はTiを含む薄膜層を含む。第1導電コーティング及び第2導電コーティングは、シャッタ開位置とシャッタ閉位置との間でポリマー材料を相応に駆動するために電位差を選択的に設定するように制御可能な電源に電気的に接続可能である。
【0011】
特定の例示的実施形態では、絶縁ガラス(IG)ユニットが提供される。第1の基材及び第2の基材はそれぞれ、内部主表面及び外部主表面を有し、第1の基材の内部主表面は、第2の基材の内部主表面に面している。スペーサシステムは、第1の基材及び第2の基材を互いに対して実質的に平行に離間した関係に維持し、それらの間に間隙を画定するのに役立つ。第1の基材と第2の基材との間に介在する動的に制御可能なシェードは、第1の基材の内部主表面上に直接又は間接的に提供される第1導電コーティングと、第1導電コーティング上に直接的又は間接的に提供される誘電体又は絶縁体膜と、第2導電コーティングを支持するポリマー材料を含むシャッタと、を備え、ポリマー材料は、シャッタ閉位置として機能するように伸長可能であり、且つシャッタ開位置として機能するように後退可能であり、第2導電コーティングは、1つ以上の薄膜層を含み、第2導電コーティング中の薄膜層は、Alを含む層のみを含む第2導電コーティングを有するシャッタのものよりも大きいばね力でシャッタを開位置と閉位置との間で移動させるように形成されている。第1導電コーティング及び第2導電コーティングは、シャッタ開位置とシャッタ閉位置との間でポリマー材料を相応に駆動するために電位差を選択的に設定するように制御可能な電源に電気的に接続可能である。
【0012】
特定の例示的実施形態では、絶縁ガラス(IG)ユニットの製造方法が提供される。この方法は、それぞれが内部主表面及び外部主表面を有する第1及び第2の基材を提供する工程と、第1の基材の内部主表面上に直接又は間接的に第1導電コーティングを形成する工程と、第1導電コーティング上に直接又は間接的に誘電体膜又は絶縁体膜を提供する工程と、誘電体又は絶縁体膜に隣接して、第2導電コーティングを支持するポリマー材料を含むシャッタを配置する工程であって、使用中のポリマー材料は、シャッタ閉位置として機能するように伸長可能であり、且つシャッタ開位置として機能するように後退可能であり、第2導電コーティング中の薄膜層(複数可)は、シャッタを開位置と閉位置との間で移動させるように選択及び形成され、第2導電コーティング及び/又は第2導電コーティング自体の中の薄膜層は、Alよりも大きい弾性率及びより低いCTEを有する、工程と、第1導電コーティング及び第2導電コーティングを電源に電気的に接続する工程であって、第1導電コーティング、誘電体膜又は絶縁体膜、及びシャッタが、電源と関連して制御可能な動的シェードを少なくとも部分的に形成して、電位差を選択的に設定し、それに応じて、シャッタ開位置とシャッタ閉鎖位置との間でポリマー材料を駆動する、工程と、第1及び第2の基材を、IGユニットを作製する際に、第1及び第2の基材の内面が互いに対向するように、第1及び第2の基材を互いに実質的に平行に離間させた関係でスペーサシステムに関連して互いに接続する工程であって、第1及び第2の基材の間に間隙が画定され、間隙内の第1の基材と第2の基材との間に動的シェードが介在する、工程と、を含む。
【0013】
特定の例示的実施形態では、絶縁ガラス(IG)ユニット内で動的シェードを操作する方法が提供される。本方法は、本明細書に開示される技術に従って(例えば、前の20の段落のうちのいずれか1つに従って)作製されたIGユニットを有する工程と、シャッタ開位置とシャッタ閉位置との間でポリマー材料を移動させるために、電源を選択的に作動させる工程と、を含む。
【0014】
本明細書に記載の特徴、態様、利点、及び例示的実施形態は、更なる実施形態を実現するために組み合わされてよい。
【0015】
これら及び他の特徴及び利点は、図面と併せて、例示的な実施形態の以下の詳細な説明を参照することによって、より良好且つより完全に理解され得る。
【図面の簡単な説明】
【0016】
図1】例示的な絶縁ガラスユニット(IGユニット又はIGU)の断面概略図である。
図2】特定の例示的実施形態に関連して使用され得る、電気的、潜在的に駆動されるシェードを組み込んだ例示的なIGUの断面概略図である。
図3】特定の例示的実施形態による、シャッタ動作を可能にする、図2の実施例IGUの、例示的な「ガラス上の」構成要素を示す断面図である。
図4】特定の例示的実施形態による、図2の実施例IGUからの例示的なシャッタの断面図である。
図5】特定の例示的実施形態に関連して使用され得る、電気的、潜在的に駆動されるシェードを組み込んだシェードを含む、例示的なIGUの断面概略図である。
図6a図5の例示的なIGUに関連して、特定の例の実例において、太陽放射がどのように選択的に反射され得るかを示す図である。
図6b図5の例示的なIGUに関連して、特定の例の実例において、太陽放射がどのように選択的に反射され得るかを示す図である。
図7】特定の例示的実施形態による、図5の例示的なシェードに形成された穿穴の代替的な幾何学的形状を示す断面図である。
図8a】特定の例示的実施形態による、シェード全体の美的外観を改善するためにオーバーコートが含まれることを除いて、図3の実施例と同様のシャッタの断面図である。
図8b】特定の例示的実施形態による、シェード全体の美的外観を改善するためにオーバーコートが含まれることを除いて、図3の実施例と同様のシャッタの断面図である。
図8c】特定の例示的実施形態による、シェード全体の美的外観を改善するためにオーバーコートが含まれることを除いて、図3の実施例と同様のシャッタの断面図である。
図9】特定の例示的実施形態において、図8a~8bの層スタックに関連して使用され得る特定の例示的なオーバーコート材料のパーセント反射率対波長をプロットするグラフである。
図10】特定の例示的実施形態において、図8a~8bの層スタックに関連して使用され得る特定の例示的なオーバーコート材料のパーセント反射率対波長をプロットするグラフである。
図11】特定の例示的実施形態において、図8a~8bの層スタックに関連して使用され得る特定の例示的なオーバーコート材料のパーセント反射率対波長をプロットするグラフである。
図12】ヤング率に対する温度の影響を示すグラフである。
図13】異なる温度におけるPET膜の典型的な応力緩和曲線を示す。
図14】特定の例示的実施形態で再生することができるシェード関数に対する基本的制約を要約する。
図15】特定の例示的実施形態において関連し得るいくつかの材料に関するコイル強度関連特性を含む表である。
図16】特定の例示的実施形態に関連して使用することができるCIGS太陽電池を組み込んだシャッタの概略図である。
図17】特定の例示的実施形態による、シェードがどのようにグレージングに接続され、電力が供給され得るかを示す。
図18】特定の例示的実施形態による、シェードがどのようにグレージングに接続され、電力が供給され得るかを示す。
図19】特定の例示的実施形態による、シェードがどのようにグレージングに接続され、電力が供給され得るかを示す。
図20】特定の例示的実施形態による、シェードがどのようにグレージングに接続され、電力が供給され得るかの代替的な手法を示す概略図である。
図21】特定の例示的実施形態による、シェードがどのようにグレージングに接続され、電力が供給され得るかについての別の代替的な手法を示す概略図である。
【発明を実施するための形態】
【0017】
本発明の特定の例示的実施形態は、IGユニットと共に使用され得る電気的、潜在的に駆動されるシェード、かかるシェードを含むIGユニット、及び/又はその製造方法に関する。ここでより詳細に図面を参照すると、図2は、特定の例示的実施形態に関連して使用され得る電位駆動シェードを組み込んだ例示的な絶縁ガラスユニット(IGユニット又はIGU)の断面概略図である。より具体的には、図2は、第1及び第2の実質的に平行な離間したガラス基材102及び104が、スペーサシステム106を使用して互いに分離され、間隙108がそれらの間に画定される点で、図1と同様である。第1及び第2の電気的に駆動されるシェード202a及び202bは、第1及び第2の基材102及び104のそれぞれの内側主表面に近接する間隙108内に提供される。以下に提供される説明から明確になるように、シェード202a及び202bは、シェード202aと202bと、基材102及び104の内面に形成された導電性コーティングとの間の電位差の生成によって制御される。また、以下に提供される説明から明確になるように、それぞれのシェード202a及び202bは、導電性コーティング(例えば、Al、Cr、ITO、及び/又は同様のものを含む層を含むコーティング)でコーティングされたポリマー膜を使用して作製され得る。アルミニウムコーティングされたシェードは、可視光の部分-完全反射、及び最大でかなりの量の総太陽エネルギーを提供し得る。
【0018】
シェード202a及び202bは通常、(例えば、丸められて)後退されるが、例えば「従来の」ブラインドのように、基材102及び104の少なくとも一部を覆うために、適切な電圧が印加されたときに急速に伸長する(例えば、ロールアウトする)。巻き上げシェードは、非常に小さい直径を有してもよく、典型的には、第1の基材102と第2の基材104との間の間隙108の幅よりもはるかに小さくなり、これにより、それらの間で機能することができ、巻き上げられるときに本質的に視界から隠され得る。ロールアウトされたシェード202a及び202bは、隣接する基材102及び104に強く付着する。
【0019】
シェード202a及び202bは、基材102及び104の可視又は「フレーム」領域の垂直長さの全て又は一部分に沿って、後退構成から伸長構成まで延びる。後退構成では、シェード202a及び202bは、フレーム領域を通る放射線透過を実質的に可能にする第1の表面積を有する。伸長構成では、シェード202a及び202bは、フレーム領域を通る放射線透過を実質的に制御する第2の表面積を有する。特定の例示的実施形態では、シェード202a及び202bは、それらが取り付けられる基材102及び104のフレーム領域の水平幅の全て又は一部にわたって延在する幅を有してもよい。
【0020】
それぞれのシェード202a及び202bは、第1の基材102と第2の基材104との間に配設され、好ましくは、それぞれが、その頂部付近で、1つの端部でその内面(又はその上に配置された誘電体又は他の層)に取り付けられる。この点で、接着剤層を使用してもよい。図2では、シェード202及び204は部分的に展開されて(部分的に伸長されて)示されている。特定の例示的実施形態では、シェード202a及び202b、並びに任意の接着剤層又は他の取り付け構造は、好ましくは、シェード202a及び202bが少なくとも部分的に展開されたときにのみ見られるように、視界から隠される。
【0021】
完全に巻き上げられたシェードの直径は、好ましくは約1~5mmであるが、特定の例示的実施形態では5mm超であってもよい。好ましくは、巻き上げされたシェードの直径は、迅速且つ繰り返される展開及び巻き上げ操作を容易にするために、典型的には約10~15mmである間隙108の幅以下である。図2の実施例では2つのシェード202a及び202bが示されているが、特定の例示的実施形態では1つのシェードのみが提供されてもよく、また、1つのシェードが内側又は外側基材102又は104のいずれかの内側表面上に提供されてもよいことも理解されよう。2つのシェードがある例示的な実施形態では、その組み合わせ直径は、例えば、両方のシェードの展開及び巻き上げ操作を容易にするために、好ましくは、間隙108の幅以下であることが好ましい。
【0022】
シェード202a及び202bを駆動するのに役立つ電子コントローラが提供されてもよい。電子コントローラは、例えば、好適なリードなどを介して、シェード202a及び202b並びに基材102及び104に電気的に接続されてもよい。リード線は、組み立てられたIGユニットを介して見えないようにすることができる。電子コントローラは、シェード202a及び202bに出力電圧を提供するように構成される。特定の例示的実施形態では、シェード202a及び202bを駆動するためにDC約100~500Vの範囲の出力電圧を使用することができる。この点に関して、外部AC又はDC電源、DC電池、及び/又は同様のものが使用されてもよい。例えば、シェード202a及び202bや基材102及び104等を含む製造パラメータ及び材料に応じて、より高い又は低い出力電圧が提供され得ることが理解されるであろう。
【0023】
コントローラは、例えば、シェード202a及び202bが後退又は延長されるべきかどうかを示すために、手動スイッチ、遠隔(例えば、無線)制御、又は他の入力装置に連結されてもよい。特定の例示的実施形態では、電子コントローラは、制御信号を受信及び復号するための命令を記憶するメモリに動作可能に結合されたプロセッサを含んでもよく、制御信号は、電圧を選択的に印加して、シェード202a及び202bの伸長及び/又は後退を制御する。他の機能が実現され得る更なる命令が提供されてもよい。例えば、ユーザ指定の又は他の時間にシェード202a及び202bが、伸長し、後退するようにプログラムされ得るように、タイマーを提供することができ、ユーザ指定の屋内及び/又は屋外温度に達した場合に、シェード202a及び202bが伸長して後退するようにプログラムされ得るように、温度センサが提供されてもよい。構造体の外側の光の量に基づいて、シェード202a及び202bが伸長し、後退するようにプログラムされ得るように、光センサを提供することができる。
【0024】
上述したように、2つのシェード202a及び202bが図2に示されているが、特定の例示的な実施形態は、単一のシェードのみを組み込んでもよい。更に、上述のように、かかるシェードは、IGユニット全体に沿って、且つ実質的に全体にわたって垂直方向及び水平方向に延在するように設計されてもよく、異なる例示的実施形態は、それらが配置されるIGユニットの部分のみを被覆するシェードを含んでもよい。そのような場合、マンチンバーなどの内部又は外部構造を考慮して、平面シャッタをシミュレートするためにより選択可能な範囲を実現するために複数のシェードを提供してもよい。
【0025】
特定の例示的実施形態では、例えば、その幅に沿ってIGUの底部にロック抑制部が配設されてもよく、これにより、シェードがその全長から回転することを防止するのに役立つ。ロック抑制部は、金属などの導電性材料から作製されてもよい。ロック抑制部はまた、例えば、ポリプロピレン、フッ素化エチレンプロピレン(FEP)、ポリテトラフルオロエチレン(PTFE)、及び/又は同様のものなどの低消散率ポリマーでコーティングされてもよい。
【0026】
シェード202a及び202bの動作の例示的な詳細は、図3図4に関連して提供されない。より具体的には、図3は、特定の例示的実施形態に係る、シャッタ動作を可能にする、図2の実施例IGUの例示的な「ガラス上の」構成要素を示す断面図であり、図4は、特定の実施形態例に係る、図2の実施形態IGUの例示的なシャッタの断面図である。図3は、図2の基材102及び104のいずれか又は両方に使用され得るガラス基材302を示す。ガラス基材302は、ガラス構成要素304及びシャッタ312を支持する。特定の例示的実施形態では、巻かれていない場合、導体404は、インク層406よりも基材302に近くてもよい。他の例示的実施形態では、この構成は、例えば、巻き出されていないときに、導体404がインク層406よりも基材302から遠くになり得るように、反転されてもよい。
【0027】
ガラス上の構成要素304は、透明な低ヘイズ接着剤310などを介して基材302に接着され得る誘電材料308と共に透明導体306を含む。これらの材料は、好ましくは実質的に透明である。特定の例示的実施形態では、透明導体306は、端子を介してコントローラへのリード線に電気的に接続される。特定の例示的実施形態では、透明導体306は、コンデンサの固定電極として機能し、誘電材料308は、このコンデンサの誘電体として機能する。
【0028】
透明導体306は、例えば、ITO、酸化スズ(例えば、SnO2又は他の好適な化学量論)などの任意の好適な材料から形成されてもよい。透明導体306は、特定の例示的実施形態において、厚さ10~500nmであってもよい。誘電材料308は、特定の例示的実施形態では、低消散率ポリマーであってもよい。好適な材料としては、例えば、ポリプロピレン、FEP、PTFE、ポリエチレンテレフタレート(PET)、ポリイミド(PI)、及びポリエチレンナフタレート(PEN)などが挙げられる。誘電材料308は、特定の例示的実施形態では、4~25マイクロメートルの厚さを有してもよい。誘電材料308の厚さは、(例えば、より薄い誘電体層が典型的に信頼性を低下させるので、より厚い誘電体層は、典型的には、動作目的のために高い印加電圧を必要とする)、シェードの信頼性をバランスさせるように選択することができる。
【0029】
既知のように、多くの低放射率(低E)コーティングは導電性である。したがって、特定の例示的実施形態では、透明導体306の代わりに低Eコーティングが使用されてもよい。低Eコーティングは、銀ベースの低Eコーティングであってもよく、例えば、Agを含む1つ、2つ、3つ、又はそれ以上の層が誘電体層の間に挟まれてもよい。このような場合、接着剤310の必要性は、低減されるか、又は完全に除去されてもよい。
【0030】
シャッタ312は、弾性層402を含んでもよい。特定の例示的実施形態では、弾性層402の一方の面に導電体404が使用されてもよく、任意選択的に、他方の面に装飾インク406が適用されてもよい。特定の例示的実施形態では、導体404は透明であってもよく、示されるように、装飾インク406は任意である。特定の例示的実施形態では、導体404及び/又は装飾インク406は、半透明であってもよく、ないしは別の方法で、シャッタ312に着色又は審美的特徴を付与することができる。特定の例示的実施形態では、弾性層402は、例えば、PEN、PET、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)などの収縮性ポリマーから形成されてもよい。弾性層402は、特定の例示的実施形態では、1~25マイクロメートル厚であってもよい。導体404は、異なる例示的実施形態において導体306に使用されるものと同じ又は異なる材料から形成されてもよい。例えば、金属又は金属酸化物材料が使用されてもよい。特定の例示的実施形態では、例えばITO、Al、Ni、NiCr、酸化スズ等を含む層を含む厚さ10~50nmの材料を使用することができる。特定の例示的実施形態では、導体404の抵抗は、40~200オーム/平方の範囲であってもよい。
【0031】
装飾インク406は、所望の可視色及び/又は赤外線を選択的に反射及び/又は吸収する顔料、粒子、及び/又は他の材料を含んでもよい。
【0032】
図2に示すように、シェード202a及び202bは、通常、らせん状ロールとして巻かれ、らせんの外側端部は、接着剤によって基材102及び104(例えば、その上の誘電体)に固着されている。導体404は、端子を介してリードなどに電気的に接続されてもよく、導体306をその固定電極及び誘電体308としてその誘電体として有するコンデンサの可変電極として機能してもよい。
【0033】
電気駆動部が可変電極と固定電極との間に提供されるとき、例えば、電圧又は電流の電気駆動が、シャッタ312の導体404と基材302上の導体306との間に印加されるとき、シャッタ312は、2つの電極間の電位差によって生じる静電力によって基材302に向かって引かれる。可変電極を引っ張ると、コイル状のシェードが展開する。可変電極上の静電力により、シャッタ312は基材302の固定電極に対して確実に保持される。結果として、シェードのインクコーティング層406は、特定の可視色及び/又は赤外放射を選択的に反射又は吸収する。このようにして、展開したシェードは、特定の光又は他の放射線を選択的に遮断及び/又は反射することによって放射線透過を制御し、それによって、IGユニットの全体的な機能を透過して、一部又は選択的に透過性であるか、又は更には不透明であるように、IGユニットの全体的な機能を変化させる。
【0034】
可変電極と固定電極との間の電気駆動が除去されると、可変電極上の静電力も同様に除去される。弾性層402及び導体404内に存在するばね定数により、シェードがその元の緊密な巻回位置に戻るようになる。シェードの動きは主に容量性回路によって制御されるため、電流は本質的に、シェードが展開中又は巻き上げ中のいずれかである間にのみ流れる。その結果、シェードの平均電力消費量は非常に低い。このようにして、少なくともいくつかの例では、数年のシェードを操作するために、いくつかの標準的な単3電池を使用することができる。
【0035】
一実施例では、基材302は、譲受人から市販されている厚さ3mmの透明ガラスであってもよい。接着剤層310には、低いヘイズを有するアクリル系接着剤が使用されてもよい。導体306には、100~300Ω/平方の抵抗を有するスパッタITOが使用されてもよい。ポリマー膜は、12マイクロメートル厚の低ヘイズ(例えば、<1%ヘイズ)PET材料であってもよい。装飾インク406として、サンケミカル株式会社(Sun Chemical Inc.)から入手可能なPVC系インクを、3~8マイクロメートルの厚さで適用してもよい。弾性層402として、厚さ6、12、又は25マイクロメートルであるデュポン(DuPont)から市販されているPEN材料を使用することができる。375nmの公称厚さを有する、蒸着されたAlを蒸発させた不透明導体406を使用することができる。透明なオプションのために、スパッタリングされたITOが使用されてもよい。両方の場合において、抵抗は100~400オーム/平方であってもよい。特定の例示的実施形態では、ITO又は他の導電性材料は、それらのそれぞれのポリマーキャリア層上にスパッタリングされるか、又は他の方法で形成されてもよい。当然ながら、これらの例示的な材料、厚さ、電気特性、並びにそれらの様々な組み合わせ及び部分的組み合わせなどは、特に特許請求されない限り限定するものと見なされるべきではない。
【0036】
更なる製造、動作、及び/又は他の詳細及び代替が実施されてもよい。例えば、米国特許第8,982,441号、米国特許第8,736,938号、米国特許第8,134,112号、米国特許第8,035,075号、米国特許第7,705,826号、及び米国特許第7,645,977号を参照されたい。上記の文献のそれぞれの内容全体は、参照により本明細書に組み込まれる。
【0037】
特定の例示的実施形態は、光がシェードを通過することを可能にし、太陽の角度に基づいて漸進的な量の太陽透過率を提供する微小穿穴又は貫通穴を含んでもよい。これらの穿穴又は穴は、直射日光の遮蔽を漸進的に助けることができる。微小穴のシェード効果は、特定の例示的実施形態では、人間の目に対して小さすぎるように形成されているため、微小穴のシェード効果を外部ブラインドのシェード効果と比較することができる。空洞のサイズ、分布、及び角度は、年のうち異なる時間中に建物内に許容される量の太陽エネルギーを制御するように設計されてもよい。例えば、太陽が空の中で高である夏では、レンズのサイズ、分布、及び角度は、太陽光からの太陽透過率が低減されるのを確実にするのに役立ち得る一方で、太陽光からの太陽透過率が低減されることを確実にする助けとなり得る。対照的に、この穴は、シェードが冬の日射透過率を可能にするように設計されてもよく、これにより、寒冷期間中の加熱の必要性が低減される。例えば、貫通穴設計により、夏にはIGユニットを通過する太陽光からのエネルギー量を約90%まで(及び場合により更により多く)低減し得る一方で、冬の日射透過率の約35%(及び場合によっては更により多く)を可能にすることが可能であり得る。したがって、穿穴は、静電駆動シェードのより活性且つ動的な使用に関連して、ソーラー制御への受動的アプローチを提供するために使用され得る。特定の例示的実施形態では、穴のデザインは、夏にIGユニットを通過する太陽光からのエネルギー量の低減を、少なくとも50%、より好ましくは少なくとも60%、更により好ましくは少なくとも75%、及び時には80~90%以上の量のエネルギーを低減することを可能にし得る。加えて、又は代替的に、特定の例示的実施形態では、穴のデザインは、少なくとも20%、より好ましくは少なくとも25%、時には30~35%以上の、冬のIGユニットを通過する太陽光からのエネルギーの伝送を可能にし得る。特定の例示的実施形態では、単一の穴設計は、夏と冬との間で、少なくとも約30%、より好ましくは少なくとも約40%、更により好ましくは少なくとも約50~55%、時には更により多くの、夏と冬季との間で、IGユニットを通過する太陽光からのエネルギーの透過率の差を可能にし得る。
【0038】
穴のサイズ、形状、及び/又は配置は、例えば、IGUが設置されるおおよその緯度、IGUの位置における配向(例えば、IGUがドア又は窓のように直立しているか、又は頭光のために角度をなしているかなど)に基づいてもよいことが理解されるであろう。穴の異なる角度は、例えば、改善されたシェード係数、光対太陽ゲイン値などを提供するために、これら及び/又は他の点で調整されてもよい。
【0039】
更に、穴の大きさ、直径、角度などに関して、特定の例示的実施形態では、動的シェードの厚さ(T)は10~32μmであってもよいことが理解されるであろう。穴径又は主距離(D)の大きさは、場合によっては、その厚さに依存し得る。例えば、特定の例示的実施形態における穴径又は主距離は、0.5T~5Tであってもよい。0.5Tは、水平線に対して26.5度を超える角度で膜を通過しない日光を方向付けるように等しいことが理解されるであろう。これは、穴角が動的シェードの外側面に垂直であると仮定する。光の量は、穴の直径、動的シェードの厚さ、穴の角度、及び穴の数に依存する。穴を下方に角度付けすることにより、同様の遮光性能が可能になるが、次いで、穴はサイズが大きくなり得、それによって、より間接的な光透過を可能にする。直接光がシェードを通過しないように穴を角度付けすることが可能である。D=Tの場合、穴は、垂直から45度(上下)にオフセットされなければならない。D>Tの場合、その角度は増加する。
【0040】
図5は、特定の例示的実施形態に関連して使用され得る穿穴502を含む、潜在的に駆動されるシェードを組み込んだ、例示的なIGUの断面概略図である。図5に示すように、穴は、シェードのシャッタ312部分に形成される。すなわち、穴502は、装飾インク406、弾性ポリマー402、及びその上の透明導体404を通って延在する。しかしながら、穴502は、特定の例示的実施形態では、シェードの下側ガラス部分304を通って延在する必要はない。これは、場合によっては、ガラス上の部分304がシャッタ312部分とは別個に形成され得るため、製造上の観点から有利であり得る。更に、特定の例示的実施形態では、ガラス上の部分304は、スパッタリングなどのブランケットコーティングプロセスを使用してもよく、一方、シャッタ312部分は、弾性ポリマー402が透明導体404及び/又はインク406でコーティングされた後に実施される追加の工程を含んでもよい。
【0041】
特定の例示的実施形態では、シャッタ312部分の穴502は、任意の好適な技術によって形成されてもよい。例えば、微小穴は、レーザー切断、スタンピング、パンチ切断、フォトリソグラフィアプローチ、ドリルアプローチ(例えば、物理穿穴、電子ビーム穿穴など)、及び/又は同様のものによって形成され得る。穴は、実質的に円形、矩形などの断面を有するように形成されてもよい。特定の例示的な実施形態では、穴の直径又は主な距離は、およそシェード全体の厚さであり、したがって約10~30マイクロメートルである。特定の例示的実施形態では、穴形成の結果としてシャッタ312部分の30~70%を除去することができ、より好ましくは、シャッタ312部分の40~60%を穴形成の結果として除去することができ、場合によっては、シャッタ312部分の約50%を穴形成の結果として除去することができる。特定の例示的実施形態では、穴形成の結果として、シャッタ312部分の50%以下が除去される。特定の例示的実施形態では、穴は、シェード全体の色レンダリング指数(CRI)値を、好ましくは10以下、より好ましくは5以下、更により好ましくは2~3以下、時には1以下(例えば、0.5以下)修正する。
【0042】
特定の例示的実施形態は貫通穴を伴うものとして説明されているが、異なる実施形態は、シャッタ312を部分的にのみ通って延在する穴を含んでもよい。特定の例示的実施形態では、穴は、互いに積み重ねられた複数のラメラを提供することによって形成されてもよい。そのような場合、隣接するラメラ層の穴は、部分的に又は完全に互いに重なり合ってもよく、又は重なり合っていなくてもよい。例えば、複数のラメラ層は、1つの例では、互いに完全に重なり、本質的に貫通穴を形成し得るが、別の例は、隣接するラメラ層が互いに部分的にのみ重なり合って、本質的に角度付きの貫通穴を形成することができる。別の例では、複数のラメラ層は互いに重ならなくてもよい。特定の例示的実施形態では、複数のラメラが積み重ねられて形成されてもよい(又は本質的に別個のものの代わりに)シャッタ312を形成することができる。
【0043】
図6a~図6bは、図5の例示的なIGUに関連して、特定の例の実例において、太陽放射がどのように選択的に反射され得るかを示す図である。図6aに示すように、例えば、太陽600が高い場合(例えば、夏の数か月)、太陽放射602aは、その中に形成された穴502と比較して、延長されたシェードのシャッタ312の非除去部分に遭遇する可能性がより高い。したがって、実質的な量の太陽放射は、例示的な実施形態に応じて、反射される602b(及び/又は吸収される)。対照的に、図6bに示すように、太陽600が空(例えば、冬の数か月)でより低いとき、太陽放射602cは、シェードのシャッタ312部分に形成された穴502を通過する可能性がより高い。
【0044】
図7は、特定の例示的実施形態に係る、図5の例示的なシェードに形成された穿穴の代替的な幾何学的形状を示す断面図である。特定の例示的実施形態では、シェードのシャッタ312部分に形成された穴は、角度をなしていてもよい。図7は、例えば、シャッタ312内に形成された穴502’が角度付けされていることを示す。これは、特定の例示的実施形態では、シェードを介した選択的な透過を助けることができる。
【0045】
上述の説明から理解されるように、動的シェード機構は、導電層を有するコイル状ポリマーを使用する。特定の例示的実施形態では、導体402は、ポリマー402と一体であるように形成されてもよく、又はポリマー402上に適用、堆積、又は他の方法で形成される外的コーティングであってもよい。同様に上述したように、装飾インク406は、透明な導体材料(例えば、ITOに基づく)及び/又は部分的に透明若しくは不透明な導電層と共に使用されてもよい。不透明又は部分的に透明な導電層は、特定の例示的実施形態におけるインクの必要性をなくすことができる。この点に関して、特定の例示的実施形態では、金属又は実質的に金属材料が使用されてもよい。アルミニウムは、装飾インクと共に、又は装飾インクなしで使用され得る材料の一例である。
【0046】
アルミニウムの使用は、場合によっては、可視スペクトル及び赤外スペクトルの両方において、太陽からの入射光に対して優れた導電率(低抵抗率)及び高レベルの反射率を提供するので、有利であることがわかり得る。金属又は実質的に金属層(アルミニウムを含む又は本質的になる層など)の使用による1つの問題は、それからの内部反射(及び特に正反射)が審美的に不快であり得ることである。更に、反射が問題ではない場合であっても、層を含めることにより、IGUの内側に向いた側の観察者のための不快な着色がもたらされ得る。
【0047】
反射防止(AR)技術は既知であり、特定のコーティングされた物品と関連して使用される。典型的には、層又は一連の層を、反射が低減される表面の上に堆積させることができる。そのような技術は、例えば、高屈折率及び低屈折率の屈折材料が、反射が低減される表面の上に、典型的には交互の様式で提供される。しかしながら、残念ながら、アルミニウム、クロム、モリブデン、又は他の方法でコーティングされた表面から得られるような「非常に光沢のある」金属の反射を低減することは、技術的課題を提起する。コーティングされていないガラスの表面の、例えば、約10%~約1%の反射を低減することは複雑であり得るが、それにもかかわらず、上記の光学干渉技術を使用して達成することができる。更に、約90%~可能な限り低い反射を有し得るアルミニウムコーティング表面の反射を低減することは、更により複雑であり、標準的な技術(標準材料を含む)は、意図されるように機能し得ず、そうでなければ典型的なコーティングされた物品の経験に基づいて予想されるような標準的な技術(標準材料を含む)は、意図されているように機能しない場合がある。可視波長にわたる着色及び/又は着色の一貫性の一貫性を維持することはまた、アルミニウムのような高反射性材料の反射を作用させ、反射を低減しようと試みる場合にも非常に困難であり得る。実際に、アルミニウムが鏡面コーティングに使用されていることは、良好な理由がある。
【0048】
特定の例示的実施形態は、導体上に1つ以上のオーバーコート層を設けることによって、可視光反射を低減し、及び/又はシェードの色を変化させて、より審美的に満足のいく製品を提供すること、及び/又は、位相シフタ層がそれらの間に出現するように、導体を「分割」することによってこれらの懸念に対処する助けとなる。この点に関して、図8a~図8cは、特定の例示的実施形態に係る、シェード全体の美的外観を改善するためにオーバーコートが含まれることを除いて、図3の実施例と同様のシャッタの断面図である。図8aのシャッタ312’は、反射低減オーバーコート802を含み、図8bのシャッタ312”は、誘電体鏡面オーバーコート804を含む。図8a~図8bに示されるように、反射低減オーバーコート802及び誘電体鏡面オーバーコート804は、導体404の上に、及び、装飾インク406の反対側の(例えば)PENを含むシェードポリマー402の主表面上に提供される。しかしながら、例えば、導体404が透明でない場合、インク406は提供される必要はないことが理解されるであろう。例えばAlなどの鏡面コーティングは、装飾インク406の必要性をなくすことができる。また、反射低減オーバーコート802及び誘電体鏡面オーバーコート804は、特定の例示的実施形態では、導電体404の反対側に(例えば)PENを含むシェードポリマー402の主表面上に提供されてもよいことも理解されよう。
【0049】
反射低減オーバーコート802及び誘電体鏡面オーバーコート804には、様々な材料が使用されてもよい。反射低減オーバーコート802に使用され得る単一の層としては、例えば、Ni、Cr、NiCr、NiCrOx、インコネル、非晶質シリコン(a-Si)、アーク炭素、四面体非晶質炭素(Ta-C)、Sb、Ti、NiTi、NiTiOxなどを含むか、又はこれらから本質的になる層を含んでもよい。一般に、このような層は、5~100nm、より好ましくは5~60nm、更により好ましくは10~60nm、時には20~50nm又は30~50nmの厚さに形成され得る。より具体的な例を以下に提供する。
【0050】
同じ又は類似の材料は、誘電体鏡面オーバーコート804と関連して使用されてもよい。例えば、特定の例示的実施形態では、Ni、Ti、及び/又はCrの酸化物(例えば、NiCrOxを含む層)の間に挟まれたAlの層を含む層積層体を、特定の例示的実施形態で使用することができる。
【0051】
図8cは、特定の例示的実施形態に係る、導電層を本質的に「分割する」位相シフタ層806を除いて、図3と同様のシャッタである。換言すれば、図8cから分かるように、第1導電層404a及び第2導電層404bは、シャッタ312’’’を形成する際に位相シフタ層806を挟む。図8a~図8bの例に関連して上述したものと同じ又は類似の材料及び/又は材料の厚さは、図8cの例に関連して使用されてもよい。例えば、第1導電層404a及び第2導電層404bは、Al又はNi、NiCr酸化スズ、ITO、及び/又は同様のものなどの金属を含んでもよく、又はこれらから本質的になってもよい。位相シフタ層806は、Ni、Cr、及び/又はTi、又はこれらの酸化物を含んでもよく、又はこれらから本質的になってもよい。窒化チタン及び酸窒化チタンもまた、位相シフタ層806と関連して使用されてもよい。位相シフタ層806は、第1導電層404a及び第2導電層404bと関連して機能し、反射低減層と考えることができる。より具体的には、1つの完全反射層と1つの部分反射層との間に位相シフタを有することは、有利には、2つの同一の強度の光を生成し、単に位相シフトして少なくとも部分的な相殺効果を得る。下部導電層404aは、特定の例示的実施形態において導電性であってもよいことが理解されるであろう。特定の例示的実施形態では、位相シフタ層806及び導電層404a及び404bを含む積層体は、導電性であってもよい。上述のように、第1導電層404a及び第2導電層404bについては、異なるレベルの反射率を提供することができるが、これは必ずしも全ての例示的実施形態ではケースである必要はない。特定の例示的実施形態では、反射率のレベルは、コーティングの厚さに基づいて調整され得る(例えば、より厚いコーティングは、より反射性である傾向がある)。特定の例示的実施形態では、第1導電層404aは、例えば、装飾インク406によって光が吸収されることを可能にするように、第2導電層404bよりも薄くてもよく、及び/又は反射性が低くてもよい。この配置は、特定の例示的な実施形態では逆にすることができる。
【0052】
一般に、スペクトル反射は、全反射を低減すること、及び/又は層を鏡面反射性材料から拡散反射材料に移動させることによっても調整することができる。以下の技術をこの点に関して使用することができ、任意の好適な組み合わせ、サブコンビネーション、又はサブ組み合わせの組み合わせ、及び図8a~図8cのアプローチで使用することができる。第1の技術は、サンド、ビーズ、グリット、又は他のブラスト、レーザーアブレーション、スタンプなどを使用した圧痕形成などにより、導電性(金属性)層の上面を粗面化することを含む。これは、導電層の表面粗さを増大させ、所望の拡散反射効果を作り出すのに役立ち得る。特定の例示的実施形態では、表面粗さ(Ra)は3.2μm未満である。
【0053】
使用され得る別の手法は、ピットを追加し、したがって表面粗さを増大させる導電性の化学的(例えば、酸)エッチングを伴う。更に別のアプローチは、材料を導電性コーティングでコーティングする前に、様々なパターンでポリマー基材を圧痕形成することを伴う。そうすることは、ポリマー基材の表面粗さを増大させる助けとなり得、スパッタリングなどの一般的に共形の薄膜形成プロセスを用いて、ポリマー基材のテクスチャを導電性コーティングに転移させることができる。これは、例えば、ポリマー膜が通過するロールがポリマー基材に転写されるパターンを有するカレンダー加工プロセス中に達成することができる。このような物理的テクスチャ加工アプローチが使用されるとき、ポリマー基材の第1主表面及び/又は第2主面は、例えば、そのパターンがポリマー材料に付与されるテクスチャ機構に関して少なくとも部分的に定義されるパターンを有するようにパターン化されてもよい。この意味では、特徴の深さが既定されてもよい。加えて、特定の例示的実施形態では、既定のパターンは、ポリマー基材にわたって延在する領域に対して少なくとも部分的に画定されてもよい。特定の例示的実施形態では、他の透明な材料が使用され得る。スタンピング、打ち抜き、及び/又は同様のものが、艶出しに加えて、又はその代わりに使用されてもよいことが理解されるであろう。
【0054】
アルミニウムなどの金属層が使用される場合、それは陽極酸化されてもよい。金属層の陽極酸化は、表面を粗面化し、色を加えてもよく、これは、特定の例示的実施形態において有利であり得る。
【0055】
更に別のアプローチは、導電層の表面に直接又は間接的にインクを塗布することを含む。インクは連続的であっても、連続していなくてもよい。現在のところ、導電層の反対側のポリマー基材にPVC系インクが塗布される。しかし、導電層上にインクを入れることは、より低い反射を助け、異なる色、画像、及び/又は同様のものをシャッタに追加するための別の手段を作り出す。ここでのインクは、ポリマー基材の反対側のインクの代わりに、又はそれと共に使用されてもよい。
【0056】
光学干渉技術を使用して反射を低減することに加えて、又はその代わりに、ヌットシェルでは、テクスチャ加工された表面をベースポリマーに追加すること、導電層を化学的又は物理的に改質し、且つ/又はインク層を追加して、例えば、同じ又は類似の端部を達成するために、望ましくない反射の更なる低減などを達成することも可能である。
【0057】
図9図11は、特定の例示的な実施形態において、図8a~図8bの層スタックに関連して使用され得る特定の例示的なオーバーコート材料について、パーセント反射率対波長をプロットしたグラフである。これらのグラフに示されるデータは、モデル化される。図9図11のそれぞれは、厚さ12マイクロメートルのPETシート上のむき出しのアルミニウムの反射を波長の関数として示す。蒸発技術、電気化学堆積、及び/又は同様のものを介してアルミニウムが堆積されてもよい。これらのグラフはまた、(オーバーコートされたNiCrOx/Al/NiCrOx層積層体を除く)様々な材料の単層コーティングでオーバーコートされた同じアルミニウム層を含む層積層体の反射を示す。
【0058】
これらの層の厚さは、可能な限り低い反射を達成するように選択され、同時に反射色の変化を最小化する。これらのグラフから理解され得るように、低反射率及びパン色度が同時に達成されることは困難である。最良の曲線は、アーク炭素、スパッタリングされていない材料で達成されるが、代わりに、炭素板に押し付けられた純粋な炭素ロッドに大電流を通すことによってアークを打つことによって形成されてもよい。この材料は反射率及び色度の観点から望ましいが、大規模生産には実現できない場合がある。しかしながら、Ta-Cは、アーク炭素の性能に近似し、Ta-Cは、例えば、黒鉛標的を使用してスパッタリングすることができる。したがって、Ta-Cを含む層は、特定の例示的な実施形態において望ましい場合がある。オーバーコート材料に関する更なる知見を以下に示す。
【0059】
NiCrOxを含むオーバーコート層をAlを含む層上に形成し、図9及び図11に示すように反射を低減した。NiCrOxを含むオーバーコート層の厚さは、一般に20~60nmの範囲であり、具体的な例としては、20nm、30nm、40nm、45nm、47nm、49nm、50nm、及び57nmを含む。特定の例示的実施形態では、80Ni-20Crターゲットを使用することができ、このターゲットは、図9及び図11に示されるシミュレーションの目的のために想定された。酸素含有量は、依然として導電性であるが、様々な色の配列を生成するように修正することができる。Alを含む層の上に50~60nmの厚さの試料膜を形成し、膜の色はモデルとの良好な一致を示す青紫色である。この場合には使用される。NiCrの代替的な化学量論は、異なる例示的実施形態において異なる結果を生成し得る。
【0060】
シェードから見える可視光の反射を更に低減するために、NiCrOx及びAlの追加層をシェードに適用することができる。すなわち、Alを含む層をNiCrOxを含む層の間に挟んで、この3層積層体をAlを含む導電層上に適用した。低反射率トップコート表面を生成するために、層を最適化するためにモデリングを完了した。モデルの結果は図9中に見ることができる。全反射率は15%未満であった。この場合、80Ni~20Crを使用したが、NiCrの代替化学量論は、異なる結果をもたらし得る。上記のように、酸素含有量は、依然として導電性であるが、様々な色の配列を生成するように修正することができる。特定の例示的実施形態では、NiCrOx/Al/NiCrOxを含む層積層体は、3~60nm、より好ましくは3~30nm、更により好ましくは3~15nmの総厚を有し得る。特定の例示的実施形態では、NiCrOx、Alを含む単層などは、厚さ3~15nmであってもよい。
【0061】
アルミニウム層の全可視光反射率を大幅に低減する別の方法は、カーボンオーバーコートの添加を伴う。陰極アーク堆積による炭素の適用は、可視光反射の低減を決定するためにモデル化され、図9及び図11中に見ることができる。最適化されたモデルは、10%未満の全反射率を予測する。厚さの例は、30~60nmの範囲であり、具体的な例は45nm及び50nmである。
【0062】
金属NiCrを含む層はまた、Alを含む導電層上に堆積されて、可視光全反射を低減することができる。図10は、厚さ10nm、厚さ20nm、厚さ30nm、厚さ40nmの層のモデル化された性能を示す。図11は、厚さ43nm、厚さ45nm、及び厚さ47nmの試料も具体的に企図される実施例を示す。
【0063】
上述したように、単一層又は他のオーバーコートにおいて使用され得る他の材料としては、a-Si(例えば、厚さ20~30nm、厚さ21nm、図11に示す厚さ23nm、厚さ25nm);例えば、インコネル600(例えば、厚さ40~60nm、厚さ47nm、図11に示す厚さ50nm、厚さ53nm)などのインコネル;及びTa-C(例えば、厚さ20~60nm、具体例は厚さ39nm、厚さ41nm、厚さ43nm、図11に示した厚さ45nm、厚さ47nm、厚さ49nm)である。Sb及び/又はTiを含む層はまた、上記の一般的な厚さで使用されてもよく、低反射及び良好な着色を達成するのに有用であり得る。既知のように、インコネルは、酸化腐食耐性材料であるオーステナイトニッケル系超合金の類である。インコネル600は、72.0%Ni、14.0~17.0%Cr、6.0~10.0%Fe、1.0%Mn、0.5%Cu、0.5%Si、0.15%C、及び0.015%Sを含む。
【0064】
特定の例示的実施形態では、本明細書に記載されるタイプのオーバーコート及び/又は他のオーバーコートを使用することにより、内部反射は、好ましくは、400~700nmの波長範囲の全て又は実質的に全てにわたって60%未満に低減され、より好ましくは、400~700nmの波長範囲の全て又は実質的に全てにわたって50%未満、更により好ましくは400~700nmの波長範囲の全て又は実質的に全てにわたって30~40%未満である。場合により、内部反射は、400~700nmの波長範囲の全て又は実質的に全てにわたって20%未満まで低減される(例えば、炭素系オーバーコートの場合と同様であり得る)。好ましくは、反射の量は、400~700nmの波長範囲の全て又は実質的に全てにわたって30%点以下、より好ましくは400~700nmの波長範囲の全て又は実質的に全てにわたって20%点以下、400~700nmの波長範囲の全て又は実質的に全てにわたって10~15%点以下だけ変化する。
【0065】
酸素プラズマ及び/又は他の洗浄プロセスは、例えば、特定の実施形態例では、導体層404の形成前に、ポリマー402上で使用されてもよい。
【0066】
薄膜及び/又はシャッタを含む他の材料は、全体的なシェードの機能に従って多数の圧延及び非転がり動作に耐えなければならないことを考慮すると、材料は選択されてもよく、形成された全体層積層体は、それを容易にする機械的及び/又は他の特性を有することが理解されるであろう。例えば、薄膜層積層体における過剰な応力は、典型的には不利であると見られる。しかしながら、特定の例示的実施形態では、過剰な応力は、ひび割れ、「層間剥離」/除去、及び/又は導体404及び/又はその上に形成されたオーバーコート層若しくは層への他の損傷につながり得る。したがって、特定の実施形態例では、シャッタのポリマー基材上に形成された層と関連して、低応力(特に低引張応力)が特に望ましい場合がある。
【0067】
この点に関して、スパッタリングされた薄膜の接着は、とりわけ、堆積膜中の応力に依存する。応力を調整する1つの方法は、堆積圧力を使用することである。応力対スパッタ圧力は、単調曲線には追従せず、代わりに、各材料に固有であり、材料の融解温度と基材温度との比の関数である遷移圧力で注入される。応力工学は、これらのガイドポストを念頭に置いて、ガス圧最適化によって達成することができる。
【0068】
考慮に入れることができるシェードの他の物理的及び機械的特性としては、ポリマーの弾性率及びその上に形成された層、層の密度比(応力/ひずみに影響を及ぼし得る)などが挙げられる。これらの特性は、内部反射、導電性、及び/又は同様のものに対するそれらの効果とバランスをとることができる。
【0069】
既知のように、IGユニットの内部の温度は、非常に高くなり得る。例えば、図2の実施例による、黒色顔料を含むIGユニットは、例えば、シェードの黒色部分が高温で太陽に面している場合、高日射気候(例えば、Arizonaなどのスープ西の米国の領域など)で太陽に面している場合には、87℃の温度に達し得ることが観察されている。PENは、PET(Tg=67~81℃)、ポリプロピレン又はPP(Tg=~32℃)などの他の一般的なポリマーと比較して、PENがより高いガラス転移温度(~120℃)を有するので、巻回可能/巻回不可能なポリマーにPEN材料を使用すると有利であり得る。更に、PENがガラス転移温度に近づく温度に曝露される場合、材料の性能は、特に高温曝露では経時的に劣化する場合がある。これらの機械的特性が著しく劣化すると、シェードはもはや機能しなくなる(例えば、シェードは後退しない)。
【0070】
図12図13は、これらの点を実証するのに役立つ。より具体的には、図12は、異なるポリマー材料のヤング率対温度をプロットするグラフであるという点で、ヤング率に対する温度の影響を示し、図13は、異なる温度におけるPET膜の典型的な応力緩和曲線を示す。図12において、膜AはPENであり、膜BはPETであり、膜CはPIである。一般に、より高いガラス転移温度を有するポリマー材料は、改善された高温機械的特性を有する。
【0071】
シェードが高温環境によりよく耐えることを助けるために、PENからより高い温度耐性を有するポリマーへの置換が有利であり得る。2つの潜在的ポリマーとしては、PEEK及びポリイミド(PI又はカプトン)が挙げられる。PEEKは~142℃のTgを有し、カプトンHNは~380℃のTgを有する。これらの材料の両方は、PENと比較して、高温環境においてより良好な機械的特性を有する。これは、100℃を超える温度で特に当てはまる。以下のチャートは、PEN(Teonex)、PEEK、及びPI(カプトンHN)の機械的特性を参照する。UTSは、グラフ内の最終的な引張強度を表す。
【表1】
【0072】
シェード基材をその現在の材料(PEN)から、高温の機械的特性が増加した代替のポリマー(例えば、PEEK又はPI/カプトン)に変更することは、特定の例示的な実施形態において、以下の意味で有利であり得ることが理解される。特にシェードが高温の気候に設置されている場合は、シェードが内部IG温度に耐えられるようになる可能性がある。特定の実施形態例では、代替ポリマーの使用は、シャッタ及び/又はガラス上の層と関連して使用され得ることが理解されるであろう。
【0073】
加えて、又は代替として、特定の例示的実施形態は、染色されたポリマー材料を使用してもよい。例えば、染色PEN、PEEK、PI/カプトン、又は他のポリマーを使用して、色及び/又は審美性の種類を有するシェードを作り出すことができる。例えば、染色されたポリマーは、例えば、透明導電層が透明導電性コーティングなどである場合、透明/半透明の用途の実施形態に有利であり得る。
【0074】
PI/カプトンは、様々な用途で使用されている既知のポリマーであるが、光学及び審美性が重要である用途において許容不可能であることが分かる。これは、多くの窓用途を含む。PI/カプトンの限定された採用の理由の1つは、一般的に黄橙色の着色を有すると考えられる。この着色は、典型的には審美的に不快であると見られる。利用可能な代替のポリマーの過多を考えると、PI/カプトンを容易に回避することができる。それにもかかわらず、特定の実施形態では、例えば、上記で概説したように高温であっても、高温に耐えることができ、良好な機械的特性を有するため、特定の実施形態例では、PI/カプトン(及び/又はPEN)を使用することが望ましいであろう。PI/カプトン(及び/又はPEN)はまた、良好な収縮特性(例えば、制御可能且つ高収縮率、強コイルを形成する能力など)も有し、それによってシャッタに良好なばねを提供する。しかしながら、当業者の典型的な光学的制限及び付勢を考慮すると、シャッタにPI/カプトンを使用することは直感に反するであろう。しかしながら、本発明者らは、シャッタが不透明又は実質的に不透明である例示的な実施形態では、PI/カプトンの着色は、むしろ重要ではないことを認識した。すなわち、PI/カプトンが不透明又は部分的に透明なシャッタのみと関連して使用される場合、黄橙色の着色は肉眼で容易に知覚できない。したがって、高温残存性、ばね作用などに関連するPI/カプトンの有利な特性は、そうでなければこの材料を使用する直感的ではない窓型用途においても実現することができる。特定の例示的実施形態では、PI/カプトンは、液体として(例えば、ITO又は別の導電性コーティングの上に)適用され、硬化され、それにより、窓に好適な、潜在的に大きな領域にわたって迅速で低コストで大量の製造を可能にする。一般に、PI/カプトンは、代替のシャッタ材料と比較して、より高い高温弾性率及び高温降伏強度、より高い高温応力緩和抵抗、より高いガラス転移温度などを有する。PI/カプトンはまた、例えば黒色などの異なる色(例えば、染色に関連する)にもなり得る。
【0075】
この点に関して、一部の用途では、透明又は半透明のシェードが望ましい場合があることが理解されるであろう。これらの種類のシェードは、ベースポリマー(例えば、PEN)と共に、ITOや色シフトを作り出す低E型コーティング等の導電層を使用して作り出すことができる。様々な色を有する半透明又は透明なシェードを提供するために、特定の例示的実施形態は、染色されたベースポリマー(例えば、PEN、PEEK、PI/カプトン)、及び/又は他の材料を使用してもよい。染色は、膜基材のマトリックス全体に染料、紫外線吸収剤、及び/又は同様のものを含浸させることによって達成され得る。これにより、例えば、VLT5(可視光透過率5%)の1%~85%、且つ一部の波長では低くなる場合がある光透過率、0.10~1.3の光学密度、97%吸収までのUV保護、任意の色、などの特性を持つフィルムを作成できる。
【0076】
上記の説明に基づいて、シャッタ上の導体は、例えば、シェードを上下にするために電圧を受け取ることを含むいくつかの目的を果たすことが理解されるであろう。特定の例示的実施形態では、シャッタ上の導体は、IRスペクトル及び/又はUVスペクトルにおいて非常に反射性であり得る。透明導体はまた、例えば、その機械的特性の結果として、シェードのコイルばね力を増加させる(弾性率及び降伏強度を含む)。コイル力はまた、コイルを製造するために使用される熱処理プロセス中に導体材料とポリマー基材との間の熱膨張不整合の結果として、透明導体を介して増加する。ポリマー基材(例えば、PI、PENなど)は、そのガラス転移温度(Tg)を超えて不可逆的に収縮する。両方の材料がTgを超えて加熱され、次いで室温まで冷却されると、ポリマーは、ポリマー基材とコイルばねを形成する導電層との間の残留応力不整合を引き起こす。一般に、CTEの差は、コイル力に関して良好であるが、ひび割れ/小割れ/層間剥離などに悪い。これは、金属導電層又は金属導電層を含む導電性コーティングが、ITO層よりも良好に機能し得る理由の1つである。すなわち、ITOは、高応力時に本質的に脆く、広範囲に亀裂し、ばね力の発生に必要な応力を維持する能力の損失をもたらす。
【0077】
したがって、コイルばねの強度は、導電層として使用される材料、並びに導電層の厚さに依存することが理解されるであろう。上記のように、ポリマー上に見られる導電層は、Al、AlとCrとの組み合わせ、ITOなどを含んでもよい。Al境界導電層は、不透明な用途において有益であり得るが、ITO境界導電層は、透明/半透明の用途に、より好適であり得る。例示的なAl厚が約~375nmであり、Alの弾性率が低いことを考慮すると、この組成物を有するコイルは、それが機能することができる範囲(例えば、IGユニットの高さ又はシェードの長さは限定され得る)。
【0078】
他の条件が全て等しくなると、より長いコイルは、より多くの質量を有し、ばね力が伸長状態でコイルの重量を超えない場合、シェードは後退(ロールアップ)しない。コイルが作用シェードである必要があるばね力範囲が存在する。例えば、コイルのばね力がコイルの重量よりも小さい場合、コイルは後退しない(及び、シェードは常に下降位置にある)。同様に、コイルばね力がコイルの重量と印加され得る最大静電力との合計よりも大きい場合(静電力は印加される電圧及び誘電体層の厚さ及びその誘電定数の関数である場合)、コイルは伸長(下降)しない。図14は、特定の例示的実施形態で再生することができるシェード関数に対する基本的な制約を要約する。
【0079】
特定の例示的実施形態は、コイル状シェードのばね力を有益に修正して、様々な長さのために使用可能な代替的な導電性材料に関する。この点に関し、本発明者らは、コイルの強度を増大させる導電層の特性には、弾性率の増加、ポリマー基材と導電層との間の熱膨張係数(CTE)の差の増加、及び弾性率対密度比の増加を含むことを認識した。Al又はCrと比較してコイル強度を高めるために使用することができる純金属の一部としては、Ni、W、Mo、Ti、及びTaが挙げられる。研究された金属層の弾性率は、Alについては70GPaからMoに対して330GPaの範囲であった。研究された金属層のCTEは、Alに対して23.5×10-6/kの範囲であり、Moについては4.8×10-6/kまでの範囲であった。一般に、弾性率が高いほど、PEN又は他のポリマーと金属との間のCTEミスマッチが高くなり、密度が低くなるなど、コイル形成に関して材料選択が良好になる。Mo及びTi系導電層をシェードに組み込むことは、Alで達成可能なものよりも著しく高いコイルのばね力をもたらしたことが見出されている。図15の表は、特定の例示的実施形態において関連し得るいくつかの材料に関するコイル強度関連特性を含む。特定の例示的実施形態は、有利には、PEN、PEEK、PIなどに基づくポリマー基材を含み、(基材から離れる方向に移動するために)Alを含む層、続いてMoを含む層を支持する。特定の例示的実施形態は、有利には、導電性コーティング及び/又は導電性コーティング自体の中に、より高い弾性率及びより低いCTEを有する導電性コーティング自体を含む。
【0080】
本明細書で特定される材料の一部は、望ましくないように耐腐食性ではない場合がある。したがって、特定の例示的実施形態は、例えば、耐食性を増大させるために、Al、Ti、ステンレス鋼などを含む薄いオーバーコート層を組み込んでもよい。一般に、保護酸化物(例えば、SS用の酸化アルミニウム、酸化チタン、又は酸化クロム)の形成は、一般に、耐食性に役立つ。酸化物は一般に、厚さ約2~7nmであるように形成される。いくつかの保護を提供するために少なくとも5nmの基底金属が必要であり、特定の例示的な実施形態は、追加の厚さがコイル強度を増大させるのに役立ち得るため、約50nm以上の基材を含んでもよい。また、コイルのばね強度及び締め付け性は、合金導電層と比較して改善され得るが、ポリマー層とこれらの代替導電性材料との間の応力不整合は問題となり得ることにも留意されたい。例えば、ひび割れ、小割れ、層間剥離、及び/又は他の問題が、これらの材料に基づく導電層におけるMo及びTiに関して観察されてきた。これらの問題は、導電層に残された残留応力に関連すると考えられる。しかしながら、ポリマー基材と導電層との間にAlを含む薄層を導入することは、例えば、脆性が低く、且つ/又はしわ、層間剥離などの可能性が低い応力体系の形成を容易にすることによって、これらの問題の一部を緩和することができる。例えば、特定の例示的実施形態では、Alを含む薄層を使用して、ポリマー基材によって支持される層積層体の応力体系を正味の引張応力様式から正味の圧縮応力様式にシフトさせることができる。しかしながら、バランスが存在することに留意されたい。ただし、あまりに遠くになった場合にしわを生じさせる可能性がある体系からの移動に関して、バランスが存在することに留意されたい。したがって、特定の例示的実施形態は、応力を緩和する下層を有する又は有さない代替材料の使用によって、ばね性能を改善することができることが理解されるであろう。応力低減層の厚さは、応力が緩和される程度に基づいて変化してもよく、他の材料を異なる例示的実施形態で使用することができる。また、Alを含む薄層を応力低減下地層及び/又は腐食低減オーバーコートに使用するので、透明なタイプの用途であっても、反射率は、そうでなければ、及び/又は着色が不利な範囲で過度にシフトされない場合がある。特定の例示的実施形態では、下層及び/又は腐食低減オーバーコートの厚さは、個別に又は集合的に、375nm未満であり得る。第2の導電性コーティング中の薄膜層(単数又は複数)は、開いた位置と閉じた位置との間で、Alを含む層のみを含む第2の導電性コーティングを有するシャッタのものよりも大きいばね力でシャッタを移動させるように選択及び形成され得ることが理解されるであろう。
【0081】
したがって、特定の例示的実施形態では、シャッタとして使用されるPEN、PI、又は他のポリマー基材は、応力工学目的のAlを含む薄層を支持してもよく、その上にMo、Tiなどを直接又は間接的に含む導電層を支持してもよい。導電層は、Al、Ti、ステンレス鋼等を含む耐食層を支持してもよい。これらの層の反対側の基材の側面は、任意選択的に、装飾インクなどを支持することができる。
【0082】
建物一体型光起電(BIPV)技術は、様々な家庭設定及び商業設定における牽引力を増加させ続ける。特定の例示的実施形態は、IGユニット設計に太陽電池を組み込んでもよく、したがって、BIPV技術に関する。例えば、特定の例示的実施形態は、シャッタ内に太陽電池を組み込む。このようにして、太陽エネルギーは「浪費されない」。様々な異なる太陽技術が利用可能である。しかしながら、特定の例示的実施形態は、典型的には、利用可能な最も可撓性のタイプの太陽電池であるため、銅インジウムガリウムセレン(CIGS)型太陽電池の利点を有する。CIGS太陽電池は、太陽光を電力に変換するために使用される薄膜太陽電池である。CIGS太陽電池は、銅、インジウム、ガリウム、及びセレン化物の薄層を、前面及び裏面上の電極と共に堆積させて電流を収集することによって製造することができる。材料は、高い吸収係数を有し、太陽光を強く吸収するため、他の半導体材料よりもはるかに薄い膜が必要とされる。これにより、上記の高い可撓性の可能性が付与される。特定の例示的実施形態は、コイル上の導電性(例えば、金属)層を、CIGSモジュールのベース導電層として使用する。吸収体の上部に薄いn型バッファ層を追加する。導電層上のバッファ層は、典型的には、化学浴堆積などによって堆積された硫化カドミウム(CdS)である。緩衝剤は、より厚いアルミニウムドープ酸化亜鉛層(ZnO:Al又はAZO)で覆われる薄い真性酸化亜鉛層(i-ZnO)と重ね合わされる。i-ZnO層は、ZnO:Al層を堆積させながら、スパッタリング損傷からCdS及び吸収層を保護するために使用される。これは、後者が通常、感受性材料を損傷する可能性があるプロセスであることが知られているDCスパッタリングによって堆積されるためである。塩化プロセスは、高温を使用することも知られている。したがって、PI、PENなどを使用すると、例えば、上述したように、より高い温度を取り扱うことができるため、シャッタの良好な選択肢である。AZO層は、可能な限りわずかな光を吸収しながら、セルから電子を収集及び移動させる透明導電性酸化物として機能する。CIGS太陽電池を作製する技術、使用され得る材料及び材料の厚さなどを含む、CIGS技術に関する更なる詳細は、それぞれの内容全体が参照により本明細書に組み込まれる米国特許第9,691,917号、米国特許第9,419,151号、米国特許第9,312,417号、米国特許第9,246,025号、米国特許第8,809,674号、及び米国特許第8,415,194号に見出すことができる。
【0083】
上記の説明から理解されるように、導電層に電圧が印加されて、シェードを上下に移動させる。電圧が導電層に印加されない場合、シャッタが伸長位置にある場合、シェードは、CIGS光起電モジュールとして機能することができる。CIGSシェードから生成された電力を使用して、シェードの関数で使用されるか、又は自宅/オフィスに接触される充電式電池に電力を供給することができる。これは、例えば、シェードを外部電源に接続することが困難又は不可能であり得る、後付け用途において特に有利であり得る。IGユニットが後付け又は新たな設置用途で使用されるかどうかにかかわらず、特定の例示的実施形態のユニットは、CIGS太陽電池を含むことにより、電力に関して自己十分であり得る。
【0084】
図16は、特定の例示的実施形態に関連して使用され得るCIGS太陽電池の概略図である。図16に示すように、シェードポリマー基材406は、1つの主表面上の導電層404、及び反対側の主表面上の任意の装飾インクを支持する。CIGS太陽電池の機能に関与する他の層は、導電層404上に形成され、例えば、CIGS吸収体層404別の導電層1604(例えば、ZnO)を含む。上部導電層1604上に、任意選択の反射防止コーティング1606が形成される。この反射防止コーティング1606は、特定の例示的実施形態において、CIGS吸収体層404に到達する可視光の量を増加させるのに役立ち得る。ARコーティング1606は、特定の例示的実施形態では、単一の広帯域AR層であってもよい。他の例示的実施形態では、ARコーティング1606は、上述の光干渉原理に作用する複数の層を含んでもよく、したがって、屈折誘電材料層の交互の高屈折率及び低屈折率の誘電材料層を含んでもよい。ARコーティング1606はまた、上記のようにシャッタの着色を補助してもよい。前方接点1608もまた提供される。特定の例示的実施形態における導電層404は、多層コーティングであってもよい。このような場合、導電性コーティングは、Mo、Al、Cr、Ni、Yなどを含む層(単数又は複数)を含んでもよい。例えば、特定の例示的実施形態では、Alを含む薄層は、Moを含む層を支持し得る。この構成は、Mo境界層を含めることが、CIGS吸収体層1602の効率的なバックコンタクトとして機能し得る一方で、シャッタと関連付けられたばねの動作も改善することに有利であり得る。Al境界層を含めることは、Moバックコンタクトの導電性を維持するのを助ける一方で、上覆CIGS関連層(Moを含む層を含む)における応力体系に有利に影響を与えることもできる。したがって、特定の例示的実施形態では、既に可撓性のCIGS材料をシャッタ関連用途に更に適切に製造することができる。以下は、特定の例示的実施形態に関連して使用され得る厚さの例であり、厚さ0.5~5μmのMoを含む層、厚さ1~7μmのCIGS含有層、厚さ0.01~0.1μmのCdS含有層、厚さ0.1~1μmのZnOを含む層、及び0.05~0.15μm厚のARコーティングである。
【0085】
CIGS太陽電池又は他の自己電源機構は、全ての実施形態において提供される必要はない。したがって、シェードを外部電源及び/又はコントローラに電気的に接続するための代替的な技術が提供されてもよい。この点に関して、図17図19は、特定の例示的実施形態によれば、シェードがどのようにグレージングに接続され、電力が供給され得るかを示す。これらの図面に示されるように、シェード1702のガラス上の構成要素は、銀ペースト1708及びエポキシ1710などを介して、中空アンカー止め1704又はバスバー及び基材1706に取り付けられる。ワイヤは、アンカー停止部1704にはんだ付けされ、次いで、周辺部を中心としてIGユニットの底部まで走り、底部アンカー止め具(ロック抑制部)が配置される。
【0086】
基材302上のITO又は他の導電性コーティング306と導電性テープ1802及び1804(例えば、銅テープなど)との間に導電性エポキシ、等方性導電膜(ACF)、1806などを介して、電気的接続が形成される。ワイヤは、導電性テープ1802及び1804にはんだ付けされ、2本のワイヤ(ITO基材ワイヤ及びアンカー止めワイヤ)が例えば外部電源への電気的接続などのためにIGスペーサを介してIGユニットの外側へと突出する下隅に向かってIGユニットの周辺部沿いに配線される。特定の例示的実施形態では、一般に、ITOから導電性エポキシへの、ガラス上の銅テープ又はAgフリットへの接続が存在する。
【0087】
図20は、特定の例示的実施形態に係る、シェードがどのようにグレージングに接続され、電力が供給され得るかについての代替的な手法を示す概略図である。この例示的な代替設計は、例えば、その周辺縁部の周囲に、ガラス基材2000上に銀フリット2002a~2002bを印刷するか、又は他の方法で適用することを含む。ガラス上の構成要素304(例えば、PET又は他のポリマー膜308及びITOなどを含むTCC306を含む)は、Agフリット2002a~2002bの上に積層される。ガラス2002上のAgフリット2002aの第1の部分は、導電性エポキシ、ACFなどを介してITOなどを含むTCC306に接合されるか、あるいは電気的に接続され、それによってITO層接続部2012にAgフリットを形成する。図20に示すように、説明のために部分的に伸長された2016構成で示されている)、上部バスバー2004及び下部バスバー2006は、エポキシなどでガラス上の構成要素304の上に固定される。ワイヤ2008a及び2008bは、図20に示されるように、及び下部バスバー2006及びAgフリット2002aの第1の部分から、上部バスバー2004及び下部バスバー2006から、Agフリット2002bの第2の部分にはんだ付けされる。ワイヤ2014a及び2014bは、Agフリット2002aの第1の部分から突出し、下部バスバー2006は、IGスペーサを通ってIGの外側に突出する。これらの突出したワイヤは、電源及び/又はコントローラに接続されてもよい。1つ以上の封止部が、IGユニットの空洞からの脱ガス、IGユニットの空洞内への水分の侵入などを制限するのを助けるために提供され得る。
【0088】
図21は、特定の例示的実施形態に係る、シェードがどのようにグレージングに接続され、電力が供給され得るかについての代替的な手法を示す概略図である。この例示的な代替設計は、Agフリットの使用を含むが、スペーサの少なくとも内部にあるワイヤを欠いている。図20の例と同様に、ガラス上の構成要素304は、Agフリット2002a~2002bの上に積層される。また、上記のように、フリット2002aの第1の部分は、導電性エポキシ、ACFなどを介して、ITOなどを含むTCC306に結合されるか、ないしは別の方法で電気的に接続される。シェード、上部バスバー2004、及び下部バスバー2006は、ガラス2000’の上にエポキシなどで、及びろう付け、はんだ付けなどを介してAgフリットに固定される。したがって、この構成は、図20の例と同様である。しかしながら、ろう付け、はんだ付け、導電性エポキシ、ACF、及び/又は同様のものを使用して、図21に示すAgフリット接続2100a~2100bにバスバーを形成する。これらのバスバー~Agフリット接続2100a~2100bは、Agフリット2002bの第2の部分に対して提供され、ワイヤ2008a~2008bの位置をとる。ガラスの縁部への電気的接続は、スペーサの下に入るAgフリット2102を介して生じる。このAgフリット2102は、下部バスバー2006から延在し、より低いバスバー2006に近いAgフリット2002aの第1の部分の端部から延在し、それによって図20の実施形態におけるワイヤ2014a~2014bの位置をとり、スペーサを通る穴又は穴の必要性を潜在的に防ぐ。ここでも、ろう付け、はんだ付け、導電性エポキシ、ACFなどを使用して、これらの電気的接続を形成してもよい。電気ワイヤコネクタは、IGの外側、又は少なくともスペーサの外部のAgフリットにはんだ付けすることができる。
【0089】
ガラス2000’上にAgを有し、スペーサの下で(スペーサ内に穴を形成するのではなく)、特定の例示的実施形態では有利であり得ることが理解されるであろう。例えば、穴の欠如は、ガス漏出の可能性を低減するか、又は進行を遅くしてもよく、IGユニットの空洞内への水分侵入などを低減することができる。これらの問題は、例えば、内部水分が発生する可能性を低減することによって、IGユニットの寿命を低減することがある。内部水分の存在は、望ましくないヘイズを生じさせることができ、更に5~8%の相対湿度では、望ましくない充電及び早期のシェード不良を引き起こす可能性がある。
【0090】
Agフリットが言及されているが、異なる実施形態では、他の種類のフリットが使用されてもよいことが理解されるであろう。また、低Eコーティング、ITO、又は他の導電性材料をガラス上に(例えば、ラミネート層なしで)使用して、Agフリットと同じ又は類似の目的を果たすことができることも理解されよう。
【0091】
したがって、図20図21から、第1の導電性バスバー及び第2の導電性バスバーは、第1及び第2の端部を有する第1の基材の第1及び第2の対向する縁部に配置されてもよく、第1及び第2のバスバーは、誘電体膜又は絶縁体膜上に直接又は間接的に提供されることが理解されるであろう。導電フリットの第1及び第2のパターンは、直接又は間接的に第1の基材に適用されてもよく、フリットは、第1の基材と第1の導電性コーティングとの間に介在し、フリットの第1のパターンは、第1の導電性コーティングと電気的に接続するフリットの第1のパターンが、第1の基材の第3及び第4の対向する縁部に沿って延在する、工程と、第1~第4のエッジが互いに異なっており、第1のパターンが、第1のバスバーの第1の端部から第2のバスバーの第1の端部に向かう方向に延在し、第2のパターンは、第1のバスバーの第2の端部から第2のバスバーの第2の端部に向かう方向に延在する。導電性エポキシ、異方性導電膜(ACF)などは、フリットの第1パターンを第1導電性コーティングと電気的に接続してもよい。
【0092】
特定の例示的実施形態では、ワイヤの第1のセットは、第1及び第2のバスバーを、その第2の端部に近接したフリットの第2のパターンに電気的に接続することができ、第2の組のワイヤは、第2のバスバーの第1の端部及び第2のバスバーの第1の端部に近接するフリットの第1のパターンの端部に電気的に接続することができる。そのような場合、ワイヤの第2のセットは、電源に電気的に接続するために、スペーサシステム内の穴を通って突出してもよい。
【0093】
特定の例示的実施形態では、導電フリットの第3及び第4のパターンは、第1及び第2のバスバーを、第1及び第2のバスバーの第2の端部に近接するフリットの第2のパターンに電気的に接続することができ、導電フリットの第5及び第6のパターンは、第2のバスバーの第1の端部と、第2のバスバーの第1の端部に近接するフリットの第1のパターンの端部に電気的に接続することができる。このような場合、フリットの第5及び第6のパターンは、例えば、第5及び第6のパターンのフリットがスペーサシステムと第1の基材との間に提供されるように、第5及び第6のフリットパターンは、電源に電気的に接続するために、スペーサシステムの下の第1の基材の外側エッジに向かって延在してもよい。特定の例示的実施形態では、電源と第1及び第2の導電性コーティングとの間の電気的接続は、スペーサシステムの内部のワイヤを欠く場合がある。
【0094】
本明細書に記載されるIGユニットは、表面1、2、3、及び4のうちのいずれか1つ以上に低Eコーティングを組み込んでもよい。上述のように、例えば、このような低Eコーティングは、シェードのための導電層として機能し得る。他の例示的な実施形態では、シェードのためのserving及び導電層に加えて、又はそれとは別に、低Eコーティングが別の内面に提供されてもよい。例えば、表面2に低Eコーティングを設けることができ、表面3に対してシェードを設けてもよい。別の例では、シェード及び低Eコーティングの位置を反転させることができる。いずれの場合も、別個の低Eコーティングは、表面3に対して提供されるシェードを操作するのを助けるために使用されても、使用されなくてもよい。特定の例示的実施形態では、表面2及び3上に提供される低Eコーティングは、銀ベースの低Eコーティングであってもよい。低Eコーティングの例は、米国特許第9,802,860号、米国特許第8,557,391号、米国特許第7,998,320号、米国特許第7,771,830号、米国特許第7,198,851号、米国特許第7,189,458号、米国特許第7,056,588号、及び米国特許第6,887,575号、に記載されており、上記の文献のそれぞれの内容全体は、参照により本明細書に組み込まれる。ITO及び/又は同様のものに基づく低Eコーティングを内面及び/又は外面に使用してもよい。例えば、米国特許第9,695,085号、米国特許第9,670,092号を参照されたい。上記の文献のそれぞれの内容全体は、参照により本明細書に組み込まれる。これらの低Eコーティングは、特定の例示的実施形態に関連して使用され得る。
【0095】
反射防止コーティングは、IGユニットの主表面上に提供されてもよい。特定の例示的実施形態では、ARコーティングは、低Eコーティング及びシェードが提供されない各主表面上に提供されてもよい。例示的なARコーティングは、例えば、米国特許第9,796,619号及び同第8,668,990号、並びに米国特許公開第2014/0272314号に記載されている。上記の文献のそれぞれの内容全体は、参照により本明細書に組み込まれる。その内容全体が参照により本明細書に組み込まれる米国特許第9,556,066号も参照されたい。これらのARコーティングは、特定の例示的実施形態に関連して使用されてもよい。
【0096】
本明細書に記載される例示的な実施形態は、例えば、市販及び/又は住宅用途のための内部窓及び外部窓、天窓、ドア、冷蔵庫/冷凍庫(例えば、そのドア及び/又は「壁」のための)のような小売業者、車両用途などを含む、多種多様な用途に組み込むことができる。
【0097】
特定の例示的実施形態は、2つの基材を含むIGユニットに関連して記載されているが、本明細書に記載される技術は、いわゆる三重IGユニットに関して適用され得ることが理解されるであろう。このようなユニットでは、第1、第2、及び第3の実質的に平行な離間した基材は、第1及び第2のスペーサシステムによって分離され、シェードは、最も内側の基材及び最も外側の基材の内面のうちの任意の1つ以上に隣接して、及び/又は中間基材の表面の一方若しくは両方に隣接して提供されてもよい。
【0098】
特定の例示的実施形態は、ガラス基材を組み込むものとして記載されているが(例えば、本明細書に記載されるIGユニットの内側及び外側のペインの使用のために)記載されているが、他の例示的な実施形態は、そのようなペインの一方又は両方のための非ガラス基材を組み込んでもよいことが理解されるであろう。プラスチック、複合材料等を使用してもよい。ガラス基材が使用される場合、そのような基材は、熱処理(例えば、熱強化及び/又は熱強化)、化学的に強化され、アニールされた状態に残されてもよい。特定の例示的実施形態では、内側又は外側基材は、同じ又は異なる材料の別の基材に積層されてもよい。
【0099】
本明細書で使用するとき、用語「~上」及び「~によって支持されている」などは、明示的に記載されない限り、2つの要素が互いに直接隣接していることを意味するものと解釈されるべきではない。換言すれば、第1の層は、第2の層との間に1つ以上の層が存在する場合であっても、第2の層「上」又は「によって支持されている」とされ得る。
【0100】
特定の例示的実施形態では、絶縁ガラス(IG)ユニットが提供される。第1の基材及び第2の基材はそれぞれ、内部主表面及び外部主表面を有し、第1の基材の内部主表面は、第2の基材の内部主表面に面している。スペーサシステムは、第1の基材及び第2の基材を互いに対して実質的に平行に離間した関係に維持し、それらの間に間隙を画定するのに役立つ。第1の基材と第2の基材との間に介在する動的に制御可能なシェードは、第1の基材の内部主表面上に直接又は間接的に提供される第1導電コーティングと、第1導電コーティング上に直接的又は間接的に提供される誘電体又は絶縁体膜と、第2導電コーティングを支持するポリマー材料を含むシャッタであって、ポリマー材料は、シャッタ閉位置として機能するように伸長可能であり、且つシャッタ開位置として機能するように後退可能である、シャッタと、を備え、第2導電コーティングが、Mo及び/又はTiを含む薄膜層を含む。第1導電コーティング及び第2導電コーティングは、シャッタ開位置とシャッタ閉位置との間でポリマー材料を相応に駆動するために電位差を選択的に設定するように制御可能な電源に電気的に接続可能である。
【0101】
前の段落の特徴に加えて、特定の例示的実施形態では、第2導電コーティング中の薄膜層(単数又は複数)は、開いた位置と閉じた位置との間で、Alを含む層のみを含む第2導電コーティングを有するシャッタのものよりも大きいばね力でシャッタを移動させるように選択及び形成され得る。
【0102】
前の2つの段落のいずれかの特徴に加えて、特定の例示的実施形態では、第2導電コーティングは、Mo及び/又はTiを含む薄膜層の上に、且つポリマー材料の反対側の表面上に設けられた腐食低減層を更に含んでもよい。
【0103】
前の段落の特徴に加えて、特定の例示的実施形態では、腐食低減層は、Al、Ti、及び/又はステンレス鋼を含んでもよい。
【0104】
前の2つの段落のいずれかの特徴に加えて、特定の例示的実施形態では、腐食低減層は、375nm未満の厚さを有していてもよい。
【0105】
前の5つの段落のいずれかの特徴に加えて、特定の例示的実施形態では、第2導電コーティングは、Mo及び/又はTiを含む薄膜層とポリマー材料との間に設けられた下地層を更に含んでもよく、例えば、第2導電コーティングの応力プロファイルを、下地層が存在しない状況と比較して変化させるように形成されている。
【0106】
前の段落の特徴に加えて、特定の例示的実施形態では、下地層は、第2導電コーティングの応力プロファイルを正味の引張から正味の圧縮に変化させるように形成されてもよい。
【0107】
前の2つの段落のいずれかの特徴に加えて、特定の例示的実施形態では、下地層は、Alを含む薄膜層であってもよい。
【0108】
前の3つの段落のいずれかの特徴に加えて、特定の例示的実施形態では、下地層は、375nm未満の厚さを有していてもよい。
【0109】
前の4つの段落のいずれかの特徴に加えて、特定の例示的実施形態では、腐食低減層及び下地層は両方とも、Alを含む薄膜層であってもよく、及び/又は375nm未満の集合的厚さを有してもよい。
【0110】
特定の例示的実施形態では、絶縁ガラス(IG)ユニットが提供される。第1の基材及び第2の基材はそれぞれ、内部主表面及び外部主表面を有し、第1の基材の内部主表面は、第2の基材の内部主表面に面している。スペーサシステムは、第1の基材及び第2の基材を互いに対して実質的に平行に離間した関係に維持し、それらの間に間隙を画定するのに役立つ。第1の基材と第2の基材との間に介在する動的に制御可能なシェードは、第1の基材の内部主表面上に直接又は間接的に提供される第1導電コーティングと、第1導電コーティング上に直接的又は間接的に提供される誘電体又は絶縁体膜と、第2導電コーティングを支持するポリマー材料を含むシャッタと、を備え、ポリマー材料は、シャッタ閉位置として機能するように伸長可能であり、且つシャッタ開位置として機能するように後退可能であり、第2導電コーティングは、1つ以上の薄膜層を含み、第2導電コーティング中の薄膜層は、Alを含む層のみを含む第2導電コーティングを有するシャッタのものよりも大きいばね力でシャッタを開位置と閉位置との間で移動させるように形成されている。第1導電コーティング及び第2導電コーティングは、シャッタ開位置とシャッタ閉位置との間でポリマー材料を相応に駆動するために電位差を選択的に設定するように制御可能な電源に電気的に接続可能である。
【0111】
前の段落の特徴に加えて、特定の例示的実施形態では、第2導電コーティングは、その上に直接的又は間接的に提供された金属及び腐食低減層を含む層を含んでもよい。
【0112】
前の段落の特徴に加えて、特定の例示的実施形態では、腐食低減層は、Al、Ti、及び/又はステンレス鋼を含んでもよい。
【0113】
前の3つの段落のいずれかの特徴に加えて、特定の例示的実施形態では、第2導電コーティングは、金属を含む層とポリマー材料との間に設けられた下地層であって、例えば、第2導電コーティングの応力プロファイルが正味引張から正味圧縮に変化するように、第2導電コーティングの応力プロファイルを変化させるように、第2導電コーティングの応力プロファイルを変更するように形成される下地層を更に含んでいてもよい。
【0114】
前の4つの段落のいずれかの特徴に加えて、特定の例示的実施形態では、第2導電コーティングは、金属を含む層と、金属を含む層とポリマー材料との間に設けられた下地層であって、例えば、第2導電コーティングの応力プロファイルが正味引張から正味圧縮に変化するように、第2導電コーティングの応力プロファイルを変化させるように、第2導電コーティングの応力プロファイルを変更するように形成される下地層と、を含んでいてもよい。
【0115】
特定の例示的実施形態では、絶縁ガラス(IG)ユニットの製造方法が提供される。この方法は、それぞれが内部主表面及び外部主表面を有する第1及び第2の基材を提供する工程と、第1の基材の内部主表面上に直接又は間接的に第1導電コーティングを形成する工程と、第1導電コーティング上に直接又は間接的に誘電体膜又は絶縁体膜を提供する工程と、前記誘電体又は絶縁体膜に隣接して、第2導電コーティングを支持するポリマー材料を含むシャッタを配置する工程であって、使用中のポリマー材料は、シャッタ閉位置として機能するように伸長可能であり、且つシャッタ開位置として機能するように後退可能であり、第2導電コーティング中の薄膜層(複数可)は、シャッタを開位置と閉位置との間で移動させるように選択及び形成され、第2導電コーティング及び/又は第2導電コーティング自体の中の薄膜層は、Alよりも大きい弾性率及びより低いCTEを有する、工程と、第1導電コーティング及び第2導電コーティングを電源に電気的に接続する工程であって、第1導電コーティング、誘電体膜又は絶縁体膜、及びシャッタが、電源と関連して制御可能な動的シェードを少なくとも部分的に形成して、電位差を選択的に設定し、それに応じて、シャッタ開位置とシャッタ閉鎖位置との間でポリマー材料を駆動する、工程と、第1及び第2の基材を、IGユニットを作製する際に、第1及び第2の基材の内面が互いに対向するように、第1及び第2の基材を互いに実質的に平行に離間させた関係でスペーサシステムに関連して互いに接続する工程であって、第1及び第2の基材の間に間隙が画定され、間隙内の第1の基材と第2の基材との間に動的シェードが介在する、工程と、を含む。
【0116】
前の段落の特徴に加えて、特定の例示的実施形態では、第2導電コーティングは、金属を含む層を含んでいてもよい。
【0117】
前の2つの段落のいずれかの特徴に加えて、特定の例示的実施形態では、第2導電性は、Ni、W、Mo、Ti、又はTaを含む層を含んでもよい。
【0118】
前の3つの段落のいずれかの特徴に加えて、特定の例示的実施形態では、第2導電は、Alを含む層の上に設けられたMoを含む層を含んでいてもよい。
【0119】
前の4つの段落のいずれかの特徴に加えて、特定の例示的な実施形態では、ポリマー材料は、PEN及び/又はPIを含んでいてもよい。
【0120】
特定の例示的実施形態では、絶縁ガラス(IG)ユニット内で動的シェードを操作する方法が提供される。本方法は、本明細書に開示される技術に従って(例えば、前の20の段落のうちのいずれか1つに従って)作製されたIGユニットを有する工程と、シャッタ開位置とシャッタ閉位置との間でポリマー材料を移動させるために、電源を選択的に作動させる工程と、を含む。
【0121】
本発明は、現在実用的で好ましい実施形態と考えられるものと関連して説明されたが、本発明は、開示される実施形態に限定されるものではなく、むしろ、添付の特許請求の範囲の趣旨及び範囲内に含まれる様々な修正及び同等の構成を網羅することを意図するものであることを理解されたい。
図1
図2
図3
図4
図5
図6a
図6b
図7
図8a
図8b
図8c
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21