IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ プレシエン ピーティーワイ リミテッドの特許一覧

特許7238217定義されたオブジェクトを識別するためのシステム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-06
(45)【発行日】2023-03-14
(54)【発明の名称】定義されたオブジェクトを識別するためのシステム
(51)【国際特許分類】
   G06T 7/00 20170101AFI20230307BHJP
【FI】
G06T7/00 300Z
【請求項の数】 20
(21)【出願番号】P 2019564564
(86)(22)【出願日】2018-02-08
(65)【公表番号】
(43)【公表日】2020-03-05
(86)【国際出願番号】 AU2018050095
(87)【国際公開番号】W WO2018145158
(87)【国際公開日】2018-08-16
【審査請求日】2021-01-13
(31)【優先権主張番号】2017900403
(32)【優先日】2017-02-09
(33)【優先権主張国・地域又は機関】AU
(73)【特許権者】
【識別番号】521222121
【氏名又は名称】プレシエン ピーティーワイ リミテッド
【氏名又は名称原語表記】PRESIEN PTY LTD
【住所又は居所原語表記】Suite 113,4 Cornwallis Street,Eveleigh,New South Wales 2015(AU)
(74)【代理人】
【識別番号】110002734
【氏名又は名称】弁理士法人藤本パートナーズ
(72)【発明者】
【氏名】カーシュナー,ネイサン グレアム エドワード
【審査官】新井 則和
(56)【参考文献】
【文献】特開2007-156974(JP,A)
【文献】特開2010-027035(JP,A)
【文献】特開2015-191334(JP,A)
【文献】米国特許出願公開第2014/0270494(US,A1)
【文献】田中 健次,安全監視と危険監視の最適組合せによる高信頼度安全監視システム,計測自動制御学会論文集,第28巻 第6号,日本,社団法人計測自動制御学会,1992年06月30日,第28巻 第6号,pp. 725-732
【文献】MATTHIAS Lutz et al.,Probabilistic Object Recognition and Pose Estimation by Fusing Multiple Algorithms,2013 IEEE International Conference on Robotics and Automation,IEEE,2013年05月06日,pp. 4244-4249,https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6631177
(58)【調査した分野】(Int.Cl.,DB名)
G06T 7/00-7/90
(57)【特許請求の範囲】
【請求項1】
定義されたオブジェクトを識別するためのシステムであって、該システムは、
オブジェクトのデジタル表現を定義するためのデータを検出するように構成された少なくとも1つのセンサと、
前記少なくとも1つのセンサに通信可能に接続されたプロセッサであって、該プロセッサは、少なくとも2つの異なる技法を実行し、それによって前記少なくとも1つのセンサから受信された同じ前記デジタル表現を評価するように構成されており、前記技法のそれぞれは、前記定義されたオブジェクトによって定義された、該技法に固有のシグネチャを識別するように構成されている、プロセッサと、
前記プロセッサに通信可能に接続されたメモリであって、該メモリは、前記少なくとも2つの異なる技法によってそれぞれ導出された少なくとも2つの異なるシグネチャに関連する参照データを記憶する、メモリと
を備えており、
前記プロセッサは、前記プロセッサが前記デジタル表現を定義するデータを前記少なくとも1つのセンサから受信することに応答して、該プロセッサが、同じ前記デジタル表現を評価するために、
前記少なくとも2つの異なる技法を実行し、それによって前記技法のそれぞれに、
前記デジタル表現内に表現された前記オブジェクトによって定義された任意のシグネチャ候補を識別すること、
識別された前記シグネチャ候補のそれぞれから特徴データを導出すること、
前記特徴データを前記参照データと比較すること、及び、
各比較から尤度値を導出することであって、前記尤度値のそれぞれは、前記技法によって導出された前記シグネチャのそれぞれに対応する前記シグネチャ候補の尤度を示すこと
を行わせ、
少なくともいくつかの前記尤度値を組み合わせ、それによって複合尤度値を導出し、
前記複合尤度値から、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトかどうかを決定する
ように構成されている、
システム。
【請求項2】
前記プロセッサは、さらに、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであると決定したことに応答して、前記プロセッサが、前記少なくともいくつかの前記尤度値が導出された前記特徴データを前記参照データに追加するように構成されている、請求項1に記載のシステム。
【請求項3】
ユーザインタフェースをさらに備えており、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであると決定したことに応答して、前記プロセッサが、ユーザ入力を取得するように前記ユーザインタフェースを動作させ、それによって前記オブジェクトが前記定義されたオブジェクトであることを確認するように構成されており、前記ユーザ入力に応答して、前記プロセッサが、前記少なくともいくつかの前記尤度値が導出された特徴データを前記参照データに追加する、請求項2に記載のシステム。
【請求項4】
前記プロセッサは、さらに、ユーザ入力を取得するように前記ユーザインタフェースを動作させ、それによって前記デジタル表現における前記オブジェクトが前記定義されたオブジェクトであることを示す1つ以上の指標を確認するように構成されており、前記ユーザ入力に応答して、前記プロセッサが、前記1つ以上の確認された指標から指標データを導出すると共に、前記指標データを前記参照データに追加する、請求項3に記載のシステム。
【請求項5】
前記1つ以上の指標は、前記デジタル表現内における前記オブジェクトに関連付けられたコンテキスト因子を備えている、請求項4に記載のシステム。
【請求項6】
ユーザインタフェースをさらに備えており、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであるとの決定に応答して、前記プロセッサは、前記ユーザインタフェースを動作させてユーザ入力を取得し、それによって前記システムによって実行されることとなる1つ以上のアクションを定義するように構成されていると共に、前記ユーザ入力に応答して、前記プロセッサは、前記1つ以上の定義されたアクションから命令を導出し、前記命令を実行し、かつ、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであるという後の決定に応答して実行するために、前記命令を前記メモリ内に記憶する、請求項1に記載のシステム。
【請求項7】
認識可能な警報を発するように構成された警告デバイスをさらに備えており、前記プロセッサは、さらに、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであるとの決定に応答して、前記プロセッサが前記警告デバイスを動作させるように構成されている、請求項1に記載のシステム。
【請求項8】
前記警告デバイスは、ユーザに着用されるウェアラブルデバイス、装置の触覚コンポーネント、及び、前記警告デバイスを動作させるように装置の動作を制御するためのコントローラのうち1つとして構成されている、請求項7に記載のシステム。
【請求項9】
複数の前記センサをさらに備えており、前記複数のセンサのそれぞれは、互いに及び前記プロセッサに通信可能に接続されている、請求項1に記載のシステム。
【請求項10】
前記センサのそれぞれは、前記センサの動作を制御するためのコントローラを備えており、前記複数のセンサ間の通信によって、少なくとも1つの前記コントローラが動作させられ、それによって前記センサのそれぞれの制御が行われる、請求項9に記載のシステム。
【請求項11】
前記デジタル表現は、前記複数のセンサの2つ以上によって検出されるデータを備えている、請求項9に記載のシステム。
【請求項12】
前記シグネチャの少なくとも1つは、前記定義されたオブジェクトの特質、前記定義されたオブジェクトによって定義されたジオメトリ、前記定義されたオブジェクトの挙動、前記定義されたオブジェクトに関連付けられた1つ以上のコンテキスト因子のうち少なくとも1つによって定義される、請求項1に記載のシステム。
【請求項13】
前記定義されたオブジェクトの挙動は、前記定義されたオブジェクトの動き、前記定義されたオブジェクトの無活動状態、前記定義されたオブジェクトと別のオブジェクトとの相対的な動き、刺激に反応した前記定義されたオブジェクトの反応のうち1つ以上を備えている、請求項12に記載のシステム。
【請求項14】
前記定義されたオブジェクトに関連付けられた前記1つ以上のコンテキスト要因は、前記定義されたオブジェクトに対する局地時刻、前記定義されたオブジェクトに対する局地環境条件、前記定義されたオブジェクトに対する局地気象、前記定義されたオブジェクトに対する1つ以上のオブジェクトの位置、前記定義されたオブジェクトに固有の1つ以上のオブジェクトの挙動、前記定義されたオブジェクトの動作パラメータを含んでいる、請求項12に記載のシステム。
【請求項15】
前記技法のそれぞれについて、前記プロセッサは、既定の訓練データに触れさせることから特徴データを導出すると共に、前記既定の訓練データから導出された前記特徴データを前記参照データとして記憶するように訓練される、請求項1に記載のシステム。
【請求項16】
前記既定の訓練データは、複数のデジタル表現を含んでおり、前記複数のデジタル表現のうちいくつかのみが、前記定義されたオブジェクトを含んでいると共に、前記定義されたオブジェクトの存在を確認するためにラベル付けされており、前記技法のそれぞれについて、前記既定の訓練データに触れさせることによって、前記プロセッサには、前記ラベル付けされたデジタル表現のそれぞれにおいて定義された1つ以上の
共通要素を学習させると共に、前記1つ以上の共通要素に応じて前記シグネチャを導出させる、請求項15に記載のシステム。
【請求項17】
前記参照データは、各技法に関連する特徴分散分布を定義し、前記尤度値は、前記特徴データを前記特徴分散分布と比較することから導出される、請求項1に記載のシステム。
【請求項18】
前記複合尤度値を導出することは、1つの前記技法を実行することによって導出される少なくとも1つの尤度値を、別の前記技法を実行することによって導出される少なくとも1つの尤度値と組み合わせることを備えている、請求項1に記載のシステム。
【請求項19】
前記メモリは、既定の複合尤度値に関連する複合参照データを記憶しており、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであるかどうかを決定することは、前記複合尤度値を前記複合参照データと比較し、それによって信頼値を導出することをさらに備えており、前記デジタル表現内における前記オブジェクトが定義されたオブジェクトであるかどうかを決定することは、前記信頼値に基づいている、請求項1に記載のシステム。
【請求項20】
定義された危険を識別するためのシステムであって、該システムは、
シーンのデジタル表現を定義するためのデータを検出するように構成された少なくとも1つのセンサと、
前記少なくとも1つのセンサに通信可能に接続されたプロセッサであって、該プロセッサは、少なくとも2つの異なる技法を実行し、それによって前記少なくとも1つのセンサから受信された同じ前記デジタル表現を評価するように構成されており、前記技法のそれぞれは、前記定義された危険によって定義された、該技法に固有のシグネチャを識別するように構成されている、プロセッサと、
前記プロセッサに通信可能に接続されたメモリであって、該メモリは、前記少なくとも2つの異なる技法によってそれぞれ導出された少なくとも2つの異なるシグネチャに関連する参照データを記憶する、メモリと
を備えており、
前記プロセッサは、前記プロセッサが前記デジタル表現を定義する前記少なくとも1つのセンサからデータを受信することに応答して、該プロセッサが、同じ前記デジタル表現を評価するために、
前記少なくとも2つの異なる技法を実行し、それによって前記技法のそれぞれに
記シーンによって定義された任意のシグネチャ候補を識別すること、
識別された前記シグネチャ候補のそれぞれから特徴データを導出すること、
前記特徴データを前記参照データと比較すること、及び、
各比較から尤度値を導出することであって、前記尤度値のそれぞれは、前記シグネチャのそれぞれに対応する前記シグネチャ候補の尤度を示すこと
を行わせ、
少なくともいくつかの前記尤度値を組み合わせ、それによって複合尤度値を導出し、
前記複合尤度値から、前記デジタル表現内における前記シーンが前記定義された危険を含んでいるかどうかを決定する
ように構成されている、
システム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2017年2月9日に出願された豪州仮特許出願第2017900403号からの優先権を主張し、その内容は参照により本明細書に組み込まれる。
【0002】
技術分野
本開示は、概して、既定のオブジェクトを識別するためのシステム及び方法に関する。特に、本開示は、センサを用いてオブジェクトを検出し、検出されたオブジェクトが定義されたオブジェクトであるかについて確認することを伴うシステム及び方法に関する。
【背景技術】
【0003】
多くの状況において、定義されたオブジェクトを迅速に識別し、それによって取るべきアクションを促すことが有用である。例えば、建設現場では、多くの場合、労働者や高価な器材が使用中に被害を受けるリスクに晒されており、それによって負傷や死を引き起こす可能性や、多大な費用が発生する可能性がある。このリスクを軽減するために、人を「監視員」として雇用することがあり、それによってリスクの高い状況を人力で特定し、警報を作動させて被害や怪我を防いでいる。同様に、高価値資産が保管されている場所は、典型的には認可された者のみが立ち入り可能であるため、その位置に立ち入ろうとする者が認可されているかどうかを確認するセキュリティアプリケーションやデバイスが必要とされる。これは生体認証によって達成することができ、例えば、認可された者の以前に記憶されていた指紋の画像に対応する指紋をその者が有しているどうかを確認することによって行われる。
【0004】
オブジェクトを識別するための自動化されたシステムは既知であり、種々異なる目的に広く使用されている。そのようなシステムの一例が、米国特許第8,588,527号に記載されており、該特許は、カメラ付きスマートフォンによりキャプチャされた画像に表示されるオブジェクトを識別し、該オブジェクトに関連する検索用語を導出することにより、該検索用語を使用して検索クエリを生成及び実行し、それによって識別されたオブジェクトに関連する情報を識別することに関する。このシステムは、オブジェクトを識別するための効果的なツールであるように思われるが、実際には、システムが効果的に動作するのに必要な動作条件が典型的には非常に限定的であるため、このようなシステムはオブジェクトの識別に失敗したり識別が不正確であったりすることがよくある。例えば、オブジェクトに対するカメラの向きや位置、及び/又は、オブジェクトの近くの照明若しくは他の環境条件は、システムの精度に大きく影響し得る。
【0005】
さらに、関連する従来技術のアプローチは、精確な結果を達成するために、複数のセンサやコンピュータープロセッサのような複雑で高価な器材を必要とすることが多い。
【発明の概要】
【0006】
本明細書に含まれる文書、行為、材料、デバイス、物品又はこれらに類するものについてのあらゆる議論は、これらの事項のいずれか又は全てが、本出願の各請求項の優先日以前に存在していた本開示の関連分野における技術常識の一部を形成することを認めるものではない。
【0007】
いくつかの開示の実施形態によれば、定義されたオブジェクトを識別するためのシステムが提供される。該システムは、オブジェクトのデジタル表現を定義するためのデータを検出するように構成された少なくとも1つのセンサと、前記少なくとも1つのセンサに通信可能に接続されたプロセッサであって、該プロセッサは、少なくとも2つの技法を実行するように構成されており、前記技法のそれぞれは、前記定義されたオブジェクトによって定義されたシグネチャを識別するように構成されている、プロセッサと、前記プロセッサに通信可能に接続されたメモリであって、該メモリは、前記少なくとも2つの技法によってそれぞれ導出された少なくとも2つのシグネチャに関連する参照データを記憶する、メモリとを備えている。前記プロセッサは、前記プロセッサが前記デジタル表現を定義するデータを前記少なくとも1つのセンサから受信することに応答して、該プロセッサが、前記少なくとも2つの技法を実行し、それによって前記技法のそれぞれに、前記デジタル表現を評価することであって、それによって前記オブジェクトによって定義された任意のシグネチャ候補を識別すること、識別された前記シグネチャ候補のそれぞれから特徴データを導出すること、前記特徴データを前記参照データと比較すること、及び、各比較から尤度値を導出することであって、前記尤度値のそれぞれは、前記シグネチャのそれぞれに対応する前記シグネチャ候補の尤度を示すことを行わせるように構成されている。該プロセッサは、続いて、少なくともいくつかの前記尤度値を組み合わせ、それによって複合尤度値を導出し、前記複合尤度値から、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトかどうかを決定する。
【0008】
前記プロセッサは、さらに、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであると決定したことに応答して、前記プロセッサが、前記少なくともいくつかの前記尤度値が導出された前記特徴データを前記参照データに追加するように構成されていてもよい。
【0009】
前記システムは、ユーザインタフェースを含んでいてもよく、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであると決定したことに応答して、前記プロセッサが、ユーザ入力を取得するように前記ユーザインタフェースを動作させ、それによって前記オブジェクトが前記定義されたオブジェクトであることを確認するように構成されていてもよく、前記ユーザ入力に応答して、前記プロセッサが、前記少なくともいくつかの前記尤度値が導出された特徴データを前記参照データに追加する。このことは、前記プロセッサが、さらに、ユーザ入力を取得するように前記ユーザインタフェースを動作させ、それによって前記デジタル表現における前記オブジェクトが前記定義されたオブジェクトであることを示す1つ以上の指標を確認するように構成されていることを伴っていてもよく、前記ユーザ入力に応答して、前記プロセッサが、前記1つ以上の確認された指標から指標データを導出すると共に、前記指標データを前記参照データに追加する。前記1つ以上の指標は、前記デジタル表現内における前記オブジェクトに関連付けられたコンテキスト因子を備えていてもよい。
【0010】
前記システムがユーザインタフェースをさらに含んでいる場合には、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであるとの決定に応答して、前記プロセッサは、前記ユーザインタフェースを動作させてユーザ入力を取得し、それによって前記システムによって実行されることとなる1つ以上のアクションを定義するように構成されていてもよく、前記ユーザ入力に応答して、前記プロセッサは、前記1つ以上の定義されたアクションから命令を導出し、前記命令を実行し、かつ、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであるという後の決定に応答して実行するために、前記命令を前記メモリ内に記憶する。
【0011】
前記システムは、認識可能な警報を発するように構成された警告デバイスをさらに含んでいてもよく、前記プロセッサは、さらに、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであるとの決定に応答して、前記プロセッサが前記警告デバイスを動作させるように構成されている。前記警告デバイスは、ユーザに着用されるウェアラブルデバイス、装置の触覚コンポーネント、及び、装置の動作を制御するコントローラであって、前記警告デバイスを動作させることによって、前記装置の制御が行われるコントローラのうち1つ以上として構成されていてもよい。
【0012】
前記システムは、複数の前記センサをさらに含んでいてもよく、前記複数のセンサのそれぞれは、他の各センサ及び前記プロセッサに通信可能に接続されている。このことは、前記センサのそれぞれが、前記センサの動作を制御するためのコントローラを有していることを伴っていてもよく、前記複数のセンサ間の通信によって、少なくとも1つの前記コントローラが動作させられ、それによって前記センサのそれぞれの制御が行われる。また、前記デジタル表現は、前記複数のセンサの2つ以上によって検出されるデータを備えていてもよい。
【0013】
前記シグネチャのそれぞれは、特定の特徴データを備えていてもよい。
【0014】
前記技法のそれぞれは、前記定義されたオブジェクトから異なるシグネチャを導出してもよい。
【0015】
前記シグネチャの少なくとも1つは、前記定義されたオブジェクトの特質、前記定義されたオブジェクトによって定義されたジオメトリ、前記定義されたオブジェクトの挙動、前記定義されたオブジェクトに関連付けられた1つ以上のコンテキスト因子のうち少なくとも1つによって定義されてもよい。前記定義されたオブジェクトの挙動は、前記定義されたオブジェクトの動き、前記定義されたオブジェクトの無活動状態、前記定義されたオブジェクトと別のオブジェクトとの相対的な動き、刺激に反応した前記定義されたオブジェクトの反応のうち1つ以上を備えていてもよい。
【0016】
前記定義されたオブジェクトに関連付けられた前記1つ以上のコンテキスト要因は、前記定義されたオブジェクトに対する局地時刻、前記定義されたオブジェクトに対する局地環境条件、前記定義されたオブジェクトに対する局地気象、前記定義されたオブジェクトに対する1つ以上のオブジェクトの位置、前記定義されたオブジェクトに固有の1つ以上のオブジェクトの挙動、前記定義されたオブジェクトの動作パラメータを含んでいてもよい。
【0017】
少なくとも1つの識別されたシグネチャ候補は、前記オブジェクトの特質、前記オブジェクトによって定義されたジオメトリ、前記オブジェクトの挙動、前記オブジェクトに関連付けられた1つ以上のコンテキスト要因のうち少なくとも1つによって定義されてもよい。
【0018】
前記少なくとも2つの技法は、相補的であるように構成されていてもよい。このことは、前記少なくとも2つの技法は、前記プロセッサによって実行するために、一連の種々異なる技法から選択されることを伴っていてもよい。
【0019】
前記技法のそれぞれについて、前記プロセッサは、既定の訓練データに触れさせることから特徴データを導出すると共に、前記既定の訓練データから導出された前記特徴データを参照データとして記憶するように訓練されてもよい。
【0020】
前記既定の訓練データは、複数のデジタル表現を含んでいてもよく、前記複数のデジタル表現のうちいくつかのみが、前記定義されたオブジェクトを含んでいると共に、前記定義されたオブジェクトの存在を確認するためにラベル付けされており、前記プロセッサは、前記ラベル付けされたデジタル表現から導出された特徴データのみを前記参照データとして記憶するように構成されている。前記既定の訓練データは、ユーザが前記定義されたオブジェクトを含んでいる前記デジタル表現のそれぞれにラベル付けを行うことによって人力で構成されてもよい。
【0021】
前記技法のそれぞれについて、前記既定の訓練データに触れさせることによって、前記プロセッサには、前記ラベル付けされたデジタル表現のそれぞれにおいて定義された1つ以上の共通要素を学習させると共に、前記1つ以上の共通要素に応じて前記シグネチャを導出させてもよい。
【0022】
前記参照データは、特徴データ分散分布を定義してもよく、前記尤度値は、前記特徴データを前記特徴分散分布と比較することから導出されてもよい。
【0023】
前記技法のそれぞれは、前記特徴データ分散分布のそれぞれに関連付けられていてもよい。前記技法のそれぞれは、前記特徴分散分布のそれぞれを確率分布関数として定義してもよく、前記尤度値は、前記特徴データを前記確率分布関数と比較することから導出される。
【0024】
前記特徴分散分布は、ガウス曲線を定義してもよく、前記尤度値は、前記ガウス曲線に対する前記特徴データの位置を決定することから導出される。代替として又はこれに加えて、前記特徴分散分布は、複数のガウス曲線から形成されるクラウドを定義してもよく、前記尤度値は、前記密度クラウドの最大密度領域に対する前記特徴データの近接度を決定することから導出される。
【0025】
前記プロセッサは、少なくとも1つの二次技法を実行するように構成されていてもよく、前記少なくとも2つの技法のそれぞれから尤度値を導出することに応答して、前記プロセッサは前記二次技法を実行し、それによって前記二次技法に、少なくともいくつかの技法によって導出された少なくとも1つの尤度値を比較させてさらなる尤度値を導出させてもよく、前記さらなる尤度値は、少なくとも1つの他の尤度値と組み合わせられ、それによって前記複合値が導出される。前記尤度値の比較は、前記比較された尤度値間の相関を決定することをさらに備えていてもよい。前記メモリは、既定の比較された尤度値に関する比較参照データを記憶してもよく、前記尤度値の比較は、前記尤度値を前記比較参照データと比較して前記さらなる尤度値を導出することをさらに備えていてもよい。
【0026】
前記複合尤度値を導出することは、1つの前記技法を実行することによって導出される前記尤度値のうち少なくとも1つを、別の前記技法を実行することによって導出される前記尤度値のうち少なくとも1つと組み合わせることを備えていてもよい。
【0027】
前記メモリは、既定の複合尤度値に関連する複合参照データを記憶していてもよく、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであるかどうかを決定することは、前記複合尤度値を前記複合参照データと比較し、それによって信頼値を導出することを備えていてもよく、前記デジタル表現内における前記オブジェクトが定義されたオブジェクトであるかどうかを決定することは、前記信頼値に基づいている。
【0028】
前記複合参照データは、確率分布関数として定義されてもよく、前記信頼値は、前記複合尤度値を前記確率分布関数と比較することから導出される。前記確率分布関数は、ガウス曲線を定義してもよく、前記信頼値は、前記ガウス曲線に対する前記複合尤度値の位置を決定することから導出される。
【0029】
前記尤度値を組み合わせることは、前記技法のそれぞれによって導出された少なくとも1つの尤度値を順次乗算することを備えていてもよい。
【0030】
前記技法のそれぞれは、アルゴリズム及び分類器のうち少なくとも1つを含んでいてもよい。
【0031】
前記特徴データは、特徴ベクトルを定義してもよい。
【0032】
前記デジタル表現は、少なくとも1つの画像を含んでいてもよい。前記少なくとも1つの画像は、RGBカラーモデルに従って定義されてもよい。前記センサは、少なくとも1つのカメラを備えていてもよい。
【0033】
他の開示された実施形態によれば、定義された危険(hazard)を識別するためのシステムが提供される。該システムは、シーンのデジタル表現を定義するためのデータを検出するように構成された少なくとも1つのセンサと、前記少なくとも1つのセンサに通信可能に接続されたプロセッサであって、該プロセッサは、少なくとも2つの技法を実行するように構成されており、前記技法のそれぞれは、前記定義された危険によって定義されたシグネチャを識別するように構成されている、プロセッサと、前記プロセッサに通信可能に接続されたメモリであって、該メモリは、前記少なくとも2つの技法によってそれぞれ導出された少なくとも2つのシグネチャに関連する参照データを記憶する、メモリとを含んでいる。前記プロセッサは、前記プロセッサが前記デジタル表現を定義する前記少なくとも1つのセンサからデータを受信することに応答して、該プロセッサが、前記少なくとも2つの技法を実行し、それによって前記技法のそれぞれに、前記デジタル表現を評価することであって、それによって前記シーンによって定義された任意のシグネチャ候補を識別すること、識別された前記シグネチャ候補のそれぞれから特徴データを導出すること、前記特徴データを前記参照データと比較すること、及び、各比較から尤度値を導出することであって、前記尤度値のそれぞれは、前記シグネチャのそれぞれに対応する前記シグネチャ候補の尤度を示すことを行わせるように構成されている。該プロセッサは、続いて、少なくともいくつかの前記尤度値を組み合わせ、それによって複合尤度値を導出し、前記複合尤度値から、前記デジタル表現内における前記シーンが前記定義された危険を含んでいるかどうかを決定する。
【0034】
他の開示された実施形態によれば、定義されたオブジェクトを識別するための方法が提供される。該方法は、少なくとも1つのセンサによりデータを検出するステップであって、それによってオブジェクトのデジタル表現を定義する、ステップと、前記デジタル表現データをプロセッサに提供し、前記プロセッサによって、少なくとも2つの技法を実行し、それによって前記技法のそれぞれに、前記デジタル表現を評価することであって、それによって前記オブジェクトによって定義された任意のシグネチャ候補を識別すること、識別された前記シグネチャ候補のそれぞれから特徴データを導出すること、前記特徴データを、前記定義されたオブジェクトによって定義されると共に前記手法によって導出されたシグネチャに関連する参照データと比較すること、及び、各比較から尤度値を導出することであって、前記尤度値のそれぞれは、前記シグネチャに対応する前記シグネチャ候補の尤度を示すことを行わせるステップと、前記プロセッサによって、少なくともいくつかの前記尤度値を組み合わせ、それによって複合尤度値を導出するステップと、前記プロセッサによって、前記複合値から、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであるかを決定するステップとを含んでいる。
【0035】
前記方法は、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであると決定したことに応答して、前記プロセッサによって、前記少なくともいくつかの前記尤度値が導出された前記特徴データを前記参照データに追加することを伴っていてもよい。
【0036】
前記方法は、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであると決定したことに応答して、前記プロセッサによって、ユーザ入力を取得するようにユーザインタフェースを動作させ、それによって前記オブジェクトが前記定義されたオブジェクトであることを確認すると共に、前記ユーザ入力に応答して、前記プロセッサによって、前記少なくともいくつかの前記尤度値が導出された特徴データを前記参照データに追加することを伴っていてもよい。この状況では、前記方法は、前記プロセッサによって、ユーザ入力を取得するように前記ユーザインタフェースを動作させ、それによって前記デジタル表現における前記オブジェクトが前記定義されたオブジェクトであることを示す1つ以上の指標を確認する、ステップと、前記ユーザ入力に応答して、前記プロセッサによって、前記1つ以上の確認された指標から指標データを導出すると共に、前記指標データを前記参照データに追加するステップとをさらに伴っていてもよい。前記1つ以上の指標は、前記デジタル表現内における前記オブジェクトに関連付けられたコンテキスト因子を備えていてもよい。
【0037】
前記方法は、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであるとの決定に応答して、前記プロセッサによって、ユーザインタフェースを動作させてユーザ入力を取得し、それによって前記システムによって実行されることとなる1つ以上のアクションを定義すると共に、前記ユーザ入力に応答して、前記プロセッサによって、前記1つ以上の定義されたアクションから命令を導出し、前記命令を実行し、かつ、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであるという後の決定に応答して実行するために、前記命令を前記メモリ内に記憶することを伴っていてもよい。
【0038】
前記方法は、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであるとの決定に応答して、前記プロセッサによって、認識可能な警報を発するように構成された警告デバイスを動作させることを伴っていてもよい。
【0039】
前記方法は、前記技法のそれぞれについて、前記技法を実行している前記プロセッサを既定の訓練データに触れさせると共に、前記プロセッサによって、前記特徴データを前記既定の訓練データから導出して参照データとして記憶することによって訓練することを伴っていてもよい。前記既定の訓練データは、複数のデジタル表現を含んでいてもよく、前記複数のデジタル表現のうちいくつかのみが、前記定義されたオブジェクトを含んでいると共に、前記定義されたオブジェクトの存在を確認するためにラベル付けされており、前記プロセッサによって、前記ラベル付けされたデジタル表現から導出された特徴データのみが前記参照データとして記憶される。前記技法を実行している前記プロセッサを前記既定の訓練データに触れさせることによって、前記プロセッサに、前記ラベル付けされたデジタル表現のそれぞれにおいて定義された1つ以上の共通要素を学習させると共に、前記1つ以上の共通要素に応じて前記シグネチャを導出させてもよい。
【0040】
前記複合尤度値を導出するステップは、前記プロセッサによって、1つの前記技法を実行することによって導出される少なくとも1つの尤度値を、別の前記技法を実行することによって導出される少なくとも1つの尤度値と組み合わせることを伴っていてもよい。
【0041】
前記メモリは、既定の複合尤度値に関連する複合参照データを記憶していてもよく、前記デジタル表現内における前記オブジェクトが前記定義されたオブジェクトであるかどうかを決定するステップは、前記プロセッサによって、前記複合尤度値を前記複合参照データと比較し、それによって信頼値を導出することをさらに備えていてもよく、前記デジタル表現内における前記オブジェクトが定義されたオブジェクトであるかどうかを決定するステップは、前記信頼値に基づいている。
【0042】
本明細書の文脈において、開示のシステム及び方法は、定義された危険(hazard)又は定義されたオブジェクトを識別することに対して容易に適合できるため、オブジェクトという用語は、適切な場合には危険(hazard)という用語と交換可能であることが理解される。危険(hazard)は、リスク又は危険(danger)を意味すると理解される。同様に、デジタル表現は、検出されたオブジェクト又は検出されたシーンを定義してもよく、したがって、オブジェクトとシーンという用語は、適切な場合には交換可能である。
【0043】
技法とは、アルゴリズム(典型的には、データを処理するように構成されている)及び分類器(典型的には、既存の参照データに基づいて処理されたデータを用いて決定を行うように構成されている)のうち少なくとも1つを含む方法又はプロセスを意味すると理解される。多くの場合、技法はアルゴリズム及び分類器を備えており、複数のアルゴリズムを備えていてもよい。
【0044】
シグネチャは、定義されたオブジェクトによって定義された、又は、定義されたオブジェクトに関連付けられた1つ以上の特性を意味すると理解される。シグネチャには、オブジェクトによって定義される1つ以上のジオメトリ(例えば、オブジェクトの一部によって定義される寸法比)、オブジェクトの挙動(例えば、動きや無動作)、オブジェクトに関連するコンテキスト因子(例えば、環境条件)が含まれる。いくつかの状況では、シグネチャは、ジオメトリ、挙動及びコンテキストのパラメータで構成される。
【0045】
本明細書全体を通して、単語「comprise(備える)」、又は、「comprises」若しくは「comprising」のような変形は、述べられた要素、整数若しくはステップ、又は、要素、整数若しくはステップの群を含むことを意味すると理解されるが、他の要素、整数若しくはステップ、又は、要素、整数若しくはステップの群を含まないことを意味すると理解されるものではない。
【0046】
実施形態は、本明細書に開示される又は本願の明細書に個別に若しくは集合的に示されるステップ、特徴及び/又は整数、並びに、2つ以上の前記ステップ又は特徴の任意の全ての組み合わせを含み得ることが理解される。
【図面の簡単な説明】
【0047】
ここで、添付の図面を参照して、例示のみを目的として実施形態を説明する。
【0048】
図1A図1Aは、定義されたオブジェクトを識別するためのシステムの実施形態の図であり、定義されたオブジェクトは人である。
図1B図1Bは、図1Aに示されるシステムの変形例であり、センサの別の配置及び構成を含む。
図1C図1Cは、警告デバイスの様々な実施形態を示しており、ここでの実施形態は、腕時計及びイヤーピースである。
図1D図1Dは、警告デバイスの様々な実施形態を示しており、ここでの実施形態は、操縦桿及びモニタである。
図2図2は、定義されたオブジェクトを識別するために図1に示されるシステムを訓練するための訓練プロセスの図である。
図3A図3Aは、図1に示されるシステムの動作を示すフローチャートである。
図3B図3Bは、図1に示されたシステムの動作の別の態様を示すフローチャートである。
図3C図3Cは、図1に示されるシステムの動作のさらなる別の態様を示すフローチャートである。
図4図4は、図1に示されるシステムの動作中のスクリーンショットである。
図5図5は、図1に示されるシステムの動作の別の態様を示すフローチャートである。
図6A図6Aは、図1に示されるシステムのコンポーネントを示す図である。
図6B図6Bは、図1に示されるシステムのコンポーネントを示す図である。
図7図7は、図1に示されるシステムのコンポーネントであって、共に接続されてシステムを構成するコンポーネントを示す図である。
図8図8は、システムを異なる目的に適合させるためにシステムに追加される追加のコンポーネントを示す図である。
図9図9は、ジオメトリに基づくシグネチャを示す図である。
図10図10は、動きに基づくシグネチャを示す図である。
図11図11は、挙動に基づくシグネチャを示す図である。
【発明を実施するための形態】
【0049】
図面において、参照番号10は、全体として、定義されたオブジェクトを識別するためのシステム10を示す。システム10は、オブジェクト14のデジタル表現を定義するためのデータを検出するように構成された少なくとも1つのセンサ12と、該少なくとも1つのセンサ12に通信可能に接続されたプロセッサ18であって、プロセッサ18は、少なくとも2つの技法を実行するように構成されており、各技法は、定義されたオブジェクトによって定義されたシグネチャを識別するように構成されている、プロセッサ18と、プロセッサ18に通信可能に接続されたメモリ22であって、該メモリ22は、該少なくとも2つの技法によってそれぞれ導出された少なくとも2つのシグネチャに関する参照データを記憶する、メモリ22とを含んでいる。プロセッサ18がデジタル表現を定義する少なくとも1つのセンサ12からデータを受信することに応答して、プロセッサ18は少なくとも2つの技法を実行し、それによって各技法に、デジタル表現を評価することであって、オブジェクト14によって定義された任意のシグネチャ候補を識別すること、識別された各シグネチャ候補からの特徴データを導出すること、特徴データを参照データと比較すること、及び、各比較から尤度値を導出することであって、各尤度値は、それぞれのシグネチャに対応するシグネチャ候補の尤度を示すことを行わせる。続いて、プロセッサ18は、少なくともいくつかの尤度値を組み合わせ、それによって複合尤度値を導出し、該複合尤度値から、デジタル表現におけるオブジェクト14が定義されたオブジェクトであるかどうかを決定する。
【0050】
図1Aは、システム10の実施形態を示す。図示の実施形態では、定義されたオブジェクトは人である。システム10は、少なくとも1つのセンサを含んでおり、該センサは、本実施形態ではカメラとして、オブジェクトのデジタル表現を定義するためのデータを検出するように構成されており、該オブジェクトは、本実施形態では人14である。カメラ12は、典型的には無線にて、サーバ16に通信可能に結合されており、サーバ16は、プロセッサ18と、プログラムメモリ20と、データベースメモリ22のようなデータ記憶装置とを含んでいる。プロセッサ18、プログラムメモリ20及びデータベースメモリ22は、互いに通信可能に接続されている。サーバ16はまた、典型的には無線にて、ユーザインタフェース24及び警告デバイス26に通信可能に結合されており、警告デバイス26は、認識可能な警報を提供するように構成されている。
【0051】
センサは、図1Aにおいてカメラ12として図示されており、カメラ12は、デジタル表現を赤-緑-青(RGB)カラーモデルに従う画像(又は、ビデオ映像を形成する連続画像の集合)として定義するように構成されており、いくつかの実施形態では、深度も定義する。しかしながら、センサ12は、デジタル表現を定義するためのデータを検出することが可能な1つ以上の他の形態、例えば、近接センサ、ソナーシステム、圧力パッドアレイ、超音波トランスデューサアレイ、LIDAR等を含むように構成されていてもよいことが理解される。このようにして、センサ12は、1つのデータフォーマットを検出するものに限定されず、それにより、オブジェクト14のデジタル表現に、複数の異なるデータフォーマットを含ませることを可能にする。例えば、カメラ12は、近接センサ及び運動センサに関連付けられてもよく、このことは、デジタル表現が、オブジェクト14のジオメトリに関するデータ、オブジェクト14の動き(動きの方向を含む)に関するデータ、及び、1つ以上の基準点に対するオブジェクト14の近さに関するデータから形成されることを意味する。したがって、システム10は、複数のセンサ12を含んでいてもよく、センサ12が同じタイプであっても異なるタイプの組み合わせであってもよいことが理解される。
【0052】
図1Bは、システム10の別の実施形態を示しており、共通の参照番号は、共通の特徴を示す。該システム10は、複数のカメラ12として構成された複数のセンサを含んでいる。これらのカメラ12は通信可能に接続され、それによってセンサ12のネットワーク又はメッシュを形成する。このことは、各カメラ12がプロセッサ18及び少なくともいくつかの他のカメラ12と通信するように構成されることを伴い、したがって、検知の感度/精度を、検知動作の冗長性を減らすことによって高めることが可能になる。各カメラ12は、カメラ12の動作を制御するためのコントローラを含んでいる。いくつかの状況では、カメラ12の間で通信される信号が、コントローラの少なくとも1つの動作を生じさせ、それによって各カメラ12の制御が行われる。例えば、2つのカメラ12の間で通信される信号が、一方のカメラ12にその焦点を調整させ、それによって該カメラ12の視野を広げさせる。
【0053】
カメラ12の相互通信及びカメラ12とプロセッサ18との通信は、各カメラ12を標準化された通信プロトコルに従って構成することにより達成される。このような標準化された通信プロトコルとしては、数多くの例が知られており、本明細書では説明する必要がない。このことは、システム10用に特別に構成されたカメラ12のような特注センサ、及び、必ずしもシステム10に従って構成されていないOEM又は他のサードパーティのデバイスのような汎用センサが、相互通信及びプロセッサ18と通信するように構成され得ることを意味する。したがって、複数の同様の及び/又は異なるセンサが、相互接続されたセンサのメッシュを形成するように構成され得るため、これによりシステム10の使用範囲が拡大する。
【0054】
図1Bに示す実施形態では、複数のカメラ12は、各カメラ12の視野が他のカメラ12の1つ以上の視野と重なるように配置される。この配置では、カメラ12間の通信によって、1つのカメラ12が(例えば、トラック13によって視野が遮られているために)オブジェクト14を検出できない場合に、他のカメラ12によって検出されたデータがプロセッサ18によって組み合わされ、それによってオブジェクト14のデジタル表現を形成することが確保される。
【0055】
図1Bに示される実施形態は、センサ12のネットワーク化されたメッシュを備えたシステム10の一例であり、システム10は、代わりに、異なるセンサ12(異なるタイプのセンサ12の組み合わせを含む)を備えるように構成されていてもよいことが理解される。例えば、センサ12は、代わりに、複数の近接センサ12として構成され、相互に通信するようにネットワーク化されていてもよく、それによってオブジェクト14の連続検出(累積検知)が冗長性を減らすことが確保される。例えば、このことは、オブジェクト14がセンサ12を急速に通り過ぎたことに起因するオブジェクト14の部分的な検出を該第1近接センサ12が記録することを伴うことがあり、それによって、接近するオブジェクト14を検出するため、該第1センサ12に他の局地近接センサ12と通信させ、それによって他のセンサ12を準備させてもよい。その後、プロセッサ18は、該他のセンサ12によって検出されたデータを組み合わせ、それによってオブジェクト14のデジタル表現を形成する。
【0056】
システム10のいくつかの実施形態では、オブジェクト14のデジタル表現を形成するデータは、さらなるセンサ(図示しない)によって直接的に、及び/又は、データベース若しくはデータフィードから取得されることによって間接的に検出されるコンテキストデータによって増強される。コンテキストデータは、概してオブジェクト14が位置する環境に関するデータ(その環境の時刻を含む)、及び/又は、オブジェクト14の挙動、及び/又は、オブジェクト14に関連付けられた又はオブジェクト14の近くに配置された他のオブジェクトの挙動を含んでいる。
【0057】
例えば、コンテキストデータは、オブジェクト14が存在するコンテキストをシステム10が検出できるようにするために、風速、風向、及び/又は湿度のようなオブジェクト14に関連する局地気象情報を含むことができる。気象情報は、オブジェクト14の近くに配置された圧力及び湿度センサ等によって直接的に、及び/又は、気象庁のウェブサイトにより公開されてインターネット経由で取得される気象情報等から間接的に検出されてもよい。このコンテキスト情報は、オブジェクト14のコンテキスト化を強化するために、過去の局地気象条件のような過去のコンテキストデータもまた含んでいてもよい。
【0058】
代替として又はこれに加えて、コンテキストデータは、1つ以上のオブジェクトの静的又は動的位置(例えば、クレーンが移動している速度及び方向)及び/又は2つ以上のオブジェクトの相対位置(例えば、クレーンの電力線までの近さ)のような、局地挙動関連情報を含んでいてもよい。
【0059】
オブジェクト14のコンテキスト化は、局地の環境及び挙動条件を評価することに限定されず、システム10によって多くの他の因子が検出、監視及び/又は解釈され得ることが理解される。例えば、検出されるオブジェクトが機械装置の場合、該コンテキスト化は、機械装置の1つ以上のコンポーネントの機能ステータスを監視すること、機械装置のデジタルモデルと比較すること、品質保証情報を見直すこと、欠陥情報を見直すこと、これらの要因のいずれかに関連する履歴データを見直すこと等を含んでいてもよい。
【0060】
サーバ16は、例えば、オブジェクト14に対して局所的に配置されていてもよく(例えば、ラップトップコンピュータ又はタブレットコンピュータのようなパーソナルコンピューティングデバイスにて具現化される)、オブジェクト14から遠隔に配置されて、インターネットを介してアクセスされてもよい。サーバ16がローカルパーソナルコンピューティングデバイスとして具現化される場合には、このデバイスはまた、ユーザインタフェース24及び/又は警告デバイス26を提供してもよい。データベースメモリ22のようなサーバ16のコンポーネントは、サーバ16の他のコンポーネントから遠隔に配置されて、インターネットを介してアクセスされてもよいことが理解される(「クラウドコンピューティング」又は「エッジコンピューティング」と称される)。
【0061】
プログラムメモリ20は、プロセッサ18に通信可能に結合されており、プロセッサ18によって実行された際にオブジェクト識別技法を実行させる命令セットを記憶している。種々のオブジェクト識別技法については、以下にて詳細に説明する。あるいは、各技法の命令は、プロセッサ18に組み込まれていてもよく、コンピュータ可読記憶媒体(例えば、非一時的記憶媒体)のような他の適切な形態に組み込まれていてもよい。単一のプロセッサ18について説明されているが、プロセッサ18は、計算効率を高めるために複数のプロセッサを備えてもよいことが理解される。
【0062】
データ記憶装置は、図1A及び1Bではデータベースメモリ22として示され、プロセッサ18と通信可能に結合されており、定義されたオブジェクトによって定義された1つ以上のシグネチャに関する参照データを記憶している。これらのシグネチャは、1つ以上の訓練プロセス及び/又はフィードバックデータに応答する各技法によって導出されるものであり、以下にて詳細に説明する。
【0063】
図1Aに示される実施形態では、ユーザインタフェース24は、タブレットコンピュータを動作させることにより提供される。これは、種々異なる環境にて広く使用するのに便利であるといった理由による。ラップトップコンピュータ、スマートフォン、ファブレットのような他のパーソナルコンピューティングデバイスもまた適していることが理解される。ユーザインタフェース24は、典型的にはセンサによって検出されたデジタル表現(図示の実施形態では、カメラ12によって記録されたRGB画像である)を表示し、検出されたオブジェクト14が定義されたオブジェクトであるとプロセッサ18によって決定された際には、通知を表示又は発信する。いくつかの実施形態では、ユーザインタフェース24は、警告デバイス26もまた備えている。
【0064】
インタフェース24による通知の表示又は発信は、SMSメッセージ、電子メールメッセージ又はプッシュ通知を、ユーザインタフェース24を実行するタブレットコンピュータ又はユーザのスマートフォンのようなユーザのデバイスに送信させ、それによって定義されたオブジェクトがセンサ12の近くに存在することをユーザに通知することを伴っていてもよい。通知は、典型的には何らかのアクションを取るようにユーザを促すように構成される。例えば、通知は、立ち入りが制限されている領域に認可されないオブジェクト(例えば、人)が存在することをユーザに警告し、そのエリアから認可されないオブジェクトを取り除くようにユーザを促す。
【0065】
図1Aに示される実施形態では、プロセッサ18は、この実施形態では可聴警報26として構成される警告デバイス26と通信し、システム10は、オブジェクト14を定義されたオブジェクトとして識別することに応答してアラーム26を作動させるように構成されている。この配置は、例えば建設現場又は工場において有用であり、そのようは場所では、システム10は、定義されたオブジェクト14の検出を緊急事態として定義するように構成される。この状況では、定義されたオブジェクト14の検出がアラーム26を動作させ、それによって緊急の危険がユーザ/作業者に対して明確に伝達される。
【0066】
警告デバイス26は、様々な実施形態にて具現化されてもよく、概して適切かつ特定の刺激を提供し、それによってユーザに実行される特定のアクションを誘発するように構成される。図1Cに示されるように、いくつかの実施形態では、警告デバイス26はウェアラブル装置として具現化されてもよく、図示の実施形態ではブレスレット/腕時計27及びイヤーピース29であり、これらはいずれも振動、光の放射及び音の発信のうち1つ以上によって着用者に通知を伝達するように構成される。あるいは、警告デバイスは、アームバンド、アイウェア、帽子/ヘルメット等によって構成されてもよい。
【0067】
ウェアラブルデバイスの実施形態及び通信方法は、概して、警告デバイス26の使用環境に応じて構成される。例えば、建設現場は典型的には騒がしく明るい環境であり、そのような現場にて車両を運転するユーザがウェアラブルデバイス26を使用する場合、デバイス26は、振動のみで情報伝達を行い、ステアリングホイールのような振動する車両コンポーネントから離れた場所でのみ着用するように構成されており、したがって、デバイス26は、ユーザの首周りに着用されるペンダント内、又は、防護ヘルメットのヘッドバンド内に組み込まれる。
【0068】
いくつかの実施形態では、システム10は、プロセッサ18が、既定のリスクレベルに関する通知等の通知を分類/優先順位付けし、このような分類に従って通知が警告デバイス26によってユーザに伝達されるように構成される。例えば、プロセッサ18によって車両が境界の5m以内にあると決定された等により、通知が低リスクとして分類された場合、デバイス26は低周波振動パルスを発信する。あるいは、プロセッサ18によって車両が境界の1m以内にあると決定された等により、通知が高リスクとして分類された場合、デバイス26は高周波振動パルス及び音を発信する。警告デバイス26は、通知を受信したことに応答して振動パターンを変化させて、通知を継続的に伝達すること及び各通知を分類することをユーザに許可するように構成されていてもよいことが理解される。
【0069】
図1Dに示されるように、別の実施形態では、警告デバイス26は、器材又は車両の触覚コンポーネントとして具現化され、図示の実施形態では、通知が生成された際に振動パターンを発信するように構成された操縦桿35である。あるいは、警告デバイス26は、ペダル、レバー又はステアリングホイールのような他の制御周辺機器に組み込まれていてもよい。さらなる代替として又はこれに加えて、警告デバイス26は、オペレータの見通し内の器材又は車両に接続される視認可能なビーコンとして構成され、図示の実施形態では、これは表示モニタ37である。
【0070】
代替として又はこれに加えて、警告デバイス26は、掘削機のような器材又は車両の動作を自動化するように構成された制御モジュールとして構成されていてもよく、そのような制御モジュールに通信可能に接続されていてもよい。例えば、通知を生成することにより、警告デバイス26に制御モジュールを動作させ、それによって掘削機の動作を直ちに停止するか、それ以外にもバケットの移動を防止する等により掘削機の動作に影響を与えてもよい。
【0071】
図2は、定義されたオブジェクトを識別するために、プロセッサ18によって実行されるオブジェクト識別技法の1つを訓練するための訓練プロセス30の様々な段階を示しており、図2に示される例では、定義されたオブジェクトは、ここでも人34である。訓練プロセス30は、機械学習プロセスを伴っており、典型的には、システム10の動作の前に、プロセッサ18が実行するように構成された各オブジェクト識別技法に対して、少なくとも1回実行される。これにより、各技法は、定義されたオブジェクトによって定義されたシグネチャを学習し、参照データを生成することができる。参照データは、各技法が触れるようにされ、識別のために学習するシグネチャのバリエーションから導出された一連の特徴データを備えている。
【0072】
まず、31において、訓練プロセス30は、オブジェクト識別技法を実行するプロセッサ18を一連の訓練データ32に触れさせ、それによって訓練データ32のサブセット33のみが定義されたオブジェクトを定義して、該データのどの部分が定義されたオブジェクトを含むサブセット33であるかを確認する。典型的には、これには、ユーザが種々異なる状況を表す複数のデジタル表現を照合して定義されたオブジェクトを表す各表現にラベル付けすることによって訓練データ32を人力で構成し、それにより、該ラベルから、訓練データのどの部分が定義されたオブジェクトに含まれているかを確認し、それによって訓練データのその部分からシグネチャを導出する。このようにして、該技法は、定義されたオブジェクトのシグネチャを定義することを該技法が決定する、関連するデジタル表現の特定の共通要素を学習する。
【0073】
例えば、画像内に定義された共通の形状のベクトルを識別するように技法が構成されている場合、プロセッサ18は、その技法を実行することにより、定義されたオブジェクト(人34)のシグネチャを、人34の少なくとも一部、例えば、頭と肩との境界によって定義されるベクトルのようなジオメトリに基づくシグネチャであると学習するようにされる。この状況では、ユーザは、様々な人34の頭と肩との境界を示す複数の写真画像と、人物を全く示さない複数の写真画像を準備し、人34(定義されたオブジェクト)の有無に応じて画像にラベル付けする。このプロセスは、典型的には、区別可能性の高い画像を選択することにより強化される。そのような画像の例として、いくつかの画像は、無地の白い背景の前に単一の人34の頭と肩との境界を示すものであり、他の画像は、無地の白い背景の前にロバ等の他のオブジェクトを示すものである。代替として又はこれに加えて、このことは画像のペアを準備することを伴い、このペアの一方は建設現場のような人34を含まないシーンを示し、ペアの他方は同じシーンであるが人34の頭と肩との境界をも含んでいるシーンを含む。
【0074】
あるいは、技法がビデオ映像の運動軌跡を識別するように構成されている場合、その技法を実行するプロセッサ18は、定義されたオブジェクトのシグネチャが挙動に基づくシグネチャであると学習するようにされる。そのような挙動に基づくシグネチャとしては、動いている人34の少なくとも一部分の相対運動(例えば、人34の歩き方)、動いている別のオブジェクトの少なくとも一部分によって定義される運動(例えば動く掘削機のバケット)等が挙げられる。この状況では、ユーザは動く機械の近くを歩いている人34についての複数のビデオと、動く機械から安全な距離を離れて歩いている人34についての複数のビデオとを準備し、危険な状況にある人34(定義されたオブジェクト)を定義するビデオに対してラベル付けを行う。
【0075】
さらに代替として、この技法を実行するプロセッサ18が挙動に基づくシグネチャであると定義されたオブジェクトのシグネチャを学習するようにされる上記の実施形態では、該シグネチャは、デジタル表現によって定義されるコンテキスト情報に少なくとも部分的に基づいて導出され得る。例えば、この状況では、ユーザは風が吹く環境に位置する人34についての複数のビデオと(木のようなオブジェクトが風によって動いており(コンテキストデータを定義)、束縛されていないオブジェクトが配置されている(さらにコンテキストデータを定義))、静止環境に位置する人34についての複数のビデオとを、危険な状況にある人34(定義されたオブジェクト)を定義するビデオに対してラベル付けを行う。
【0076】
これらのアプローチにより、それぞれの技法は、定義されたオブジェクトのシグネチャを定義するラベル付けされた訓練データ33内の、1つ以上の共通要素を区別することができる。31にてプロセッサ18に供給される訓練データ32に応答して、この技法を実行するプロセッサ18は、データの分析を開始し、シグネチャを定義すると共にそれによって定義されたオブジェクトの存在を示すデータによって定義される共通要素を学習する。このことは、典型的にはプロセッサ18が各デジタル表現の3段階分析を実行し、それによって表現がシグネチャを含むかどうかを決定することを伴う。
【0077】
第1の分析段階36は、デジタル表現を評価し、それによって潜在的なシグネチャ候補、すなわち、シグネチャ又はその一部であり得そうなデジタル表現の任意の態様を識別することを伴う。このことは、典型的にはデジタル表現のセグメント化を伴い、それによって定義されたパラメータに適合する表現の全ての態様を識別する。このことは、典型的には、デジタル表現をスキャンして全てのシグネチャ候補361,362,363を識別するセグメント化アルゴリズムによって実行される。例えば、このことは、定義されたジオメトリ境界内に収まる表現によって定義された任意のジオメトリを識別する粗いジオメトリスキャンを伴い、それによって関連するジオメトリをシグネチャ候補361,362,363として識別してもよい。代替として又はこれに加えて、このことは、運動軌跡の分析等の粗い挙動スキャン、並びに/又は、直接及び/若しくは間接的に供給されたコンテキスト情報の分析等のコンテキストスキャンを伴い、それによって関連する要因をシグネチャ候補361,362,363として識別してもよい。
【0078】
第2の分析段階38は、識別された各シグネチャ候補から特徴データを導出することを含む。このことは、典型提起には特徴導出アルゴリズムによって実行され、それによってシグネチャ候補の特徴の数値表現(特徴ベクトル)を生成する。例えば、このことは、シグネチャ候補によって定義された少なくとも2つの幾何学的次元から比率を導出することを伴う。
【0079】
第3の分析段階40は、特徴データが導出されているデジタル表現のラベルを参照し、それによって定義されたオブジェクトが該表現に存在するかどうかを確認して、該ラベルが定義されたオブジェクトの存在を確認した場合には、特徴データの分散分布42において評価されるシグネチャ候補の特徴ベクトルを記録することを伴う。
【0080】
プロセッサ18が定義されるオブジェクトに対応するものとして表現のラベルから確認した特徴ベクトルごとに、このことはプロセッサ18に、グラフ上に特徴ベクトルをプロットさせてもよく、例えば、特徴ベクトル値を「x」軸上に、確率値を「y」軸上にプロットさせてもよい。プロットされた一連の特徴ベクトルは、典型的にはガウス曲線等の確率分布曲線を形成し、最も類似した特徴ベクトルに対応する1つ以上のピークを定義する。代替として、特徴分散分布42は、別の適切な確率分布関数として表現されてもよい。例えば、技法が2つの異なる特徴(例えば、人の髪の色(第1の特徴)及び眼の色(第2の特徴))を評価するように構成されている場合には、対応する特徴ベクトルを同じグラフの別々の軸にプロットして、2つの重ね合わされたガウス曲線を形成してもよい。同様に、3つの特徴が、3次元グラフの3つの軸にプロットされてもよい。ガウス曲線は確率分布関数の一例であって、特徴分散分布は他の確率分布関数を定義してもよいことが理解されよう。複数のシグネチャ候補361,362,363がデジタル表現で識別される場合、第2の分析段階38及び第3の分析段階40が各シグネチャ候補361,362,363に対して実行されることもまた理解されよう。
【0081】
最後に、44では、特徴分散分布42の形態とは関係なく、分布42が参照データとしてデータベースメモリ22に通信されて記憶される。
【0082】
プロセッサ18が少なくとも最初に触れるようにされる訓練データ32の量及びバリエーションは、以下で説明するように、システム10がフィードバックループを動作させるようにも構成されているかどうかに応じて、データベースメモリ22に記憶される参照データに影響を与える。例えば、訓練データ32が実質的に同様のシグネチャ33を定義する複数のデジタル表現を含む場合、特徴分散分布は、密で狭い広がりとして表現されることが予想される。あるいは、訓練データ32がシグネチャ33の大幅に異なるバリエーションを定義するデジタル表現を含む場合、特徴分散分布は、それに相当するように広い広がりとして表される。
【0083】
種々異なる技法が、定義されたオブジェクト34の異なる態様又は特性からラベル付けされた訓練データ33のデジタル表現内に定義される定義されたオブジェクト34のシグネチャを決定するように典型的に構成されることが理解されよう。例えば、ある技法は、オブジェクト34の一部分又は全体のジオメトリから、シグネチャを導出するように構成されてもよい。同様に、別の技法は、オブジェクト34(例えば、衣服)の一部分の色、オブジェクト34の温度、オブジェクトの重量又はそれらに類するもの等、オブジェクト34の他の観察可能及び/又は検出可能な特性から、シグネチャを導出するように構成されてもよい。代替として、別の技法は、オブジェクト34の挙動(オブジェクト34の動きに反応したものであってもよい)、オブジェクト34の無活動状態、オブジェクト34と別のオブジェクトの相対的な動き、及び/又は、刺激に反応したオブジェクト34の反応(例えば、大きな騒音に反応した表情又は視線方向の変化)からシグネチャを導出するように構成されてもよい。さらなる代替として、別の技法は、オブジェクト34に関連付けられたコンテキスト要因からシグネチャを導出するように構成されてもよい。したがって、訓練データ32は、技法の構成に応じて、シグネチャが導出されることを可能にする関連データを該技法に提供し、参照データが生成されるように適合される。さらに、訓練プロセス30は、典型的には、プロセッサ18により実行可能な技法ごとに、同一の定義されたオブジェクト34を定義する訓練データ32を使用して実行され、それによって、共通オブジェクトによって定義されるシグネチャを各技法が学習することを可能にする。
【0084】
システム10のいくつかの実施形態では、これらの技法のうち1つを実行するプロセッサ18によるシグネチャの導出は、複数の因子の組み合わせに基づいていてもよく、そのような因子には、定義されたオブジェクトの特質、定義されたオブジェクト34のジオメトリ、定義されたオブジェクト34の挙動、及び定義されたオブジェクト34に関連付けられたコンテキスト因子が含まれる。例えば、定義されたオブジェクトが、動いている器材に近接していて注意を払っていない/無活動状態の人34であると意図されている場合、訓練データ32は、動いている機械から逃げている又は他の人に差し迫った危険を警告しようと試みている(例えば、腕を振っている)人々についての第1のビデオセットと、(携帯電話を使用しているため又は意識不明であるために)動いている機械の近くに静止している人についての第2のビデオセットとを含むように構成され、第2のセットを、定義されたオブジェクト32を含むデジタル表現としてラベル付けを行う。この状況では、訓練データ32に触れることを通じて、この技法は、何かが人物34のような形状であること(ジオメトリ)、無活動状態であること(挙動)、おおよその速度及び方向で特定の音を発しつつそれに向かって動いているオブジェクトの近くにある(コンテキスト)ことの組み合わせをシグネチャが備えることを学習する。
【0085】
システム10のいくつかの実施形態では、訓練プロセス30は、一連の種々異なる定義されたオブジェクトを識別するための技法の少なくともいくつかを訓練するために、複数回繰り返される。例えば、第1の訓練プロセスは、車を識別するように各技法を訓練するよう構成され、第2の訓練プロセスは、ボートを識別するように各技法を訓練するよう構成されてもよい。この状況では、各技法について生成された参照データが、因子によって分類されたフィルタリング可能なデータベースとしてデータベースメモリ22内に配置され、そのような因子には、その技法によって識別されるように訓練された種々異なる定義されたオブジェクト(車及びボート)が含まれる。さらに、参照データの人力フィルタリングを可能にするため、ユーザインタフェース24は、ユーザがシステム10に識別させることを望む定義されたオブジェクトをユーザが選択できるようにするメニューを提供するように構成される。例えば、上記の状況では、インタフェース24は、それらの技法が車やボートを識別することを試みるかどうかをユーザが選択できるようにし、それによってデータベースを適宜フィルタリングして、それらの技法がアクセス可能な参照データに影響を与える。
【0086】
上記の例は、システム10が特定の定義されたオブジェクトを識別するように構成される方法の簡素な例であって、多くの訓練プロセスを実行するためには、参照データはより複雑であってもよく、複数のレイヤーのフィルタリングによって、システム10の動作方法をユーザが正確に調整できるようにさせることが可能になる。例えば、参照データは、ユーザがユーザインタフェース24を操作して、建物の建設現場、道路、マリーナ等の使用環境である第1のレイヤーを選択できるように構成されてもよい。この選択は、プロセッサ18によって実行される各技法が、その使用環境を識別して関連付けるように訓練された全てのオブジェクトを識別しようとすることを意味することになる。ユーザはまた、該使用環境に関連付けられたオブジェクトのカテゴリである第2のレイヤーを選択してもよく、例えば、接地する器材が挙げられる。ユーザはまた、該使用環境内の特定のオブジェクトとしての第3のレイヤーを選択してもよく、例えば、掘削機が挙げられる。したがって、参照データのさまざまなレイヤーを選択することにより、ユーザはそれらの技法によってアクセス可能な参照データに影響を与え、したがって該技法の機能に影響を与える。
【0087】
例えば、参照データ及びユーザインタフェース24は、ユーザがマリーナ及び全てのボートを選択できるようにして、それらの技法を実行するプロセッサ18に、関連するシグネチャの識別に応答して、任意のボートがセンサ12の範囲内にある時点を決定させるように構成されてもよい。代替として、ユーザインタフェース24を操作するユーザは、システム10の設定を改良して、それらの技法を実行するプロセッサ18が、造船所のクレーンがプライベートヨット等の非商用ボートから3m以内にあることを決定するようにしてもよい。
【0088】
図3Aは、システム10の動作プロセス50の様々な段階を示しており、これにより、該システムは、センサ12によって検出されたオブジェクト14が定義されたオブジェクトであるかどうかを評価する。動作プロセス50の少なくとも一部は、プロセッサ18が実行するように構成された各オブジェクト識別技法501,502,503によって実行される。
【0089】
第1段階52では、センサ12はオブジェクト14の少なくとも1つのデジタル表現を定義するためのデータを検出する。図1に示す実施形態では、このことは、人14がカメラ12の焦点範囲(視野)内にいる際に、人14の少なくとも1つの画像をキャプチャするカメラ12を伴う。このことは、多くの画像(フレーム)を備えたビデオ映像のキャプチャを伴っていてもよいことが理解されよう。各デジタル表現は、カメラ12によってプロセッサ18へと提供され、各技法501,502,503は、プロセッサ18によって同時に又はほぼ同時に実行され、それによって少なくとも1つの共通デジタル表現を、各技法501,502,503が評価できるようにする。
【0090】
第2段階54では、プロセッサ18は、第1の技法501を実行し、典型的にはセグメント化アルゴリズムを実行することによって、1つのデジタル表現に関してセグメント化プロセスを実行させ、それによってデジタル表現内に定義される任意のシグネチャ候補を識別する。図示の実施形態では、技法501は、3つのシグネチャ候補541,542,543を識別する。各シグネチャ候補541,542,543は、上述のように、訓練プロセス中に技法501が以前導出したシグネチャである可能性があると技法501が決定するデジタル表現の態様である。技法501によるシグネチャ候補541,542,543を識別するためのデジタル表現のセグメント化は、訓練データ32、及び/又は、技法501の既定の動作パラメータに応答して技法501により定義されるシグネチャの特性に依存する。例えば、技法501は、シグネチャをジオメトリに基づくシグネチャであると定義してもよく、したがって、セグメント化は、該ジオメトリに基づくシグネチャに対応する、該表現内におけるジオメトリを識別することを伴う。そのようなジオメトリとしては、既定のジオメトリ範囲又は閾値内にある任意のジオメトリ等が挙げられる。
【0091】
第3段階56では、プロセッサ18は、特徴抽出アルゴリズムを実行し、それによって、識別された各シグネチャ候補541,542,543の特徴ベクトル(α)を導出する。
【0092】
第4段階58では、プロセッサ18は、比較器(典型的には、分類器又は発見アルゴリズムである)を実行し、それによって、導出された各特徴ベクトル(α)を参照データによって定義される特徴分散分布と比較する。
【0093】
第5段階60では、比較器は、比較された特徴ベクトル(α)及び参照データの相対位置又は他の統計的関係から、尤度値(β)を導出する。尤度値(β)は、比較された特徴ベクトル(α)が、定義されたオブジェクトによって定義されているものとして技法501が訓練データ32から学習したシグネチャと同じ又は十分に類似する尤度を示す。例えば、参照データによって形成された特徴分散分布が単一のガウス曲線62を定義するグラフとして表される場合、比較器は特徴ベクトル(α)をグラフ上にプロットし、プロットされた特徴ベクトル(α)の近傍から該曲線及び/又は該曲線のピークまでの尤度値(β)を決定する。あるいは、特徴分散分布が2つ以上の重ね合わされたガウス曲線、又はクラウド型分布を形成し得る他の分布関数として表される場合、比較器は特徴ベクトル(α)をプロットし、プロットされた特徴ベクトル(α)の近傍から該重ね合わされた曲線によって定義された最大密度の領域までの尤度値(β)を決定する。尤度値(β)は参照データによって定義された特徴分散分布に依存するため、より高い尤度値(β)は、評価された特徴ベクトル(α)とプロセッサ18が訓練データ32に触れることを通じてシグネチャを定義することが確認された他の実質的に類似する参照特徴ベクトルとの相対的な類似性に応じて決定されることが理解されよう。
【0094】
第6段階64では、プロセッサ18によって実行される技法501,502,503によって導出された尤度値(β)の少なくともいくつかが組み合わされ、それによって複合値(θ)が導出される。典型的には、少なくとも2つの異なる技法501,502,503によって導出された尤度値(β)が組み合わされ、それによって複合値(θ)が導出される。組み合わせ(融合)段階は、一連の種々異なる尤度値(β)の組み合わせ方法を伴う。例えば、組み合わせ段階は、定期的に(例えば、毎秒)実行されるように構成されてもよく、一方、各技法501,502,503は、5秒毎に定期的に実行されるように構成され、それによって毎秒5つの尤度値(β)が導出されてもよい。この状況では、組み合わせ段階は、前の秒の間に各技法501,502,503によって導出された最高の尤度値(β)を組み合わせることを伴っていてもよい。代替として、この状況では、各技法501,502,503はまた、定義された期間(例えば、1秒間)に導出された尤度値(β)を平均するように構成された平均化関数を含んでいてもよく、それによって、組み合わせ段階は、前の秒の間に各技法501,502,503によって導出された平均の尤度値(β)を組み合わせることを伴っていてもよい。
【0095】
第7段階66では、システム10は、複合値(θ)に基づいて、少なくとも1つのセンサによって検出され、デジタル表現内において定義されたオブジェクト14が、定義されたオブジェクトであるかどうかを決定する。
【0096】
第4及び第5段階58,60は、第3段階56における特徴抽出アルゴリズムのそれぞれによって導出された特徴ベクトル(α)ごとに各技法501,502,503によって繰り返され、これにより、システム10に、各技法501,502,503が識別する任意のシグネチャ候補が、それらの技法のそれぞれが定義されたオブジェクトによって定義されていると学習したシグネチャに対応しているかどうかを、システム10に評価させることが可能になることが理解されよう。
【0097】
第6段階64において複合値(θ)を導出するために尤度値(β)を組み合わせることは、典型的には、尤度値(β)を乗算することを伴い、これにより、低い尤度値(β)から導出される低い複合値(θ)と、高い尤度値(β)から導出される高い複合値(θ)との差が大きくなる。したがって、複合値(θ)は、定義されたオブジェクトを識別するシステム10の信頼性の明確な指標を提供する。
【0098】
代替として、各技法501,502,503の特徴分散分布が著しく集中している場合、例えば、急勾配のガウス曲線を定義している場合には、出力尤度値(β)は、典型的には非常に高く(数百又は数千オーダー)又は非常に低く(1桁オーダー又は1未満)、仮想2値尤度値(β)が導出され得る。この状況では、組み合わせ段階64は、投票方式を伴っていてもよく、その場合、高い尤度値(β)は一票をもたらし、低い値は票をもたらさない。これらの票はその後合算され、それによって複合値(θ)が導出される。
【0099】
図3Bは、システム10の代替構成の動作プロセス51を示し、共通する参照番号は、共通の特徴を示す。システム10は、図3Aに示される2つの技法501,502(システム10の本実施形態では、一次技法と称される)を実行するように構成されると共に、二次技法504を実行するようにも構成される。一次技法501,502は、少なくとも1つのセンサ12から提供されるデータに応答して尤度値(β)を導出するように構成され、該データは、オブジェクト14の少なくとも1つのデジタル表現である。二次技法504は、一次技法501,502のうちの1つ以上によって提供されるデータに応答してさらなる尤度値(βn)を導出するように構成される。このことは、上記のように実行される各一次技法501,502が尤度値(β1,β2)を導出し、これらの尤度値(β1,β2)が二次技法504への入力として提供されることを伴う。典型的には、少なくとも2つの一次技法501,502が実行され、それによって少なくとも1つの尤度値(β1,β2)を各一次技法501,502から二次技法504へと提供できるようにする。その後、二次技法504がプロセッサ18によって実行され、それにより段階581で尤度値(β1,β2)が比較されて、その結果としてさらなる尤度値(β3)が導出される。
【0100】
581での二次技法504による入力尤度値(β1,β2)の比較は、比較器(例えば、分類器)を実行し、それによって尤度値(β1,β2)間の相関を決定することを伴い得る。この相関は、例えば、デジタル表現の同一又は類似の部分を評価することに応答して、一次技法501,502のそれぞれによって高い尤度値(βn)が導出されたことを示してもよい。したがって、この相関は、各一次技法501,502がデジタル表現の同じ部分においてシグネチャをどのように定義するかに関係なく、定義されたオブジェクトのシグネチャが存在する可能性が高く、その結果、定義されたオブジェクトが該表現のその部分に存在することについてのシステム10の信頼性が高くなることを示す。したがって、二次技法504の実行では、シグネチャの存在、及びその結果として定義されたオブジェクトの存在に関する技法501,502間の一致を判定することにより、一次技法501,502の尤度値(β1,β2)が効果的に検証される。空間的相関は該比較段階の一例に過ぎず、他の相関は二次技法504の範囲内であることが理解されよう。別の例では、環境の既知の特徴を使用することを伴う。環境内において人々を認識する場合には、検出が行われた領域では人が存在し得ないため、検出されたものは人であり得ないことが知られていることがある。例えば、その領域には床がないことがある。
【0101】
図3Cは、図3Aに示されるプロセス50又は図3Bに示されるプロセス51の別の実施形態を示し、共通する参照番号は、共通の特徴又はステップを示す。この実施形態では、システム10はまた、プロセッサ18が段階66において検出されたオブジェクト14を定義されたオブジェクトとして肯定的に識別したことに応答して、追加の特徴データをデータベースメモリ22内に記憶された参照データに追加するように構成されたフィードバックループ160も備えている。
【0102】
本実施形態では、技法501,502,503を実行するプロセッサ18が定義されたオブジェクトの肯定的な識別を決定するたび、プロセッサ18は、実行された各技法501,502,503によって導出された特徴データ(α)を記録し(この特徴データ(α)は、技法501,502,503のそれぞれについての特徴分散分布において正の識別に寄与する)、この特徴データ(α)を参照データの新しいバージョンとしてメモリ22内に保存して、基本的には図2に示される訓練プロセス30における段階42及び44を繰り返す。改訂された参照データは、その後、上述の動作プロセス50,51の比較段階58にてアクセス可能となる。
【0103】
このような動作により、参照データセットを形成する一連のデータが連続的に増加し、その結果、各特徴分散分布において実質的に対応する特徴ベクトル(α)の量が増加する。このことは、参照データ内の一連の特徴ベクトル(α)によってシグネチャがより明確に定義されるため、各技法501,502,503の精度を高める効果を有する。したがって、フィードバックループ160は、システム10を繰り返し使用することを通じてシステム10の精度を漸進的に向上させる反復プロセスを提供し、これにより各技法501,502,503がシグネチャを連続的に改善され、したがって定義されたオブジェクトがデジタル表現内に存在する時点を正確に識別することが可能になる。
【0104】
いくつかの実施形態では、フィードバックループ160は、段階66におけるプロセッサ18による定義されたオブジェクトの明確な識別に続いて、段階162において、特徴データがデータベースメモリ22内に参照データとして記録されるべきかどうかを確認するために、プロセッサ18がユーザインタフェース24を操作しているユーザによるユーザ確認を求める追加の段階を備えている。このことは、検出されたオブジェクト14が段階66にて定義されたオブジェクトであるとシステム10が決定することに応答して、ユーザインタフェース24によってこの決定が正しいかどうかを確認するようユーザを促すように構成されたユーザインタフェース24を伴う。この監督された学習状況では、プロセッサ18は単に、段階162において肯定的なユーザ確認を受信したことに応答して、特徴ベクトル(α)を参照データへと追加するだけである。
【0105】
また、図3Cに示されるように、いくつかの実施形態では、システム10は、段階66における定義されたオブジェクトの肯定的な識別又はフィードバックループ160の動作に続いて、プロセッサ18は、段階164において、システム10により実行されるアクションを確認するために、ユーザがユーザインタフェース24を操作することにより、アクションメニューへのユーザ入力を求めるように構成される。このことは、アクションメニュー164を操作することによって、肯定的な識別に応答してシステム10によって実行される1つ以上のアクションをユーザが定義できるように構成されるユーザインタフェース24を伴う。これにより、ユーザは法的要件(例えば、安全衛生規制)に準拠するための「ベストプラクティス」ルール又は境界条件を定義できるようになる。同様に、これにより、ユーザはシステム10の機能をユーザが重要であると認識した特定の状況に関して最適化できるようになる。
【0106】
段階166では、プロセッサ18は、定義されたアクションから命令を引き出し、これらの命令を実行することによって該アクションを実行し、これらの命令は、プロセッサ18によってプログラムメモリ20及び/又はデータベースメモリ22内に記録される。このことは、プロセッサ18が後に定義されたオブジェクトを、アクションの定義を促したものと同じ検出されたオブジェクトとして識別することに応答して、命令が実行されることを意味する。
【0107】
例えば、技法501,502,503が、定義されたオブジェクトをプロセッサ18が識別したことに応答して、人の1m範囲内にある掘削機バケットである定義されたオブジェクトを識別するように構成される場合、ユーザは、アクションメニューを操作して、適切なアクションが、掘削機の動作を直ちに停止させるように警告デバイス26を操作することであると定義する。このことは、掘削機バケットが人の1m範囲内にあることをプロセッサ18が識別する将来の各機会において、該アクションが自動的に実行されることを意味する。
【0108】
代替として又はこれに加えて、これらの技法が、定義されたオブジェクトを他の任意のオブジェクトの5m範囲内にある掘削機バケットとして識別するように構成される場合、ユーザは、アクションメニューを操作して、掘削機バケットが電力線の5m範囲内にある際において、適切なアクションは、認識可能な警報を発するように警告デバイス26を操作することであると定義する。
【0109】
これらは、「ベストプラクティス」アクションを定義することの簡素な例であり、より複雑なアクション又はアクションのシーケンスがユーザによって定義されてもよいことが理解されよう。例えば、ユーザは特定の分野の熟練者であってもよく、熟練のユーザがアクションメニューを操作することにより、熟練のユーザによる特定の知識及び経験に応じてシステム10の複雑な構成が可能になり、それによって該知識がシステム10の機能に組み込まれる。さらに、このようなシステム10の操作により、プロセッサ18は、ユーザがシステム10をどのように操作し、それに応じてシステム10の機能をどのように適応させることを好むかについて、継続的に学習することができるようになる。例えば、ユーザ入力(「学習ケース」)を継続的に監視することにより、プロセッサ18は、ユーザ挙動のパターンを識別して、検出されたオブジェクトが定義されたオブジェクトであると決定されたことに応答して実行されるべきである追加の「ベストプラクティス」アクション又は境界条件を、ユーザからの入力を必要とせずに導出することができる。
【0110】
また図3Cにも示されるように、いくつかの実施形態では、システム10は、段階162での肯定的なユーザ確認入力に応答して、段階168において、プロセッサ18は、検出されたオブジェクト14が定義されたオブジェクト14であることを示す任意の指標を選択するため、又は、プロセッサ18によって自動的に識別及び提案される指標を選択解除するため、ユーザインタフェース24を操作するユーザによる指標メニューへのユーザ入力を求めるように構成される。指標は、典型的にはオブジェクト14のデジタル表現についての特定の特性であり、通常は、検出されたオブジェクトに関連付けられたコンテキスト因子である。例えば、指標は、人々、衣類、器材、標識等の特定のオブジェクト、及び/又は、風によって木の枝が曲がること(強風を示す)若しくは倉庫内を移動するフォークリフトの相対速度ベクトル(差し迫った衝突を示す)等の特定の挙動を含んでいてもよい。ユーザによる指標メニューの操作に応答して、プロセッサ18は、識別された各指標から指標データを導出し、指標データを段階66にて肯定的な識別を生じさせた特徴ベクトル(α)に関連付けて、この関連する指標データを追加の参照データとしてメモリ22内に記録する。
【0111】
このようにシステム10を操作することによって、ユーザが指標であると考える特徴をプロセッサ18に継続的に学習させることができる。これらの「学習ケース」を継続的に監視することにより、プロセッサ18は、検出されたオブジェクトが定義されたオブジェクトであるとプロセッサ18が決定する度に、ユーザの行動のパターンを識別して、追加の指標データを、ユーザの入力を必要とせずに導出することができる。
【0112】
いくつかの実施形態では、システム10の動作は、比較段階58のサブ動作として、推定段階を備えている。推定段階は、センサ12が技法501,502,503のいずれも識別のために訓練されていない代替オブジェクトに触れるようにされたことに応答して実行される。このことが起こると、技法501の1つを実行するプロセッサ18は、56にて、検出された代替オブジェクトのデジタル表現から特徴データ(α)を導出し、58にて、特徴分散分布内の内挿によって特徴データが参照データと十分に類似していることを決定し、それによって信頼できる尤度値(β)を導出して、段階66にて定義されたオブジェクトの肯定的な識別を行う。プロセッサ18は、続いて、図3Cにおける160に示すように、導出された特徴データ(α)を参照データに追加する。選択的には、特徴データ(α)は単に、肯定的なユーザ確認をユーザインタフェース24の操作から受信することに応答して、参照データに追加されるだけであり、基本的に段階162と同じプロセスである。
【0113】
例えば、技法501が1つ以上の訓練プロセス30中に、車両の特定のモデルを識別するために訓練される場合、センサ12は、続いて、同じ車両プラットフォームを共有しており結果としておおよそ同じジオメトリ及び挙動特性を有している車両の代替モデルを検出してもよい。このことが起こると、プロセッサ18は、比較段階58において、代替車両のデジタル表現から導出された特徴ベクトル(α)を参照データと比較して、信頼できる尤度値(β)を、特徴ベクトル(α)の内挿から、代替車両の形状及び/又は挙動が類似しているために参照データの大部分と類似するものとして導出する。これにより、プロセッサ18は続いて、代替車両を定義されたオブジェクトとして識別させられる。次に、特徴ベクトル(α)は、160において参照データに追加され、参照データの範囲を拡張し、代替車両モデルを定義されたオブジェクトとして識別するようにも技法501を効果的に再訓練する。したがって、該プロセスは、技法501,502,503のいずれかを、以前に観察されなかったオブジェクトを定義されたオブジェクトとして識別することを推測するように再訓練する。
【0114】
他の実施形態では、システム10の動作は、比較段階58のサブ動作として、予測段階を備えている。予測段階は、センサ12が、技法501,502,503のいずれも識別のために訓練されていない代替オブジェクトに触れるようにされた際に実行される。このことが起こると、技法501の1つを実行するプロセッサ18は、56にて、検出された代替オブジェクトのデジタル表現から特徴データ(α)を導出し、58にて、特徴分散分布内の外挿によって特徴データが十分に類似していることを決定し、それによって信頼できる尤度値(β)を導出して、段階66にて定義されたオブジェクトの肯定的な識別を行う。続いて、図3Cにおける160に示すように、導出された特徴データ(α)を参照データに追加する。選択的には、特徴データ(α)は単に、肯定的なユーザ確認をユーザインタフェース24の操作から受信することに応答して、参照データに追加されるだけであり、基本的に段階162と同じプロセスである。
【0115】
例えば、技法501が1つ以上の訓練プロセス30中に、スポーツ用多目的車(SUV)を識別するために訓練される場合、センサ12は、続いて、SUVとほぼ同じ機能的特徴及び挙動を有する(例えば、ほぼ同じ場所に配置された4つの車輪、ドア及び窓を有し、同じ速度で類似の経路に沿って動き回る)バンを検出してもよい。このことが起こると、プロセッサ18は、比較段階58において、該バンのデジタル表現から導出された特徴ベクトル(α)を参照データと比較して、信頼できる尤度値(β)を、特徴ベクトル(α)の外挿から、該バンの特徴と類似するために参照データの大部分と類似するものとして導出する。これにより、プロセッサ18は続いて、該バンを定義されたオブジェクトとして識別する。次に、特徴ベクトル(α)は、160において参照データに追加され、参照データの範囲を拡張し、該バンを定義されたオブジェクト(SUV)として識別するようにも技法501を効果的に再訓練する。したがって、該プロセスは、技法501,502,503のいずれかを、以前に観察されなかったオブジェクトを定義されたオブジェクトとして識別することを予測するように再訓練する。
【0116】
図4は、動作中のシステム10のスクリーンショットであり、システム10は、2つの一次オブジェクト識別技法及び2つの二次オブジェクト識別技法を含む4つの技法を動作させるように構成され、各一次技法は、人70を定義されたオブジェクトとして識別するように構成される。該スクリーンショットは、同時に実行される2つの一次技法を示している。第1の一次技法は、Head Shoulder Signature - Red Green Blue(頭肩シグネチャ-赤緑青、HSS-RGB)と命名されており、人70の運動によって検出された人70の頭と肩との境界のプロファイルから定義されたオブジェクトを識別して、以前に訓練データに触れたことから、該プロファイルをシグネチャとして導出するように構成される。第2の一次技法は、Histogram of Oriented Gradients(方向付けられた勾配のヒストグラム、HOG)と命名されており、RGB画像内における特定のピクセル変動及び隣接ピクセルのパターンによって検出された人物70のシルエットから定義されたオブジェクトを識別して、以前に訓練データに触れたことから、該シルエット形状であるシグネチャを導出するように構成される。二次技法は、一次技法(HSSとHOG)からの出力を比較し、それによって、空間的相関、すなわち各技法によって導出されたシグネチャ候補がデジタル表現内においてほぼ同じ位置からのものかどうか、及び/又は、時間的相関、すなわち各技法によって導出されたシグネチャ候補がデジタル表現内においてほぼ同じ時刻(インスタンス)からのものかどうかを識別するように構成されている。
【0117】
図4に示される実施形態に従って構成されたシステム10の動作は、図3Bに提示されたプロセス51に従う。典型的には、このことは、最初にHSS及びHOG技法を実行し、次に2つの2次技法を実行することを伴う。これらの各技法の動作は、典型的には通常OpenCVプラットフォームを使用して実行され、以下でさらに詳細に説明する。
【0118】
HSS-RGB技法の使用は、段階52において、カメラ12から画像を取得することを伴い、それによって、複数の静止画像72(フレーム)を備えたビデオ映像がキャプチャされる。段階54では、画像処理が実行され、それによってシグネチャ候補が特定される。この画像処理には、以下の処理が含まれる:少なくとも2つのフレームがRGBからグレースケールに変換される;定義されたカーネルを備えたガウスぼかしが各フレームに適用される;フレーム間の差が計算され、それによって単一の画像が得られる;画像が2値画像74に変換される;画像の均一性を高めるために中央値フィルタが適用される;画像の膨張、画像の侵食、画像内の輪郭検出等の形態機能が実行される;領域により輪郭が区分される:輪郭がデータベース22内に記憶されている輪郭参照データと比較され、それによって定義された閾値内に収まる輪郭(例えば、ジオメトリ境界)を識別する;、各候補の周囲に境界ボックス76を構築することによって、関心領域(シグネチャ候補541,542,543)が定義される。輪郭参照データは、適切な輪郭ジオメトリを定義するものとして認識するようHSS-RGB技法が学習した又は人力で構成された、さらなる参照データを備えている。該さらなる参照データが学習される場合には、この段階は、該参照データを経験的に導出する上記のプロセスと同じプロセスを伴っていてもよい。
【0119】
段階56では、各シグネチャ候補541,542,543について特徴ベクトルが導出され、それによって、評価されたシグネチャ候補ごとに以下が実行される;境界ボックス76内の白色ピクセルの各行からスパン測定値を導出する;最大スパンから肩の測定値を導出する;肩の測定値をデータベース22に記憶されている肩の参照データと比較し、それによってスパンに対する人の頭の位置を特定する:それに応じて、境界ボックスのサイズを変更する;特定された頭部領域の最大スパンから、頭部測定値を導出する;頭-肩のスパン比率を導出する。この比率は、特徴ベクトル(α)である。肩参照データは、人の頭と肩の間の典型的なジオメトリ関係を定義するものとして認識するようHSS-RGB技法が学習した又は人力で構成された、さらなる参照データを備えている。該さらなる参照データが学習される場合には、この段階は、該参照データを経験的に導出する上記のプロセスと同じプロセスを伴っていてもよい。
【0120】
段階58では、該比率(特徴ベクトル(α))は、訓練プロセスにおいて以前に定義された特徴分散分布と比較され、それによって尤度値(β)が導出される。このことは、数多くの値(β)が毎秒導出されることを伴っていてもよく、それによって、HSS-RGB技法が最近傍統計トラッカー等の平均化機能を適用できるようになる。これにより、例えば複数の尤度値(β)の導出元となった同じシグネチャ候補がほぼ同じ位置に残っているかどうかを監視し得るため、すなわち、ある期間における1つの値(β)と最近傍値(β)との相関関係によって、HSS-RGB技法は、より信頼できる尤度値(β)を提供できるようになる。したがって、これらの尤度値(β)は、定義されたオブジェクトが存在すると共にエラー又は他のオブジェクトが存在しないことの結果である。
【0121】
HOGは既知の技法であり、したがって、システム10によるHOG技法の動作は、例示の目的のためごく簡潔に説明されていることが理解されよう。技法の使用は、段階52において、カメラ12から画像を取得することを伴い、それによって、複数の静止画像72(フレーム)を備えたビデオ映像がキャプチャされる。段階54では、画像処理が実行され、それによってシグネチャ候補が特定される。この画像処理には、以下の処理が含まれる:勾配の計算;方向のビニング。
【0122】
段階56では、シグネチャ候補ごとに、以下が実行される:記述子ブロック78の構築(x,y,高さ及び幅の測定値によって定義される);記述子ブロック78の正規化。これにより、特徴ベクトル(α)が導出される。
【0123】
段階58では、Support Vector Machine(サポートベクトルマシン、SVM)が実行され、それによって尤度値(β)が導出される。このこともまた、このことは、数多くの値(β)が毎秒導出されることを伴っていてもよく、それによって、HOG技法が最近傍統計トラッカー等の平均化機能を適用できるようになり、それによってより信頼できる尤度値(β)が提供される。
【0124】
二次技法は、少なくとも1つの尤度値(β)を導出する各一次技法(HSS-RGB及びHOG)に応答して実行される。図4に示す実施形態では、各二次的技法は、最近傍統計トラッカーとして構成された分類器の実行を伴う。これらの各技法は、少なくとも2つの尤度値(β)を比較し、それによって物理空間及び/又は時間におけるシグネチャ候補の潜在的なアライメントを決定する。
【0125】
図4はまた、実行中の組み合わせ(融合)段階64も示しており、この段階では、HSS-RGB及びHOG技法及び二次技法によって導出された尤度値(β)が組み合わされ、それによって複合値(θ)80を導出する。カメラ12に検出されたオブジェクトが人70であるかどうかを決定するためにシステム10が複数回実行された際に、複数の複合値(θ)が示される。本実施形態における組み合わせ段階は、投票方式として構成される。各HSS-RGB及びHOG技法が、評価されたデジタル表現内にそれぞれのシグネチャが存在することが予想されることを示す高い尤度値(β)を導出し、したがって、両方が票を投じており(HSS-RGB票1+HOG票1=2(小計))、かつ、各2次技法もまた、HSS-RGB及びHOG技法によって導出された尤度値の間における強い空間的及び時間的相関が確認されたとして高い尤度値(β)を導出し、したがって、両方が票を投じている(2次票1+2次票1+小計=4(合計))際に、最も高い複合値(θ)801が導出されている。票(複合値(θ))の合計が4である場合、システム10は、定義されたオブジェクト(人物70)が識別されていることの信頼度が最も高い状態にある。
【0126】
図5は、図3Aに示されるプロセス50又は図3Bに示されるプロセス51の別の実施形態を示し、共通する参照番号は、共通の特徴又はステップを示す。本実施形態では、決定段階66の前に、プロセッサ18は、68にて第2の比較器を動作させ、それによって複合値(θ)を複合参照データと比較する。複合参照データは、以前にシステム10を動作させて得られた一連の複合値を備えている。該分布データは、以前に導出された複合値の決定に既に影響を与えているため、複合参照データは、このようにして、技法501,502,503ごとに実行される訓練プロセス30によって生成された特徴分散分布データを継承する。
【0127】
68では、新しい複合値(θ)と複合参照データとを比較し、それによってプロセッサ18に信頼値(γ)を導出させることができる。このことは、典型的には、ガウス曲線を定義するグラフ等、複合分散分布として表される複合参照データを伴う。上述の第4段階58で実行される比較器と同様に、第2の比較器は、複合値(θ)と複合分散分布との間の関係から、信頼値(γ)を決定する。これにより、プロセッサ18は、66において、信頼値(γ)の量に基づいて決定を行うことができるようになる。例えば、複合分散分布がガウス曲線として表される場合、このことは、プロセッサ18が複合値(θ)における該曲線のピークまでの近さを評価することを伴っていてもよい。しばしば、複合値(θ)が複数の尤度値(β)の乗算から導出される場合には、複合分散分布68は狭く、急勾配のガウス曲線を定義する。このことは、導出された信頼値(γ)が非常に高いか非常に低いことを意味しており、そのため、プロセッサ18は、オブジェクト14が定義されたオブジェクトであるかどうかについて、高い信頼度で識別することができるようになる。上述のように、これによって仮想2値の決定が可能になる。
【0128】
図6Aは、システム10の任意の訓練又は動作の前に、システム10を最初に構成する段階を示している。この構成は、典型的にはシステム10の意図される目的に従って決定され、それによって、図5Aにおいてモジュール92,94として示される様々なオブジェクト識別技法は、プロセッサ18により実行されるために、典型的にはそれを識別するように構成されているシステム10の識別対象となる定義されたオブジェクトに従って選択される。第1のセクション90は、アルゴリズムモジュール92及び分類器モジュール94等の例示的な技法モジュール92,94を示すと共に、リンクモジュール96も示す。リンクモジュール96は、上述の段階64等の組み合わせ段階を、複数の尤度値(β)から複合値(θ)を導出可能にさせるように構成される。典型的には、リンクモジュール96は、選択されたオブジェクト識別技法92,94の出力に応答して、システム10によって実行するために選択される。第2のセクション98は、共に動作可能に接続されてバンドル100を形成する、3つのモジュール92,94,96を示す。バンドル100は、システム10が動作するために必要な全てのモジュールを備えていてもよく、必要に応じて他のバンドルに接続されていてもよい。
【0129】
典型的には、システム10は、定義されたオブジェクトを識別するプロセッサ18の有効性を高めるため、相補的なオブジェクト識別技法モジュールを含むように構成される。例えば、第1の技法は、明るい場所では非常に高い信頼性をもって機能することが知られているが、低照度条件ではうまく機能しない又は全く機能しないことがある。一方で、第2の技法は、任意の照度条件においてそれなりに高い信頼性をもって機能することが知られている。システム10に第1及び第2の技法を組み込んで実行することは、これらの技法の出力を組み合わせることによって、システム10が全ての照度条件において高い信頼性をもって機能すると共に、十分に明るい条件では非常に高い信頼性をもって機能することを意味する。相補的となる技法の選択は、人力の入力及び自動入力のうち少なくとも1つによる結果である。例えば、典型的には、ユーザは様々な技法における操作上の制限を理解し、システムの現実世界における用途に適した技法、例えば、定義されたオブジェクトの動作環境及び/又は特性に適した技法を選択すると考えられる。代替として又はこれに加えて、システム10は、相補的となる技法を選択してもよく、例えば、統計的に相補的である出力を提供することにより、技法のグループをバンドル内に予め構成しておいてもよい。さらなる代替として、ユーザが第1の技法を選択して、第1の技法と共に使用するための潜在的に相補的である技法を、アルゴリズムが提案するように構成されてもよい。さらなる代替として、プロセッサ18は、人力での技法の構成を監視して、複数の「学習ケース」を監視した後、対象となる定義されたオブジェクトについて、ユーザ入力の必要なく、適切な技法の組み合わせを決定する。
【0130】
システム10は、広範囲にわたるオブジェクト識別技法モジュールのうち2つ以上を実行するように構成されてもよい。適切なモジュールの例を、以下の表に詳述する。
【表1】
【0131】
上記の表は、モジュールについての網羅的なリストではなく、プロセッサ18は、表には詳述されていない他の数多くのモジュールを実行するように構成されてもよいことが理解されよう。例えば、プロセッサ18は、「深層学習」モジュールを実行するように構成可能である。
【0132】
図6Bは、種々異なる目的のために構成された種々異なるバンドル配列の例を示す。例えば、第1のバンドル102は、赤十字等の特定のマーカーを、定義されたオブジェクトとして識別するように構成される。第2のバンドル104は、立入禁止区域内にいる人を、定義されたオブジェクトとして識別するように構成される。第3のバンドルは、2つの構成を有するものとして示されている。第1の構成1061は、個人用防護具(PPE)、例えばヘルメット及び視認性の高いジャケット/タバードを着用している人を、定義されたオブジェクトとして識別するように構成される。第2の構成1062は、PPEの存在に関係なく、任意の人を定義されたオブジェクトとして識別するように構成される。これは、第2の構成1062では、PPEを識別するモジュール(HiVisとラベル付けされている)が無効になっているためである。
【0133】
該システムは、広範囲にわたるバンドルのうちの1つ以上を実行するように構成されてもよい。典型的なシステム10の目的(用途)及び組み込まれたモジュール(コンポーネント)への参照を含むいくつかの適切なバンドルの例を、以下の表に詳述する。
【表2】
【0134】
図7は、上記の表に詳述されているバンドルID16(120)に従ってシステム10を構成することを示し、オブジェクト識別技法モジュールC,E,K及びO(122,124,126,128)は、既定の標識及び/又は記号を識別するよう通信可能に結合されている。
【0135】
図8は、異なる目的を提供するため、例えば、代替となる定義されたオブジェクトによって定義された異なるシグネチャを識別するために、さらなるモジュール110を構成及び追加し、それによって代替バンドル112を形成することによって、バンドル108をどのように適合できるかを示している。例えば、バンドル108は、人のジオメトリによって定義されるシグネチャを識別するように構成されてもよい。代替バンドル112として再構成されるこのバンドル108は、続いて、さらなるモジュール110を運動トラッカーとして構成することによって、人間によって定義される特定の運動軌跡(例えば、歩き方)によって定義されるシグネチャを識別するように構成される。
【0136】
図9は、定義されたオブジェクトの少なくとも一部分のジオメトリによって定義されたシグネチャの例を示す。概して、ジオメトリのシグネチャは、特定の形状、及び/又は、ある形状/点と別の形状/点との関係を備えており、それらはシステム10の少なくとも1つのセンサ12によって検出可能である。図9に示される実施形態では、定義されたオブジェクトは、掘削機130のバケット132である。本実施形態では、プロセッサ18によって実行されるオブジェクト識別技法の少なくとも1つは、該シグネチャをバケット132の特定のジオメトリによって定義されるものとして決定するために、訓練データ32によって、掘削機のバケットについてのジオメトリ的特徴を識別するように訓練され、潜在的には、バケットのバリエーションに共通するジオメトリ的特徴もまた識別する。例えば、このことは該シグネチャを、バケット132の外郭によって定義されるベクトル又はバケット132によって定義される寸法比率(例えば、高さ-幅の比率)として定義する技法を伴っていてもよい。このようにして、該技法を実行するプロセッサ18は、該少なくとも1つのセンサ12の範囲内に配置された際に、検出されたバケットを学習されたシグネチャを有する定義されたオブジェクトとして識別することができる。
【0137】
図10は、定義されたオブジェクトの少なくとも一部分の運動によって定義されたシグネチャの例を示す。概して、運動のシグネチャは、定義されたオブジェクト又はその一部分の動きによって定義された特定の軌跡を備えており、これはシステム10の少なくとも1つのセンサ12によって検出可能である。図10に示される実施形態では、定義されたオブジェクトは、定義された期間(T)内に曲がった軌跡140に沿って移動する掘削機130である。本実施形態では、プロセッサ18によって実行されるオブジェクト識別技法の少なくとも1つは、該シグネチャを定義された期間(T)内における軌跡140に沿った掘削機130の運動によって定義されるものとして決定するために、訓練データ32によって、以下を連続的に識別するように訓練される:第1の位置142、第1の時点(T/4)における、適切な掘削機130の寸法又は他の定義された公差内にあるオブジェクト;第2の位置144、第2の時点(2×T/4)における、適切な掘削機130の寸法にあるオブジェクト;第3の位置146、第3の時点(3×T/4)における、適切な掘削機130の寸法にあるオブジェクト;第4の位置148、第4の時点(3×T/4)における、適切な掘削機130の寸法にあるオブジェクト。このようにして、該技法を実行するプロセッサ18は、定義された期間(T)内において掘削機が軌跡140を通過した時点を識別することができ、したがって、検出された掘削機を学習されたシグネチャを有する定義されたオブジェクトとして識別することができる。
【0138】
図11は、定義されたオブジェクトの少なくとも一部分によって示される挙動によって定義されたシグネチャの例を示す。概して、挙動のシグネチャは、以下によって定義された複数の特定の運動軌跡を備えている:定義されたオブジェクトの動き(例えば、オブジェクトの一部分における一連の動き);オブジェクトの異なる部分の相対的な動き;複数のオブジェクトの相対的な動き等。図11に示す実施形態では、定義されたオブジェクトは鳥の群れ150であり、この群れは共通の動きを示す2羽以上の同じ鳥152を含み、この例では、各鳥152は、その視線154を同時に上方に向ける。このようなことは、例えば多くの場合、捕食者の鳴き声に反応して生じる。本実施形態では、プロセッサ18によって実行されるオブジェクト識別技法の少なくとも1つは、該シグネチャを鳥の群れ150の共通の動きによって定義されるものとして決定するために、訓練データ32によって、適切な鳥152の寸法又は他の定義された公差内にあるオブジェクトのグループ、及び、対応する部分(各鳥152の頭)を共通の位置154へと同時に向けている各オブジェクト(鳥152)のインスタンスを識別するように訓練される。このようにして、該技法を実行するプロセッサ18は、鳥の群れ154がシグネチャ挙動を示した時点を識別することができ、したがって、検出された鳥の群れを学習されたシグネチャを有する定義されたオブジェクトとして識別することができる。
【0139】
本開示は、定義されたオブジェクトを識別するためのシステム10及び方法について参照しているが、これらのシステム10及び方法は、定義された危険を識別するよう容易に適合されてもよく、したがって、オブジェクト及び危険という用語は、本明細書の文脈において、適切な場合に交換可能であることが理解されよう。危険(hazard)は、リスク又は危険(danger)に関連する状況、例えば、人又は器材に対する危害/損傷のリスクのことを示すと理解されよう。そのような実施形態では、該システムは、オブジェクトの代わりにシーンのデジタル表現をキャプチャするように構成され、したがって、シーン及びオブジェクトという用語もまた、本明細書の文脈において、適切な場合に交換可能であることが理解されよう。
【0140】
例えば、危険を識別するように構成されたシステム10の実施形態では、該危険は、人の距離閾値内に配置された任意の器材又は車両として定義されてもよい。そのような器材または車両は、人に危害を与える可能性があるためである。この実施形態では、これらの技法の少なくともいくつかは運動トラッカーとして構成され、様々な人々によって定義される様々な運動軌跡、及び様々な器材及び車両によって定義される様々な運動軌跡を識別して、器材/車両が距離閾値内にあるという結果をもたらす相対的な軌跡からシグネチャを導出するように訓練される。このことは、人と器材/車両とを包含するシーンがセンサ12によって検出され、これらの技法を実行することにより該シーンがプロセッサ18によって評価される場合、プロセッサ18は、人(又は、人のように動くオブジェクト)に近接しているオブジェクトが器材であるか車両であるかに関係なく、また器材又は車両の種類に関係なく、相対的な運動軌跡に起因する危険を識別できることを意味する。
【0141】
同様に、危険を識別するように構成されたシステム10の実施形態では、危険は床面上に配された液体として定義されてもよい。そのような液体は、該表面上で滑る人に危害を与え、又は、該表面を移動する際にグリップを失う器材に損傷を与える可能性があるためである。この実施形態では、これらの技法の少なくともいくつかは、ジオメトリスキャナ及びデータスキャナとして構成され、危険が差し迫っていることを示す指標(例えば、該表面の距離閾値内にある液体を噴霧するホース若しくは開いた液体容器のジオメトリ、又は、気象データの詳述する該表面の周辺地域における降雨可能性が、定義された閾値よりも大きい)に関連するジオメトリ及び/又はコンテキストデータを識別して、これらの指標から導出される特徴データからシグネチャを導出するように訓練される。このことは、条件に関連付けられたシーン及び/又はこれらの指標のいずれかに対応するオブジェクトを包含するシーンがセンサ12によって検出され、これらの技法を実行することにより該シーンがプロセッサ18によって評価される場合、プロセッサ18、1つ以上の特定の事情の存在に起因する危険を識別できることを意味する。
【0142】
開示のシステム10は、少なくとも2つの異なるオブジェクト識別技法(そして、しばしば3つ以上である多くの技法)を実行し、それによって少なくとも2つの尤度値のそれぞれを導出することを伴う。これらの値は、その後プロセッサ18によって組み合わされ、それによって、センサ12によって検出されたオブジェクト14が定義されたオブジェクトであるかどうかをプロセッサ18が決定することに影響を及ぼす複合尤度値を導出する。この技法は、各技法の構成が異なっており、したがって特定の動作条件において高い又はより低い精度で機能するため、有利である。2つ以上の技法を実行して出力尤度値を組み合わせることにより、種々異なる技法の不正確さが緩和され、それによって幅広い動作条件において動作可能な信頼性の高いシステムが提供される。このことは、定義されたオブジェクトに対応するオブジェクトが、システム10によって定義されたオブジェクトであるとして、より一貫して正確に識別されることを意味する。
【0143】
プロセッサ18によって実行される各オブジェクト識別技法は、典型的には定義されたオブジェクトを異なる方法で識別するように構成され、一方で、各技法は典型的には同じ定義されたオブジェクトによって定義された異なるシグネチャを識別するように構成される。例えば、第1の技法は、定義されたオブジェクトによって定義されたジオメトリ関係を識別するように構成されてもよく、第2の技法は、定義されたオブジェクトによって定義された1つ以上の挙動因子を識別するように構成されてもよい。このようにして、定義されたオブジェクトの異なる特性の評価に応答して、同じ定義されたオブジェクトを識別するように技法が構成される。これにより、システム10が正確に動作できる動作条件の範囲が有利に拡張され、再びシステムの精度が高められる。例えば、オブジェクト全体がセンサによって検出可能な上述の状況では、両方の技法がうまく動作するため、高い精度が得られる。代替として、オブジェクトの一部が不明瞭な場合には、第1の技法のみがうまく動作することがあり、その際に第2の技法の精度が損なわれる可能性があり、システムを機能させることはできるが、精度は低下する。
【0144】
典型的には、少なくとも2つの異なるオブジェクト識別技法は、各技法における既知の任意の不正確さを補償するために補完的であるように構成される。この少なくとも2つの技法の選択は、様々な因子の影響を受ける可能性があり、典型的には、定義されたオブジェクトの特性、少なくとも1つのセンサ12の構成、及び少なくとも1つのセンサ12の動作環境のうち少なくとも1つによって影響を受ける。技法間の補完関係は、人力で、自動で、又はこれら2つのアプローチの組み合わせにより構成される。これにより、システム10を戦略的に構成して、全体的な信頼性及び精度を高めることができる。
【0145】
プロセッサ18により実行される各技法は、センサ12により検出されたオブジェクト14を評価し、それによって、オブジェクト14により定義されるシグネチャ候補、すなわちオブジェクト14の特性が、該技法が確立した、定義された該オブジェクトによって定義されるシグネチャに対応するかどうかの尤度を示す尤度値を導出する。該尤度値は、該シグネチャ候補を、該シグネチャに関連するデータを含むように予め決定された参照データと比較することによって導出される。該プロセスは、新しいデータ(シグネチャ候補から導出された特徴データ)をシグネチャに関連する潜在的に広範囲の参照データと比較し、それによって新しいデータ内にシグネチャが存在する確率を検証し、それによって尤度値を導出することをシステム10に行わせることができるため、該プロセスは有用である。この方法にて導出された複数の尤度値を組み合わせ、それによって複合尤度値を導出すると、システム10の信頼性及びその結果としての精度がさらに向上する。
【0146】
当業者によれば、上述の実施形態に対して多数の変形及び/又は修正を、本開示の広い概括的範囲から逸脱することなく行い得ることが理解されよう。したがって、本実施形態は、あらゆる点で例示的であって限定的ではないと見なされるべきである。
図1A
図1B
図1C
図1D
図2
図3A
図3B
図3C
図4
図5
図6A
図6B
図7
図8
図9
図10
図11