IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ レノボ・シンガポール・プライベート・リミテッドの特許一覧

特許7238180充電制御装置、二次電池、電子機器、及び制御方法
<>
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図1
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図2
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図3
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図4
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図5
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図6
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図7
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図8
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図9
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図10
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図11
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図12
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図13
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図14
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図15
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図16
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図17
  • 特許-充電制御装置、二次電池、電子機器、及び制御方法 図18
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-03
(45)【発行日】2023-03-13
(54)【発明の名称】充電制御装置、二次電池、電子機器、及び制御方法
(51)【国際特許分類】
   G01R 31/389 20190101AFI20230306BHJP
   H02J 7/00 20060101ALI20230306BHJP
   G01R 31/387 20190101ALI20230306BHJP
   G01R 31/392 20190101ALI20230306BHJP
   H01M 10/48 20060101ALI20230306BHJP
【FI】
G01R31/389
H02J7/00 Q
G01R31/387
G01R31/392
H01M10/48 P
【請求項の数】 8
(21)【出願番号】P 2022021274
(22)【出願日】2022-02-15
(62)【分割の表示】P 2020107348の分割
【原出願日】2020-06-22
(65)【公開番号】P2022069459
(43)【公開日】2022-05-11
【審査請求日】2022-02-15
(73)【特許権者】
【識別番号】505205731
【氏名又は名称】レノボ・シンガポール・プライベート・リミテッド
(74)【代理人】
【識別番号】100161207
【弁理士】
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100169764
【弁理士】
【氏名又は名称】清水 雄一郎
(74)【代理人】
【識別番号】100175824
【弁理士】
【氏名又は名称】小林 淳一
(74)【代理人】
【識別番号】100206081
【弁理士】
【氏名又は名称】片岡 央
(72)【発明者】
【氏名】山口 弘光
(72)【発明者】
【氏名】小菅 正
(72)【発明者】
【氏名】大月 秀記
(72)【発明者】
【氏名】福岡 功一
【審査官】高野 誠治
(56)【参考文献】
【文献】特開2015-059816(JP,A)
【文献】特開2011-043460(JP,A)
【文献】国際公開第2015/115044(WO,A1)
【文献】特開2000-285968(JP,A)
【文献】国際公開第2011/122310(WO,A1)
【文献】特開2006-153663(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 31/389
H02J 7/00
G01R 31/387
G01R 31/392
H01M 10/48
(57)【特許請求の範囲】
【請求項1】
二次電池の充電期間中に所定の周期で前記二次電池の内部抵抗を複数回測定する内部抵抗測定部と、
前記内部抵抗測定部により測定された前記内部抵抗の変化に基づいて前記内部抵抗のピークを検出する検出部と、
前記検出部により検出された前記内部抵抗のピークを参照して前記二次電池の満充電容量を更新する更新部と、
前記二次電池の電圧を測定する電圧測定部と、
を備え、
前記内部抵抗測定部は、
前記二次電池の充電期間中に前記二次電池の充電率又は前記電圧測定部により測定された電圧が所定の閾値に達した以降に所定の周期で前記内部抵抗を測定する、
充電制御装置。
【請求項2】
前記検出部は、
前記内部抵抗測定部により複数回にわたって測定された前記内部抵抗の値の変化量が所定の閾値以下になった場合、ピークとして検出する、
請求項1に記載の充電制御装置。
【請求項3】
前記内部抵抗測定部は、
前記二次電池の充電期間中に充電電流を一時的に停止させることにより、停止前の前記二次電池の電圧と停止中の前記二次電池の電圧との差分に基づいて前記二次電池の内部抵抗を算出する、
請求項1または請求項2に記載の充電制御装置。
【請求項4】
前記内部抵抗測定部は、
前記二次電池の充電期間中に前記二次電池の充電率又は前記電圧測定部により測定された電圧が所定の閾値に達する前は前記所定の周期よりも低い測定頻度で前記内部抵抗を測定する、
請求項1から請求項3のいずれか一項に記載の充電制御装置。
【請求項5】
前記内部抵抗測定部は、
前記検出部により前記内部抵抗のピークが検出されたことに応じて、測定頻度を低くする、
請求項1から請求項4のいずれか一項に記載の充電制御装置。
【請求項6】
請求項1から請求項5のいずれか一項に記載の充電制御装置、
を備える二次電池。
【請求項7】
請求項6に記載の二次電池、
を備える電子機器。
【請求項8】
充電制御装置における制御方法であって、
内部抵抗測定部が、二次電池の充電期間中に所定の周期で前記二次電池の内部抵抗を複数回測定するステップと、
検出部が、前記内部抵抗測定部により測定された前記内部抵抗の変化に基づいて前記内部抵抗のピークを検出するステップと、
更新部が、前記検出部により検出された前記内部抵抗のピークを参照して前記二次電池の満充電容量を更新するステップと、
電圧測定部が、前記二次電池の電圧を測定するステップと、
を有し、
前記内部抵抗測定部が前記内部抵抗を複数回測定するステップにおいて、
前記二次電池の充電期間中に前記二次電池の充電率又は前記電圧測定部により測定された電圧が所定の閾値に達した以降に所定の周期で前記内部抵抗を測定する、
制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、充電制御装置、二次電池、電子機器、及び制御方法に関する。
【背景技術】
【0002】
二次電池を繰り返し使用していると、二次電池の状態が徐々に変化し劣化する。このような経年劣化により、例えば二次電池の満充電容量が低下してくると、残容量の計算に誤差が生じてくる。そのため、経年劣化に応じた二次電池の満充電容量の変化を検出して満充電容量の値を更新する必要がある。経年劣化に応じで変化する二次電池の満充電容量を検出する方法としては、例えば、一旦完全に放電させてから満充電の状態になるまで充電し、その際の充電容量を積算して満充電容量を求める方法がある(例えば、特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2003-224901号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上述したように二次電池の満充電容量を検出する際に一旦完全に放電させる必要があると、実使用では完全に放電された状態まで使用されることが少ないため、満充電容量が変化しても更新される頻度が低かった。
【0005】
本発明は上記した事情に鑑みてなされたもので、二次電池の満充電容量を実使用において適宜更新できる充電制御装置、二次電池、電子機器、及び制御方法を提供することを目的の一つとする。
【課題を解決するための手段】
【0006】
本発明は上記の課題を解決するためになされたものであり、本発明の第1態様に係る充電制御装置は、二次電池の充電電流を測定する電流測定部と、前記二次電池の充電中に、前記電流測定部により測定された充電電流に基づいて定電流充電から定電圧充電への切り替わりを検出する検出部と、前記検出部により検出された定電流充電から定電圧充電への切り替わりの時点以降の充電容量に基づいて前記二次電池の満充電容量を更新する更新部と、を備える。
【0007】
上記充電制御装置において、充電中に定電流充電から定電圧充電へ切り替わる時点での充電率(満充電容量に対する充電容量の割合)が予め設定されており、前記更新部は、 前記検出部により検出された前記時点から満充電状態になるまでの充電容量と、予め設定されている前記充電率とに基づいて前記二次電池の満充電容量を更新してもよい。
【0008】
上記充電制御装置において、前記電流測定部は、所定の周期で前記二次電池の充電電流を測定し、前記検出部は、前記電流測定部が測定した前記所定の周期毎の充電電流の測定値が、前回の測定値より一定値以上減少することが所定の回数連続した場合、定電流充電から定電圧充電へ切り替わったことを検出してもよい。
【0009】
上記充電制御装置において、前記二次電池の充電期間にわたって前記二次電池の内部抵抗を複数回測定する内部抵抗測定部をさらに備え、前記検出部は、前記内部抵抗測定部により測定された前記内部抵抗の変化に基づいて前記内部抵抗のピークを検出し、検出した内部抵抗のピークを参照しながら、定電流充電から定電圧充電への切り替わり点を検出してもよい。
【0010】
また、本発明の第2態様に係る充電制御装置は、二次電池の充電期間にわたって前記二次電池の内部抵抗を複数回測定する内部抵抗測定部と、前記内部抵抗測定部により測定された前記内部抵抗の変化に基づいて前記内部抵抗のピークを検出する検出部と、前記検出部により検出された前記内部抵抗のピークを参照して前記二次電池の満充電容量を更新する更新部と、を備える。
【0011】
上記充電制御装置において、前記二次電池の電圧を測定する電圧測定部をさらに備え、
前記内部抵抗測定部は、前記二次電池の充電期間中に前記電圧測定部により測定された電圧が所定の閾値に達した場合、前記内部抵抗の測定頻度を高くしてもよい。
【0012】
上記充電制御装置において、前記内部抵抗測定部は、前記検出部により前記内部抵抗のピークが検出されたことに応じて、測定頻度を低くしてもよい。
【0013】
上記充電制御装置において、前記検出部は、前記内部抵抗測定部により複数回にわたって測定された前記内部抵抗の値の変化量が所定の閾値以下になった場合、ピークとして検出してもよい。
【0014】
上記充電制御装置において、前記内部抵抗測定部は、前記二次電池の充電期間中に充電電流を一時的に停止させることにより、停止前の前記二次電池の電圧と停止中の前記二次電池の電圧との差分に基づいて前記二次電池の内部抵抗を算出してもよい。
【0015】
また、本発明の第3態様に係る二次電池は、上記充電制御装置を備える。
【0016】
また、本発明の第4態様に係る電子機器は、上記二次電池を備える。
【0017】
また、本発明の第5態様に係る充電制御装置における制御方法は、電流測定部が、二次電池の充電電流を測定するステップと、検出部が、前記二次電池の充電中に、前記電流測定部により測定された充電電流に基づいて定電流充電から定電圧充電への切り替わりを検出するステップと、更新部が、前記検出部により検出された定電流充電から定電圧充電への切り替わりの時点以降の充電容量に基づいて前記二次電池の満充電容量を更新するステップと、を有する。
【0018】
また、本発明の第6態様に係る充電制御装置における制御方法は、内部抵抗測定部が、二次電池の充電期間にわたって前記二次電池の内部抵抗を複数回測定するステップと、検出部が、前記内部抵抗測定部により測定された前記内部抵抗の変化に基づいて前記内部抵抗のピークを検出するステップと、更新部が、前記検出部により検出された前記内部抵抗のピークを参照して前記二次電池の満充電容量を更新するステップと、を有する。
【発明の効果】
【0019】
本発明の上記態様によれば、通常の二次電池の使用でも経年劣化に応じて満充電容量を適宜更新することができる。
【図面の簡単な説明】
【0020】
図1】第1の実施形態に係る電子機器の外観図。
図2】電池の経年劣化による電池容量への影響を説明する模式図。
図3】第1の実施形態に係る電池の充電特性を示すグラフ。
図4】第1の実施形態に係る電池の構成の一例を示すブロック図。
図5図3の定電流充電から定電圧充電への切り替わり部分を拡大したグラフ。
図6】第1の実施形態に係る充電方式切替検出処理の一例を示すフローチャート。
図7】第2の実施形態に係る充電特性における内部抵抗の変化を示すグラフ。
図8】第2の実施形態に係る電池の構成例を示すブロック図。
図9図7の内部抵抗が最小となるポイントの部分を拡大したグラフ。
図10】第2の実施形態に係る内部抵抗ピーク検出処理の例を示すフローチャート。
図11】第2の実施形態に係る充電容量の測定期間の3つの例を示す図。
図12】第3の実施形態に係る電池セルの等価回路を示す電池のブロック図。
図13】第3の実施形態に係る制御部の内部回路の概略の一例を示す模式図。
図14】第3の実施形態に係る内部抵抗の測定時の電圧・電流波形を示すグラフ。
図15】第3の実施形態に係る内部抵抗測定処理の一例を示すフローチャート。
図16】第3の実施形態に係る内部抵抗の測定タイミングの第1例を示すグラフ。
図17】第3の実施形態に係る内部抵抗ピーク検出処理の例を示すフローチャート。
図18】第3の実施形態に係る内部抵抗の測定タイミングの第2例を示すグラフ。
【発明を実施するための形態】
【0021】
以下、図面を参照しながら本発明の実施形態について詳しく説明する。
<第1の実施形態>
まず、本発明の第1の実施形態に係る情報処理装置の概要について説明する。
図1は、本実施形態に係る二次電池を内部に搭載した電子機器の外観図である。図示する電子機器10は、クラムシェル型(ノート型)のPC(パーソナルコンピュータ)である。なお、電子機器10は、タブレット型のPCや、スマートフォン等であってもよい。
【0022】
電池20は、電子機器10に電力を供給するための二次電池であり、ACアダプタ30から充電を行うことで繰り返し使用することができる。例えば、電池20は、リチウムイオン電池を例示することができる。電池20から供給される電力で電子機器10を動作させる場合、動作可能な時間は、電池20の残容量に依存する。電池20の残容量(Remaining capacity)は、「満充電容量(FCC:Full charge capacity)」-「放電容量(Discharged capacity)」で算出することができる。ここで、電池20は、繰り返し使用していると状態が徐々に変化し劣化する。経年劣化により、電池の満充電容量が低下してくると、残容量の計算に誤差が生じてしまう。
【0023】
図2は、電池20の経年劣化による電池容量への影響を説明する模式図である。この図において、縦軸が電池容量、横軸が時間の経過を示している。初期の満充電容量を「100」としたとき、満充電容量から放電容量を引いた容量が残容量(A)となる。符号101が示す線は、時間の経過に応じた電池の劣化に伴う満充電容量の変化を示している。経年劣化によって満充電容量が低下しているにもかかわらず、初期の満充電容量「100」から放電容量を引いて残容量を算出すると、誤った残容量の算出値(B)となる。経年劣化により低下した満充電容量から放電容量を引いて残容量を算出することにより、正しい残容量の算出値(C)を得ることができる。そのため、実使用において経年劣化に応じて満充電容量が適宜更新されないと、電子機器10に表示される残容量の精度が悪くなる。
【0024】
例えば、従来のように十分に放電させた完全放電の状態から満充電の状態になるまで充電しないと満充電容量が更新されない場合、実使用では、完全放電の状態になる機会が少ないため、満充電容量の値が更新される頻度が少なかった。そこで、本実施形態では、実使用でも満充電容量の値が適宜更新されるように、完全放電の状態にさせなくとも、充電期間のうち一部の特定の充電期間の充電容量に基づいて電池20の満充電容量を更新する。
【0025】
次に、図3を参照して、本実施形態に係る満充電容量の算出方法について詳しく説明する。図3は、本実施形態に係る電池20の充電特性を示すグラフである。この図では、横軸を充電時間として、符号111が示す線が満充電容量(FCC[wh])、符号112が示す線が充電率(SOC:State of Charge[%])、符号113が示す線が電池電圧(Vc[V])、符号114が示す線が充電電流(Ic[A])を示している。
【0026】
電子機器10には、電池20を充電する際の最大電圧と最大電流が設定されており、電池電圧が最大電圧に達するまでは定電流充電(CC:Constant Current)で充電が行われ、最大電圧に達した後は定電圧充電(CV:Constant Voltage)へ移行する。図示する例では、時刻t0が充電の開始時点を示し、時刻tcが定電流充電から定電圧充電への切り替わりの時点を示している。また、時刻tfは、満充電状態と判定した時点を示している。つまり、時刻t0から時刻tcまでの期間T1が定電流充電の範囲で、時刻tcから時刻tfまでの期間T2が定電圧充電の範囲である。
【0027】
定電流充電から定電圧充電への切り替わりの時点での充電率は一定の値となるため、この時点から満充電状態になるまでの期間T2の充電容量を測定し、測定した充電容量を充電率100%に換算することで満充電容量を算出することができる。ここでは、定電流充電から定電圧充電への切り替わりの時点(時刻tc)での充電率が75%の例を示している。この例では、時刻tcから時刻tfまで(即ち、充電率75%から100%になるまで)の期間T2の充電容量の測定結果をCとすると、満充電容量(FCC)は、以下の式1により算出することができる。
【0028】
FCC=C×(100/25)・・・(式1)
【0029】
なお、定電流充電から定電圧充電への切り替わりの時点での充電率は、同一の電池であれば同一の値(例えば、75%)を用いることができるが、異なる種類の電池では材料などの違いに起因して異なることがある。そのため、定電圧充電への切り替わりの時点での充電率は、電池の種類等に応じて予め設定されている。
【0030】
(電池20の構成)
以下、電池20の具体的な構成について説明する。
図4は、本実施形態に係る電池20の構成の一例を示すブロック図である。電池20は、制御部210と、電池セル220とを備えている。制御部210は、MPU(Micro Processing Unit)などを含んで構成されている。制御部210は、MPUが実行する処理の機能構成として、電流測定部211と、電圧測定部212と、検出部215と、算出部216と、更新部217とを備えている。
【0031】
電流測定部211は、電池20の充電電流(Ic)及び放電電流(-Ic)を測定する。電圧測定部212は、電池20の電池電圧(Vc)を測定する。検出部215は、電池20の充電中に、電流測定部211により検出された充電電流に基づいて定電流充電から定電圧充電へ切り替わるポイントを検出する。例えば、電流測定部211は、所定の周期で電池20の充電電流を測定する。そして、検出部215は、電流測定部211が測定した所定の周期毎の充電電流の測定値の変化に基づいて定電流充電から定電圧充電へ切り替わるポイントを検出する。例えば、検出部215は、電流測定部211が測定した所定の周期毎の充電電流の測定値が、前回の測定値より一定値以上減少することが所定の回数連続した場合、定電流充電から定電圧充電へ切り替わったことを検出する。なお、検出部215は、電池20の内部に設けられているサーミスタ(不図示)を用いて電池20の内部温度を検出してもよい。以下、図5及び図6を参照して、定電流充電から定電圧充電へ切り替わるポイントを検出する処理の具体例について説明する。
【0032】
図5は、図3に示す充電特性の図における定電流充電から定電圧充電への切り替わり部分を拡大したグラフである。この図において、横軸は充電時間であり、符号113が示す線が電池電圧Vc[V]、符号114が示す線が充電電流Ic[A]を示している。図示する例では、電流測定部211は、所定時間Δt(例えば、10秒)の間隔(所定の周期)で充電電流を測定する。検出部215は、電流測定部211が測定した充電電流Icに対するΔt後の充電電流Icの変化量ΔIが一定値以上の減少であるか否かを判定し、ΔIが一定値以上の減少であることが所定の回数(例えば、5回)連続した場合(図示でΔI、ΔI、ΔI、ΔI、ΔIの全てが一定値以上の減少であった場合)、定電流充電から定電圧充電へ切り替わったと判定し、定電流充電から定電圧充電へ切り替わったことを検出する。検出部215は、定電流充電から定電圧充電へ切り替わったことを検出した時点の時刻tcを設定する。なお、図示する例では、ΔIが一定値以上の減少であることが5回連続した場合に定電流充電から定電圧充電へ切り替わったことを検出しているが、5回に限定されるものではなく、任意の回数に設定することができる。
【0033】
図6は、本実施形態に係る定電流充電から定電圧充電へ切り替わるポイントを検出する充電方式切替検出処理の一例を示すフローチャートである。この図6を参照して、電池20の制御部210が実行する充電方式切替検出処理の動作について説明する。この充電方式切替検出処理は、電池20の充電開始に応じて開始される。
【0034】
(ステップS101)制御部210は、電池電圧(Vc)を測定し、ステップS103の処理へ進む。
【0035】
(ステップS103)制御部210は、ステップS101で測定した電池電圧(Vc)が電圧閾値(Vth)以上であるか否かを判定する。この電圧閾値(Vth)は、所定の周期での充電電流の変化を測定する処理を開始する時点を定めるものであり、電池20を充電する際の最大電圧から一定電圧下げた電圧に予め設定されている。一例として、図5に示す充電特性の例に対して電圧閾値(Vth)=13.068[V]などに設定されている。制御部210は、電池電圧(Vc)が電圧閾値(Vth)未満であると判定した場合(NO)ステップS103の処理に戻る。一方、制御部210は、電池電圧(Vc)が電圧閾値(Vth)以上であると判定した場合(YES)、ステップS105の処理へ進む。
【0036】
(ステップS105)制御部210は、n=1として1回目の充電電流の変化を検出する処理を開始し、ステップS107の処理へ進む。
【0037】
(ステップS107)制御部210は、充電電流(Ic)を測定し、測定した充電電流(Ic)の値をIcaに代入する。そして、ステップS109の処理へ進む。
【0038】
(ステップS109)制御部210は、所定時間(Δt)を計時し、所定時間(Δt)経過すると、ステップS111の処理へ進む。例えば、所定時間(Δt)は、10秒である。
【0039】
(ステップS111)制御部210は、充電電流(Ic)を測定し、測定した充電電流(Ic)の値をIcbに代入する。そして、ステップS113の処理へ進む。
【0040】
(ステップS113)制御部210は、ステップS107で測定した充電電流の値Icaに対するステップS111で測定した充電電流の値Icbとの変化量ΔIn(例えば、n=1)が予め設定された閾値(Ith)以上の減少であるか否かを判定する。例えば、制御部210は、1回目(n=1)の充電電流の変化を検出では、ΔI=Icb-Icaを算出し、ΔI≦-Ithであるか否かを判定する。一例として、閾値(Ith)は20mAである。制御部210は、算出した充電電流の変化量ΔIが閾値(Ith)未満の減少である(ΔI>-Ith)と判定した場合(NO)、ステップS105の処理に戻る。一方、制御部210は、算出した充電電流の変化量ΔIが閾値(Ith)以上の減少である(ΔI≦-Ith)と判定した場合(YES)、ステップS115の処理に進む。
【0041】
(ステップS115)制御部210は、n=5であるか否か、即ち、5回連続して充電電流の変化量ΔIが閾値(Ith)以上の減少となったか否かを判定する。制御部210は、n<5であると判定した場合(NO)、ステップS117の処理に進む。一方、制御部210は、n=5であると判定した場合(NO)、ステップS119の処理に進む。
【0042】
(ステップS117)制御部210は、n<5であった場合、nを1増加させ(例えば、n=2)、ステップS107の処理に戻る。そして、制御部210は、n+1回目(例えば、2回目)の充電電流の変化を検出する処理を開始する。
【0043】
(ステップS119)制御部210は、n=5であった場合、定電流充電から定電圧充電への切り替わりポイントとして設定する。例えば、制御部210は、定電流充電から定電圧充電への切り替わったことを検出し、切り替わりの時点(時刻tc)を設定する。
【0044】
図4に戻り、算出部216は、検出部215により検出された定電流充電から定電圧充電への切り替わりの時点以降の充電容量に基づいて電池20の満充電容量を算出する。例えば、制御部210には、充電中に定電流充電から定電圧充電へ切り替わる時点での充電率が予め設定されている(例えば、75%)。算出部216は、定電流充電から定電圧充電へ切り替わる時点から満充電状態(例えば、充電率75%~100%)になるまで(図3の期間T2)の充電容量Cを、当該期間の電池電圧の測定結果と充電電流の測定結果とに基づいて積算して求める。そして、算出部216は、この充電率75%~100%までの充電容量Cに基づいて、前述した式1により満充電容量(FCC)を算出する。
【0045】
例えば、制御部210には、電池20の満充電容量の初期値が予め設定されている。そして、更新部217は、算出部216による算出結果に基づいて電池20の満充電容量の初期値を現在の設定値に適宜更新していく。つまり、更新部217は、予め設定されている満充電容量の初期値を、経年劣化に応じて算出部216により算出された満充電容量の値で更新して補正する。なお、更新は、算出部216による満充電容量の算出の度に行われてもよいし、算出値が設定値より低下した場合(或いは、一定以上低下した場合)のみ行われてもよい。
【0046】
即ち、更新部217は、検出部215により検出された定電流充電から定電圧充電への切り替わりの時点以降の充電容量に基づいて電池20の満充電容量を更新する。具体的には、更新部217は、検出部215により検出された定電流充電から定電圧充電への切り替わりの時点から満充電状態になるまでの充電容量と、定電流充電から定電圧充電への切り替わりの時点での充電率(例えば、75%)とに基づいて電池20の満充電容量を更新する。
【0047】
なお、電池20の満充電状態は、電流測定部211が測定した所定の周期毎の充電電流の測定値又は測定値の変化に基づいて検出部215により検出される。例えば、検出部215は、充電電流の測定値が所定値以下になった場合又は所定の回数連続して所定値以下になった場合、満充電状態になったと判定してもよい。また、検出部215は、充電電流の測定値の減少量が所定値未満になった場合又は所定の回数連続して所定値未満になった場合、満充電状態になったと判定してもよい。
【0048】
以上説明したように、本実施形態に係る電池20(二次電池の一例)は、制御部210(充電制御装置の一例)を備えている。制御部210は、電池20の充電中に充電電流を測定し、測定した充電電流に基づいて定電流充電から定電圧充電への切り替わりを検出する。そして、制御部210は、検出した定電流充電から定電圧充電への切り替わりの時点以降の充電容量に基づいて電池20の満充電容量を更新する。
【0049】
これにより、電池20は、完全放電をさせなくとも定電流充電から定電圧充電への切り替わりを利用することにより、実使用でも使用頻度の高い充電領域の充電で満充電容量を把握して更新することができる。よって、電池20は、実使用において満充電容量を適宜更新することができる。また、電池20又は電子機器10は、経年劣化などにより電池20の満充電容量が変化しても、常に精度の高い残容量をユーザに通知することができる。
【0050】
例えば、充電中に定電流充電から定電圧充電へ切り替わる時点での充電率が予め設定されている。そして、制御部210は、検出した定電流充電から定電圧充電への切り替わりの時点から満充電状態になるまでの充電容量と、予め設定されている充電率とに基づいて電池20の満充電容量を算出して更新する。
【0051】
これにより、電池20は、充電中の期間の中で、定電流充電から定電圧充電への切り替わりの時点の充電率が決まっていることを利用して、実使用でも使用頻度の高い部分的な充電で満充電容量を把握して更新することができる。
【0052】
また、制御部210は、所定の周期で電池20の充電電流を測定し、測定した所定の周期毎の充電電流の測定値が、前回の測定値より一定値(例えば、閾値(Ith))以上減少することが所定の回数(例えば、5回)連続した場合、定電流充電から定電圧充電へ切り替わったことを検出する。
【0053】
これにより、電池20は、充電中の期間の中で、定電流充電から定電圧充電への切り替わりの時点を精度よく検出することができる。
【0054】
<第2の実施形態>
次に、本発明の第2の実施形態について説明する。
第1の実施形態では、二次電池の充電中の定電流充電から定電圧充電へ切り替わるポイントを利用して満充電容量を算出して更新したが、本実施形態では、二次電池の内部抵抗の変化を利用して満充電容量を算出して更新する。
【0055】
図7は、本実施形態に係る充電特性における内部抵抗の変化を示すグラフである。この図では、横軸を充電率(SOC[%])として、符号121が示す線が電池電圧(Vc)、符号122が示す線が充電電流(Ic[A])、符号123が示す線が内部抵抗(IR[mΩ])を示している。符号124が示す部分の充電率(SOC[%])の変化と内部抵抗(IR[mΩ])の変化からわかるように、内部抵抗が最小となるポイントは、一定の充電率になるポイントと一致する。図示する例では、この内部抵抗が最小となるポイントでの充電率は80%である。
【0056】
つまり、内部抵抗が最小となるポイントを検出することにより、内部抵抗が最小となる時点から満充電状態になるまでの充電容量を充電率100%に換算することで満充電容量を算出することができる。ここでは、内部抵抗が最小となる時点での充電率が80%の例を示しているため、この充電率が80%の時点から充電率が100%になるまでの充電容量の測定結果をCとすると、満充電容量(FCC)は、以下の式2により算出することができる。
【0057】
FCC=C×(100/20)・・・(式2)
【0058】
なお、この内部抵抗が最小となるポイントにおける充電率は、第1の実施形態で説明したように、同一の電池であれば同一の値を用いることができるが、異なる種類の電池では材料などの違いに起因して異なることがあるため、電池の種類等に応じて予め設定されている。
【0059】
図8は、本実施形態に係る二次電池の一例としての電池20Aの構成例を示すブロック図である。電池20Aは、制御部210Aと、電池セル220とを備えている。制御部210Aは、電流測定部211と、電圧測定部212と、内部抵抗測定部213Aと、検出部215Aと、算出部216Aと、更新部217とを備えている。なお、この図において、図4の各部に対応する構成には同一の符号を付しており、その説明を省略する。
【0060】
内部抵抗測定部213Aは、電流測定部211により測定された充電電流及び電圧測定部212により測定された電池電圧などに基づいて、電池20Aの内部抵抗を測定する。
【0061】
検出部215Aは、充電中に内部抵抗測定部213Aにより測定された内部抵抗の測定値に基づいて内部抵抗の変化を検出する。例えば、検出部215Aは、充電中の内部抵抗のピークを検出する。例えば、検出部215Aは、充電中の内部抵抗が最小となるポイントを検出する。以下、図9及び図10を参照して、電池20Aの内部抵抗が最小となるポイントを検出する処理の具体例について説明する。
【0062】
図9は、図7に示す充電特性の図における内部抵抗が最小となるポイントの部分を拡大したグラフである。符号123が示す線が内部抵抗(IR[mΩ])を示している。電圧測定部212は、充電率(SOC)が65%以上になると、内部抵抗の測定を開始し、所定の周期で複数回測定する。電圧測定部212は、充電率(SOC)65%の時点での内部抵抗の測定値(IRa)から一定値(例えば、5mΩ)以上減少した値を測定すると、その時点(ここでは、充電率(SOC)が75%の時点)以降はより細かい間隔での測定に移行する。例えば、電圧測定部212は、充電率(SOC)が1%増加するごとに内部抵抗を測定する。このようにして測定される内部抵抗の測定値(IRc、IRd)に基づいて、検出部215Aは、充電率(SOC)が1%増加するごとに内部抵抗の変化量を算出して内部抵抗が最小となるポイントを検出する。
【0063】
図10は、本実施形態に係る電池20Aの内部抵抗が最小となるポイント(ピーク)を検出する内部抵抗ピーク検出処理の一例を示すフローチャートである。この図10を参照して、電池20Aの制御部210Aが実行する内部抵抗ピーク検出処理の動作について説明する。この内部抵抗ピーク検出処理は、電池20Aの充電開始に応じて開始される。
【0064】
(ステップS201)制御部210Aは、充電率(SOC)が65%以上になったか否かを判定する。なお、制御部210Aは、図7に示す充電特性のグラフにおいて充電率(SOC)が65%になるポイントが電池電圧(Vc)4.2Vとなることから、電池電圧が4.2Vに到達したか否かによって充電率(SOC)が65%以上になったか否かを判定してもよい。制御部210Aは、充電率(SOC)が65%未満である(電池電圧が4.2Vに到達していない)と判定した場合(NO)、ステップS201の処理を繰り返す。一方、制御部210Aは、充電率(SOC)が65%以上になった(電池電圧が4.2Vに到達した)と判定した場合(YES)、ステップS203の処理に進む。
【0065】
(ステップS203)制御部210Aは、内部抵抗(IR)を測定し、測定値をIRaに代入する。そして、ステップS205の処理に進む。
【0066】
(ステップS205)制御部210Aは、所定時間(ΔtL)を計時し、所定時間(ΔtL)経過すると、ステップS207の処理へ進む。なお、制御部210Aは、所定時間(ΔtL)の経過に代えて、充電率(SOC)が例えば5%増加したことに応じてステップS207の処理へ進んでもよい。
【0067】
(ステップS207)制御部210Aは、内部抵抗(IR)を測定し、測定値をIRbに代入する。そして、制御部210Aは、内部抵抗の変化量ΔIR(ΔIR=IRb-IRa)を算出し、ステップS209の処理に進む。
【0068】
(ステップS209)制御部210Aは、内部抵抗の変化量ΔIRが一定値IRth(例えば、5mΩ)以上減少したか否かを判定する。制御部210Aは、内部抵抗の変化量ΔIRが一定値IRth以上減少していないと判定した場合(NO)、ステップS205の処理に戻る。一方、制御部210Aは、内部抵抗の変化量ΔIRが一定値IRth以上減少したと判定した場合(YES)、ステップS211の処理に進む。
【0069】
(ステップS211)制御部210Aは、最後に測定した内部抵抗(IR)をIRcに代入し、ステップS213の処理に進む。最後に測定した内部抵抗(IR)とは、内部抵抗の変化量ΔIRが一定値IRth以上減少したと判定したときのIRbである。以降の処理では、制御部210Aは、充電率(SOC)が1%増加するごとに内部抵抗を測定し、内部抵抗の変化量ΔIRを検出する。
【0070】
(ステップS213)制御部210Aは、充電率(SOC)が1%増加したか否かを判定する。制御部210Aは、充電率(SOC)が1%増加していない間(NO)は待機し、1%増加したと判定した場合(YES)、ステップS215の処理に進む。なお、上記の1%は一例であって、これに限定されるものではない。
【0071】
(ステップS215)制御部210Aは、内部抵抗(IR)を測定し、測定値をIRdに代入する。そして、制御部210Aは、内部抵抗の変化量ΔIR(ΔIR=IRd-IRc)を算出し、ステップS217の処理に進む。
【0072】
(ステップS217)制御部210Aは、ステップS215で算出した内部抵抗の変化量ΔIRに基づいて、内部抵抗が最小となるポイントであるか否かを判定する。例えば、制御部210Aは、内部抵抗の変化量ΔIRが0mΩ以上2mΩ以下である場合(ΔIR=0mΩ又は0mΩ<ΔIR≦2mΩ)、内部抵抗が最小となるポイントであると判定する。制御部210Aは、内部抵抗が最小となるポイントではないと判定した場合(NO)、ステップS211の処理に戻り、最後に測定した内部抵抗の値IRdをIRcに代入する。そして、制御部210Aは、充電率(SOC)が1%増加した後に再度内部抵抗(IR)を測定し、内部抵抗が最小となるポイントであるか否かを判定する。一方、制御部210Aは、内部抵抗が最小となるポイントであると判定した場合(YES)、ステップS219の処理に進む。
【0073】
(ステップS219)制御部210Aは、充電中の内部抵抗が最小となるポイントとして設定する。即ち、制御部210Aは、充電容量の積算開始ポイントとして設定する。
【0074】
図8に戻り、算出部216Aは、充電中に検出部215Aにより検出された内部抵抗が最小となるポイントに基づいて、当該内部抵抗が最小となる時点から満充電状態になるまでの充電容量に基づいて、電池20Aの満充電容量を算出する。例えば、制御部210Aには、充電中に内部抵抗が最小となる時点での充電率(例えば、充電率80%)が予め設定されている。算出部216Aは、充電中に内部抵抗が最小となる時点から満充電状態(例えば、充電率80%~100%)になるまでの充電容量Cを、当該期間の電池電圧の測定結果と充電電流の測定結果とに基づいて積算して求める。そして、算出部216Aは、この充電率80%~100%までの充電容量Cに基づいて、前述した式2により満充電容量(FCC)を算出する。
【0075】
更新部217は、算出部216Aによる算出結果に基づいて電池20Aの満充電容量の初期値を現在の設定値に適宜更新していく。つまり、更新部217は、予め設定されている満充電容量の初期値を、経年劣化に応じて算出部216Aにより算出された満充電容量の値で更新して補正する。なお、更新は、算出部216Aによる満充電容量の算出の度に行われてもよいし、算出値が設定値より低下した場合(或いは、一定以上低下した場合)のみ行われてもよい。
【0076】
即ち、本実施形における更新部217は、充電中に内部抵抗測定部213Aにより測定された内部抵抗の変化に基づいて特定される時点以降の充電容量に基づいて、電池20Aの満充電容量を更新する。具体的には、更新部217は、充電中に内部抵抗測定部213Aにより測定された内部抵抗が最小となる時点から満充電状態になるまでの充電容量と、予め設定されている充電率(例えば、充電率80%)に基づいて電池20Aの満充電容量を更新する。
【0077】
以上説明したように、本実施形態に係る電池20A(二次電池の一例)は、制御部210A(充電制御装置の一例)を備えている。制御部210Aは、電池20Aの内部抵抗を測定すし、充電中の内部抵抗の変化に基づいて特定される時点(例えば、ピーク)以降の充電容量に基づいて、電池20Aの満充電容量を更新する。
【0078】
これにより、電池20Aは、完全放電をさせなくとも充電中の内部抵抗の変化を利用することにより、実使用でも使用頻度の高い充電領域の充電で満充電容量を把握して更新することができる。よって、電池20Aは、実使用において満充電容量を適宜更新することができる。また、電池20又は電子機器10は、経年劣化などにより電池20の満充電容量が変化しても、常に精度の高い残容量をユーザに通知することができる。
【0079】
例えば、充電中に内部抵抗が最小となる時点での電池20Aの充電率が予め設定されている。そして、制御部210Aは、充電中に内部抵抗が最小となる時点から満充電状態になるまでの充電容量と、予め設定されている充電率とに基づいて電池20Aの満充電容量を更新する。
【0080】
これにより、電池20Aは、充電中の期間の中で、内部抵抗が最小となる時点の充電率が決まっていることを利用して、実使用でも使用頻度の高い部分的な充電で満充電容量を把握して更新することができる。
【0081】
なお、検出部215Aは、充電中に内部抵抗が最小となるポイントに代えて又は加えて内部抵抗が最大となるポイントを検出してもよい。例えば、充電中に内部抵抗が最小となる時点での電池20Aの充電率(例えば、80%)に代えて又は加えて最大となる時点での電池20Aの充電率(例えば、95%)が予め設定されている。そして、算出部216Aは、充電中に内部抵抗が最小となる時点から満充電状態になるまでの充電容量に基づいて満充電容量を算出するのに代えて、内部抵抗が最大となる時点から満充電状態になるまでの充電容量に基づいて満充電容量を算出してもよい。また、算出部216Aは、充電中に内部抵抗が最小となる時点から最大となる時点までの充電容量に基づいて満充電容量を算出してもよい。
【0082】
図11は、満充電容量を算出すための充電容量の測定期間の3つの例を示す図である。(1)は内部抵抗が最小となる時点(充電率80%)から満充電状態(充電率100%)になるまでの充電容量の測定結果C1を用いて満充電容量を算出する場合の充電容量の測定期間を示している。(2)は内部抵抗が最小となる時点(充電率80%)から最大となる時点(充電率95%)になるまでの充電容量の測定結果C2を用いて満充電容量を算出する場合の充電容量の測定期間を示している。(3)は内部抵抗が最大となる時点(充電率95%)から満充電状態(充電率100%)になるまでの充電容量の測定結果C3を用いて満充電容量を算出する場合の充電容量の測定期間を示している。
【0083】
このように、充電中に内部抵抗が最大となる時点での電池20Aの充電率が予め設定されており、制御部210Aは、充電中に内部抵抗が最大となる時点から満充電状態になるまでの充電容量と、予め設定されている充電率とに基づいて電池20Aの満充電容量を更新してもよい。
【0084】
これにより、電池20Aは、充電中の期間の中で、内部抵抗が最大となる時点の充電率が決まっていることを利用して、実使用でも使用頻度の高い部分的な充電で満充電容量を把握して更新することができる。
【0085】
また、充電中に内部抵抗が最小となる時点及び最大となる時点それぞれでの電池20Aの充電率が予め設定されており、制御部210Aは、充電中に内部抵抗が最小となる時点から最大となる時点までの充電容量と、予め設定されている充電率とに基づいて電池20Aの満充電容量を更新してもよい。
【0086】
これにより、電池20Aは、充電中の期間の中で、内部抵抗が最小となる時点と最大となる時点の充電率が決まっていることを利用して、実使用でも使用頻度の高い部分的な充電で満充電容量を把握して更新することができる。
【0087】
なお、充電中の内部抵抗の変化の中で生じる複数のピークのうち、最小または最大となるピーク以外のピークを充電容量の測定を開始するポイントまたは終了するポイントとして用いてもよい。
【0088】
<第3の実施形態>
次に、本発明の第3の実施形態について説明する。
第2の実施形態では、電池20Aの内部抵抗の変化を利用して満充電容量を更新する例を説明したが、本実施形態では、内部抵抗の測定方法について詳しく説明する。
【0089】
図12は、本実施形態に係る電池セル220の等価回路を示す電池20Aのブロック図である。この図において、図8の各部に対応する構成には同一の符号を付しており、その説明を省略する。図示する内部抵抗(IR)は、電池セル220の内部の抵抗成分である。充電中は内部抵抗(IR)に電流が流れるため電圧(V2)が発生する。そのため、充電電流(Ic)が流れているとき(充電中)と流れていないとき(非充電中)とで電池20Aの電池電圧(Vc)は異なる。充電電流(Ic)が流れているときは、電池セル220の電圧源による電圧(V1)と内部抵抗(IR)で発生する電圧(V2=IR×Ic)の和が電池電圧(Vc)となる。一方、充電電流(Ic)が流れていないときは、電池セル220の電圧源による電圧(V1)が電池電圧(Vc)となる。よって、内部抵抗測定部213Aは、充電電流(Ic)が流れているときの電池電圧(Vc)と充電電流(Ic)が流れていないときの電池電圧(Vc)とを測定し、その差分に基づいて内部抵抗(IR)を測定することができる。
【0090】
図13は、本実施形態に係る制御部210Aの内部回路の概略の一例を示す模式図である。制御部210Aは、MPU、SCP(Self Control Protector)、Safty IC、Thermistor、FETなどを含んで構成されている。制御部210Aは、充電期間中に、充電電流(Ic)が流れているときの電池電圧(Vc)を測定するとともに、電池セル220への充電経路に接続されているFETを一時的に遮断することで、充電電流(Ic)が流れていないときの電池電圧(Vc)を測定する。
【0091】
内部抵抗測定部213Aは、電池20Aの充電期間中に充電電流を一時的に停止させることにより、停止前の電池20Aの電圧と停止中の電池20Aの電圧との差分に基づいて電池20Aの内部抵抗(IR)を算出する。図14を参照して、具体的に説明する。
【0092】
図14は、本実施形態に係る内部抵抗の測定時の電圧・電流波形を示すグラフである。ここでは、充電電流(Ic)が流れているときの電池電圧(Vc=V1+V2)をCCV(Closed Circuit Voltage)としている。また、FETを一時的にOFF(Cut off)に制御することで充電電流(Ic)が流れていないときの電池電圧(Vc=V1)をOCV(Open Circuit Voltage)とする。内部抵抗(IR)は、以下の式3により算出することができる。
【0093】
IR=(CCV-OCV)/Ic ・・・(式3)
【0094】
図15は、本実施形態に係る内部抵抗測定処理の一例を示すフローチャートである。この図15を参照して、制御部210Aが実行する内部抵抗測定処理の動作を説明する。この内部抵抗測定処理は電池20Aの充電期間において実行される。
(ステップS301)制御部210Aは、電池電圧(Vc=V1+V2)を測定し、測定値をCCVに代入する。そして、ステップS303の処理に進む。
(ステップS303)制御部210Aは、充電電流(Ic)を測定し、ステップS305の処理に進む。
(ステップS305)制御部210Aは、FETをOFFに制御し、電池セル220への充電電流(Ic)の供給を停止する。そして、ステップS307の処理に進む。
(ステップS307)制御部210Aは、電池電圧(Vc=V1)を測定し、測定値をOCVに代入する。そして、ステップS309の処理に進む。
(ステップS309)制御部210Aは、FETをONに制御し、電池セル220への充電電流(Ic)の供給を再開する。そして、ステップS311の処理に進む。
(ステップS311)制御部210Aは、測定値CCV、OCV、ICを用いて式3により内部抵抗(IR)を算出する。
【0095】
制御部210Aは、上記の測定処理を電池20Aの充電期間にわたって複数回実行する。これにより、内部抵抗測定部213Aは、電池20Aの充電期間にわたって電池20Aの内部抵抗を複数回測定する。検出部215Aは、内部抵抗測定部213Aにより測定された内部抵抗の変化に基づいて内部抵抗のピークを検出する。例えば、検出部215Aは、内部抵抗測定部213Aにより複数回にわたって測定された内部抵抗の値の変化量が所定の閾値以下(例えば、0mΩ又は2mΩ以下)になった場合、ピークとして検出する。
【0096】
また、内部抵抗測定部213Aは、内部抵抗のピークを検出する際に内部抵抗の測定頻度(測定周期)を変更する。前述したように、内部抵抗を測定する際には一時的に充電電流を停止させるため、常時高頻度で測定すると満充電状態になるまでの充電時間に影響を及ぼす場合がある。そのため、検出するピークの近辺となる期間では高頻度で測定することにより測定精度を上げ、それ以外の期間では測定頻度を下げることで、充電時間への影響を抑制する。
【0097】
図16は、本実施形態に係る充電期間中の内部抵抗の測定タイミングの第1例を示すグラフである。この図は、内部抵抗が最小(IRmin)となるポイント(時刻tc)を検出する際の内部抵抗の測定タイミングを示している。この図では、横軸を充電時間として、符号131が示す線が電池電圧(Vc[V])、符号132が示す線が充電電流(Ic[A])、符号133が示す線が内部抵抗(IR[mΩ])、符号134が示す線が充電率(SOC[%])を示している。
【0098】
内部抵抗測定部213Aは、充電率(SOC)が60%未満の期間T11では、低い周期(例えば、SOCが10%増加する毎)で内部抵抗(IR)を測定する。また、内部抵抗測定部213Aは、充電率(SOC)が60%以上になると、内部抵抗の測定頻度を高くする。例えば、内部抵抗測定部213Aは、充電率(SOC)が60%に達すると、SOCが1%増加する毎に内部抵抗(IR)を測定する。なお、充電率(SOC)が60%になる電池電圧(Vc)を所定の閾値として設定し、内部抵抗測定部213Aは、電圧測定部212により測定された電池電圧(Vc)が所定の閾値に達した場合、内部抵抗(IR)の測定頻度を高くしてもよい。
【0099】
また、内部抵抗測定部213Aは、検出部215Aにより内部抵抗(IR)のピーク(最小となるポイント)が検出されたことに応じて測定頻度を低くする、つまり、内部抵抗測定部213Aは、充電率(SOC)が60%未満の期間T11では測定頻度を低くし、充電率(SOC)が60%に達してから内部抵抗(IR)が最小となるポイントが検出されるまでの期間T12は、測定頻度を高くし、最小となるポイントが検出された後は再び測定頻度を低くする。これにより、検出ポイントの精度を高くしながら、満充電状態になるまでの充電時間への影響(充電時間が長くなってしまうこと)を抑制することができる。なお、内部抵抗測定部213Aは、期間T13における測定頻度を期間T11における測定頻度よりさらに低くしてもよい。また、内部抵抗測定部213Aは、期間T13では、充電時間の経過とともに測定頻度を徐々に低くしてもよいし、測定を停止してもよい。
【0100】
なお、以下では、内部抵抗の測定頻度が低い測定モードを低周期測定モード、内部抵抗の測定頻度が高い測定モードを高周期測定モードとも称する。
【0101】
次に、図17を参照して、内部抵抗の測定頻度(測定周期)を変更して内部抵抗が最小となるポイントを検出する内部抵抗ピーク検出処理の動作を説明する。
図17は、本実施形態に係る内部抵抗ピーク検出処理の一例を示すフローチャートである。この内部抵抗ピーク検出処理は、電池20Aの充電開始に応じて開始される。開始時点では、低周期測定モードに設定される。
【0102】
(ステップS401)制御部210Aは、電池20Aの内部抵抗(IR)を測定する。具体的には、制御部210Aは、図15に示す内部抵抗測定処理を実行することにより内部抵抗(IR)を測定する。そして、ステップS403の処理に進む。
【0103】
(ステップS403)制御部210Aは、充電電流(Ic)が流れていないときの電池電圧(Vc=V1)を確認する。この電池電圧(Vc=V1)は、ステップS401で実行された内部抵抗測定処理の中で測定された電圧である。そして、ステップS405の処理に進む。
【0104】
(ステップS405)制御部210Aは、ステップS401で測定された電池電圧(Vc=V1)が3.9V以上であるか否かを判定する。この3.9Vは、例えば、充電率(SOC)が60%に達したときの電池電圧(Vc=V1)の一例である。即ち、制御部210Aは、この判定処理で充電率(SOC)が60%に達したか否かを判定している。制御部210Aは、電池電圧(Vc=V1)が3.9V未満であると判定した場合(NO)、ステップS407の処理に進む。一方、制御部210Aは、電池電圧(Vc=V1)が3.9V以上であると判定した場合(YES)、ステップS409の処理に進む。
【0105】
(ステップS407)制御部210Aは、充電率(SOC)が10%増加したか否かを判定する。制御部210Aは、充電率(SOC)が10%増加していない間(NO)は待機し、10%増加したと判定した場合(YES)、ステップS401の処理に戻り、電池20Aの内部抵抗(IR)を測定する。即ち、制御部210Aは、電池電圧(Vc=V1)が3.9V未満(図16の期間T11)では、充電率(SOC)が10%増加する毎に内部抵抗(IR)を測定する(低周期測定モード)。なお、この充電率(SOC)が10%増加する毎に測定する周期は、低周期測定モードにおける測定周期の一例であって、これに限定されるものではない。一方、制御部210Aは、充電率(SOC)が10%増加したと判定した場合(YES)、ステップS409の処理に進む。
【0106】
(ステップS409)制御部210Aは、低周期測定モードから高周期測定モードへ遷移させる。そして、ステップS411の処理に進む。
【0107】
(ステップS411)制御部210Aは、最後に測定した内部抵抗(IR)をIRcに代入し、ステップS413の処理に進む。最後に測定した内部抵抗(IR)とは、ステップS405において電池電圧(Vc=V1)が3.9V以上であると判定されたときの内部抵抗IRの測定値である。以降の処理では、制御部210Aは、充電率(SOC)が1%増加するごとに内部抵抗を測定し、内部抵抗の変化量ΔIRを検出する。
【0108】
(ステップS413)制御部210Aは、充電率(SOC)が1%増加したか否かを判定する。制御部210Aは、充電率(SOC)が1%増加していない間(NO)は待機し、1%増加したと判定した場合(YES)、ステップS415の処理に進む。なお、この充電率(SOC)が1%増加する毎に測定する周期は、高周期測定モードにおける測定周期の一例であって、これに限定されるものではない。高周期測定モードの測定周期は、低周期測定モードの測定周期よりも高周期であればよい。
【0109】
(ステップS415)制御部210Aは、内部抵抗(IR)を測定し、測定値をIRdに代入する。そして、制御部210Aは、内部抵抗の変化量ΔIR(ΔIR=IRd-IRc)を算出し、ステップS417の処理に進む。
【0110】
(ステップS417)制御部210Aは、ステップS415で算出した内部抵抗の変化量ΔIRに基づいて、内部抵抗が最小となるポイントであるか否かを判定する。例えば、制御部210Aは、内部抵抗の変化量ΔIRが0mΩ以上2mΩ以下である場合(ΔIR=0mΩ又は0mΩ<ΔIR≦2mΩ)、内部抵抗が最小となるポイントであると判定する。制御部210Aは、内部抵抗が最小となるポイントではないと判定した場合(NO)、ステップS411の処理に戻り、最後に測定した内部抵抗の値IRdをIRcに代入する。そして、制御部210Aは、充電率(SOC)が1%増加した後に再度内部抵抗(IR)を測定し、内部抵抗が最小となるポイントであるか否かを判定する。一方、制御部210Aは、内部抵抗が最小となるポイントであると判定した場合(YES)、ステップS419の処理に進む。
【0111】
(ステップS419)制御部210Aは、充電中の内部抵抗が最小となるポイントとして設定する。即ち、制御部210Aは、充電容量の積算開始ポイントとして設定する。そして、ステップS421の処理に進む。
(ステップS421)制御部210Aは、高周期測定モードから低周期測定モードへ戻す。なお、制御部210Aは、ステップS401~S409の定周期測定モードと同じ測定周期に戻してもよいし、さらに低周期にしてもよい。また、制御部210Aは、充電時間の経過とともに測定頻度を徐々に低くしてもよいし、満充電状態になる前に測定を停止してもよい。
【0112】
なお、図16及び図17を参照して、内部抵抗が最小となるポイントを検出する際に高周期測定モードに遷移する例を説明したが、内部抵抗の他のピークを検出する際に、同様に高周期測定モードに遷移してもよい。
【0113】
図18は、本実施形態に係る充電期間中の内部抵抗の測定タイミングの第2例を示すグラフである。この図では、図16と同様に、横軸を充電時間として、符号131が示す線が電池電圧(Vc[V])、符号132が示す線が充電電流(Ic[A])、符号133が示す線が内部抵抗(IR[mΩ])、符号134が示す線が充電率(SOC[%])を示している。
【0114】
図示する例では、内部抵抗が最小(IRmin)となるポイント(時刻tc)に加え、内部抵抗が最大(IRmax)となるポイント(時刻tm)を検出する際も低周期測定モードから高周期測定モードに遷移させている。また、内部抵抗が最小となるポイントより前の2つのピーク(IRp1、IRp2)を検出する際も低周期測定モードから高周期測定モードに遷移させている。このように、制御部210Aは、検出対象のピークの少し前のタイミングからピークが検出されるまでの期間について、低周期測定モードから高周期測定モードに遷移させる。検出対象となるピークは、内部抵抗が最小となるポイント、及び内部抵抗が最大となるポイントのいずれか一方又は両方であってもよいし、これらに代えて又は加えて内部抵抗が最小となるポイントより前のピーク(例えば、IRp1、IRp2等)であってもよい。
【0115】
以上説明したように、本実施形態に係る電池20A(二次電池の一例)の制御部210Aは、電池20Aの充電期間にわたって電池20Aの内部抵抗を複数回測定し、測定した内部抵抗の変化に基づいて内部抵抗のピークを検出する。また、制御部210Aは、検出した内部抵抗のピークを参照して電池20Aの満充電容量を検出する。
【0116】
これにより、電池20Aは、内部抵抗のピークを精度よく検出できる。また、電池20Aは、内部抵抗のピークを検出することにより、完全放電させなくとも、実使用でも使用頻度の高い充電領域の充電で満充電容量を精度よく検出できる。
【0117】
また、制御部210Aは、電池20Aの充電期間に複数回にわたって測定された内部抵抗の値の変化量が所定の閾値以下(例えば、0mΩ又は2mΩ以下)になった場合、内部抵抗のピークとして検出する。
【0118】
これにより、電池20Aは、内部抵抗のピークを容易に且つ精度よく検出できる。
【0119】
また、制御部210Aは、電池20Aの電圧を測定し、電池20Aの充電期間中に測定した電池電圧が所定の閾値(例えば3.9V)に達した場合、内部抵抗の測定頻度を高くする。
【0120】
これにより、電池20Aは、充電期間のうちの一部の期間のみ測定頻度を高くするため、充電時間への影響を抑制しつつ、内部抵抗のピークを精度よく検出できる。
【0121】
また、制御部210Aは、内部抵抗のピークが検出されたことに応じて、測定頻度を低くする。
【0122】
これにより、電池20Aは、内部抵抗のピークが検出された後は測定頻度を低くするため、充電時間への影響を抑制しつつ、内部抵抗のピークを精度よく検出できる。
【0123】
なお、制御部210Aは、電池20Aの充電期間中に充電電流を一時的に停止させることにより、停止前の電池20Aの電圧と停止中の電池20Aの電圧との差分に基づいて電池20Aの内部抵抗を算出する。
【0124】
これにより、電池20Aは、内部抵抗を容易に且つ精度よく検出できる。
【0125】
なお、制御部210Aは、複数回測定した内部抵抗の変化に基づいて内部抵抗のピークを検出し、検出した内部抵抗のピークを参照しながら、定電流充電から定電圧充電への切り替わりポイント(点)を検出してもよい。例えば、電池20Aは、内部抵抗がピークとなる時点を基準に充電電流を測定して定電流充電から定電圧充電への切り替わりポイントを検出してもよいし、検出した定電流充電から定電圧充電への切り替わりポイントと内部抵抗がピークとなる時点との時間的な相関を確認して定電流充電から定電圧充電への切り替わりポイントを確定してもよい。
【0126】
これにより、電池20Aは、内部抵抗のピークを参照することにより、定電流充電から定電圧充電への切り替わりポイントを容易に且つ精度よく検出できる。よって、電池20Aは、完全放電をさせなくとも、実使用でも使用頻度の高い充電領域の充電で満充電容量を精度よく検出することができる。
【0127】
以上、図面を参照してこの発明の実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。例えば、上記の各実施形態で説明した構成は、任意に組み合わせてもよい。
【0128】
なお、上述した制御部210,210Aは、内部にコンピュータシステムを有している。そして、上述した制御部210,210Aのそれぞれが備える各構成の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより上述した制御部210,210Aのそれぞれが備える各構成における処理を行ってもよい。ここで、「記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行する」とは、コンピュータシステムにプログラムをインストールすることを含む。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、インターネットやWAN、LAN、専用回線等の通信回線を含むネットワークを介して接続された複数のコンピュータ装置を含んでもよい。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。このように、プログラムを記憶した記録媒体は、CD-ROM等の非一過性の記録媒体であってもよい。
【0129】
また、記録媒体には、当該プログラムを配信するために配信サーバからアクセス可能な内部又は外部に設けられた記録媒体も含まれる。なお、プログラムを複数に分割し、それぞれ異なるタイミングでダウンロードした後に制御部210,210Aが備える各構成で合体される構成や、分割されたプログラムのそれぞれを配信する配信サーバが異なっていてもよい。さらに「コンピュータ読み取り可能な記録媒体」とは、ネットワークを介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、上述した機能の一部を実現するためのものであってもよい。さらに、上述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
【0130】
また、上述した実施形態における制御部210,210Aが備える各機能の一部、または全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。各機能は個別にプロセッサ化してもよいし、一部、又は全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。
【0131】
また、上述した実施形態では、電子機器10が、クラムシェル型のPC(或いは、タブレット型のPCやスマートフォン)などの例を説明したが、二次電池からの給電で動作する機器であれば、PCやスマートフォンに限られるものではない。例えば、電子機器10は、携帯電話、ゲーム機、掃除機、ドローン、電動自動車、ハイブリッド自動車、電動自転車などであってもよい。
【符号の説明】
【0132】
10 電子機器、20,20A 電池、210,210A 制御部、220 電池セル、211 電流測定部、212 電圧測定部、213A 内部抵抗測定部、215,215A 検出部、216,216A 算出部、217 更新部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18