IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ウィスコンシン アラムニ リサーチ ファンデーションの特許一覧 ▶ 東芝三菱電機産業システム株式会社の特許一覧

<>
  • 特許-電動機駆動システム、及び制御方法 図1
  • 特許-電動機駆動システム、及び制御方法 図2
  • 特許-電動機駆動システム、及び制御方法 図3
  • 特許-電動機駆動システム、及び制御方法 図4
  • 特許-電動機駆動システム、及び制御方法 図5
  • 特許-電動機駆動システム、及び制御方法 図6
  • 特許-電動機駆動システム、及び制御方法 図7
  • 特許-電動機駆動システム、及び制御方法 図8
  • 特許-電動機駆動システム、及び制御方法 図9
  • 特許-電動機駆動システム、及び制御方法 図10
  • 特許-電動機駆動システム、及び制御方法 図11
  • 特許-電動機駆動システム、及び制御方法 図12
  • 特許-電動機駆動システム、及び制御方法 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-27
(45)【発行日】2023-03-07
(54)【発明の名称】電動機駆動システム、及び制御方法
(51)【国際特許分類】
   H02P 27/06 20060101AFI20230228BHJP
   H02P 21/36 20160101ALI20230228BHJP
   H02P 21/13 20060101ALI20230228BHJP
【FI】
H02P27/06
H02P21/36
H02P21/13
【請求項の数】 8
(21)【出願番号】P 2022528409
(86)(22)【出願日】2020-07-21
(65)【公表番号】
(43)【公表日】2022-09-13
(86)【国際出願番号】 JP2020029176
(87)【国際公開番号】W WO2021015296
(87)【国際公開日】2021-01-28
【審査請求日】2022-01-07
(31)【優先権主張番号】62/878,343
(32)【優先日】2019-07-25
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】16/879,029
(32)【優先日】2020-05-20
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】591013274
【氏名又は名称】ウィスコンシン アラムニ リサーチ ファンデーション
(73)【特許権者】
【識別番号】501137636
【氏名又は名称】東芝三菱電機産業システム株式会社
(74)【代理人】
【識別番号】100106909
【弁理士】
【氏名又は名称】棚井 澄雄
(74)【代理人】
【識別番号】100154852
【弁理士】
【氏名又は名称】酒井 太一
(74)【代理人】
【識別番号】100135301
【弁理士】
【氏名又は名称】梶井 良訓
(72)【発明者】
【氏名】ヤン・シュ
(72)【発明者】
【氏名】森藤 力
【審査官】佐藤 彰洋
(56)【参考文献】
【文献】特開2016-010311(JP,A)
【文献】特開2019-013129(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02P 27/06
H02P 21/36
H02P 21/13
(57)【特許請求の範囲】
【請求項1】
誘導電動機の巻線に電流を流すインバータと、
前記インバータをベクトル制御で制御して前記誘導電動機を駆動させる制御装置と
を備え、
前記制御装置は、
前記誘導電動機の固定子磁束推定値の算定基準を複数備え、
前記誘導電動機を制動させる場合に、前記誘導電動機の損失をより多くするような前記固定子磁束推定値の算定基準を、少なくとも前記誘導電動機の回転速度に基づいて、複数の算定基準の中から選択する適正磁束指令生成ユニットを備える、
電動機駆動システム。
【請求項2】
前記適正磁束指令生成ユニットは、
前記インバータが出力する電圧と、前記インバータから前記誘導電動機の巻線に流れる電流と、前記誘導電動機の回転速度とに基づいて規定される論理値に基づいて、前記固定子磁束推定値の算定基準を、前記選択する、
請求項1に記載の電動機駆動システム。
【請求項3】
前記適正磁束指令生成ユニットは、
固定子磁束座標平面上で、前記誘導電動機の巻線に流れる電流の最大電流を示す楕円が、前記誘導電動機の巻線に係る電圧の最大電圧の円内に含まれるか否かを基準にして、前記固定子磁束推定値の算定基準を前記選択する、
請求項1に記載の電動機駆動システム。
【請求項4】
前記適正磁束指令生成ユニットは、
前記誘導電動機の回転速度が比較的低速の場合、固定子磁束座標平面上で、前記誘導電動機の巻線に流れる電流の最大電流とトルク指令値とに基づいて定まる動作点に基づいて、固定子磁束指令値の大きさを決定する、
請求項1に記載の電動機駆動システム。
【請求項5】
前記適正磁束指令生成ユニットは、
前記誘導電動機の回転速度が比較的低速の場合、前記固定子磁束座標平面上で、前記誘導電動機の巻線に流れる電流の最大電流とトルク指令値とに基づいて定まる動作点に係る固定子磁束指令値の大きさは、前記誘導電動機の巻線に掛かる最大電圧に基づいて定まる動作点に係る固定子磁束指令値の大きさよりも小さい、
請求項4に記載の電動機駆動システム。
【請求項6】
前記適正磁束指令生成ユニットは、
前記誘導電動機の回転速度が比較的高速の場合、固定子磁束座標平面上で、前記誘導電動機の巻線に係る電圧の最大電圧とトルク指令値とに基づいて定まる動作点は、
前記誘導電動機の巻線に流れる電流の最大電流を規定する楕円の内側に配置される、
請求項1に記載の電動機駆動システム。
【請求項7】
前記制御装置は、
前記誘導電動機のエアギャップトルクの指令値を、前記誘導電動機の損失と、前記誘導電動機の回転速度とに基づいて定められた値で制限するトルク指令制限ユニット
を備える請求項1に記載の電動機駆動システム。
【請求項8】
誘導電動機の巻線に電流を流すインバータと、
前記インバータをベクトル制御で制御して前記誘導電動機を駆動させる制御装置と
を備える電動機駆動システムの制御方法であって、
前記制御装置は、前記誘導電動機の固定子磁束推定値の算定基準を複数有しており、
前記誘導電動機を制動させる場合に、前記誘導電動機の損失をより多くするような前記固定子磁束推定値の算定基準を、少なくとも前記誘導電動機の回転速度に基づいて、複数の算定基準の中から選択する過程
を含む制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、電動機駆動システム、及び制御方法に関する。
この出願は、2019年7月25日に出願された米国仮特許出願第62/878,343号と、2020年5月20日に出願された米国特許出願第16/879,029号とに基づいており、優先権の利益を主張する。その全内容は、参照により本明細書に組み込まれる。
【背景技術】
【0002】
電動機駆動システムは、電力変換装置を制御することによって誘導電動機を駆動させ、条件に応じてその誘導電動機を制動させる。駆動中の誘導電動機を制動させることに関する幾つかの技術が知られている。このような誘導電動機をより安定に制動させることが、電動機駆動システムに要求されることがあった。
【先行技術文献】
【特許文献】
【0003】
【文献】米国特許第9281772号明細書
【非特許文献】
【0004】
【文献】Y. Wang, T. Ito, R.D. Lorenz, “Loss manipulation capabilities of deadbeat direct torque and flux control induction machine drives”, IEEE Energy Conversion Congress and Exposition (ECCE), pp.4554-4566, Nov. / Dec. 2015.
【文献】M. Hinkkanen, J. Luomi, “Braking scheme for vector controlled induction motor drives equipped with diode rectifier without braking resistor”, IEEE Trans. on Ind. Appl., vol. 42, no. 5, pp. 1257-1263, Sept./Oct. 2006.
【文献】J. Jiang, J. Holtz, “An efficient braking method for vector controlled AC drives with a diode rectifier front end”, IEEE Trans. on Ind. Appl, vol. 37, no. 5, pp. 1299-1307, Sept./Oct. 2001.
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明が解決しようとする課題は、誘導電動機をより安定に制動させることができる電動機駆動システム、及び制御方法を提供することである。
【課題を解決するための手段】
【0006】
実施形態の電動機駆動システムは、インバータと、制御装置とを備える。前記インバータは、誘導電動機の巻線に電流を流す。前記制御装置は、前記インバータをベクトル制御で制御して前記誘導電動機を駆動させる。前記制御装置は、前記誘導電動機の固定子磁束推定値の算定基準を複数備え、前記誘導電動機を制動させる場合に、前記誘導電動機の損失をより多くするような前記固定子磁束推定値の算定基準を、少なくとも前記誘導電動機の回転速度に基づいて、複数の算定基準の中から選択する適正磁束指令生成ユニットを備える。
【図面の簡単な説明】
【0007】
図1】第1の実施形態の電動機駆動システムのブロック図。
図2】第1の実施形態に係る制御装置の一部を拡大した構成図。
図3】第1の実施形態の磁束のqds軸座標系における電圧の制限値Vsmaxを示す図。
図4】第1の実施形態の磁束のqds軸座標系における電流の制限値Ismaxを示す図。
図5】第1の実施形態の磁束のqds軸座標系における電圧の制限値Vsmaxと電流の制限値Ismaxの関係を説明するための図。
図6】第1の実施形態の比較的低速度状態からの制動制御を説明するための図。
図7】第1の実施形態の比較的高速度状態からの制動制御を説明するための図。
図8】第1の実施形態の損失最大化手法を適用したときの実験結果を説明するための図。
図9】第2の実施形態の電動機駆動システムのブロック図。
図10】第2の実施形態の演算処理を説明するための図。
図11】第3の実施形態の電動機駆動システムのブロック図。
図12】上記の実施形態の制御装置10のブロック図。
図13】実施形態の変数について説明するための図。
【発明を実施するための形態】
【0008】
以下、実施形態の電動機駆動システム、及び制御方法を、図面を参照して説明する。以下の説明の電動機駆動システムは、電動機に所望の交流電力を供給する。
【0009】
(第1の実施形態)
次に、電動機駆動システム1の構成例について説明する。図1は、実施形態の電動機駆動システム1のブロック図である。
【0010】
電動機駆動システム1は、例えば、電動機2と、電力変換装置3と、電流検出器9aと電流検出器9bと、制御装置10とを備える。図1中の電動機駆動システム1は、交流電源5(G)から電力の供給を受ける。電動機駆動システム1において、電力変換装置3を制御する制御装置10が適用される。
【0011】
電動機2は、例えば三相の誘導電動機(IM:Induction motor)である。電動機2の軸は、図示されない負荷の軸に機械的に連結される。電動機2の回転子は、例えば、固定子巻線に供給される三相交流電力により回転して、負荷の軸を回転させる。電動機2の軸には、センサ2Aが設けられている。センサ2Aは、例えば、レゾルバ、速度センサなどを有する。センサ2Aは、電動機2の軸の回転を検出し、軸の角度(位相)又は角速度の応じた物理量を示す情報を出力する。例えば、センサ2Aが出力する物理量の情報が、電動機2の回転子電気角θrである場合を例示して説明する。この電動機2には、トルクセンサが設けられていない。
【0012】
電力変換装置3は、例えば、整流器6と、コンデンサ7と、電力変換ユニット8とを備える。整流器6は、交流電源5から、整流器6の交流入力に供給される交流を整流する。整流器6の直流出力には直流リンクが接続されている。コンデンサ7は、上記の直流リンクに設けられている。コンデンサ7は、直流リンクに印加される電圧を平滑化する。
【0013】
電力変換ユニット8の直流入力は、直流リンクに接続されている。電力変換ユニット8は、直流リンクを経て供給される直流電力を三相交流電力に変換して、三相交流電力を電力変換ユニット8の交流出力から電動機2に供給する。電力変換ユニット8は、電圧型インバータである。例えば、電力変換ユニット8は、後述する制御装置10からのPWM(Pulse Wide Modulation)制御により駆動される。電力変換ユニット8は、制御装置10によってVVVF(Variable Voltage Variable Frequency)制御されて、電動機2の速度などを調整する。
【0014】
電力変換ユニット8は、交流出力の三相に対応する電力変換回路を有する。電力変換回路は、相ごとに上アームと下アームを有する。上アームと下アームは、各々少なくとも1つのスイッチング素子を備える。
【0015】
電流検出器9aは、電力変換ユニット8の出力側のv相に設けられる。電流検出器9aは、v相固定子電流Ivsを検出する。電流検出器9bは、電力変換ユニット8の出力側のw相に設けられる。電流検出器9bは、w相固定子電流Iwsを検出する。図示する電流検出器9a、9bは、二相に設けられているが、電流検出器を三相にそれぞれ設けてもよい。
【0016】
制御装置10は、上位装置からの指令値と電流検出器9a、9bの検出結果とに基づいて、電力変換装置3を制御する。
【0017】
ここで、制御装置10で利用される座標系について説明する。
制御装置10における制御では、複数の座標系、例えば第1と第2の座標系を目的により適宜使い分けて利用する。なお、例示する以外の座標系の利用を制限するものではなく、他の座標系を適宜追加し、また変更してもよい。
第1の座標系として、三相座標系がある。三相座標系は、電動機2の固定子巻線の電圧(固定子電圧)に基づいた三相の成分を含む。例えば、電動機2の固定子電圧は、u相、v相、w相の三相の成分(三相信号成分)で表すことができる。電動機2の固定子電圧を所定の平面上に原点を基準にしてベクトル表記した場合、各相の電圧ベクトルが2π/3の角度差を有して原点(中心)から放射状に描かれる。
【0018】
第2の座標系として、qds軸座標系がある。qds軸座標系は、互いに直交するqs軸とds軸を含む。例えば、qds軸座標系の原点を基準にqds軸座標系のqs軸の方向を、固定子のu相の電圧ベクトルの方向に一致させて、三相座標系とqds軸座標系が所定の平面上に配置される。三相座標系の三相信号成分をqds軸座標系のqs軸とds軸の二相信号成分に変換する演算を、「qds軸変換」と呼ぶ。「qds軸変換」によって、三相信号成分は、qs軸とds軸の二相信号成分に変換される。qds軸座標系のqs軸とds軸の二相信号成分を三相座標系の三相信号成分に変換する演算を、「qds軸逆変換」と呼ぶ。「qds軸逆変換」によって、qs軸とds軸の二相信号成分は、三相信号成分に変換される。例えば、qds軸座標系の原点は、固定子磁束に基づいて規定される。
【0019】
第3の座標系として、同期qds軸座標系がある。同期qds軸座標系は、互いに直交する同期qs軸と同期ds軸を含む。この第3の座標系は、第2の実施形態で用いる。
【0020】
第4の座標系として、同期qdr軸座標系がある。同期qdr軸座標系は、静止座標系に対して基準信号θeに同期して回転する同期qr軸と同期dr軸を含む。この第4の座標系は、第3の実施形態で用いる。
【0021】
図13を参照して、実施形態を例示する図と式において使用される変数について説明する。図13は、実施形態の変数について説明するための図である。
【0022】
例えば、qds軸座標系における固定子磁束の推定値のことを、本実施形態において固定子qds軸磁束推定値λqds_s_estと記す。「λ」は磁束を示す。これに続くサフィックスの第1パートのqdsがqds軸座標のqs軸成分とds軸成分を示す。サフィックスの第2パートのsが固定子側の静止座標系(以下、固定子側座標系という。)を示す。固定子qds軸磁束λqds_sは、qds軸座標の2相成分を纏めて表したものである。上記の場合の2相成分は、固定子qs軸磁束λqs_sと固定子ds軸磁束λds_sの2つである。固定子qs軸磁束λqs_sは、固定子磁束のqds軸座標系におけるqs軸成分を示す。固定子ds軸磁束λds_sは、固定子磁束のqds軸座標系におけるds軸成分を示す。なお、2相成分で表した情報を纏めて、複素ベクトル空間のベクトル値として扱うことがある。サフィックスの第3パートのestが推定値を示す。第3パートに続く小括弧内に時系列情報を識別する情報を記載する。第3パートに示すものとして、上記のほかに指令値(com)、微分値(dot)、検出値(det)、平均値(ave)などがある。
【0023】
また、後述する演算式及び図面の中では、本文中の表記と異なる表記をとる。例えば、上記の固定子qds軸磁束推定値λqds_s_estについては、式(1)に示すように表記する。
【0024】
【数1】
【0025】
上記の式(1)に示す「λ」の右下付き文字のqdsは、qds軸座標の2相成分の情報であることを示す。「λ」の右上付き文字の「s」は、固定子側座標系の情報であることを示す。「λ」の上に示す「^」は、推定値を示す。文字の上に示す記号には、上記のほかに微分値を示す「・」がある。指令値については右上付き文字の「*」を用いて示す。複素ベクトルを示す変数には、上記の磁束λと、電圧Vと、電流iとがある。その他の詳細は、図13を参照する。
【0026】
図1に戻り、制御装置10について説明する。
制御装置10は、例えば、モーションコントローラ12と、速度/位相推定ユニット13と、DB-DTFC演算ユニット14と、第1座標変換ユニット15と、PWMコントローラ16と、第2座標変換ユニット17と、滑り角周波数推定ユニット18と、加算器ユニット19と、電流/磁束推定ユニット20と、適正磁束指令生成ユニット21と、損失推定ユニット22と、トルク指令制限ユニット23と、除算ユニット27とを備える。
【0027】
モーションコントローラ12は、回転子角速度指令値(電気角)ωr_comと、回転子角速度推定値(電気角)ωr_estとに基づいて、エアギャップトルク指令値Tem1_comを算出する。例えば、回転子角速度指令値(電気角)ωr_comは、制御装置10の外部の装置(上位装置)から供給されてもよい。回転子角速度推定値(電気角)ωr_estは、後述の速度/位相推定ユニット13から供給される。以下、回転子角速度推定値(電気角)ωr_estのことを、単に回転子角速度推定値ωr_estと呼ぶ。モーションコントローラ12は、回転子角速度推定値ωr_estを、回転子角速度指令値(電気角)ωr_comに追従させるようなエアギャップトルク指令値Tem1_comを算出する。エアギャップトルク指令値Tem1_comの値は、後述するトルク指令制限ユニット23を経ることで信号の振幅が制限されることがある。これにより、後述するDB-DTFC演算ユニット14に対するエアギャップトルク指令値Tem_comの値が、エアギャップトルク指令値Tem1_comの値とは異なる値に変換されることがある。
【0028】
速度/位相推定ユニット13は、例えば、センサ2Aから供給される回転子電気角θrに基づいて、回転子角速度推定値ωr_estと、回転子角度推定値(電気角)θr_estとを算出する。例えば、回転子角度推定値(電気角)θr_estは、回転子電気角θrの平均値であってよい。以下、回転子角度推定値(電気角)θr_estのことを、単に回転子角度推定値θr_estと呼ぶ。
【0029】
例えば、速度/位相推定ユニット13は、電動機2の回転状態を推定するモーションオブザーバを有する。上記のモーションオブザーバは、ゼロラグフィルタ(zero lag filter)と等価であり、一般的に用いられる1次遅れフィルタよりも、入力信号に対する出力信号の遅延を少なくする。つまり、速度/位相推定ユニット13は、回転子電気角θrに対する、回転子角速度推定値ωr_estと、回転子角度推定値θr_estとの遅延を少なくする。回転子角速度推定値ωr_estと、回転子角度推定値θr_estは、それぞれの現在の状態量の値の推定値になる。速度/位相推定ユニット13は、このようなモーションオブザーバを用いることで、出力信号に含まれるノイズ成分の少ない出力信号を得ることを可能にする。
【0030】
例えば、速度/位相推定ユニット13は、回転子角速度推定値ωr_estを、モーションコントローラ12と、DB-DTFC演算ユニット14と、加算器ユニット19と電流/磁束推定ユニット20と、損失推定ユニット22と、除算ユニット27とに供給する。除算ユニット27によって変換された回転子角速度推定値(機械角)ωrm_estは、トルク指令制限ユニット23に供給される。速度/位相推定ユニット13は、回転子角度推定値θr_estを、電流/磁束推定ユニット20に供給する。
【0031】
なお、上記のモーションオブザーバへの入力は、位相と角速度の何れであっても良い。速度/位相推定ユニット13の入力信号は、例えば、センサ2Aに位相センサを用いる場合には位相θrであってよく、センサ2Aに速度センサを用いる場合には角速度ωrであってよい。PLG(Pulse Generator)は、速度センサの一例である。
【0032】
なお、センサ2Aなどの物理的なセンサを用いない場合には、速度/位相推定ユニット13として、ポジショントラッキングオブザーバ(position tracking observer)を用いてよい。この場合のポジショントラッキングオブザーバの入力信号には、電流、電圧、及び磁束の何れを用いてもよい。ポジショントラッキングオブザーバの構成例については、Yang Xu他、"Extending Low Speed Self-Sensing via Flux Tracking with Volt-Second Sensing", [online], 2018年, IEEE, [2018年9月13日検索]、インターネット(URL:https://ieeexplore.ieee.org/document/8344841/)などを参照してもよい。
【0033】
DB-DTFC演算ユニット14(図中の記載はDB-DTFC。)は、DB-DTFC(Deadbeat, Direct Torque and Flux Control)方式に従い電動機2を制御するコントローラである。DB-DTFC演算ユニット14には、電動機2の物理モデルが予め設定されている。物理モデルは、電動機2を等価的な電気回路に置き換えて数式化したものである。DB-DTFC演算ユニット14は、物理モデルを用いて、少なくとも電動機2に対するトルク指令と電動機2の固定子磁束の推定値と電動機2の固定子磁束の基準値とに基づいて電動機2の駆動量を規定する駆動量指令値を算出する。
【0034】
例えば、DB-DTFC演算ユニット14は、エアギャップトルク指令値Tem_comと、固定子qds軸磁束推定値λqds_s_estと、回転子qds軸磁束推定値λqdr_s_estと、固定子磁束指令値λs_comと、固定子角速度推定値ωr_estとを入力変数に含み、上記の各入力変数に基づいたDB-DTFCによって固定子qds軸電圧指令値Vqds_s_comを算出する。エアギャップトルク指令値Tem_comは、トルク指令制限ユニット23から供給される。固定子qds軸磁束推定値λqds_s_estと、回転子qds軸磁束推定値λqdr_s_estは、後述の電流/磁束推定ユニット20から供給される。固定子磁束指令値λs_comは、例えば、適正磁束指令生成ユニット21から供給される。固定子角速度推定値ωr_estは、速度/位相推定ユニット13から供給される。エアギャップトルク指令値Tem_comは、電動機2に対するトルク指令の一例である。固定子磁束指令値λs_comは、電動機2の固定子磁束の基準値の一例である。エアギャップトルク指令値Tem_comは、例えば、制御周期の中の所定の位相で取得される。
【0035】
DB-DTFC演算ユニット14は、上記の入力変数の値を用いて、固定子qds軸電圧指令値Vqds_s_comを算出する。DB-DTFC演算ユニット14は、算出した固定子qds軸電圧指令値Vqds_s_comを、第1座標変換ユニット15と電流/磁束推定ユニット20とに出力する。DB-DTFC演算ユニット14は、固定子qds軸電圧指令値Vqds_s_comに基づいて、電力変換装置3を制御する。
【0036】
第1座標変換ユニット15は、qds軸座標系における電圧指令値である固定子qds軸電圧指令値Vqds_s_comを、三相固定子座標系(静止座標系)における電圧指令値である三相固定子電圧指令値Vus_s_com、Vvs_s_com、Vws_s_comに変換する。第1座標変換ユニット15による変換は、「qds軸逆変換」である。
【0037】
PWMコントローラ16は、電動機2の駆動量を規定する駆動量指令値に基づいた制御信号を、電動機2を駆動する電力変換装置3に出力する。PWMコントローラ16は、例えば、第1座標変換ユニット15によって変換された三相固定子電圧指令値Vus_s_com、Vvs_s_com、Vws_s_comと、キャリア信号とを比較しPWM(Pulse Width Modulation)により、電力変換ユニット8に対するゲートパルスGPを生成する。図1に示すPWMコントローラ16は、電力変換ユニット8の各スイッチング素子に対して、スイッチング素子に対応するゲートパルスGPを出力する。
【0038】
第2座標変換ユニット17は、電流検出器9a、9bから供給される固定子電流Ivs、Iwsを、qds軸座標系における固定子qds軸電流検出値Iqds_s_detに変換する。第2座標変換ユニット17による変換は、「qds軸変換」である。
【0039】
qds軸変換は、例えば、以下の式による。固定子電流Ivs、Iwsに基づいて固定子電流Iusが算出される。三相の固定子電流Ius、Ivs、Iwsと、二相変換後の固定子電流Iqs_s、Ids_sとの関係を下記の式(2)に示す。下記の式(2)に示す変換は、一般的なクラーク変換とは異なる。なお、qds軸逆変換は、式(2)に示す変換の逆である。
【0040】
【数2】
【0041】
滑り角周波数推定ユニット18は、電動機2の滑りに関わる滑り角周波数推定値ωsl_estを算出する。滑り角周波数推定ユニット18は、例えば、電流/磁束推定ユニット20によって算出される回転子qds軸磁束推定値λqdr_s_estの振幅値と、固定子qds軸磁束推定値λqds_s_estの振幅値とに基づいてトルク推定値Te_estを算出し、トルク推定値Te_estの振幅値と回転子qds軸磁束推定値λqdr_s_estの振幅値とを用いて滑り角周波数推定値ωsl_estを算出する。あるいは、滑り角周波数推定ユニット18は、一般的に用いられる滑り角周波数推定演算方法を利用して滑り角周波数推定値ωsl_estを算出してもよい。滑り角周波数のことを、滑り角速度又は滑り速度と呼ぶことがある。
【0042】
加算器ユニット19は、回転子角速度推定値ωr_estに、滑り角周波数推定ユニット18によって算出された滑り角周波数推定値ωsl_estを加算して、電動機2の同期角速度ωe_est(以下、単に同期角速度ωeと呼ぶ。)を算出する。
【0043】
電流/磁束推定ユニット20は、幾つかの入力変数に基づいて、電動機2の稼働状態を推定するオブザーバであり、固定子qds軸磁束推定値λqds_s_estと、回転子qds軸磁束推定値λqdr_s_estとを算出する。例えば、上記の各入力変数には、固定子qds軸電圧指令値Vqds_s_comと、第2座標変換ユニット17によって変換された固定子qds軸電流検出値Iqds_s_detと、回転子角速度推定値ωr_estと、回転子角度推定値θr_estとが含まれる。
【0044】
除算ユニット27は、速度/位相推定ユニット13よって算出された回転子角速度推定値ωr_estを、極対数である(P/2)で除算して、回転子角速度推定値(機械角)ωrm_estを算出する。大文字のPは、極数である。
【0045】
適正磁束指令生成ユニット21は、モーションコントローラ12によって算出されたトルク指令値Tem1_com及び加算器ユニット19によって算出された同期角速度ωeと、上記以外にも図2に示されていないブレーキ準備フラグFg1及びブレーキ開始フラグFg2とが入力される。適正磁束指令生成ユニット21は、トルク指令値Tem1_com、同期角速度ωe、ブレーキ準備フラグFg1、及びブレーキ開始フラグFg2に基づいて、固定子磁束指令値λs_comを算出して、固定子磁束指令値λs_comをDB-DTFC演算ユニット14に出力する。ここで、適正磁束指令生成ユニット21から出力される固定子磁束指令値λs_comは、スカラー量である。これの詳細については、後述する。
【0046】
損失推定ユニット22は、電動機2の物理モデルを用いて電動機2の損失Plossを算出して、その損失Plossの値をトルク指令制限ユニット23に供給する。
【0047】
トルク指令制限ユニット23には、モーションコントローラ12により算出されたトルク指令値Tem1_com、損失Ploss、及び回転子角速度推定値(機械角)ωrm_estと、上記のほかにブレーキ準備フラグFg1及びブレーキ開始フラグFg2とが入力される。トルク指令制限ユニット23は、ブレーキ準備フラグFg1、ブレーキ開始フラグFg2、損失Ploss、及び回転子角速度推定値(機械角)ωrm_estに基づいて、例えば、制限値Te_maxを、通常運転時に使用する値(Te_maxn)と、ブレーキ時に使用する値(Te_maxb)との何れかに切り替える。トルク指令制限ユニット23は、トルク指令値Tem_comを速度/位相推定ユニット13と、DB-DTFC演算ユニット14とに出力する。
【0048】
なお、DB-DTFC演算ユニット14及び電流/磁束推定ユニット20のより詳しい説明は、米国特許出願公開第2020/0007858号明細書などを参照するとよい。
【0049】
例えば、制御装置10は、図示しない上位装置から減速開始指令を受けて、ブレーキ準備フラグFg1を立てて、固定子磁束指令値λs_comを損失最大となる値に変化させる。固定子dq軸磁束が損失最大となる値に到達したら、制御装置10は、ブレーキ開始フラグFg2を立てて、速度制御からトルク制御に切り替えて、ブレーキを掛ける。
【0050】
次に、実施形態の制御装置10のより詳細な一例について説明する。
図2は、第1の実施形態に係る制御装置10の一部を拡大した構成図である。適正磁束指令生成ユニット21と、損失推定ユニット22と、トルク指令制限ユニット23と、を中心に説明する。
【0051】
損失推定ユニット22は、例えば、次の式(3)に従い、電動機2の損失Plossを算出する。
【0052】
【数3】
【0053】
なお、式(3)におけるKe,Kb,Khは、値が予め定めらている係数である。Rr,Lr,Rs,Ls,Lmの夫々の値は、電動機2の特性によって規定される。この式(3)に関する詳細なことは、次の文献を参照するとよい。
Y. Wang, T. Ito, R.D. Lorenz, “Loss manipulation capabilities of deadbeat direct torque and flux control induction machine drives”, IEEE Energy Conversion Congress and Exposition (ECCE), pp.4554-4566, Nov. / Dec. 2015.
【0054】
トルク指令制限ユニット23は、第一ブロック23aと、第二ブロック23bと、第三ブロック23cとを備えている。
【0055】
第一ブロック23aは、後述する式(4)に従って、損失Plossと回転子速度推定値ωrm_estとに基づいて、上限トルク指令値Te_maxbを算出する。式(4)は、損失Plossと回転子速度推定値ωrm_estとに応じた上限トルク指令値算出用の演算式である。
【0056】
【数4】
【0057】
第二ブロック23bは、上位装置からの駆動指令に応じて、上限トルク指令値Te_maxを決定する。例えば、駆動指令の値は、上位装置からの駆動指令が駆動又は停止であることを0(Normal)で示し、制動であることを、1(braking)で示すものとする。上記の駆動指令は、ブレーキ準備フラグFg1及びブレーキ開始フラグFg2の何れかに対応付けられていてよい。第二ブロック23bは、駆動指令の値が0(Normal)である場合には、平時の上限トルク指令値Te_maxnを選択し、駆動指令の値が1(braking)である場合には、第一ブロック23aの出力した上限トルク指令値Te_maxbを選択する。第二ブロック23bは、選択した結果を上限トルク指令値Te_maxとして第三ブロック23cへと伝達する。
【0058】
第三ブロック23cは、第二ブロック23bから伝達された上限トルク指令値Te_maxを用いて、許容トルク範囲を決定する。許容トルク範囲は、下限リミッタトルク値(-Te_max)から上限リミッタトルク値(+Te_max)までの範囲である。上限リミッタトルク値には、上限トルク指令値Te_maxが適用される。下限リミッタトルク値は、上限リミッタトルク値に負の係数のマイナス1を掛けた値である。なお、この負の係数は、予め定められた値であり、マイナス1以外の値であってもよい。また、この負の係数の代わりに、ゼロを上限リミッタトルク値に掛けることで、下限リミッタトルク値をゼロに設定してもよい。
【0059】
例えば、第三ブロック23cは、第一トルク指令値Tem1_comが許容トルク範囲内であるときには、第一トルク指令値Tem1_comの値をそのまま第二トルク指令値Tem_comに代入する。第三ブロック23cは、第一トルク指令値Tem1_comが上限リミッタトルク値(+Te_max)よりも大きい場合には、上限リミッタトルク値(+Te_max)を第二トルク指令値Tem_comに代入する。第三ブロック23cは、第一トルク指令値Tem1_comが下限リミッタトルク値(-Te_max)よりも小さい場合には、下限リミッタトルク値(-Te_max)を第二トルク指令値Tem_comに代入する。
【0060】
つまり、第三ブロック23cは、許容トルク範囲内のトルク指令値のみを通過させるフィルタとしての機能を果たす。これにより、第三ブロック23cは、第二トルク指令値Tem_comを生成することができる。第二トルク指令値Tem_comは、予め定められた許容トルク範囲内に制限されるような修正を第一トルク指令値Tem1_com1に施した値である。
【0061】
適正磁束指令生成ユニット21は、第一ブロック21aと、第二ブロック21bと、第三ブロック21cと、第四ブロック21dと、第五ブロック21eとを備えている。適正磁束指令生成ユニット21は、同期角速度ω又は第一トルク指令値Tem1_comに応じた固定子磁束指令値λs_comを生成する。
【0062】
第一ブロック21aは、次の式(5)に従って、固定子磁束指令値λs_opt0を算出する。第一ブロック21aは、固定子電圧Vsの制限値Vsmax(以下、電圧の制限値Vsmaxという。)を同期角速度ωで除算した値の絶対値を算出し、固定子磁束指令値λs_opt0として出力する。
【0063】
【数5】
【0064】
第二ブロック21bは、次の式(6)に従って、固定子磁束指令値λs_opt1を算出する。
【0065】
【数6】
【0066】
第三ブロック21cは、次の式(7)に従って、同期角速度ωeと、同期角速度閾値ωe_cとに基づいて、固定子磁束指令値λs_optを決定するための選択信号の論理値を決定する。例えば、選択信号の論理値は、上位装置からの駆動指令が駆動又は停止である場合(Normal)に1になり、制動である場合(braking)に、同期角速度ωeと、同期角速度閾値ωe_cとを用いた演算の結果によって、0と1が選択される。例えば、第三ブロック21cは、同期角速度ωeが同期角速度閾値ωe_cよりも早い場合に1を選択し、同期角速度ωeが同期角速度閾値ωe_cよりも遅い場合に又は等しい場合に0を選択する。
【0067】
【数7】
【0068】
上記の式(7)における同期角速度閾値ωe_cを、電圧の制限値Vsmaxと、電流の制限値Ismaxと、インダクタンスLeとを用いて、次の式(8)に示すように定義するとよい。
【0069】
【数8】
【0070】
この式(8)内のIrateは、直流リンクの定格電流値である。
【0071】
第四ブロック21dは、選択信号の論理値が0である場合には、第一ブロック21aから出力された固定子磁束指令値λs_opt0を選択し、選択信号の論理値が1である場合には、第二ブロック23bから出力された固定子磁束指令値λs_opt1を選択する。第二ブロック23bは、選択した結果を固定子磁束指令値λs_optとして出力する。
【0072】
第五ブロック21eは、所定の周波数よりも低い周波数帯域の成分を通過させるローパスフィルタであり、第四ブロック21dが出力した固定子磁束指令値λs_optの信号の帯域を制限することで、急峻な変化を抑制した固定子磁束指令値λs_comを出力する。
【0073】
次に、実施形態の制動制御について説明する。
電力を系統に回生させることが可能なアクティブフロントエンド(例えば、電力の回生可能なコンバータ。)がない場合には、直流リンク区間に注入される電力を系統に回生させることができない。また、直流リンク区間の過剰な電力を消費する制動抵抗がない場合には、直流リンクの電圧を低下させることが困難である。
【0074】
上記のような場合には、直流リンク区間への入力電力量(Pin)を、次の式(9)に示すように定義することができる。電動機2の制動トルクを、Te_brakingを用いて示す。入力電力量(Pin)は、制動トルクTe_brakingと、回転子速度ωrmとの積に、損失Plossを加算して得られる値になる。制動中の入力電力量(Pin)は、0よりも大きくなる。
【0075】
【数9】
【0076】
その結果、次の式(10)を用いることで、最大制動トルクが得られる。最大制動トルクは、Te_brakingの絶対値の最大値のことである。Te_brakingの絶対値の最大値は、損失Plossを、回転子速度推定値ωrm_estで除した結果になる。
【0077】
【数10】
【0078】
電力変換ユニット8の損失は、多くの場合、電動機2の損失Plossに比べて小さい。この式(10)では、電力変換ユニット8の損失を省略して近似している。
【0079】
上記の式(10)に示されるように、電動機2の制動トルクに関する制限値は、電動機2の損失Plossと回転子速度ωrmとに基づいて定義できる。その制限値は、動的に変化する。電動機2をより早く制動させるためには、電動機2と電力変換ユニット8の電圧の制限値と電流の制限値を用いて、電動機2の損失Plossを増加させるように固定子磁束λs_comを制御するとよい。
電動機2の損失Plossによって制動トルクTe_brakingの制限値が動的に設定されることに加えて、制動トルクTe_brakingは、上記の電圧の制限値と電流の制限値によっても制限されることがある。
【0080】
一般的な誘導電動機の損失と上記の電圧の制限値と電流の制限値とによって設定される制動トルクTe_brakingの制限値のおおよその値について調査した。一般的な誘導電動機の場合、電動機の損失は、定格電力損失の15%よりも少ない。
【0081】
そのため、式(10)によって制限される制動トルクTe_brakingの制限値(最大値)は、定格速度時におけるトルクの0.2[pu]よりも小さく、定格速度値の半分の速度におけるトルクの0.4[pu]よりも小さい。その一方で、上記の電圧の制限値と電流の制限値によって制限される制動トルクTe_brakingの制限値(最大値)は、少なくとも1[pu]である。このような結果から、式(10)によって、上記の電圧の制限値と電流の制限値に基づく制動トルクTe_brakingの制限値に比べてより小さなトルク制限値に決定する。
【0082】
(物理モデル)
次に、DB-DTFCを使ってより早く制動するための電動機2の物理モデル(解析モデル)について説明する。例えば、電動機2の物理モデルを上述の式(3)を用いて定義する。制動制御の初期状態における電動機損(損失Ploss)の推定値は、上述の式(3)を用いて算出される。
【0083】
モーションコントローラ12から出力された第1トルク指令値Tem1_comは、上記の式(10)によって制限される。固定子磁束指令値λs_comは、上記の電圧の制限値と電流の制限値を用いて、回転子速度推定値ωrm_estとトルク指令値とに関連付けて選択される。例えば、上記の電圧の制限値Vsmaxを、式(11)に示す。
【0084】
【数11】
【0085】
上記の電流の制限値Ismaxを、式(12)に示す。
【0086】
【数12】
【0087】
図3から図5を参照して、磁束のqds軸座標系における電圧の制限値Vsmaxと電流の制限値Ismaxの関係を説明する。図3は、磁束のqds軸座標系における電圧の制限値Vsmaxを示す図である。図3に実線で示すように、電圧の制限値Vsmaxは、磁束のqds軸座標系において座標軸の原点を基準にした円になる。この円の半径は、同期角速度ωeに関連する。上記の式(11)の関係から、電圧の制限値Vsmaxの大きさが不変であれば、同期角速度ωeが速いほど、円の半径が小さくなる。この図3には、例えば、同期角速度ωeを4段階に変化させた場合を例示する。同期角速度ωeは、ωe1、ωe2、ωe3、ωe4の順に早くなる。
【0088】
図4は、磁束のqds軸座標系における電流の制限値Ismaxを示す図である。図4に破線で示すように、電流の制限値Ismaxは、磁束のqds軸座標系において座標軸の原点を基準にした楕円になる。上記の式(12)の関係から、その楕円は同期角速度ωeの大きさに関連しない。この楕円の周を電流楕円と呼び、電流楕円内の領域を、電流楕円領域と呼ぶ。
【0089】
図5に、電圧の制限値Vsmaxと電流の制限値Ismaxの関係を示す。図5は、磁束のqds軸座標系における電圧の制限値Vsmaxと電流の制限値Ismaxの関係を説明するための図である。この図5に示す磁束のqds軸座標系には、座標軸の原点を基準に前述の図3に示した円(実線)と前述の図4に示した楕円(破線)とが重なるように配置されている。この円と楕円とによって囲まれた領域が、制御に利用可能な領域を示す。ここに示す電圧の制限値Vsmaxは、同期角速度ωeが1.2[pu]であるときのものである。なお、磁束のqds軸座標系の第1象限では、図示しない弱め磁束領域による制限領域が規定される。弱め磁束領域では、鉄の飽和を避けるためには電圧円の縦軸の値が1[pu]に制限されることに注意する。ただし、これは、制動中に関係することではない。
【0090】
より簡単に実施方法について説明するために、電動機2の全速度範囲を、速度の大きさに応じて、例えば速度領域Iと速度領域IIの2つの領域に分割して、夫々について説明する。例えば、速度領域Iと速度領域IIを、前述の同期角速度閾値ωe_cを用いて分割するとよい。
【0091】
速度領域Iは、同期角速度ωeが同期角速度閾値ωe_cよりも比較的低速度である場合に対応する。図6は、比較的低速度で回転する電動機2の制動制御を説明するための図である。図6に示すように比較的低速度状態の場合は、電流楕円領域が電圧円の内部に位置する。最大の損失Ploss(以下、最大損失と呼ぶ。)を得るためには、固定子磁束λqds_sの値と固定子電流Iqds_sの値とをできるだけ大きくする。固定子磁束λqds_sの値と固定子電流Iqds_sの値とをできるだけ大きくしても、電流楕円によって制限される。この結果、トルク曲線と電流楕円との交点を例えば点Aで示すと、その交点(点A)は、最大損失でかつ最大トルクを満たす動作点になる。この動作点に係る固定子磁束指令λs_comの大きさは、次の式(13)から算出される。
【0092】
【数13】
【0093】
比較的低速度状態にあると、式(13)に示した固定子磁束指令λs_comの大きさは、トルク指令値Tem1_comを変数にする関数になるが、同期角速度ωeの大きさには依存せず、同期角速度ωeとは独立の関係になる。固定子電流Iqds_sがその制限値Ismaxに達しても、電圧Vs_comは、電圧円によって定まるその最大値よりも低い値になる。
【0094】
これに対し、速度領域IIは、同期角速度ωeが同期角速度閾値ωe_cよりも比較的高速度である場合に対応する。図7は、比較的高速度で回転する電動機2の制動制御を説明するための図である。図7に示すように比較的高速度状態の場合は、電流楕円領域の一部が電圧円からはみ出して、電圧円の内部に位置しなくなる。損失Plossに関する前述の式(3)によれば、固定子磁束λqds_sの制限値である下限値と上限値の何れかで、最大損失に達することが示されている。速度領域II(高速度領域)では、鉄損が、より高い固定子磁束λqds_sを得ることに寄与する。
【0095】
この結果、トルク曲線と電圧円との交点を例えば点B又は点Cで示すとすれば、その交点は、最大損失でかつ最大制動トルクを満たす動作点として選択される。固定子磁束指令λs_comの大きさは、次の式(14)から算出される。
【0096】
【数14】
【0097】
比較的高速度状態にあると、式(14)に示した固定子磁束指令λs_comは、速度の関数になる。電圧Vsがその制限値Vsmaxに達しても、電流Isは、その最大値よりも低い値になる。
【0098】
次に、図8を参照して、実際の誘導電動機に損失最大化手法を適用した実験結果について説明する。図8は、実施形態の損失最大化手法を適用したときの実験結果を説明するための図である。この実験では、開発された損失最大化手法を、3.7kW(キロワット)の電動機2に適用して、電動機2の制動特性を評価する。比較例として、定格磁束を利用して制御する場合を例示する。以下、両者の制動特性を対比して示す。
【0099】
図8に示す各タイミングチャートの横軸が時刻の経過を示し、その単位が秒である。図8に示す各タイミングチャートについて図8の上から順に説明する。図8の中の(a)に固定子磁束指令λs_comの大きさを示す。図8の中の(b)に回転子速度ωrの大きさを示す。図8の中の(c)に、トルクTemの大きさを示す。図8の中の(d)に、直流電圧Vdcの値を示す。図8の中の(e)に、電流帰還値Is_FBKの大きさを示す。電流帰還値Is_FBKは、例えば、電流検出値Is_detに基づいて算出される。図8の中の(f)に、損失Plossの大きさを示す。各タイミングチャートに、本実施形態の損失Plossを最大化するように固定子磁束指令λs_comを最大化する制御方法を適用した場合の結果(黒線)と、比較例として固定子磁束λsを定格値にする制御方法を適用した場合の結果(灰色線)とを対比させて示す。この比較実験の結果は、電動機2の回転子速度ωrを、例えば、0.9[pu]から0.2[pu]まで減速させた場合の一例である。
【0100】
初期状態では、電動機2の回転子速度ωrが制動領域Iの範囲内にある。固定子磁束λs_comは、初期状態の値が1[pu]であり、トルクTemの値が0[pu]である。
【0101】
時刻t1(例えば0.7秒)の時点で、回転子速度指令ωr_comの値が減少して、電動機2の制動が始まる。その後、時刻t2までの間、固定子磁束λs_comは、初期状態の値から単調に増加する。
【0102】
時刻t2から時刻t3までの期間では、その制動が続けられ、制動領域IIの範囲内に至るまで回転子速度ωrが徐々に減速する。このとき、電流がその制限値Ismaxを超えないように、固定子磁束指令λs_comの大きさが調整され、その上限値に制限されている。
【0103】
この制動期間中に、損失Plossと制動トルクTe_brakingが最大になる。この図8に示す比較の結果から、比較例の制動時間に対して、実施例の制動時間が60%ほど短くなったことが明らかに読み取れる。
【0104】
固定子磁束λsの急な変化と、その結果生じる大きな電流変化とをを除くために、固定子磁束指令λs_comに対して、回転子時定数τのバンド幅を持つフィルタとして第五ブロック21eが追加されていることに注意する必要がある。試験に使用した電動機2の慣性は、比較的小さいものであり、これにより制動時間が比較的短くなっている。固定子磁束指令λs_comがブレーキ領域Iの要求値に増加すると、速度がブレーキ領域IIになる。
【0105】
また次のことに注意する。図8の中の(d)に示したように、制動中のDC電圧Vdcは、わずかに増加することがある。この現象は、損失Plossの解析に用いた変数の値の近似精度が比較的低い場合に生じることがある。このため、電動機2の制動力を、電動機2の損失よりも幾らか高くして、電動機2の入力電力を幾らか負にするとよい。
【0106】
上記の実施形態によれば、制御装置10は、電動機2の固定子磁束推定値の算定基準を複数備える。制御装置10は、電動機2を制動させる場合に、電動機2の損失をより多くするような固定子磁束推定値の算定基準を、少なくとも電動機2の固定子角速度ωrに基づいて、複数の算定基準の中から選択することにより、電動機2をより安定に制動させることができる。
【0107】
(第2の実施形態)
第2の実施形態の電動機駆動システム1Aについて説明する。
上記の実施形態では、電圧指令値Vs_comを生成するために、DB-DTFC方式を用いた事例について説明した。第2と第3の実施形態では、これに代えて、磁界方向制御(Field Oriented Control)方式を用いた事例について説明する。以下、磁界方向制御方式を、FOC方式と呼ぶ。FOC方式とは、トルク(回転力)を発生する電流成分と磁束を発生する電流成分とを互いに分解し、それぞれの電流成分を直流量として独立に制御する方式である。
【0108】
図9は、実施形態の電動機駆動システム1Aのブロック図である。この図9に示す電動機駆動システム1Aは、前述の電動機駆動システム1の制御装置10に代えて、FOC方式を適用した制御装置10Aを備える。
【0109】
FOC方式には、IFOC(Indirect Field Oriented Control)方式とDFOC(Direct Field Oriented Control)方式がある。IFOC方式は、磁束推定、あるいは検出によらず電動誘導機の滑りを制御する間接型ベクトル制御(滑り周波数型ベクトル制御とも呼ぶ。)を用いる方式である。DFOC方式は、磁束推定、あるいは検出結果に基づいて電動機2の滑りを制御する直接型ベクトル制御を用いる方式である。本実施形態では、後者のDFOC方式の一例について説明し、前者のIFOC方式の一例について第3の実施形態で説明する。
【0110】
図9に示す制御装置10Aには、DB-DTFC演算ユニット14に代えてFOC演算ユニット40が設けられており、第1座標変換ユニット15に代えて第5座標変換ユニット15Aが設けられており、滑り角周波数推定ユニット18が省略され、電流/磁束推定ユニット20に代えて電流/磁束推定ユニット20Aが設けられている。制御装置10Aは、後者のDFOC方式を適用した一例である。
【0111】
制御装置10Aは、第3座標変換ユニット17Aと、第4座標変換ユニット17Bとを備えている。第3座標変換ユニット17Aには、v相固定子電流Ivsとw相固定子電流Iwsとが供給される。第4座標変換ユニット17Bには、第5座標変換ユニット15Aの出力である三相固定子電圧指令値Vus_com、Vvs_com、Vws_comが供給される。
【0112】
FOC演算ユニット40には、トルク指令制限ユニット23からトルク指令値Tem_comが供給される。FOC演算ユニット40には、磁束指令として、適正磁束指令生成ユニット21から定格固定子磁束の定子磁束指令値λs_comが供給されている。
【0113】
電流/磁束推定ユニット20Aは、電流/磁束推定ユニット20と同様の物理モデルを含む磁束オブザーバ(不図示)を備えている。電流/磁束推定ユニット20Aは、磁束オブザーバによって算出された固定子qds軸磁束推定値λqds_s_estなどを用いて、基準信号θe_comと、電動機2の滑りに関わる滑り角周波数推定値ωsl_estとを算出し、夫々を出力する。
【0114】
第3座標変換ユニット17Aは、電流/磁束推定ユニット20Aから供給される基準信号θe_comに基づいて、入力信号を互いに直交するγ成分とδ成分の回転座標系の信号に変換する。基準信号θe_comの位相を適切に選択することにより、第3座標変換ユニット17Aは、基準信号θe_comを基準位相とし、基準位相と同相成分をγ成分とし、基準位相に直交する成分をδ成分とすることができる。第3座標変換ユニット17Aは、座標変換したγ軸固定子電流iγとδ軸固定子電流iδをFOC演算ユニット40に供給する。
【0115】
第5座標変換ユニット15Aは、電流/磁束推定ユニット20Aから供給される基準信号θe_comを用いて、上記とは逆に、FOC演算ユニット40からの出力であるγ成分の電圧指令値Vγ_comとδ成分の電圧指令値Vδ_comとを固定座標系の三相固定子電圧指令値Vus_com、Vvs_com、Vws_comに変換する。第5座標変換ユニット15Aの演算結果は、PWMコントローラ16と第4座標変換ユニット17Bとに供給される。
【0116】
第4座標変換ユニット17Bは、三相固定子電圧指令値Vus_com、Vvs_com、Vws_comをqds軸の2軸成分の電圧指令値Vqds_s_comに変換する。第4座標変換ユニット17Bによって変換された値は、電流/磁束推定ユニット20に供給される。
【0117】
FOC演算ユニット40は、供給された信号に基づいて、その内部で、γ成分の固定子電流指令値iγ_comとδ成分の固定子電流指令値iδ_comを生成する。FOC演算ユニット40は、帰還値であるγ軸固定子電流iγとδ軸固定子電流iδとが指令値に追従するように、固定子電圧指令値Vγ_comと固定子電圧指令値Vδ_comを生成する。なお、γ成分の電圧指令値Vγ_comとδ成分の電圧指令値Vδ_comは、FOC演算ユニット40から第5座標変換ユニット15Aに供給され、さらにPWMコントローラ16を経由して、ゲートパルスGPとして電力変換装置3に与えられる。
【0118】
以下、FOC演算ユニット40の一例について説明する。例えば、FOC演算ユニット40は、演算ブロック41から44と、電流安定化ユニット45とを備える。
【0119】
演算ブロック41は、次の式(15)を満たす解、又は式(15)に基づいて同期qds軸磁束指令値λqds_e_comを算出して出力する。
【0120】
【数15】
【0121】
上記の式(15)は、図10のように模式化できる。図10は、実施形態の演算処理を説明するための図である。
【0122】
同期qds軸磁束指令値λqds_e_comのスカラー値を、同期qds座標系の座標軸の原点を中心とする円で示す。円の半径が、同期qds軸磁束指令値λqds_e_comの大きさである。
【0123】
エアギャップトルク指令値Tem_comは、同期qds座標系上では双曲線になる。同期qds軸磁束指令値λqds_e_comの円と、エアギャップトルク指令値Tem_comの双曲線との交点(例えば、点a1、点a2又は点b。)が、エアギャップトルク指令値Tem_comを満たすことが可能な同期qds軸磁束指令値λqds_e_comになり、これは、上記の式(15)の解になる。
【0124】
条件により、同期qds軸磁束指令値λqds_e_comの円と、エアギャップトルク指令値Tem_comの双曲線との交点がない場合がある。この場合、エアギャップトルク指令値Tem_comを満たすことが可能な同期qds軸磁束指令値λqds_e_comを得ることができないが、最良解として点cが示す条件を選択するとよい。この場合の点cは、同期qds軸磁束指令値λqds_e_comの円の周上の点の中で、同期qds軸磁束指令値λqds_e_comの円から、エアギャップトルク指令値Tem_comの双曲線までの距離が最も近くなる点になる。
【0125】
演算ブロック42は、演算ブロック41によって算出された同期qds軸座標の同期ds軸成分である同期ds軸磁束指令値λds_e_comを「Ls」で除算して、同期ds軸電流指令値ids_e_comを出力する。
【0126】
演算ブロック43は、演算ブロック41によって算出された同期qds軸座標の同期qs軸成分である同期qs軸磁束指令値λqs_e_comを「σLs」で除算して、同期qs軸電流指令値iqs1_e_comを出力する。演算ブロック44は、同期qs軸電流指令値iqs1_e_comを所定の振幅範囲に収まるように制限するリミッタである。演算ブロック44は、同期qs軸電流指令値iqs1_e_comが所定の振幅範囲に収まっている場合には、同期qs軸電流指令値iqs1_e_comの値と同じ値の同期qs軸電流指令値iqs_e_comを透過的に出力し、同期qs軸電流指令値iqs1_e_comが所定の振幅範囲を超過している場合には、予め定められた制限値の同期qs軸電流指令値iqs_e_comを出力する。
【0127】
電流安定化ユニット45は、基準信号θe_comに基づいて、同期ds軸電流指令値ids_e_comと同期qs軸電流指令値iqs_e_comを生成する。例えば、電流安定化ユニット45は、同期ds軸電流指令値ids_e_comと同期qs軸電流指令値iqs_e_comとの組と、γ軸固定子電流iγとδ軸固定子電流iδの組とに基づいて、γ軸固定子電流iγとδ軸固定子電流iδが、それぞれ同期ds軸電流指令値ids_e_comと同期qs軸電流指令値iqs_e_comに等しくなるように、γ成分の電圧指令値Vγ_comとδ成分の電圧指令値Vδ_comとを調整して、出力する。上記の通り、このγ成分の電圧指令値Vγ_comとδ成分の電圧指令値Vδ_comは、FOC演算ユニット40の出力になる。
【0128】
本実施形態の制御装置10Aは、FOC演算ユニット40と、電流/磁束推定ユニット20Aとを用いて、DFOC方式によって電動機2を制御する。また、FOC演算ユニット40について、上記の構成に代えて、一般に知られたFOCの構成を適用してもよい。
【0129】
(第3の実施形態)
第3の実施形態の電動機駆動システム1Bについて説明する。
【0130】
図11は、実施形態の電動機駆動システム1Bのブロック図である。この図11に示す電動機駆動システム1Bは、電動機駆動システム1AのDFOC方式を適用した制御装置10Aに代えて、IFOC方式を適用した制御装置10Bを備える。
【0131】
制御装置10Bには、制御装置10Aの第2座標変換ユニット17と、第4座標変換ユニット17Bと、電流/磁束推定ユニット20とが省略された代わりに、同期処理ユニット50が設けられている。
【0132】
同期処理ユニット50は、例えば、演算ブロック51から58を備える。
演算ブロック51は、演算ブロック44から出力される同期qs軸電流指令値iqs_e_comの振幅値を、回転子時定数推定値τr_estで除算して、その演算結果Nを出力する。演算ブロック52は、演算ブロック43から出力される同期qs軸電流指令値iqs1_e_comの振幅値に「Lm」を乗算して、その積を出力する。演算ブロック53は、演算ブロック52から出力された積を「(1+Pτr)」で除算して、その結果を、同期qdr軸座標の同期qr軸成分の同期dr軸磁束指令値λdr_e_comとして出力する。演算ブロック54は、演算ブロック53から出力される同期dr軸磁束指令値λdr_e_comを、「Lm」の推定値で除算して、その演算結果Dを出力する。演算ブロック55は、演算ブロック54の演算結果Dを、演算ブロック51の演算結果Nで除算して、演算結果を滑り角位相指令値θslip_comとして出力する。演算ブロック56は、演算ブロック55から出力される滑り角位相指令値θslip_comを、極数Pで除算して、演算結果をスリップ位相θslip_comとして出力する。演算ブロック57は、加算器であり、演算ブロック56から出力されるスリップ位相θslip_comと、センサ2Aが出力する位相θrとを加算して、演算結果を推定位相θe_estとして出力する。演算ブロック57は、演算結果の推定位相θe_estを、FOC演算ユニット40と、第3座標変換ユニット17Aと、第5座標変換ユニット15Aとに供給する。演算ブロック58は、演算ブロック56から出力される滑り角位相指令値θslip_comを微分して、その演算結果を滑り角周波数推定値ωsl_estとして出力する。
【0133】
本実施形態の制御装置10Bは、FOC演算ユニット40と同期処理ユニット50とを用いて、IFOC方式によって電動機2を制御する。
【0134】
(実施形態の制御装置)
実施形態の制御装置10について説明する。図12は、実施形態の制御装置10のブロック図である。制御装置10は、処理回路100を備える。図12に示す処理回路100は、CPU101と、記憶部102と、駆動部103とを備える。CPU101と、記憶部102と、駆動部103は、BUSで接続されている。処理回路100は、制御装置10の一例である。CPU101は、ソフトウェアプログラムに従い、所望の処理を実行するプロセッサを含む。記憶部102は、半導体メモリを含む。駆動部103は、CPU101の制御に従い、電力変換装置3の制御信号を生成する。実施形態において、CPU101と駆動部103が実行する処理を纏めて、単に制御装置10の処理として説明する。例えば、制御装置10は、電流検出器9a、9bなどの検出結果に基づいて、電力変換装置3を制御する。
制御装置10Aと制御装置10Bについても、制御装置10と同様である。
【0135】
以上説明した少なくとも一つの実施形態によれば、電動機駆動システム1は、電力変換装置3と、制御装置10とを備える。電力変換装置3は、電動機2の巻線に電流を流す。制御装置10は、電力変換装置3をベクトル制御で制御して電動機2を駆動させる。制御装置10は、電動機2の固定子磁束推定値の算定基準を複数備え、電動機2を制動させる場合に、電動機2の損失をより多くするような固定子磁束推定値の算定基準を、少なくとも電動機2の回転速度に基づいて、複数の算定基準の中から選択する。これにより、電動機駆動システム1は、電動機2をより安定に制動させることができる。
【0136】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【符号の説明】
【0137】
1、1A、1B…電動機駆動システム、2…電動機、3…電力変換装置、9a、9b…電流検出器、10、10A、10B…制御装置、12モーションコントローラ、13…速度/位相推定ユニット、14…DB-DTFC演算ユニット、15…第1座標変換ユニット、15A…第5座標変換ユニット、16…PWMコントローラ、17…第2座標変換ユニット、17A…第3座標変換ユニット、17B…第4座標変換ユニット、18…滑り角周波数推定ユニット、19…加算器ユニット、20、20A…電流/磁束推定ユニット、40…FOC演算ユニット
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13