(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-01
(45)【発行日】2023-03-09
(54)【発明の名称】ビームシェイパ、加工装置、及びビームシェイピング方法
(51)【国際特許分類】
G02B 27/09 20060101AFI20230302BHJP
B23K 26/064 20140101ALI20230302BHJP
【FI】
G02B27/09
B23K26/064 A
(21)【出願番号】P 2019213478
(22)【出願日】2019-11-26
【審査請求日】2022-05-25
(73)【特許権者】
【識別番号】000005186
【氏名又は名称】株式会社フジクラ
(74)【代理人】
【識別番号】110000338
【氏名又は名称】弁理士法人 HARAKENZO WORLD PATENT & TRADEMARK
(72)【発明者】
【氏名】日下 裕幸
(72)【発明者】
【氏名】柏木 正浩
【審査官】山本 貴一
(56)【参考文献】
【文献】国際公開第2019/193918(WO,A1)
【文献】特開2015-029942(JP,A)
【文献】特開2016-075786(JP,A)
【文献】特表2017-530867(JP,A)
【文献】特開2013-052403(JP,A)
【文献】特開2019-042793(JP,A)
【文献】特開2005-288503(JP,A)
【文献】特開2001-150165(JP,A)
【文献】米国特許第03419321(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 27/09
G02B 26/00-26/12
B23K 26/06-26/067
(57)【特許請求の範囲】
【請求項1】
アキシコンレンズと、
前記アキシコンレンズに入射するガウシアンビームの発散角を変更することによって、前記アキシコンレンズから出射するベッセルビームのリング間隔を調整する調整機構と、を備えている、
ことを特徴とするビームシェイパ。
【請求項2】
前記ガウシアンビームの光路上に配置されたコリメートレンズを更に備えており、
前記調整機構は、前記コリメートレンズから前記アキシコンレンズまでの距離を保ったまま、前記ガウシアンビームの出射点から前記コリメートレンズまでの距離を変化させることによって、前記発散角を変更する、
ことを特徴とする請求項1に記載のビームシェイパ。
【請求項3】
前記出射点は、前記ガウシアンビームを出射する光ファイバの出射端である、
ことを特徴とする請求項2に記載のビームシェイパ。
【請求項4】
前記調整機構は、レンズホルダと、スライド部とを備え、
前記レンズホルダは、前記コリメートレンズから前記アキシコンレンズまでの距離を保ったまま、前記コリメートレンズ及び前記アキシコンレンズの各々を保持し、
前記スライド部は、前記レンズホルダ及び前記出射端の少なくとも何れか一方をスライドさせることによって、前記出射端から前記コリメートレンズまでの距離を変化させる、
ことを特徴とする請求項3に記載のビームシェイパ。
【請求項5】
前記調整機構による前記発散角の調整範囲には、前記ガウシアンビームが収斂光となる発散角と前記ガウシアンビームが発散光となる発散角との両方が含まれる、
ことを特徴とする請求項1~4の何れか1項に記載のビームシェイパ。
【請求項6】
請求項1~5の何れか1項に記載のビームシェイパを備えた加工装置であって、前記ビームシェイパは、前記ベッセルビームを出射する、
ことを特徴とする加工装置。
【請求項7】
加工対象物の表面のうち、少なくとも前記ベッセルビームが照射されている照射点近傍における光を検出する光検出器と、
前記光検出器が検出した前記光に応じたフィードバック制御を前記調整機構に対して行う制御部と、を更に備えている、
ことを特徴とする請求項6に記載の加工装置。
【請求項8】
前記光検出器は、前記照射点近傍を撮像するカメラであり、
制御部は、前記カメラにより撮像された前記照射点近傍の画像に応じたフィードバック制御を前記調整機構に対して行う、
ことを特徴とする請求項7に記載の加工装置。
【請求項9】
アキシコンレンズに入射するガウシアンビームの発散角を変更することによって、前記アキシコンレンズから出射するベッセルビームのリング間隔を調整する調整工程を含んでいる、
ことを特徴とするビームシェイピング方法。
【請求項10】
前記調整工程は、前記ガウシアンビームの光路上に配置されたコリメートレンズから前記アキシコンレンズまでの距離を保ったまま、前記ガウシアンビームの出射点から前記コリメートレンズまでの距離を変化させることによって、前記発散角を変更する、
ことを特徴とする請求項9に記載のビームシェイピング方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ビームシェイパ、該ビームシェイパを備えた加工装置、及びビームシェイピング方法に関する。
【背景技術】
【0002】
近年、レーザ光源が生成する高出力なレーザ光を加工対象物に照射しつつ掃引することによって、加工対象物を加工する加工装置の市場が拡大している。加工用途の一例としては、切断や溶接などが挙げられる。
【0003】
これらの加工装置において、レーザ光が照射される加工部位の温度は、レーザ光を照射される前の温度(例えばほぼ室温)から、レーザ光を照射された後の温度(例えば数百度~数千度)まで、急激に上昇する。その結果、加工装置においては、このような急激な温度の上昇に伴うスパッタが生じやすい。
【0004】
このスパッタの発生を抑制するためには、加工部位の予熱が効果的だと考えられており、加工部位を予熱するために適用可能だと考えられる技術として、例えば、特許文献1の
図3に記載されたレーザービーム整形装置(本願発明の加工装置に読み替えられる)が挙げられる。このレーザービーム整形装置は、アキシコンレンズを備えており、ピーク強度が高いセンターローブと、センターローブと同心円状に形成された複数のリング状のサイドローブであって、強度が低いサイドローブと、を含む擬似的なベッセルビームを生成することができる。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、加工対象物に施す予熱の程度は、加工対象物を構成する材料や、加工の用途などに応じて異なる場合が多い。そのため、擬似的なベッセルビームを生成可能な加工装置において、リング間隔を調整したいという要望がある。
【0007】
ベッセルビームのリング間隔を調整するためには、加工ヘッドに含まれるアキシコンレンズを、頂点角が異なる別のアキシコンレンズに変更する方法が考えられる。しかし、加工ヘッドに含まれるアキシコンレンズを別のアキシコンレンズに変更するには手間を要する。また、複数のリング間隔を実現するために、複数のアキシコンレンズを用意しておくことは、加工装置の運用コストの増大を招く。
【0008】
本発明の一態様は、上述した課題に鑑みなされたものであり、その目的は、アキシコンレンズを交換することなしにリング間隔を調整可能なビームシェイパを提供することである。
【課題を解決するための手段】
【0009】
上記の課題を解決するために、本発明の態様1に係るビームシェイパは、アキシコンレンズと、前記アキシコンレンズに入射するガウシアンビームの発散角を変更することによって、前記アキシコンレンズから出射するベッセルビームのリング間隔を調整する調整機構と、を備えている。
【0010】
上記の構成によれば、調整機構を用いてベッセルビームのリング間隔を調整することができるので、アキシコンレンズを交換することなしにリング間隔を調整可能なビームシェイパを提供することができる。
【0011】
本発明の態様2に係るビームシェイパにおいては、態様1に係るビームシェイパの構成に加えて、以下の構成が採用されている。すなわち、前記ガウシアンビームの光路上に配置されたコリメートレンズを更に備えており、前記調整機構は、前記コリメートレンズから前記アキシコンレンズまでの距離を保ったまま、前記ガウシアンビームの出射点から前記コリメートレンズまでの距離を変化させることによって、前記発散角を変更する、構成が採用されている。
【0012】
上記の構成によれば、容易にリング間隔を調整することができる。
【0013】
本発明の態様3に係るビームシェイパにおいては、態様2に係るビームシェイパの構成に加えて、以下の構成が採用されている。すなわち、前記出射点は、前記ガウシアンビームを出射する光ファイバの出射端である、構成が採用されている。
【0014】
上記の構成によれば、レーザ光源により生成され、光ファイバにより導波されてきたガウシアンビームを、容易にベッセルビームに変換することができる。
【0015】
本発明の態様4に係るビームシェイパにおいては、態様3に係るビームシェイパの構成に加えて、以下の構成が採用されている。すなわち、前記調整機構は、レンズホルダと、スライド部とを備え、前記レンズホルダは、前記コリメートレンズから前記アキシコンレンズまでの距離を保ったまま、前記コリメートレンズ及び前記アキシコンレンズの各々を保持し、前記スライド部は、前記レンズホルダ及び前記出射端の少なくとも何れか一方をスライドさせることによって、前記出射端から前記コリメートレンズまでの距離を変化させる、構成が採用されている。
【0016】
上記の構成のように、調整機構の具体的な構成としては、レンズホルダと、スライド部とが挙げられる。
【0017】
本発明の態様5に係るビームシェイパにおいては、態様1~4の何れかに係るビームシェイパの構成に加えて、以下の構成が採用されている。すなわち、前記調整機構による前記発散角の調整範囲には、前記ガウシアンビームが収斂光となる発散角と前記ガウシアンビームが発散光となる発散角との両方が含まれる、構成が採用されている。
【0018】
上記の構成によれば、発散角の調整範囲に前記ガウシアンビームが収斂光となる発散角と前記ガウシアンビームが発散光となる発散角との何れか一方しか含まれていない場合と比較して、発散角をより広範囲に亘って調整することができる。しがたって、本ビームシェイパは、リング間隔をより広範囲に亘って調整することができる。
【0019】
本発明の態様6に係る加工装置は、態様1~5の何れかに係るビームシェイパを備えた加工装置であって、前記ビームシェイパは、前記ベッセルビームを出射する。
【0020】
上記の構成によれば、調整機構を用いてベッセルビームのリング間隔を調整することができるので、アキシコンレンズを交換することなしにリング間隔を調整可能な加工装置を提供することができる。
【0021】
本発明の態様7に係る加工装置においては、態様6の何れかに係る加工装置の構成に加えて、加工対象物の表面のうち、少なくとも前記ベッセルビームが照射されている照射点近傍における光を検出する光検出器と、前記光検出器が検出した前記光に応じたフィードバック制御を前記調整機構に対して行う制御部と、を更に備えている。
【0022】
上記の構成によれば、加工対象物に加工を施しながら、照射点近傍における光に応じてリング間隔を調整することができる。したがって、加工を施している全期間中に亘って、アキシコンレンズから出射するベッセルビームのリング間隔を好適に保つことができる。
【0023】
本発明の態様8に係る加工装置においては、態様7の何れかに係る加工装置の構成に加えて、以下の構成が採用されている。すなわち、前記光検出器は、前記照射点近傍を撮像するカメラとであり、制御部は、前記カメラにより撮像された前記照射点近傍の画像に応じたフィードバック制御を前記調整機構に対して行う、構成が採用されている。
【0024】
上記の構成によれば、加工対象物に加工を施しながら、照射点近傍の状態に応じてリング間隔を調整することができる。したがって、加工を施している全期間中に亘って、アキシコンレンズから出射するベッセルビームのリング間隔を好適に保つことができる。
【0025】
上記の課題を解決するために、本発明の態様9に係るビームシェイピング方法は、アキシコンレンズに入射するガウシアンビームの発散角を変更することによって、前記アキシコンレンズから出射するベッセルビームのリング間隔を調整する調整工程を含んでいる。
【0026】
このような調整工程を含む本ビームシェイピング方法は、発散角を変更することによってベッセルビームのリング間隔を調整することができるので、アキシコンレンズを交換することなしにリング間隔を調整することができる。
【0027】
本発明の態様10に係るビームシェイピング方法は、態様9に係るビームシェイピング方法に加えて、以下の構成が採用されている。すなわち、前記調整工程は、前記ガウシアンビームの光路上に配置されたコリメートレンズから前記アキシコンレンズまでの距離を保ったまま、前記ガウシアンビームの出射点から前記コリメートレンズまでの距離を変化させることによって、前記発散角を変更する、構成が採用されている。
【0028】
上記の構成によれば、容易にリング間隔を調整することができる。
【発明の効果】
【0029】
本発明の一態様によれば、アキシコンレンズを交換することなしにリング間隔を調整可能なビームシェイパを提供することができる。
【図面の簡単な説明】
【0030】
【
図1】(a)は、本発明の一実施形態に係る加工装置の構成を示すブロック図であり、(b)は、(a)に示した加工装置が備える加工ヘッドの断面図である。
【
図2】(a)~(c)は、
図1の(a)に示した加工ヘッドの断面図であって、該加工ヘッドの内部におけるコリメートレンズ及びアキシコンレンズの配置を示す断面図である。
【
図3】(a)~(c)の各々は、それぞれ、
図2の(a)~(c)に示したコリメートレンズ及びアキシコンレンズの配置に対応したベッセルビームのビーム強度の分布を示すグラフである。
【
図4】本発明の実施例に係る加工ヘッドから出射されるベッセルビームの強度分布を示すグラフである。
【発明を実施するための形態】
【0031】
(加工装置の構成)
本発明の一実施形態に係る加工装置1の構成について、
図1を参照して説明する。
図1において、(a)は、加工装置1の構成を示すブロック図であり、(b)は、加工装置1が備える加工ヘッド13の断面図である。
【0032】
加工装置1は、レーザ光を用いて加工対象物である対象物Wを加工するための装置であり、
図1の(a)に示すように、レーザ光源11と、デリバリファイバ12と、加工ヘッド13と、カメラ14と、制御部15と、を備えている。
【0033】
レーザ光源11は、レーザ光を生成する装置である。デリバリファイバ12は、レーザ光源11にて生成されたレーザ光を導波する光ファイバである。加工ヘッド13は、デリバリファイバ12を導波されたレーザ光を対象物Wに照射する装置である。カメラ14は、対象物Wの表面のうち、少なくとも後述するベッセルビームが照射されている照射点近傍における光を検出する光検出器の一例であり、該照射点近傍を撮像する装置である。この場合、照射点近傍における光とは、主に対象物Wを取り巻く環境光が照射点近傍において反射された反射光である。なお、光検出器の別の例としては、フォトダイオードが挙げられる。この場合、照射点近傍における光とは、ベッセルビームを加工対象物に照射することに伴って照射点近傍に生じるプラズマに起因する光である。この場合、光検出器としてフォトダイオードを採用する場合、照射点とフォトダイオードとの間には、所定の波長範囲に含まれる光を透過するフィルタが設けられていてもよい。
【0034】
本発明の一態様において、制御部15は、光検出器が検出した照射点近傍の光に応じたフィードバック制御を後述する調整機構に対して行うように加工ヘッド13を制御する装置である。本実施形態において、制御部15は、カメラ14にて撮像された前記照射点近傍の画像(動画像又は静止画像)に基づいて、前記照射点近傍の状態に応じたフィードバック制御を加工中に行うように加工ヘッド13を制御する装置である。
【0035】
なお、上記フィードバック制御の制御内容は、限定されるものではないが、次のような例が挙げられる。レーザ光を掃引することによって実施する加工中に、カメラ14は、レーザ光が照射されている照射点近傍を撮影し、その画像を生成する。制御部15は、カメラ14から上記画像を取得したうえで、上記画像に基づいて単位時間あたりのスパッタ量を示すスパッタ量情報を生成する。制御部15は、更に、上記スパッタ量情報が示すスパッタ量に応じて、ガウシアンビームの出射点からコリメートレンズまでの距離である距離D1(
図1及び
図2参照)を増加させる方向及び減少させる方向の何れかに微小量変化させる。このように距離D1を微小量変化させることによって、スパッタ量が上昇した場合、制御部15は、距離D1を先に微小量変化させた方向とは逆方向(減少または増加)に微小量変化させる。これを繰り返すことによって、制御部15は、加工中に発生し得るスパッタ量を低減することができる。
【0036】
なお、制御部15が上記画像から上記スパッタ量をカウントする方法は限定されないが、例えば、上記画像に含まれる輝度が閾値を上回る点をカウントする方法が挙げられる。また、制御部15のうち上記画像から上記スパッタ量をカウントする機能については、市販されているスパッタカウンタにより代用することもできる。
【0037】
また、制御部15は、距離D1を増減させる場合の変化量をどのようなアルゴリズムを用いて決定してもよい。そのアルゴリズムとしては、例えば、二分法やセカント法などの数値計算アルゴリズムが挙げられる。
【0038】
また、前記光検出器としてフォトダイオードを採用する場合であれば、フィードバック制御の制御内容として次のような例が挙げられる。レーザ光を掃引することによって実施する加工中に、フォトダイオードは、照射点近傍の光であって、フィルタによりフィルタリング処理された所定の波長範囲に含まれる光を検出する。この所定の範囲は、例えば、ベッセルビームを加工対象物に照射することに伴って照射点近傍に生じるプラズマの温度の指標になるように定められている。したがって、制御部15は、フォトダイオードが検出した所定の波長範囲に含まれる光の強度から、プラズマの温度を表す温度情報を生成する。制御部15は、更に、上記温度情報が示す温度に応じて、距離D1を増加させる方向及び減少させる方向の何れかに微小量変化させる。このように距離D1を微小量変化させることによって、温度が上昇した場合、制御部15は、距離D1を先に微小量変化させた方向とは逆方向(減少または増加)に微小量変化させる。これを繰り返すことによって、制御部15は、加工中におけるプラズマの温度を所定の温度範囲内に保つ(より好ましくは、一定に保つ)ことができる。
【0039】
加工ヘッド13は、
図1の(b)に示すように、筐体130と、コリメートレンズ131と、アキシコンレンズ132と、レンズホルダ133と、調整ボルト134と、保護ガラス135と、ガス供給孔136と、を備えている。
【0040】
筐体130は、一端(
図1における上端)が閉塞され、他端(
図1における下端)が開放された筒状の構造体である。デリバリファイバ12は、筐体130に設けられた挿通孔を介して筐体130の内部に引き込まれている。
【0041】
デリバリファイバ12から出射したレーザ光(ガウシアンビームであるので、以下、そのように記載する)の光路上には、ガウシアンビームをコリメートするためのコリメートレンズ131が配置されている。コリメートレンズ131は、平坦面である入射面と、球面である出射面とを有しており、その(コリメートレンズ131の)入射面がデリバリファイバ12の出射面に対向するように配置されている。コリメートレンズ131の光軸は、デリバリファイバ12の光軸に一致する。
【0042】
コリメートレンズ131を透過したガウシアンビームの光路上には、ガウシアンビームをベッセルビームに変換するためのアキシコンレンズ132が配置されている。アキシコンレンズ132は、平坦面である入射面と、円錐面である出射面とを有しており、その(アキシコンレンズ132の)入射面がコリメートレンズ131の出射面に対向するように配置されている。アキシコンレンズ132の光軸は、デリバリファイバ12及びコリメートレンズ131の光軸に一致する。本実施形態において、デリバリファイバ12、コリメートレンズ131、及びアキシコンレンズ132に共通する光軸は、後述する筐体130の中心軸(単に軸とも称する)とも一致する。以下において、この共通する光軸のことを加工ヘッド13の光軸とも称する。
【0043】
レンズホルダ133は、両端が開放された筒状の構造体であり、コリメートレンズ131及びアキシコンレンズ132を保持している。コリメートレンズ131及びアキシコンレンズ132は、レンズホルダ133の内側面に固定されており、コリメートレンズ131とアキシコンレンズ132との距離D2は、一定に保たれている。
【0044】
レンズホルダ133の外側面には、凸部が形成されており、この凸部は、筐体130の内側面に形成された凹部と嵌合する。筐体130の内側面に形成された凹部の幅(筐体130の軸方向の幅)は、レンズホルダ133の外側面に形成された凸部の幅よりも広く設定されている。このため、レンズホルダ133を筐体130の軸方向にスライドさせることができる。
【0045】
以上のように、筐体130の内側面に形成された凹部と、レンズホルダ133の外側面に形成された凸部とは、距離D2を一定に保ったままコリメートレンズ131及びアキシコンレンズ132を加工ヘッド13の光軸と平行にスライドさせるスライド部の一例である。なお、本実施形態のスライド部では、筐体130の内側面に凹部を形成し、レンズホルダ133の外側面に凸部を形成している。しかし、スライド部の一態様においては、筐体130の内側面に凸部を形成し、レンズホルダ133の外側面に凹部を形成することもできる。
【0046】
レンズホルダ133は、例えば、調整ボルト134の挿入量を増やすことによって、デリバリファイバ12から遠ざかり、調整ボルト134の挿入量を減らすことによって、デリバリファイバ12に近づく。このため、調整ボルト134の挿入量を増減させることによって、コリメートレンズ131からアキシコンレンズ132までの距離D2を保ったまま、ガウシアンビームの出射点(デリバリファイバ12の出射面の中心点)からコリメートレンズ131までの距離D1を変化させることができる。ここで、デリバリファイバ12の出射面は、特許請求の範囲に記載の光ファイバの出射端の一態様である。なお、調整ボルト134の挿入量(すなわち、距離D1)は、不図示の機構により制御部15によって電動制御することもできるし、手動により制御することもできる。
【0047】
ガス供給孔136には、レーザ加工においてアシストガスとして機能するガスが供給されている。ガス供給孔136に供給されたアシストガスは、開放された筐体130の下端から対象物Wの加工部位に同心円状に吹き付けられる。アシストガスとして用いるガス種は、レーザ加工の用途(例えば、切断や、溶接など)に応じて適宜選択することができる。例えば、切断の場合であれば燃焼作用が求められるため、アシストガスのガス種は、酸素が好ましく、溶接の場合であれば、参加を抑制するため、アシストガスのガス種は、窒素が好ましい。なお、アシストガスのガス種は、酸素及び窒素に限定されるものではない。また、アシストガスは、上述した機能の他に、加工に伴い生じるスパッタが保護ガラス135に付着することを抑制するという機能も有する。
【0048】
(加工ヘッドの機能)
加工ヘッド13の機能について、
図2及び
図3を参照して説明する。
図2の(a)~(c)は、加工ヘッド13の光軸を含む断面における断面図であって、加工ヘッド13の内部におけるコリメートレンズ131及びアキシコンレンズ132の配置を示す断面図である。なお、
図2の(a)~(c)においては、コリメートレンズ131及びアキシコンレンズ132のみを図示している。また、
図2の(a)~(c)の各々に図示したz軸は、加工ヘッド13の光軸(
図2の(a)~(c)の各々には図示せず)と平行になるように定めている。また、z軸は、デリバリファイバ12の出射面に対応する位置が原点となるように定めている。
図3の(a)~(c)の各々は、それぞれ、
図2の(a)~(c)に示したコリメートレンズ131及びアキシコンレンズ132の配置に対応したベッセルビームのビーム強度の分布を示すグラフである。
【0049】
図2の(a)において、距離D1は、デリバリファイバ12から出射されたガウシアンビームがコリメートレンズ131を透過することによりコリメート光になるように定められている。すなわち、距離D1は、コリメートレンズ131の焦点距離と一致する又は略一致する。本実施形態においては、距離D1は、コリメートレンズ131の焦点距離と一致しているものとして説明する。以下においては、
図2の(a)に示した距離D1を基準となる距離D1と称する。
【0050】
図2の(b)において、距離D1は、上述した基準となる距離D1よりも短くなるように定められている。したがって、デリバリファイバ12から出射され、コリメートレンズ131を透過した光は、発散光となる。すなわち、コリメートレンズ131を透過した光のスポット径は、コリメートレンズ131の出射面から遠ざかれば遠ざかるほど拡大する。
【0051】
図2の(c)において、距離D1は、上述した基準となる距離D1よりも長くなるように定められている。したがって、デリバリファイバ12から出射され、コリメートレンズ131を透過した光は、収斂光となる。すなわち、コリメートレンズ131を透過した光のスポット径は、コリメートレンズ131の出射面から遠ざかれば遠ざかるほど縮小する。
【0052】
また、上述したように、加工ヘッド13においては、コリメートレンズ131とアキシコンレンズ132との距離D2は、一定に保たれている。したがって、
図2の(a)~(c)の何れにおいても、距離D2は、一定である。
【0053】
アキシコンレンズ132の出射面は、
図2の(a)~(c)に示すように断面視した場合、二等辺三角形の2つの斜辺により構成されている。以下では、
図2の(a)~(c)の各々において、上記2つの斜辺のうち、上側に位置する斜辺を第1の斜辺と称し、下側に位置する斜辺を第2の斜辺と称する。したがって、
図2の(a)に示すように、アキシコンレンズ132にコリメート光が入射した場合、第1の斜辺は、コリメート光を斜め下方向に向かって屈折させ、第2の斜辺は、コリメート光を斜め上方向に向かって屈折させる。
【0054】
図2の(a)に示すように、第1の斜辺により斜め下方向に屈折された光と、第2の斜辺により斜め上方向に屈折された光とは、アキシコンレンズ132の出射面の近傍領域である干渉領域Bにおいて交差し、互いに干渉し合う。干渉領域Bにおいては、第1の斜辺により斜め下方向に屈折された光と、第2の斜辺により斜め上方向に屈折された光とが干渉し合う結果、擬似的なベッセルビームが形成される。本実施形態において、特に断りなくベッセルビームと記載する場合、それは、擬似的なベッセルビームを意味する。
【0055】
ベッセルビームのビーム形状は、光軸上に位置しビーム強度が最も高いセントラルローブと、セントラルローブの両側に対称な形状に形成される縞状のサイドローブとにより構成されている(
図3の(a)参照)。
【0056】
コリメートレンズ131及びアキシコンレンズ132の各々は、中心軸に対して等方的な形状を有するため、ベッセルビームのビームスポットも光軸を中心軸として等方的な形状を有する。すなわち、ベッセルビームのビームスポットの3次元的な形状は、
図3の(a)に図示したビームプロファイルを、中心軸を回転軸として360度回転させることによって得られ、同軸状のリング構造を有する。
【0057】
ベッセルビームは、ガウシアンビームと比較して、ビームのスポット径の拡大を抑制しつつ、長距離(干渉領域の長さに対応し、典型的には数mm)に亘ってビームを伝搬させることができる。しがたって、加工装置1が加工ヘッド13を備えていることにより、加工装置1は、ベッセルビームを対象物Wに照射することができる。レーザ加工にベッセルビームを用いることによって、ガウシアンビームをレーザビームとして用いる場合と比較して、例えば、アスペクト比が高い細孔を対象物Wに対して形成することができる。
【0058】
以下において、サイドローブに含まれる複数のピークのうち、最も内側に位置するピークまでの距離を距離D22と称し、内側から2番目に位置するピークまでの距離を距離D33と称する。
【0059】
図2の(b)に示すように、距離D1を
図2の(a)に示した基準となる距離D1よりも短くなるように定めた場合、コリメートレンズ131を透過した光は、発散光となり、干渉領域の光軸に沿った方向の長さが長くなる。その結果、
図3の(b)に示すように、ベッセルビームのビームスポットのリング間隔は、
図3の(a)と比較して疎になる。すなわち、距離D1を基準となる距離D1よりも短くなるように定めることによって、距離D22及び距離D33の各々は、
図3の(a)に示した状態よりも長くなる。
【0060】
図2の(c)に示すように、距離D1を
図2の(a)に示した基準となる距離D1よりも短くなるように定めた場合、コリメートレンズ131を透過した光は、発散光となり、干渉領域の光軸に沿った方向の長さが短くなる。その結果、
図3の(c)に示すように、ベッセルビームのビームスポットのリング構造のリング間隔は、
図3の(a)と比較して密になる。すなわち、距離D1を基準となる距離D1よりも短くなるように定めることによって、距離D22及び距離D33の各々は、
図3の(a)に示した状態よりも短くなる。
【0061】
以上のように、加工ヘッド13は、対象物Wに照射するベッセルビームを形成するビームシェイパとして機能する。また、上記スライド部、レンズホルダ133、及び調整ボルト134は、アキシコンレンズ132に入射するガウシアンビームの発散角θ(
図2の(b)及び(c)参照)を変更することによって、アキシコンレンズ132から出射するベッセルビームのリング間隔を調整する調整機構として機能する。
【0062】
なお、本実施形態において、デリバリファイバ12の出射面が加工ヘッド13に対して固定されており、距離D2が固定された状態で、コリメートレンズ131及びアキシコンレンズ132がレンズホルダ133に固定されており、上記調整機構がレンズホルダ133を光軸方向に沿ってスライドさせることによって、距離D2を保ったまま距離D1を変化させるように構成されている。しかし、本発明の一態様において、コリメートレンズ131及びアキシコンレンズ132が加工ヘッド13に固定されており、デリバリファイバ12の出射面がファイバホルダに固定されており、上記調整機構は、調整ボルト134を用いて該ファイバフォルダを加工ヘッド13の光軸方向にスライドさせることによって、距離D2を保ったまま距離D1を変化させるように構成されていてもよい。また、本発明の一態様において、上記調整機構は、レンズホルダ133及び上記ファイバフォルダの両方を加工ヘッド13の光軸方向にスライドさせることによって、距離D2を保ったまま距離D1を変化させるように構成されていてもよい。
【0063】
〔実施例〕
図1に示した加工ヘッド13において、距離D1を変化させた場合に得られるビームプロファイルを
図4に示す。
図4に示したD1=0mmのプロットは、距離D1を基準となる距離D1と一致させた場合(すなわち
図2の(a)に示した状態)において得られたものである。また、
図4に示したD1=-6mmのプロットは、距離D1を基準となる距離D1より6mm短くした場合(すなわち
図2の(b)に示した状態の一例)において得られたものであり、
図4に示したD1=6mmのプロットは、距離D1を基準となる距離D1より6mm長くした場合(すなわち
図2の(c)に示した状態の一例)において得られたものである。
【0064】
距離D1を-6mm,0mm,6mmとした各場合における距離D22及び距離D33を以下の表1に示す。
【0065】
【0066】
表1によれば、距離D1を基準となる距離D1より短くすることにより、リング間隔が疎になり、距離D1を基準となる距離D1より長くすることにより、リング間隔が密になることが分かった。
【0067】
〔付記事項〕
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
【符号の説明】
【0068】
1 加工装置
11 レーザ光源
12 デリバリファイバ
13 加工ヘッド
130 筐体
131 コリメートレンズ
132 アキシコンレンズ
133 レンズホルダ(調整機構の一部)
134 調整ボルト
135 保護ガラス
136 ガス供給孔
14 カメラ
15 制御部
W 対象物(加工対象物)