IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社SENの特許一覧

<>
  • 特許-イオン注入装置およびイオン注入方法 図1
  • 特許-イオン注入装置およびイオン注入方法 図2
  • 特許-イオン注入装置およびイオン注入方法 図3
  • 特許-イオン注入装置およびイオン注入方法 図4
  • 特許-イオン注入装置およびイオン注入方法 図5
  • 特許-イオン注入装置およびイオン注入方法 図6
  • 特許-イオン注入装置およびイオン注入方法 図7
  • 特許-イオン注入装置およびイオン注入方法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-27
(45)【発行日】2023-03-07
(54)【発明の名称】イオン注入装置およびイオン注入方法
(51)【国際特許分類】
   H01J 37/317 20060101AFI20230228BHJP
【FI】
H01J37/317 C
【請求項の数】 20
(21)【出願番号】P 2019133352
(22)【出願日】2019-07-19
(65)【公開番号】P2021018904
(43)【公開日】2021-02-15
【審査請求日】2022-05-18
(73)【特許権者】
【識別番号】000183196
【氏名又は名称】住友重機械イオンテクノロジー株式会社
(74)【代理人】
【識別番号】100105924
【弁理士】
【氏名又は名称】森下 賢樹
(74)【代理人】
【識別番号】100116274
【弁理士】
【氏名又は名称】富所 輝観夫
(72)【発明者】
【氏名】狩谷 宏行
(72)【発明者】
【氏名】高橋 裕二
【審査官】田中 秀直
(56)【参考文献】
【文献】特開2000-057988(JP,A)
【文献】特開平10-040855(JP,A)
【文献】特開2017-174506(JP,A)
【文献】特開2003-272553(JP,A)
【文献】米国特許出願公開第2017/0271128(US,A1)
【文献】米国特許出願公開第2006/0266957(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/317
(57)【特許請求の範囲】
【請求項1】
ウェハにイオンビームを照射する注入工程がなされる注入処理室と、
前記注入処理室内に設けられ、前記注入工程の前になされる準備工程において前記イオンビームのビーム電流を測定するよう構成される第1ファラデーカップと、
前記注入処理室内に設けられ、前記第1ファラデーカップのビーム電流測定値を校正するための校正工程において前記イオンビームのビーム電流を測定するよう構成される第2ファラデーカップと、
前記第2ファラデーカップに向かう前記イオンビームを遮蔽するための遮蔽部材であって、前記注入工程および前記準備工程において前記イオンビームが前記第2ファラデーカップに入射不可となり、前記校正工程において前記イオンビームが前記第2ファラデーカップに入射可能となるよう構成される遮蔽部材と、を備えることを特徴とするイオン注入装置。
【請求項2】
前記第1ファラデーカップは、第1測定位置と第1待避位置との間で前記イオンビームのビーム進行方向と直交する第1方向に移動可能となるよう構成され、前記第1測定位置は、前記注入工程において前記ウェハにイオンが注入される注入位置と前記ビーム進行方向に見て重なり、前記第1待避位置は、前記注入位置と前記ビーム進行方向に見て重ならず、
前記第2ファラデーカップは、第2測定位置と第2待避位置との間で前記ビーム進行方向に直交する第2方向に移動可能となるよう構成され、前記第2測定位置は、前記第1測定位置と前記ビーム進行方向に見て重なり、前記第2待避位置は、前記注入位置と前記ビーム進行方向に見て重ならないことを特徴とする請求項1に記載のイオン注入装置。
【請求項3】
前記第2ファラデーカップは、前記第1ファラデーカップの移動と独立して移動可能となるよう構成されることを特徴とする請求項2に記載のイオン注入装置。
【請求項4】
前記第2方向は、前記第1方向と平行であり、前記第2待避位置は、前記注入位置を挟んで前記第1待避位置とは反対側にあることを特徴とする請求項3に記載のイオン注入装置。
【請求項5】
前記第2ファラデーカップは、前記第1ファラデーカップに対する位置が固定されたまま前記第1ファラデーカップと一緒に移動可能となるよう構成されることを特徴とする請求項2に記載のイオン注入装置。
【請求項6】
前記第2ファラデーカップは、前記第1ファラデーカップの前記第1方向の隣に配置されることを特徴とする請求項5に記載のイオン注入装置。
【請求項7】
前記第2測定位置は、前記第1測定位置と前記ビーム進行方向の位置が同じであることを特徴とする請求項2から6のいずれか一項に記載のイオン注入装置。
【請求項8】
前記第2測定位置は、前記第1測定位置と前記ビーム進行方向の位置が異なることを特徴とする請求項2から6のいずれか一項に記載のイオン注入装置。
【請求項9】
前記第1ファラデーカップは、第1測定位置と第1待避位置との間で前記イオンビームのビーム進行方向と直交する第1方向に移動可能となるよう構成され、前記第1測定位置は、前記注入工程において前記ウェハにイオンが注入される注入位置と前記ビーム進行方向に見て重なり、前記第1待避位置は、前記注入位置と前記ビーム進行方向に見て重ならず、
前記第2ファラデーカップは、第2測定位置に固定されており、前記第2測定位置は、前記第1測定位置よりも前記ビーム進行方向の下流側にあり、前記第1測定位置と前記ビーム進行方向に見て重なることを特徴とする請求項1に記載のイオン注入装置。
【請求項10】
前記イオンビームを前記第1方向に往復スキャンさせるビームスキャナをさらに備え、
前記第1ファラデーカップは、前記第1方向に異なる複数の第1測定位置にて前記イオンビームのビーム電流を測定可能であり、
前記第2ファラデーカップは、前記複数の第1測定位置の少なくとも一つと前記ビーム進行方向に見て重なる前記第2測定位置にて前記イオンビームのビーム電流を測定可能であることを特徴とする請求項2から9のいずれか一項に記載のイオン注入装置。
【請求項11】
前記遮蔽部材は、前記第2ファラデーカップに対して変位可能であり、前記注入工程および前記準備工程において前記第2ファラデーカップと前記イオンビームのビーム進行方向に見て重なるよう配置され、前記校正工程において前記第2ファラデーカップと前記ビーム進行方向に見て重ならないよう配置されることを特徴とする請求項1から10のいずれか一項に記載のイオン注入装置。
【請求項12】
前記遮蔽部材は、前記第2ファラデーカップに対して着脱可能であり、前記注入工程および前記準備工程において前記第2ファラデーカップに装着され、前記校正工程において前記第2ファラデーカップから除去されることを特徴とする請求項1から10のいずれか一項に記載のイオン注入装置。
【請求項13】
前記第2ファラデーカップは、前記注入工程および前記準備工程において前記第2待避位置にあり、
前記遮蔽部材は、前記第2待避位置にある前記第2ファラデーカップの入口を塞ぐように配置されることを特徴とする請求項2から4のいずれか一項に記載のイオン注入装置。
【請求項14】
前記校正工程において前記第1ファラデーカップおよび前記第2ファラデーカップのそれぞれにより測定されるビーム電流測定値に基づいて、前記第1ファラデーカップのビーム電流測定値を校正するための校正パラメータを決定する制御装置をさらに備えることを特徴とする請求項1から13のいずれか一項に記載のイオン注入装置。
【請求項15】
前記制御装置は、前記校正パラメータの初期値を保持し、前記校正工程にて決定した校正パラメータの値と前記校正パラメータの初期値の差が所定範囲内である場合に前記校正パラメータの値を更新し、前記差が前記所定範囲内でない場合に前記校正パラメータの値を更新せずにアラートを出力することを特徴とする請求項14に記載のイオン注入装置。
【請求項16】
前記イオンビームのビーム電流を測定するよう構成される第3ファラデーカップをさらに備え、
前記制御装置は、前記第1ファラデーカップおよび前記第3ファラデーカップにより測定されるビーム電流測定値間の比率の初期値を保持し、前記準備工程において前記第1ファラデーカップおよび前記第3ファラデーカップにより測定されるビーム電流測定値間の比率と前記比率の初期値の差が所定の閾値を超える場合に前記校正工程を実行して前記校正パラメータを決定することを特徴とする請求項14または15に記載のイオン注入装置。
【請求項17】
前記イオンビームのビーム電流を測定するよう構成される第3ファラデーカップをさらに備え、
前記制御装置は、前記第1ファラデーカップおよび前記第3ファラデーカップにより測定されるビーム電流測定値間の比率をモニタし、前記モニタされる前記比率の変化量が所定の閾値を超える場合に前記校正工程を実行して前記校正パラメータを決定することを特徴とする請求項14または15に記載のイオン注入装置。
【請求項18】
前記第3ファラデーカップは、前記注入工程において前記ウェハにイオンが注入される注入位置と前記イオンビームのビーム進行方向に見て重ならない位置で前記イオンビームのビーム電流を測定するよう構成されることを特徴とする請求項16または17に記載のイオン注入装置。
【請求項19】
前記第3ファラデーカップは、前記注入工程において前記ウェハにイオンが注入される注入位置と前記イオンビームのビーム進行方向に見て重なる位置で前記イオンビームのビーム電流を測定するよう構成されることを特徴とする請求項16または17に記載のイオン注入装置。
【請求項20】
ウェハにイオンビームを照射する注入工程と、
前記注入工程の前にイオンビームのビーム電流を第1ファラデーカップを用いて測定する準備工程と、
前記イオンビームのビーム電流を第2ファラデーカップを用いて測定し、前記第1ファラデーカップのビーム電流測定値を校正する校正工程と、を備え、
前記注入工程および前記準備工程において、前記第2ファラデーカップに向かう前記イオンビームが遮蔽部材により遮蔽され、前記イオンビームが前記第2ファラデーカップに入射不可となり、前記校正工程において前記イオンビームが前記第2ファラデーカップに入射可能となることを特徴とするイオン注入方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、イオン注入装置およびイオン注入方法に関する。
【背景技術】
【0002】
半導体製造工程では、半導体の導電性を変化させる目的、半導体の結晶構造を変化させる目的などのため、半導体ウェハにイオンを注入する工程(イオン注入工程ともいう)が標準的に実施されている。ウェハに照射されるイオンビームの電流量をより精密に測定するため、通常の注入時に使用する電流検出器とは別に校正用の電流検出器を駆動ステージに配置した構成が提案されている。校正用の電流検出器は、例えば通常用の電流検出器の交換時に通常用の電流検出器を校正するために用いられる(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2011-108557号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
校正用の電流検出器が駆動ステージに配置される場合、長期間の使用によって校正用の電流検出器が消耗したり汚れたりするおそれがある。校正用の電流検出器に消耗や汚れが生じると校正用の電流検出器の測定精度が低下し、通常用の電流検出器を交換した際に通常用の電流検出器を高精度で校正できなくなる。
【0005】
本発明のある態様の例示的な目的のひとつは、ビーム電流の測定精度を長期間にわたって維持する技術を提供することにある。
【課題を解決するための手段】
【0006】
本発明のある態様のイオン注入装置は、ウェハにイオンビームを照射する注入工程がなされる注入処理室と、注入処理室内に設けられ、注入工程の前になされる準備工程においてイオンビームのビーム電流を測定するよう構成される第1ファラデーカップと、注入処理室内に設けられ、第1ファラデーカップのビーム電流測定値を校正するための校正工程においてイオンビームのビーム電流を測定するよう構成される第2ファラデーカップと、第2ファラデーカップに向かうイオンビームを遮蔽するための遮蔽部材と、を備える。遮蔽部材は、注入工程および準備工程においてイオンビームが第2ファラデーカップに入射不可となり、校正工程においてイオンビームが第2ファラデーカップに入射可能となるよう構成される。
【0007】
本発明の別の態様は、イオン注入方法である。この方法は、ウェハにイオンビームを照射する注入工程と、注入工程の前にイオンビームのビーム電流を第1ファラデーカップを用いて測定する準備工程と、イオンビームのビーム電流を第2ファラデーカップを用いて測定し、第1ファラデーカップのビーム電流測定値を校正する校正工程と、を備える。注入工程および準備工程において、第2ファラデーカップに向かうイオンビームが遮蔽部材により遮蔽され、イオンビームが第2ファラデーカップに入射不可となり、校正工程においてイオンビームが第2ファラデーカップに入射可能となる。
【0008】
なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
【発明の効果】
【0009】
本発明によれば、ビームの電流の測定精度を長期間にわたって維持できる。
【図面の簡単な説明】
【0010】
図1】実施の形態に係るイオン注入装置の概略構成を示す上面図である。
図2図1のイオン注入装置の概略構成を示す側面図である。
図3図1の注入処理室内の概略構成を示す正面図である。
図4】注入工程における注入処理室内の構成を模式的に示す上面図である。
図5】準備工程における注入処理室内の構成を模式的に示す上面図である。
図6】校正工程における注入処理室内の構成を模式的に示す上面図である。
図7】別の実施の形態に係る注入処理室内の構成を模式的に示す上面図である。
図8】さらに別の実施の形態に係る注入処理室内の構成を模式的に示す上面図である。
【発明を実施するための形態】
【0011】
以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、以下に述べる構成は例示であり、本発明の範囲を何ら限定するものではない。
【0012】
実施の形態を詳述する前に概要を説明する。本実施の形態に係るイオン注入装置は、ウェハにイオンビームを照射する注入工程がなされる注入処理室を備える。注入処理室内には、注入工程の前になされる準備工程においてビーム電流を測定する第1ファラデーカップと、第1ファラデーカップを校正するための校正工程においてビーム電流を測定する第2ファラデーカップと、第2ファラデーカップに向かうイオンビームを遮蔽するための遮蔽部材とが設けられる。遮蔽部材は、注入工程および準備工程においてイオンビームが第2ファラデーカップに入射不可となり、校正工程においてイオンビームが第2ファラデーカップに入射可能となるよう構成される。
【0013】
第1ファラデーカップは、準備工程においてビーム電流を測定するために繰り返し使用されるため、イオン注入装置を連続的に使用することにより消耗したり汚れたりする。ファラデーカップに消耗や汚れが生じると、ファラデーカップの測定精度が低下するため、定期的にクリーニングや交換といったメンテナンスが必要となる。第1ファラデーカップをメンテナンスした場合、メンテナンスの前後で第1ファラデーカップの測定感度が変化しうるため、校正用の第2ファラデーカップを用いてメンテナンス後の第1ファラデーカップの測定値を校正する必要がある。
【0014】
本実施の形態によれば、校正用の第2ファラデーカップが注入処理室に設けられるため、第1ファラデーカップを校正するための測定を注入処理室内で実施できる。そのため、メンテナンス後における第1ファラデーカップの取付精度といった第1ファラデーカップの損耗自体とは別の要因による測定感度の変化についても適切に校正できる。また、本実施の形態によれば、遮蔽部材を設けることで、校正工程以外において第2ファラデーカップがイオンビーム照射によって消耗したり汚れたりするのを防ぐことができ、長期間にわたって第2ファラデーカップの測定精度を維持できる。その結果、第1ファラデーカップのメンテナンスが複数回発生するような長期間にわたって第2ファラデーカップの測定精度を維持でき、通常測定用の第1ファラデーカップの校正精度が高い状態を維持できる。
【0015】
図1は、実施の形態に係るイオン注入装置10を概略的に示す上面図であり、図2は、イオン注入装置10の概略構成を示す側面図である。イオン注入装置10は、被処理物Wの表面にイオン注入処理を施すよう構成される。被処理物Wは、例えば基板であり、例えば半導体ウェハである。説明の便宜のため、本明細書において被処理物WをウェハWと呼ぶことがあるが、これは注入処理の対象を特定の物体に限定することを意図しない。
【0016】
イオン注入装置10は、ビームを一方向に往復走査させ、ウェハWを走査方向と直交する方向に往復運動させることによりウェハWの処理面全体にわたってイオンビームを照射するよう構成される。本書では説明の便宜上、設計上のビームラインAに沿って進むイオンビームの進行方向をz方向とし、z方向に垂直な面をxy面と定義する。イオンビームを被処理物Wに対し走査する場合において、ビームの走査方向をx方向とし、z方向及びx方向に垂直な方向をy方向とする。したがって、ビームの往復走査はx方向に行われ、ウェハWの往復運動はy方向に行われる。
【0017】
イオン注入装置10は、イオン生成装置12と、ビームライン装置14と、注入処理室16と、ウェハ搬送装置18とを備える。イオン生成装置12は、イオンビームをビームライン装置14に与えるよう構成される。ビームライン装置14は、イオン生成装置12から注入処理室16へイオンビームを輸送するよう構成される。注入処理室16には、注入対象となるウェハWが収容され、ビームライン装置14から与えられるイオンビームをウェハWに照射する注入処理がなされる。ウェハ搬送装置18は、注入処理前の未処理ウェハを注入処理室16に搬入し、注入処理後の処理済ウェハを注入処理室16から搬出するよう構成される。イオン注入装置10は、イオン生成装置12、ビームライン装置14、注入処理室16およびウェハ搬送装置18に所望の真空環境を提供するための真空排気系(図示せず)を備える。
【0018】
ビームライン装置14は、ビームラインAの上流側から順に、質量分析部20、ビームパーク装置24、ビーム整形部30、ビーム走査部32、ビーム平行化部34および角度エネルギーフィルタ(AEF;Angular Energy Filter)36を備える。なお、ビームラインAの上流とは、イオン生成装置12に近い側のことをいい、ビームラインAの下流とは注入処理室16(またはビームストッパ46)に近い側のことをいう。
【0019】
質量分析部20は、イオン生成装置12の下流に設けられ、イオン生成装置12から引き出されたイオンビームから必要なイオン種を質量分析により選択するよう構成される。質量分析部20は、質量分析磁石21と、質量分析レンズ22と、質量分析スリット23とを有する。
【0020】
質量分析磁石21は、イオン生成装置12から引き出されたイオンビームに磁場を印加し、イオンの質量電荷比M=m/q(mは質量、qは電荷)の値に応じて異なる経路でイオンビームを偏向させる。質量分析磁石21は、例えばイオンビームにy方向(図1および図2では-y方向)の磁場を印加してイオンビームをx方向に偏向させる。質量分析磁石21の磁場強度は、所望の質量電荷比Mを有するイオン種が質量分析スリット23を通過するように調整される。
【0021】
質量分析レンズ22は、質量分析磁石21の下流に設けられ、イオンビームに対する収束/発散力を調整するよう構成される。質量分析レンズ22は、質量分析スリット23を通過するイオンビームのビーム進行方向(z方向)の収束位置を調整し、質量分析部20の質量分解能M/dMを調整する。なお、質量分析レンズ22は必須の構成ではなく、質量分析部20に質量分析レンズ22が設けられなくてもよい。
【0022】
質量分析スリット23は、質量分析レンズ22の下流に設けられ、質量分析レンズ22から離れた位置に設けられる。質量分析スリット23は、質量分析磁石21によるビーム偏向方向(x方向)がスリット幅となるように構成され、x方向が相対的に短く、y方向が相対的に長い形状の開口23aを有する。
【0023】
質量分析スリット23は、質量分解能の調整のためにスリット幅が可変となるように構成されてもよい。質量分析スリット23は、スリット幅方向に移動可能な二枚の遮蔽体により構成され、二枚の遮蔽体の間隔を変化させることによりスリット幅が調整可能となるように構成されてもよい。質量分析スリット23は、スリット幅の異なる複数のスリットのいずれか一つに切り替えることによりスリット幅が可変となるよう構成されてもよい。
【0024】
ビームパーク装置24は、ビームラインAからイオンビームを一時的に退避し、下流の注入処理室16(またはウェハW)に向かうイオンビームを遮蔽するよう構成される。ビームパーク装置24は、ビームラインAの途中の任意の位置に配置することができるが、例えば、質量分析レンズ22と質量分析スリット23の間に配置できる。質量分析レンズ22と質量分析スリット23の間には一定の距離が必要であるため、その間にビームパーク装置24を配置することで、他の位置に配置する場合よりもビームラインAの長さを短くすることができ、イオン注入装置10の全体を小型化できる。
【0025】
ビームパーク装置24は、一対のパーク電極25(25a,25b)と、ビームダンプ26と、を備える。一対のパーク電極25a,25bは、ビームラインAを挟んで対向し、質量分析磁石21のビーム偏向方向(x方向)と直交する方向(y方向)に対向する。ビームダンプ26は、パーク電極25a,25bよりもビームラインAの下流側に設けられ、ビームラインAからパーク電極25a,25bの対向方向に離れて設けられる。
【0026】
第1パーク電極25aはビームラインAよりも重力方向上側に配置され、第2パーク電極25bはビームラインAよりも重力方向下側に配置される。ビームダンプ26は、ビームラインAよりも重力方向下側に離れた位置に設けられ、質量分析スリット23の開口23aの重力方向下側に配置される。ビームダンプ26は、例えば、質量分析スリット23の開口23aが形成されていない部分で構成される。ビームダンプ26は、質量分析スリット23とは別体として構成されてもよい。
【0027】
ビームパーク装置24は、一対のパーク電極25a,25bの間に印加される電場を利用してイオンビームを偏向させ、ビームラインAからイオンビームを退避させる。例えば、第1パーク電極25aの電位を基準として第2パーク電極25bに負電圧を印加することにより、イオンビームをビームラインAから重力方向下方に偏向させてビームダンプ26に入射させる。図2において、ビームダンプ26に向かうイオンビームの軌跡を破線で示している。また、ビームパーク装置24は、一対のパーク電極25a,25bを同電位とすることにより、イオンビームをビームラインAに沿って下流側に通過させる。ビームパーク装置24は、イオンビームを下流側に通過させる第1モードと、イオンビームをビームダンプ26に入射させる第2モードとを切り替えて動作可能となるよう構成される。
【0028】
質量分析スリット23の下流にはインジェクタファラデーカップ28が設けられる。インジェクタファラデーカップ28は、インジェクタ駆動部29の動作によりビームラインAに出し入れ可能となるよう構成される。インジェクタ駆動部29は、インジェクタファラデーカップ28をビームラインAの延びる方向と直交する方向(例えばy方向)に移動させる。インジェクタファラデーカップ28は、図2の破線で示すようにビームラインA上に配置された場合、下流側に向かうイオンビームを遮断する。一方、図2の実線で示すように、インジェクタファラデーカップ28がビームラインA上から外された場合、下流側に向かうイオンビームの遮断が解除される。
【0029】
インジェクタファラデーカップ28は、質量分析部20により質量分析されたイオンビームのビーム電流を計測するよう構成される。インジェクタファラデーカップ28は、質量分析磁石21の磁場強度を変化させながらビーム電流を測定することにより、イオンビームの質量分析スペクトラムを計測できる。計測した質量分析スペクトラムを用いて、質量分析部20の質量分解能を算出することができる。
【0030】
ビーム整形部30は、収束/発散四重極レンズ(Qレンズ)などの収束/発散装置を備えており、質量分析部20を通過したイオンビームを所望の断面形状に整形するよう構成されている。ビーム整形部30は、例えば、電場式の三段四重極レンズ(トリプレットQレンズともいう)で構成され、三つの四重極レンズ30a,30b,30cを有する。ビーム整形部30は、三つのレンズ装置30a~30cを用いることにより、イオンビームの収束または発散をx方向およびy方向のそれぞれについて独立に調整しうる。ビーム整形部30は、磁場式のレンズ装置を含んでもよく、電場と磁場の双方を利用してビームを整形するレンズ装置を含んでもよい。
【0031】
ビーム走査部32は、ビームの往復走査を提供するよう構成され、整形されたイオンビームをx方向に走査するビーム偏向装置である。ビーム走査部32は、ビーム走査方向(x方向)に対向する走査電極対を有する。走査電極対は可変電圧電源(図示せず)に接続されており、走査電極対の間に印加される電圧を周期的に変化させることにより、電極間に生じる電界を変化させてイオンビームをさまざまな角度に偏向させる。その結果、イオンビームがx方向の走査範囲全体にわたって走査される。図1において、矢印Xによりビームの走査方向及び走査範囲を例示し、走査範囲でのイオンビームの複数の軌跡を一点鎖線で示している。
【0032】
ビーム平行化部34は、走査されたイオンビームの進行方向を設計上のビームラインAの軌道と平行にするよう構成される。ビーム平行化部34は、y方向の中央部にイオンビームの通過スリットが設けられた円弧形状の複数の平行化レンズ電極を有する。平行化レンズ電極は、高圧電源(図示せず)に接続されており、電圧印加により生じる電界をイオンビームに作用させて、イオンビームの進行方向を平行に揃える。なお、ビーム平行化部34は他のビーム平行化装置で置き換えられてもよく、ビーム平行化装置は磁界を利用する磁石装置として構成されてもよい。
【0033】
ビーム平行化部34の下流には、イオンビームを加速または減速させるためのAD(Accel/Decel)コラム(図示せず)が設けられてもよい。
【0034】
角度エネルギーフィルタ(AEF)36は、イオンビームのエネルギーを分析し必要なエネルギーのイオンを下方に偏向して注入処理室16に導くよう構成されている。角度エネルギーフィルタ36は、電界偏向用のAEF電極対を有する。AEF電極対は、高圧電源(図示せず)に接続される。図2において、上側のAEF電極に正電圧、下側のAEF電極に負電圧を印加させることにより、イオンビームを下方に偏向させる。なお、角度エネルギーフィルタ36は、磁界偏向用の磁石装置で構成されてもよく、電界偏向用のAEF電極対と磁石装置の組み合わせで構成されてもよい。
【0035】
このようにして、ビームライン装置14は、ウェハWに照射されるべきイオンビームを注入処理室16に供給する。
【0036】
注入処理室16は、ビームラインAの上流側から順に、エネルギースリット38、プラズマシャワー装置40、サイドカップ42(42L,42R)、プロファイラカップ44およびビームストッパ46を備える。注入処理室16は、図2に示されるように、1枚又は複数枚のウェハWを保持するプラテン駆動装置50を備える。
【0037】
エネルギースリット38は、角度エネルギーフィルタ36の下流側に設けられ、角度エネルギーフィルタ36とともにウェハWに入射するイオンビームのエネルギー分析をする。エネルギースリット38は、ビーム走査方向(x方向)に横長のスリットで構成されるエネルギー制限スリット(EDS;Energy Defining Slit)である。エネルギースリット38は、所望のエネルギー値またはエネルギー範囲のイオンビームをウェハWに向けて通過させ、それ以外のイオンビームを遮蔽する。
【0038】
プラズマシャワー装置40は、エネルギースリット38の下流側に位置する。プラズマシャワー装置40は、イオンビームのビーム電流量に応じてイオンビームおよびウェハWの表面(ウェハ処理面)に低エネルギー電子を供給し、イオン注入で生じるウェハ処理面の正電荷のチャージアップを抑制する。プラズマシャワー装置40は、例えば、イオンビームが通過するシャワーチューブと、シャワーチューブ内に電子を供給するプラズマ発生装置とを含む。
【0039】
サイドカップ42(42R,42L)は、ウェハWへのイオン注入処理中にイオンビームのビーム電流を測定するよう構成される。図2に示されるように、サイドカップ42R,42Lは、ビームラインA上に配置されるウェハWに対して左右(x方向)にずれて配置されており、イオン注入時にウェハWに向かうイオンビームを遮らない位置に配置される。イオンビームは、ウェハWが位置する範囲を超えてx方向に走査されるため、イオン注入時においても走査されるビームの一部がサイドカップ42R、42Lに入射する。これにより、イオン注入処理中のビーム電流量がサイドカップ42R、42Lにより計測される。
【0040】
プロファイラカップ44は、ウェハ処理面におけるビーム電流を測定するよう構成される。プロファイラカップ44は、プロファイラ駆動装置45の動作により可動となるよう構成され、イオン注入時にウェハWが位置する注入位置から待避され、ウェハWが注入位置にないときに注入位置に挿入される。プロファイラカップ44は、x方向に移動しながらビーム電流を測定することにより、x方向のビーム走査範囲の全体にわたってビーム電流を測定することができる。プロファイラカップ44は、ビーム走査方向(x方向)の複数の位置におけるビーム電流を同時に計測可能となるように、複数のファラデーカップがx方向に並んでアレイ状に形成されてもよい。
【0041】
プロファイラカップ44は、第1プロファイラカップ44aと、第2プロファイラカップ44bとを含む。第1プロファイラカップ44aは、注入工程の前になされる準備工程で使用される第1ファラデーカップであり、通常測定用のファラデーカップである。第2プロファイラカップ44bは、校正工程で使用される第2ファラデーカップであり、通常時に使用されない校正用のファラデーカップである。第2プロファイラカップ44bの手前には遮蔽部材43が設けられており、注入工程や準備工程において第2プロファイラカップ44bにイオンビームが入射不可となるよう構成される。なお、遮蔽部材43は、第2プロファイラカップ44bへのイオンビームの入射を遮るための専用部材でなくてもよく、注入処理室16内に設けられる任意の構造体が遮蔽部材43として機能してもよい。例えば、注入処理室16内に設けられる任意の構造体の少なくとも一部が遮蔽部材43であってもよい。
【0042】
第2プロファイラカップ44bは、第1プロファイラカップ44aに比べて測定精度が高くなるように構成されてもよい。例えば、第2プロファイラカップ44bは、第1プロファイラカップ44aよりも構成部品の加工精度が高くなるよう構成され、測定対象とするイオンビームが入射する開口のサイズの公差が小さくなるように加工されてもよい。また、第2プロファイラカップ44bは、第1プロファイラカップ44aに比べて使用による測定精度の低下が遅くなるように構成されてもよい。例えば、第2プロファイラカップ44bは、第1プロファイラカップ44aよりも構成部品の耐消耗性が高くなるよう構成されてもよい。
【0043】
第1プロファイラカップ44aおよび第2プロファイラカップ44bは、互いに独立して可動となるよう構成される。第1プロファイラカップ44aは、プロファイラ駆動装置45の第1駆動軸45aに沿ってx方向に移動可能となるよう構成される。第2プロファイラカップ44bは、プロファイラ駆動装置45の第2駆動軸45bに沿ってx方向に移動可能となるよう構成される。第1プロファイラカップ44aおよび第2プロファイラカップ44bは、互いに平行に移動可能となるよう構成される。
【0044】
サイドカップ42およびプロファイラカップ44の少なくとも一方は、ビーム電流量を測定するための単一のファラデーカップを備えてもよいし、ビームの角度情報を測定するための角度計測器を備えてもよい。角度計測器は、例えば、スリットと、スリットからビーム進行方向(z方向)に離れて設けられる複数の電流検出部とを備える。角度計測器は、例えば、スリットを通過したビームをスリット幅方向に並べられる複数の電流検出部で計測することにより、スリット幅方向のビームの角度成分を測定できる。サイドカップ42およびプロファイラカップ44の少なくとも一方は、x方向の角度情報を測定可能な第1角度測定器と、y方向の角度情報を測定可能な第2角度測定器とを備えてもよい。
【0045】
プラテン駆動装置50は、ウェハ保持装置52と、往復運動機構54と、ツイスト角調整機構56と、チルト角調整機構58とを含む。ウェハ保持装置52は、ウェハWを保持するための静電チャック等を含む。往復運動機構54は、ビーム走査方向(x方向)と直交する往復運動方向(y方向)にウェハ保持装置52を往復運動させることにより、ウェハ保持装置52に保持されるウェハをy方向に往復運動させる。図2において、矢印YによりウェハWの往復運動を例示する。
【0046】
ツイスト角調整機構56は、ウェハWの回転角を調整する機構であり、ウェハ処理面の法線を軸としてウェハWを回転させることにより、ウェハの外周部に設けられるアライメントマークと基準位置との間のツイスト角を調整する。ここで、ウェハのアライメントマークとは、ウェハの外周部に設けられるノッチやオリフラのことをいい、ウェハの結晶軸方向やウェハの周方向の角度位置の基準となるマークをいう。ツイスト角調整機構56は、ウェハ保持装置52と往復運動機構54の間に設けられ、ウェハ保持装置52とともに往復運動される。
【0047】
チルト角調整機構58は、ウェハWの傾きを調整する機構であり、ウェハ処理面に向かうイオンビームの進行方向とウェハ処理面の法線との間のチルト角を調整する。本実施の形態では、ウェハWの傾斜角のうち、x方向の軸を回転の中心軸とする角度をチルト角として調整する。チルト角調整機構58は、往復運動機構54と注入処理室16の内壁の間に設けられており、往復運動機構54を含むプラテン駆動装置50全体をR方向に回転させることでウェハWのチルト角を調整するように構成される。
【0048】
プラテン駆動装置50は、イオンビームがウェハWに照射される注入位置と、ウェハ搬送装置18との間でウェハWが搬入または搬出される搬送位置との間でウェハWが移動可能となるようにウェハWを保持する。図2は、ウェハWが注入位置にある状態を示しており、プラテン駆動装置50は、ビームラインAとウェハWとが交差するようにウェハWを保持する。ウェハWの搬送位置は、ウェハ搬送装置18に設けられる搬送機構または搬送ロボットにより搬送口48を通じてウェハWが搬入または搬出される際のウェハ保持装置52の位置に対応する。
【0049】
ビームストッパ46は、ビームラインAの最下流に設けられ、例えば、注入処理室16の内壁に取り付けられる。ビームラインA上にウェハWが存在しない場合、イオンビームはビームストッパ46に入射する。ビームストッパ46は、注入処理室16とウェハ搬送装置18の間を接続する搬送口48の近くに位置しており、搬送口48よりも鉛直下方の位置に設けられる。
【0050】
ビームストッパ46には、複数のチューニングカップ47(47a,47b,47c,47d)が設けられている。複数のチューニングカップ47は、ビームストッパ46に入射するイオンビームのビーム電流を測定するよう構成されるファラデーカップである。複数のチューニングカップ47は、x方向に間隔をあけて配置されている。複数のチューニングカップ47は、例えば、注入位置におけるビーム電流をプロファイラカップ44を用いずに簡易的に測定するために用いられる。
【0051】
イオン注入装置10は、制御装置60をさらに備える。制御装置60は、イオン注入装置10の動作全般を制御する。制御装置60は、ハードウェア的には、コンピュータのCPUやメモリをはじめとする素子や機械装置で実現され、ソフトウェア的にはコンピュータプログラム等によって実現される。制御装置60により提供される各種機能は、ハードウェアおよびソフトウェアの連携によって実現されうる。
【0052】
図3は、図1の注入処理室16内の概略構成を示す正面図であり、イオンビームBが照射されるウェハWの処理面WSを正面から見ている。イオンビームBは、矢印Xで示されるようにx方向に往復走査され、x方向に往復走査されたスキャンビームSBとしてウェハWに入射する。ウェハWは、プラテン駆動装置50に保持されて矢印Yで示されるようにy方向に往復運動される。図3では、プラテン駆動装置50の動作によりy方向に往復運動するウェハWについて、最上位置のウェハW1と最下位置のウェハW2を破線で図示している。また、注入工程においてウェハ処理面WSにスキャンビームSBが入射してイオンが注入される注入位置70を細実線で示している。
【0053】
イオンビームBは、ウェハWが位置する注入範囲62と、注入範囲62よりも外側のモニタ範囲64L,64Rとを含む照射範囲66にわたって往復走査される。左右のモニタ範囲64L,64Rのそれぞれには、左右のサイドカップ42L,42Rが配置されている。左右のサイドカップ42L,42Rは、注入工程においてモニタ範囲64L,64RまでオーバースキャンされるイオンビームBを測定することができる。注入位置70のx方向の位置は、注入範囲62と一致する。注入位置70のy方向の位置は、イオンビームBまたはスキャンビームSBのy方向の位置と一致する。注入位置70のz方向の位置は、ウェハ処理面WSのz方向の位置と一致する。
【0054】
プロファイラカップ44は、注入工程において照射範囲66よりも外側の非照射範囲68Rに待避されている。図示する構成では、プロファイラ駆動装置45が右側に配置され、注入工程において、第1プロファイラカップ44aおよび第2プロファイラカップ44bが右側の非照射範囲68Rに待避されている。なお、プロファイラ駆動装置45が左側に配置される構成では、注入工程において、第1プロファイラカップ44aおよび第2プロファイラカップ44bが左側の非照射範囲68Lに待避されてもよい。
【0055】
遮蔽部材43は、右側の非照射範囲68Rに設けられ、ビーム進行方向(z方向)に見て第2プロファイラカップ44bと重なる位置に配置されている。言いかえれば、遮蔽部材43のビーム進行方向と直交する方向(xおよびy方向)の位置は、第2プロファイラカップ44bのビーム進行方向と直交する方向(xおよびy方向)の位置と少なくとも部分的に一致している。遮蔽部材43は、校正工程以外において第2プロファイラカップ44bに向かうイオンビームBを遮蔽するために設けられる。遮蔽部材43を設けることで、校正工程以外においてイオンビームBが第2プロファイラカップ44bに入射不可となり、イオンビームBが入射することによる第2プロファイラカップ44bの消耗や汚れが防止される。
【0056】
つづいて、イオン注入装置10の動作について説明する。制御装置60は、イオン注入装置10の動作を制御し、注入工程、準備工程および校正工程が実行されるようにする。
【0057】
図4は、注入工程における注入処理室16内の構成を模式的に示す上面図である。図4は、図3に示されるウェハWおよびプロファイラカップ44の配置に対応する。注入工程において、ウェハWは注入範囲62に配置され、プロファイラカップ44は非照射範囲68に配置される。第1プロファイラカップ44aは、破線で示される第1待避位置71に配置され、第2プロファイラカップ44bは、破線で示される第2待避位置72に配置される。第1待避位置71および第2待避位置72は、右側の非照射範囲68Rに位置する。図示する例において、第1待避位置71および第2待避位置72は、x方向に隣り合っている。第1待避位置71は、第2待避位置72よりも左側に位置し、第2待避位置72よりも注入位置70の近くに位置する。第2待避位置72には、遮蔽部材43が設けられている。遮蔽部材43は、第2待避位置72にある第2プロファイラカップ44bの入口を塞ぐように配置されている。
【0058】
図4の注入工程では、サイドカップ42L,42Rを用いてビーム電流を常時測定できる。一方、注入工程では、プロファイラカップ44やチューニングカップ47を用いてビーム電流を常時測定することはできず、間欠的な測定しかできない。したがって、注入工程では、サイドカップ42L,42Rにより測定されるビーム電流測定値に基づいて、ウェハ処理面WSに注入されるイオンのドーズ量が制御される。注入工程の途中でサイドカップ42L,42Rにより測定されるビーム電流測定値が変化した場合、ウェハWのy方向の往復運動の速度を変化させることで、ウェハ処理面WSのドーズ量分布が調整される。例えば、ウェハ処理面WSの面内で均一なドーズ量分布を実現しようとする場合、サイドカップ42L,42Rによりモニタされるビーム電流値に比例する速度でウェハWを往復運動させる。具体的には、モニタするビーム電流測定値が増加する場合にはウェハWの往復運動を速くし、モニタするビーム電流値が低下する場合にはウェハWの往復運度を遅くする。これにより、スキャンビームSBのビーム電流の変動に起因するウェハ処理面内におけるドーズ量分布のばらつきを防ぐことができる。
【0059】
注入工程において、制御装置60は、サイドカップ42L,42Rにより測定されるビーム電流値を取得し、取得したビーム電流値に基づいてプラテン駆動装置50の動作を制御する。制御装置60は、サイドカップ42L,42Rから取得したビーム電流値に比例する速度でウェハWが往復運動されるようにプラテン駆動装置50の速度指令を生成し、プラテン駆動装置50の動作を制御する。
【0060】
図5は、準備工程における注入処理室16内の構成を模式的に示す上面図である。準備工程は、注入工程の事前に実行され、注入範囲62およびモニタ範囲64L,64RにおけるスキャンビームSBのビーム電流が測定される。注入範囲62におけるビーム電流は、第1プロファイラカップ44aまたはチューニングカップ47を用いて測定できる。モニタ範囲64L,64Rにおけるビーム電流は、注入工程と同様、サイドカップ42L,42Rを用いて測定できる。
【0061】
第1プロファイラカップ44aは、準備工程において、第1待避位置71から複数の第1測定位置76にx方向に移動する。複数の第1測定位置76は、ビーム進行方向に見て注入位置70と重なり、注入工程におけるウェハ処理面WSに一致する平面(測定面MSともいう)にある。言いかえれば、複数の第1測定位置76のビーム進行方向と直交する方向(xおよびy方向)の位置は、注入位置70のビーム進行方向と直交する方向(xおよびy方向)の位置に一致している。したがって、第1プロファイラカップ44aは、注入工程においてウェハWにイオンが注入される注入位置70と同じ位置でビーム電流を測定可能である。第1プロファイラカップ44aは、x方向に移動しながらビーム電流を測定することで、注入位置70(または測定面MS)におけるx方向のビーム電流密度分布を測定することもできる。
【0062】
複数のチューニングカップ47は、ビーム進行方向に見て注入位置70と重なるが、注入位置70(または測定面MS)からビーム進行方向の下流側に離れている。複数のチューニングカップ47は、第1プロファイラカップ44aのように第1待避位置71と第1測定位置76の間で移動させる必要がないため、第1プロファイラカップ44aに比べて簡易的に注入範囲62におけるビーム電流を測定することができる。
【0063】
制御装置60は、準備工程において、注入処理室16内に設けられる各種ファラデーカップで測定されるビーム電流測定値を取得する。具体的には、サイドカップ42L,42R、第1プロファイラカップ44aおよび複数のチューニングカップ47で測定されるビーム電流測定値をそれぞれ取得する。制御装置60は、取得したビーム電流測定値間の比率を記憶し、注入工程においてサイドカップ42L,42Rにより測定されるビーム電流測定値から注入位置70(つまり、ウェハ処理面WS)におけるビーム電流値を算出できるようにする。通常、各種ファラデーカップで測定されるビーム電流測定値間の比率は、ビームライン装置14のビーム光学系の設定に依存し、イオン生成装置12から引き出されるイオンビームBのビーム電流が多少変動したとしても、ビーム電流測定値の比率はほぼ一定である。つまり、準備工程においてビーム光学系の設定が決まれば、その後の注入工程におけるビーム電流測定値間の比率も変わらない。したがって、準備工程においてビーム電流測定値間の比率を記憶しておけば、その比率と、サイドカップ42L,42Rにより測定されるビーム電流測定値とに基づいて、注入工程においてウェハWにイオンが注入される注入位置70(つまり、ウェハ処理面WS)でのビーム電流値を算出できる。
【0064】
なお、図4の注入工程および図5の準備工程では、第2プロファイラカップ44bは使用されない。注入工程および準備工程において、第2プロファイラカップ44bは、遮蔽部材43によりスキャンビームSBの入射が遮られる第2待避位置72に配置されたままとなる。第2プロファイラカップ44bは、第1プロファイラカップ44aのビーム電流測定値を校正するための校正工程においてのみ使用される。
【0065】
図6は、校正工程における注入処理室16内の構成を模式的に示す上面図である。第2プロファイラカップ44bは、校正工程において、第2待避位置72から複数の第2測定位置77にx方向に移動する。複数の第2測定位置77は、ビーム進行方向に見て注入位置70と重なる。言いかえれば、複数の第2測定位置77のビーム進行方向と直交する方向(xおよびy方向)の位置は、注入位置70のビーム進行方向と直交する方向(xおよびy方向)の位置に一致している。また、複数の第2測定位置77は、注入位置70(または測定面MS)にあり、ビーム進行方向の位置が複数の第1測定位置76と同等である。したがって、複数の第2測定位置77のそれぞれは、複数の第1測定位置76のそれぞれと少なくとも部分的に一致する。第2プロファイラカップ44bは、注入工程におけるウェハ処理面WSと同じ位置でビーム電流を測定可能であり、第1プロファイラカップ44aと同じ位置でビーム電流を測定可能である。第2プロファイラカップ44bは、x方向に移動しながらビーム電流を測定することで、注入位置70(または測定面MS)におけるx方向のビーム電流密度分布を測定してもよい。
【0066】
校正工程において、第1プロファイラカップ44aは、第1待避位置71とは異なる第3待避位置73に配置されてもよい。第3待避位置73は、左側の非照射範囲68Lに位置する。第3待避位置73は、注入範囲62を挟んで第1待避位置71および第2待避位置72とは反対側に位置する。第1プロファイラカップ44aを第3待避位置73に待避させることで、第2プロファイラカップ44bを第2待避位置72から複数の第2測定位置77に移動させることができる。
【0067】
校正工程において、第1プロファイラカップ44aおよび第2プロファイラカップ44bのそれぞれを独立に移動させてもよいし、それぞれを同時に移動させてもよい。独立に移動させる場合、まず、第1プロファイラカップ44aを複数の第1測定位置76の少なくともいずれかに移動させ、第1プロファイラカップ44aにより注入位置70のビーム電流測定値を測定する。つづいて、第2プロファイラカップ44bを複数の第2測定位置77の少なくともいずれかに移動させ、第2プロファイラカップ44bにより注入位置70のビーム電流測定値を測定する。また、同時に移動させる場合、第1プロファイラカップ44aを第1待避位置71から第3待避位置73に向けてx方向に移動させるとともに、複数の第1測定位置76にて第1プロファイラカップ44aによりビーム電流測定値を測定する。このときに、第2プロファイラカップ44bを第2待避位置72から複数の第2測定位置77の少なくとも一つに移動させ、複数の第2測定位置77の少なくとも一つにおいて第2プロファイラカップ44bによりビーム電流測定値を測定する。このようにプロファイラカップ44を動作させることで、同一条件のスキャンビームSBについて、第1プロファイラカップ44aおよび第2プロファイラカップ44bのそれぞれを用いて、注入位置70における同じ測定位置で測定されるビーム電流測定値を取得できる。
【0068】
制御装置60は、第1プロファイラカップ44aおよび第2プロファイラカップ44bにより測定されるビーム電流測定値に基づいて、第1プロファイラカップ44aのビーム電流測定値を校正するための校正パラメータを決定する。校正工程において第1プロファイラカップ44aにより測定される第1ビーム電流測定値をIとし、校正工程において第2プロファイラカップ44bにより測定される第2ビーム電流測定値をIとした場合、校正パラメータkは、第1ビーム電流測定値Iと第2ビーム電流測定値Iの比率I/Iで表すことができる(つまり、k=I/I)。校正パラメータkを決定することにより、準備工程にて第1プロファイラカップ44aにより測定されるビーム電流測定値Iに基づいて、第2プロファイラカップ44bを基準とする校正されたビーム電流値IをI=kIの式を用いて算出できる。注入工程においては、校正パラメータkを用いて校正されたビーム電流値kIを基準としてウェハ処理面WSにおけるドーズ量が制御される。
【0069】
つづいて、校正工程の実行タイミングについて説明する。校正工程は、未使用のイオン注入装置10の運用開始時および第1プロファイラカップ44aのクリーニングや交換といったメンテナンス時に実行される。イオン注入装置10の運用開始時においては、校正パラメータkが未定であるため、イオン注入装置10の運用開始時に校正工程を実行することで、校正パラメータの初期値kA,0が決定される。また、第1プロファイラカップ44aのメンテナンス時には、メンテナンス後の第1プロファイラカップ44aに対する校正パラメータkが未定であるため、メンテナンス後に校正工程を実行することで、メンテナンス後における校正パラメータの初期値kA,i(i=1,2,3・・・)が決定される。ここで、添字のiは、メンテナンスを識別するための番号であり、例えばメンテナンスを実行した回数iである。例えば、1回目のメンテナンス後には初期値kA,1が決定され、2回目のメンテナンス後には初期値kA,2が決定され、3回目のメンテナンス後には初期値kA,3が決定される。制御装置60は、このようにして決定された校正パラメータの初期値kA,i(i=0,1,2,3・・・)をそれぞれ記憶する。制御装置60は、校正パラメータの初期値kA,iとともに、初期値kA,iの決定日時や校正工程の前に実施したメンテナンスの内容を示す情報を記憶してもよい。
【0070】
校正工程は、運用開始時やメンテナンス時以外の任意のタイミングで実行されてもよく、例えば、イオン注入装置10の運用時に定期的に校正工程を実行してもよい。具体的には、前回の校正工程から所定時間経過した場合や、前回の校正工程の後に第1プロファイラカップ44aにて測定されるビーム電流測定値の積算値が所定の閾値を超えた場合に校正工程を実行してもよい。このような校正工程においては、校正パラメータの更新値kB,j(j=1,2,3・・・)が決定される。校正パラメータの更新値kB,jは、校正パラメータの初期値kA,iとは区別して記憶される。ここで、添字のjは、校正工程を識別するための番号であり、例えば校正工程を実行した回数jである。例えば、校正パラメータの初期値kA,iの決定後における1回目の校正工程において第1更新値kB,1が決定され、2回目の校正工程において第2更新値kB,2が決定され、3回目の校正工程において第3更新値kB,3が決定される。校正パラメータの更新後の注入工程においては、校正パラメータの更新値kB,jを用いて校正されたビーム電流値kB,jを基準としてウェハ処理面WSにおけるドーズ量が制御される。具体的には、最新の校正工程において決定された校正パラメータの更新値kB,jを用いる。制御装置60は、このようにして決定された校正パラメータの更新値kB,j(j=1,2,3・・・)をそれぞれ記憶する。制御装置60は、校正パラメータの更新値kB,jとともに、校正工程の実行日時や校正工程を実行する契機となった事象を示す情報を記憶してもよい。
【0071】
制御装置60は、校正工程において決定される校正パラメータの値が所定条件を満たす場合にのみ校正パラメータを更新してもよい。例えば、校正工程において新たに決定される校正パラメータの値kと校正パラメータの初期値kA,iの差が所定範囲内である場合に校正パラメータの値を更新してもよい。一方、校正工程において新たに決定される校正パラメータの値kと校正パラメータの初期値kA,iの差が所定範囲内でない場合に校正パラメータの値を更新せずアラートを出力してもよい。校正パラメータの変化量が所定範囲内に収まらない場合には、測定系において何らかの異常が発生している可能性が高いためである。制御装置60は、校正工程において新たに決定される校正パラメータの値kと校正パラメータの初期値kA,iの差の大きさに基づいて、第1プロファイラカップ44aのクリーニングや交換をユーザに促してもよい。比較対象とする校正パラメータの初期値kA,iは、最新の校正パラメータの初期値であってもよい。例えば、メンテナンスが3回実行されている場合(つまり、i=3)、最新の校正パラメータの初期値kA,3を比較対象としてもよい。なお、比較対象とする校正パラメータの初期値kA,iは、最新の校正パラメータの初期値でなくてもよい。例えば、メンテナンスが3回実行されている場合(つまり、i=3)、運用開始時の校正パラメータの初期値kA,0を比較対象としてもよいし、1回目や2回目のメンテナンス後の校正パラメータの初期値kA,1、kA,2を比較対象としてもよい。複数の校正パラメータの初期値kA,i(例えば、i=0,1,2,3)のいずれか二以上を比較対象としてもよい。
【0072】
制御装置60は、校正パラメータの初期値kA,iを決定する初期状態の校正工程において、サイドカップ42やチューニングカップ47といった「第3ファラデーカップ」により測定されるビーム電流測定値を取得してもよい。サイドカップ42およびチューニングカップ47は、通常測定用の第1ファラデーカップ(第1プロファイラカップ44a)および校正測定用の第2ファラデーカップ(第2プロファイラカップ44b)とは異なるという点で、第3ファラデーカップと言える。サイドカップ42は、ビーム進行方向に見て注入位置70と重ならない位置でビーム電流を測定する第3ファラデーカップと言える。一方、チューニングカップ47は、ビーム進行方向に見て注入位置70と重なる位置でビーム電流を測定する第3ファラデーカップと言える。
【0073】
制御装置60は、初期状態の校正工程において、第1ファラデーカップおよび第3ファラデーカップのビーム電流測定値を取得し、これらのビーム電流測定値間の比率を初期値として記憶する。制御装置60は、例えば、第1プロファイラカップ44aとサイドカップ42のそれぞれで測定されるビーム電流測定値間の比率の初期値を記憶してもよいし、第1プロファイラカップ44aとチューニングカップ47のそれぞれで測定されるビーム電流測定値間の比率の初期値を記憶してもよい。
【0074】
制御装置60は、初期状態の校正工程において、複数の第3ファラデーカップのビーム電流測定値間の比率を取得し、これらの電流測定値間の比率を初期値として記憶してもよい。制御装置60は、左右のサイドカップ42L,42Rのそれぞれで測定されるビーム電流測定値間の比率の初期値を記憶してもよいし、複数のチューニングカップ47a~47dのそれぞれで測定されるビーム電流測定値間の比率の初期値を記憶してもよい。制御装置60は、サイドカップ42とチューニングカップ47にて測定されるビーム電流測定値間の比率の初期値を記憶してもよい。
【0075】
制御装置60は、準備工程において各種ファラデーカップにて測定されるビーム電流測定値間の比率に基づいて、校正工程の要否を判定してもよい。制御装置60は、例えば、初期状態の校正工程において第1ファラデーカップと第3ファラデーカップにより測定されるビーム電流値間の比率の初期値と、準備工程において第1ファラデーカップと第3ファラデーカップにより測定されるビーム電流値間の比率を比較し、両者の差が第1閾値を超える場合に校正工程を実行するようにしてもよい。制御装置60は、初期状態の校正工程において第1ファラデーカップと第3ファラデーカップにより測定されるビーム電流値の比率の初期値間と、準備工程において第1ファラデーカップと第3ファラデーカップにより測定されるビーム電流値間の比率の差が第1閾値よりも大きい第2閾値を超える場合に測定系に何らかの異常が発生したとみなしてアラートを出力してもよい。
【0076】
制御装置60は、準備工程において複数の第3ファラデーカップにより測定されるビーム電流値間の比率に基づいて、校正工程の要否を判定したり、アラートを出力したりしてもよい。例えば、初期状態の校正工程において複数の第3ファラデーカップにより測定されるビーム電流値間の比率の初期値と、準備工程において複数の第3ファラデーカップにより測定されるビーム電流値間の比率を比較し、両者の差が第3閾値を超える場合に校正工程を実行するようにしてもよい。また、初期状態の校正工程において複数の第3ファラデーカップにより測定されるビーム電流値間の比率の初期値と、準備工程において複数の第3ファラデーカップにより測定されるビーム電流値間の比率の差が第3閾値よりも大きい第4閾値を超える場合に測定系に何らかの異常が発生したとみなしてアラートを出力してもよい。
【0077】
制御装置60は、準備工程において各種ファラデーカップにて測定されるビーム電流測定値間の比率の変化量に基づいて、校正工程の要否を判定したり、アラートを出力したりしてもよい。制御装置60は、準備工程において各種ファラデーカップにて測定されるビーム電流測定値間の比率の変化量が所定の閾値を超えた場合に、校正工程を実行したり、アラートを出力したりしてもよい。
【0078】
本実施の形態によれば、準備工程において第1ファラデーカップおよび第3ファラデーカップのそれぞれにより測定されるビーム電流測定値に基づいて、第1ファラデーカップの再校正の要否やメンテナンスの要否を自動的に検知できる。第1ファラデーカップの再校正が必要であることが検知された場合には、校正工程を自動実行することで、第1ファラデーカップの校正パラメータを適切な値に自動更新することができる。その結果、イオン注入装置10を長期間にわたって連続的に使用する場合であっても、第1ファラデーカップが高精度で校正された状態を維持でき、第1ファラデーカップを用いる測定の精度が高い状態を維持できる。
【0079】
なお、本実施の形態において、第1プロファイラカップ44aと第2プロファイラカップ44bは、同一の測定面MSにてビーム電流を測定するよう構成されなくてもよい。例えば、第1プロファイラカップ44aがウェハ処理面WSに一致する第1測定面MSにてビーム電流を測定するよう構成される一方、第2プロファイラカップ44bが第1測定面MSからビーム進行方向にずれた第2測定面にてビーム電流を測定するよう構成されてもよい。第2プロファイラカップ44bは、第1プロファイラカップ44aよりもビーム進行方向の上流側に配置されてもよいし、第1プロファイラカップ44aよりもビーム進行方向の下流側に配置されてもよい。
【0080】
本実施の形態において、第1プロファイラカップ44aと第2プロファイラカップ44bは互いに平行に移動可能となるよう構成されなくてもよい。例えば、第1プロファイラカップ44aがビーム進行方向と直交する第1方向に移動可能となるよう構成され、第2プロファイラカップ44bがビーム進行方向と直交する第2方向に移動可能となるよう構成される場合において、第1方向と第2方向が非平行であってもよい。例えば、第1方向がx方向である一方、第2方向がy方向であってもよい。この場合、第2測定位置77は、ビーム進行方向に見て複数の第1測定位置76の少なくとも一つと重なっていればよい。
【0081】
図7は、別の実施の形態に係る注入処理室116内の構成を模式的に示す上面図である。本実施の形態では、第1プロファイラカップ144aと第2プロファイラカップ144bが同一のステージ145aに取り付けられ、同一の駆動軸145bに沿って一緒にx方向に移動するよう構成される。本実施の形態について、上述の実施の形態との相違点を中心に説明する。
【0082】
注入処理室116には、サイドカップ42L,42R、プロファイラカップ144および複数のチューニングカップ47(47a~47d)が設けられる。サイドカップ42L,42Rおよび複数のチューニングカップ47は、上述の実施の形態と同様に構成される。プロファイラカップ144は、第1プロファイラカップ144aと、第2プロファイラカップ144bとを含む。第1プロファイラカップ144aは、通常測定用の第1ファラデーカップであり、第2プロファイラカップ144bは、校正用の第2ファラデーカップである。
【0083】
プロファイラ駆動装置145は、プロファイラカップ144をx方向に移動させる。プロファイラ駆動装置145は、ステージ145aと、駆動軸145bとを含む。ステージ145aは、駆動軸145bに沿ってx方向に移動可能となるよう構成される。第1プロファイラカップ144aおよび第2プロファイラカップ144bは、ステージ145aに搭載される。第2プロファイラカップ144bは、第1プロファイラカップ144aに対する位置が固定されたまま第1プロファイラカップ144aと一緒にx方向に移動可能となるよう構成されている。第2プロファイラカップ144bは、第1プロファイラカップ144aのx方向の隣に配置されている。第2プロファイラカップ144bは、第1プロファイラカップ144aとビーム進行方向の位置が同じとなるように配置されている。
【0084】
第2プロファイラカップ144bには遮蔽部材143が取り付けられている。遮蔽部材143は、第2プロファイラカップ144bに対して着脱可能となるよう構成される。遮蔽部材143は、例えば、ネジやボルトといった締結部材を用いて第2プロファイラカップ144bに固定される。遮蔽部材143は、準備工程および注入工程において第2プロファイラカップ144bに装着された状態となり、校正工程において第2プロファイラカップ144bから除去された状態となる。遮蔽部材143は、例えば、校正工程の実行前に注入処理室116を大気開放することで第2プロファイラカップ144bから手動で除去される。遮蔽部材143は、校正工程の実行後に注入処理室116を再度大気開放することで第2プロファイラカップ144bに手動で装着される。準備工程および注入工程においてステージ145aがx方向に移動する際、遮蔽部材143は、第2プロファイラカップ144bと一緒にx方向に移動する。
【0085】
遮蔽部材143は、第2プロファイラカップ144bに対して変位可能となるよう構成されてもよい。遮蔽部材143は、スライド扉やフラップ扉として構成され、図示しない駆動機構により開閉可能となるよう構成されてもよい。遮蔽部材143は、注入工程や準備工程において第2プロファイラカップ144bとビーム進行方向に見て重なり、校正工程において第2プロファイラカップ144bとビーム進行方向に見て重ならないように構成されてもよい。遮蔽部材143は、第1プロファイラカップ144aのクリーニングや交換といったメンテナンス時において、同時にクリーニングや交換がなされてもよい。
【0086】
本実施の形態においても、通常測定用の第1プロファイラカップ144aとは別に、校正用の第2プロファイラカップ144bを設けることで、第1プロファイラカップ144aのビーム電流測定値を適切に校正することができる。また、準備工程および注入工程において第2プロファイラカップ144bに遮蔽部材143を取り付けておくことで、校正工程以外において第2ファラデーカップがイオンビーム照射によって消耗したり汚れたりするのを防ぐことができる。
【0087】
図8は、さらに別の実施の形態に係る注入処理室216内の構成を模式的に示す上面図である。本実施の形態では、校正用の第2ファラデーカップとして、注入範囲62の中央に配置される校正用チューニングカップ247を用いる。したがって、本実施の形態では、校正用の第2ファラデーカップが注入処理室216に対して固定されており、移動不可となるよう構成される。本実施の形態について、上述の実施の形態との相違点を中心に説明する。
【0088】
注入処理室216には、サイドカップ42L,42R、プロファイラカップ244、複数のチューニングカップ47(47a~47d)および校正用チューニングカップ247が設けられる。サイドカップ42L,42Rおよび複数のチューニングカップ47は、上述の実施の形態と同様に構成される。プロファイラカップ244は、通常測定用の第1ファラデーカップである。校正用チューニングカップ247は、校正用の第2ファラデーカップである。
【0089】
プロファイラ駆動装置245は、プロファイラカップ244をx方向に移動させる。プロファイラ駆動装置245は、プロファイラカップ244を少なくとも第1待避位置271と第1測定位置276の間で移動させる。第1測定位置276は、ビーム進行方向に見て校正用チューニングカップ247に重なる。言いかえれば、第1測定位置276のビーム進行方向と直交する方向(x方向、y方向)の位置は、校正用チューニングカップ247のビーム進行方向と直交する方向(x方向、y方向)の位置と同じである。プロファイラ駆動装置245は、上述の実施の形態と同様に、プロファイラカップ244を複数の第1測定位置に移動させてもよく、測定面MSにおけるx方向のビーム電流密度分布の測定を可能にしてもよい。
【0090】
校正用チューニングカップ247は、注入範囲62の中央に配置され、第2チューニングカップ47bと第3チューニングカップ47cの間に配置されている。校正用チューニングカップ247は、ビーム方向に見て注入位置70と重なる位置に配置されている。校正用チューニングカップ247は、ビームストッパ46に設けられるため、注入位置70(または測定面MS)よりもビーム進行方向の下流側に離れている。校正用チューニングカップ247が設けられる位置は、第2測定位置277ということもできる。したがって、本実施の形態において、第2測定位置277は、ビーム進行方向に見て第1測定位置276と重なるが、ビーム進行方向に第1測定位置276からずれている。つまり、第2測定位置277は、第1測定位置276とビーム進行方向の位置が異なる。
【0091】
なお、校正用チューニングカップ247は、ビーム進行方向に見て注入位置70と重なる位置であれば、ビームストッパ46の任意の位置に設けることができる。校正用チューニングカップ247は、例えば、第1チューニングカップ47aと第2チューニングカップ47bの間に配置されてもよいし、第3チューニングカップ47cと第4チューニングカップ47dの間に配置されてもよい。
【0092】
校正用チューニングカップ247には遮蔽部材243が取り付けられている。遮蔽部材243は、校正用チューニングカップ247に対して着脱可能となるよう構成される。遮蔽部材243は、例えば、ネジやボルトといった締結部材を用いて校正用チューニングカップ247に固定される。遮蔽部材243は、準備工程および注入工程において校正用チューニングカップ247に装着された状態となり、校正工程において校正用チューニングカップ247から除去された状態となる。遮蔽部材243は、例えば、校正工程の実行前に注入処理室216を大気開放することで校正用チューニングカップ247から手動で除去される。遮蔽部材243は、校正工程の実行後に注入処理室216を再度大気開放することで校正用チューニングカップ247に手動で装着される。
【0093】
遮蔽部材243は、校正用チューニングカップ247に対して変位可能となるよう構成され、例えば、スライド扉やフラップ扉として構成されてもよい。遮蔽部材243は、注入工程や準備工程において校正用チューニングカップ247とビーム進行方向に見て重なり、校正工程において校正用チューニングカップ247とビーム進行方向に見て重ならないように構成されてもよい。遮蔽部材243は、プロファイラカップ244のクリーニングや交換といったメンテナンス時において、同時にクリーニングや交換がなされてもよい。
【0094】
本実施の形態においても、校正用チューニングカップ247を設けることで、プロファイラカップ244のビーム電流測定値を適切に校正することができる。また、準備工程および注入工程において校正用チューニングカップ247に遮蔽部材243を取り付けておくことで、校正工程以外において校正用チューニングカップ247がイオンビーム照射によって消耗したり汚れたりするのを防ぐことができる。
【0095】
以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の各実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて各実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれ得る。
【符号の説明】
【0096】
10…イオン注入装置、16…注入処理室、42…サイドカップ、43…遮蔽部材、44…プロファイラカップ、44a…第1プロファイラカップ、44b…第2プロファイラカップ、47…チューニングカップ、60…制御装置、70…注入位置、71…第1待避位置、72…第2待避位置、76…第1測定位置、77…第2測定位置、B…イオンビーム、W…ウェハ。
図1
図2
図3
図4
図5
図6
図7
図8