IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 荒川化学工業株式会社の特許一覧

特許7238379リチウムイオン電池用熱架橋性バインダー水溶液、リチウムイオン電池用電極スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-06
(45)【発行日】2023-03-14
(54)【発明の名称】リチウムイオン電池用熱架橋性バインダー水溶液、リチウムイオン電池用電極スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池
(51)【国際特許分類】
   H01M 4/62 20060101AFI20230307BHJP
   H01M 4/134 20100101ALI20230307BHJP
   H01M 4/36 20060101ALI20230307BHJP
   H01M 4/139 20100101ALI20230307BHJP
   H01M 4/66 20060101ALI20230307BHJP
   H01M 4/1395 20100101ALI20230307BHJP
   H01M 4/38 20060101ALI20230307BHJP
   H01M 4/48 20100101ALI20230307BHJP
【FI】
H01M4/62 Z
H01M4/134
H01M4/36 C
H01M4/139
H01M4/66 A
H01M4/1395
H01M4/38 Z
H01M4/48
【請求項の数】 9
(21)【出願番号】P 2018235244
(22)【出願日】2018-12-17
(65)【公開番号】P2020024896
(43)【公開日】2020-02-13
【審査請求日】2021-09-09
(31)【優先権主張番号】P 2017241497
(32)【優先日】2017-12-18
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2018141761
(32)【優先日】2018-07-27
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000168414
【氏名又は名称】荒川化学工業株式会社
(72)【発明者】
【氏名】池谷 克彦
(72)【発明者】
【氏名】尾▲崎▼ 真仁
(72)【発明者】
【氏名】合田 英生
【審査官】村守 宏文
(56)【参考文献】
【文献】国際公開第2018/008555(WO,A1)
【文献】特開2016-171074(JP,A)
【文献】国際公開第2015/186363(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/00-4/62
H01M 10/05-10/0587
(57)【特許請求の範囲】
【請求項1】
単量体群100モル%に対して、
(メタ)アクリルアミド基含有化合物(a)を30~95モル%、
水酸基含有(メタ)アクリルエステル(b)を5~50モル%含む単量体群の重合物であり、下記手順により測定される硬化物のゲル分率が20%以上である、
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)を含み、
pHが7未満である、リチウムイオン電池用熱架橋性バインダー水溶液。
<硬化物のゲル分率の測定方法>
(1)水酸基含有水溶性ポリ(メタ)アクリルアミド(A)を含む、リチウムイオン電池用熱架橋性バインダー水溶液10gを軟膏缶に入れ循風乾燥機にて120℃4時間乾燥後、熱架橋後の固形樹脂を得る。
(2)その固形樹脂の質量を25℃で質量計を用いて測定する。
(3)測定した固形樹脂を純水が150mL入っている300mLビーカーに移し、水中に25℃で3時間マグネチックスターラーを用いて攪拌させた条件で浸漬後、桐山ロートと吸引鐘を用い、ろ紙で減圧濾過する。
(4)その後、ろ紙上に残った不溶物残渣を上記循風乾燥機にて120℃3時間乾燥した後、不溶物残渣の質量を25℃で正確に上記質量計を用いて測定して、以下の式から水溶性電池用バインダーの熱架橋後の樹脂のゲル分率を算出する。
ゲル分率(%)={不溶物残渣(g)/固形樹脂の質量(g)}×100
【請求項2】
前記水酸基含有(メタ)アクリルエステル(b)が、下記一般式(1)で表わされる、請求項1に記載のリチウムイオン電池用熱架橋性バインダー水溶液。
一般式(1):
【化1】
<式中、Rは水素原子又はメチル基を表し、Rは置換若しくは非置換の炭素数が1~5のオキシアルキレン基、一般式(2):
【化2】
(式中、qは1~3の整数であり、2qはqの2倍の整数であり、nは1以上の整数である。)
で示されるポリオキシアルキレン基、
【化3】
又はこれらの組合せを表す。>
【請求項3】
請求項1又は2に記載のリチウムイオン電池用熱架橋性バインダー水溶液と、電極活物質(B)を含む、リチウムイオン電池用電極スラリー。
【請求項4】
前記電極活物質(B)100質量%に対し、前記リチウムイオン電池用熱架橋性バインダー水溶液に含まれる水酸基含有水溶性ポリ(メタ)アクリルアミド(A)が1~15質量%である、請求項3に記載のリチウムイオン電池用電極スラリー。
【請求項5】
前記電極活物質(B)が炭素層で覆われたシリコン又は炭素層で覆われたシリコンオキサイドを5質量%以上含む、請求項3又は4に記載のリチウムイオン電池用電極スラリー。
【請求項6】
単量体群100モル%に対して、
(メタ)アクリルアミド基含有化合物(a)を30~95モル%、
水酸基含有(メタ)アクリルエステル(b)を5~50モル%含む単量体群の重合物であり、硬化物のゲル分率が20%以上である
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)、及び電極活物質(B)を混合する工程を含む、請求項3~5のいずれか1項に記載のリチウムイオン電池用電極スラリーの製造方法。
【請求項7】
請求項3~5のいずれか1項に記載のリチウムイオン電池用電極スラリーの乾燥物を集電体上に有する、リチウムイオン電池用電極。
【請求項8】
前記集電体が銅箔である、請求項7に記載のリチウムイオン電池用電極。
【請求項9】
請求項7~8のいずれか1項に記載のリチウムイオン電池用電極を含む、リチウムイオン電池。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、リチウムイオン電池用熱架橋性バインダー水溶液、リチウムイオン電池用電極スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池に関する。
【背景技術】
【0002】
リチウムイオン電池は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、リチウムイオン電池の更なる高性能化を目的として、電極等の電池部材の改良が検討されている。
【0003】
リチウムイオン電池の正極及び負極はいずれも、電極活物質とバインダー樹脂とを溶媒に分散させてスラリーとしたものを集電体(例えば金属箔)上に両面塗布し、溶媒を乾燥除去して電極層を形成した後、これをロールプレス機等で圧縮成形して製造される。
【0004】
リチウムイオン電池用スラリーは、主に活物質、バインダー及び溶媒を含む。バインダーは、これまで一般的には、N-メチル-2-ピロリドン(NMP)等の有機溶剤に溶解させるバインダー樹脂としてポリフッ化ビニリデン(PVdF)や、水分散体の粒子状樹脂のバインダー樹脂としてスチレンブタジエン系エマルション(SBRラテックス)が使用されている。
【0005】
近年、リチウムイオン電池用電極において、電池容量を高める観点から、様々な電極活物質が提案されている。しかしながら、電極活物質によっては、充放電に伴って膨張及び収縮し易い。そのため、充放電に伴って膨張及び収縮し易いリチウムイオン電池用電極は、充放電の繰り返し初期より体積変化を生じ(スプリングバック性)、これを用いたリチウムイオン電池のサイクル特性等の電気的特性を低下させ易い。
【0006】
そこで斯界では、上記課題をバインダー樹脂で解決を図る検討がなされており、例えば水溶性樹脂のバインダーとしてポリアクリルアミド(特許文献1及び2)を用いることで良好な充放電特性が得られることが提案されている。また、活物質の充放電に伴う膨張及び収縮に対して、バインダー樹脂である粒子状樹脂に架橋剤を添加することで膨張を抑制することが提案されている(特許文献3)。架橋剤は、通常、スラリー組成物を集電体に塗布した後の乾燥の工程において架橋反応を起こし、粒子状樹脂の粒子間等において架橋を形成する。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2015-118908号公報
【文献】特開2015-106488号公報
【文献】国際公開第2015/098507号
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、特許文献1及び2のポリアクリルアミドは、水に対する溶解性を担保する観点から、バインダー樹脂が水に不溶化するほどの高分子量化をすることができない。その結果、活物質の膨張に起因するスプリングバック性への耐性が十分ではないという課題があった。
【0009】
特許文献3に記載の架橋剤の併用は、場合によっては、多く添加しても効果が発現しないことがある。そのような場合において、架橋剤の効果、例えばスプリングバックへの耐性を発現させるべく大量に架橋剤を添加すると、電極活物質層の集電体への密着性が却って低下し、高温サイクル特性といった所望の効果が得られない場合があるためさらなる改善の余地がある。
【0010】
さらに、架橋剤と粒子状結着剤とを含むバインダー組成物は、調製後使用までの貯蔵期間中に劣化し、所望の性能を発揮しない場合がある。例えば、調製後の貯蔵期間において、意図していない架橋が進行し、粘度が上昇し、架橋剤の反応性が低下する等の現象が見られる場合もあるためさらなる改善の余地がある。
【0011】
そこで、本発明が解決しようとする課題は、良好な電極密着性及び耐スプリングバック等の電池特性をリチウムイオン電池に付与できるリチウムイオン電池用スラリー及び上記スラリーを製造可能なリチウムイオン電池用熱架橋性バインダー水溶液を提供することを課題とする。
【課題を解決するための手段】
【0012】
本発明者は上記課題を解決すべく鋭意検討した結果、所定の不飽和モノマーを構成成分とし、かつ、所定の物性を備えるポリ(メタ)アクリルアミドを主成分とするバインダー水溶液を用いることで上記課題を解決し得ることを見出し、本発明を完成するに至った。
【0013】
本開示により以下の項目が提供される。
(項目1)
単量体群100モル%に対して、
(メタ)アクリルアミド基含有化合物(a)を30~95モル%、
水酸基含有(メタ)アクリルエステル(b)を5~50モル%含む単量体群の重合物であり、硬化物のゲル分率が20%以上である、
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)を含む、リチウムイオン電池用熱架橋性バインダー水溶液。
(項目2)
前記水酸基含有(メタ)アクリルエステル(b)が、下記一般式(1)で表わされる、上記項目に記載のリチウムイオン電池用熱架橋性バインダー水溶液。
一般式(1):
【化4】
<式中、Rは水素原子又はメチル基を表し、Rは置換若しくは非置換の炭素数が1~5のオキシアルキレン基、一般式(2):
【化5】
(式中、qは1~3の整数であり、nは1以上の整数である。)
で示されるポリオキシアルキレン基、
【化6】
又はこれらの組合せを表す。>
(項目3)
上記項目のいずれか1項に記載のリチウムイオン電池用熱架橋性バインダー水溶液と、電極活物質(B)を含む、リチウムイオン電池用電極スラリー。
(項目4)
前記電極活物質(B)100質量%に対し、前記リチウムイオン電池用熱架橋性バインダー水溶液に含まれる水酸基含有水溶性ポリ(メタ)アクリルアミド(A)が1~15質量%である、上記項目に記載のリチウムイオン電池用電極スラリー。
(項目5)
前記電極活物質(B)が炭素層で覆われたシリコン又はシリコンオキサイドを5質量%以上含む、上記項目のいずれか1項に記載のリチウムイオン電池用電極スラリー。
(項目6)
単量体群100モル%に対して、
(メタ)アクリルアミド基含有化合物(a)を30~95モル%、
水酸基含有(メタ)アクリルエステル(b)を5~50モル%含む単量体群の重合物であり、硬化物のゲル分率が20%以上である
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)、及び電極活物質(B)を混合する工程を含む、上記項目のいずれか1項に記載のリチウムイオン電池用電極スラリーの製造方法。
(項目7)
上記項目のいずれか1項に記載のリチウムイオン電池用電極スラリーを集電体に塗布し乾燥させることにより得られる、リチウムイオン電池用電極。
(項目8)
前記集電体が銅箔である、上記項目に記載のリチウムイオン電池用電極。
(項目9)
80~200℃で乾燥する工程により得られる、上記項目のいずれか1項に記載のリチウムイオン電池用電極。
(項目10)
上記項目のいずれか1項に記載のリチウムイオン電池用電極を含む、リチウムイオン電池。
【発明の効果】
【0014】
本発明のリチウムイオン電池用電極スラリーは、水酸基含有水溶性ポリ(メタ)アクリルアミド(A)を含むため、貯蔵安定性に優れる。また、熱架橋性を有しているため、上記スラリーから得られる電極を用いることで耐スプリングバック性を向上させたリチウムイオン電池を得ることができる。
【0015】
本発明のリチウムイオン電池用電極は、水酸基含有水溶性ポリ(メタ)アクリルアミド(A)を含む上記スラリーを用いて得られるものであるため熱架橋が進行し、電池容量を高めた場合であっても耐スプリングバック性に優れるリチウムイオン電池を与える。
【0016】
本発明のリチウムイオン電池は、本発明に係る電極を搭載したものであるため、耐スプリングバック性に優れる。
【発明を実施するための形態】
【0017】
本開示の全体にわたり、各物性値、含有量等の数値の範囲は、適宜(例えば下記の各項目に記載の上限及び下限の値から選択して)設定され得る。具体的には、数値αについて、数値αの上限がA1、A2、A3等が例示され、数値αの下限がB1、B2、B3等が例示される場合、数値αの範囲は、A1以下、A2以下、A3以下、B1以上、B2以上、B3以上、A1~B1、A1~B2、A1~B3、A2~B1、A2~B2、A2~B3、A3~B1、A3~B2、A3~B3等が例示される。
【0018】
[1.リチウムイオン電池用熱架橋性バインダー水溶液(水溶液(1)ともいう)]
本開示は、単量体群100モル%に対して、
(メタ)アクリルアミド基含有化合物(a)を30~95モル%、
水酸基含有(メタ)アクリルエステル(b)を5~50モル%含む単量体群の重合物であり、硬化物のゲル分率が20%以上である、水酸基含有水溶性ポリ(メタ)アクリルアミド(A)を含む、リチウムイオン電池用熱架橋性バインダー水溶液を提供する。
【0019】
<(メタ)アクリルアミド基含有化合物(a)(以下(a)成分ともいう)>
本開示において「(メタ)アクリルアミド基含有化合物」とは、(メタ)アクリルアミド基を有する化合物を意味する。(メタ)アクリルアミド基含有化合物は、各種公知のものを特に制限なく使用でき、単独で用いてもよいし、二種以上を併用してもよい。
【0020】
本開示において「(メタ)アクリル」は「アクリル及びメタクリルからなる群より選択される少なくとも1つ」を意味する。同様に「(メタ)アクリレート」は「アクリレート及びメタクリレートからなる群より選択される少なくとも1つ」を意味する。また「(メタ)アクリロイル」は「アクリロイル及びメタクリロイルからなる群より選択される少なくとも1つ」を意味する。
【0021】
1つの実施形態において、(メタ)アクリルアミド基含有化合物は下記構造式
【化7】
(式中、Rは水素又はメチル基であり、R及びRはそれぞれ独立して、水素、置換若しくは非置換のアルキル基、アセチル基、又はスルホン酸基であるか、或いはR及びRが一緒になって環構造を形成する基であり、R及びRはそれぞれ独立して、水素、置換若しくは非置換のアルキル基、カルボキシル基、ヒドロキシ基、アミノ基(-NR(R及びRはそれぞれ独立して水素又は置換若しくは非置換のアルキル基である)(以下同様))、アセチル基、スルホン酸基である。置換アルキル基の置換基はヒドロキシ基、アミノ基、アセチル基、スルホン酸基等が例示される。また、R及びRが一緒になって環構造を形成する基は、モルホリル基等が例示される。)
により表される。
【0022】
アルキル基は、直鎖アルキル基、分岐アルキル基、シクロアルキル基等が例示される。
【0023】
直鎖アルキル基は、-C2n+1(nは1以上の整数)の一般式で表される。直鎖アルキル基は、メチル基、エチル基、プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デカメチル基等が例示される。
【0024】
分岐アルキル基は、直鎖アルキル基の少なくとも1つの水素がアルキル基によって置換された基である。分岐アルキル基は、ジエチルペンチル基、トリメチルブチル基、トリメチルペンチル基、トリメチルヘキシル基等が例示される。
【0025】
シクロアルキル基は、単環シクロアルキル基、架橋環シクロアルキル基、縮合環シクロアルキル基等が例示される。
【0026】
本開示において、単環は、炭素の共有結合により形成された内部に橋かけ構造を有しない環状構造を意味する。また、縮合環は、2つ以上の単環が2個の原子を共有している(すなわち、それぞれの環の辺を互いに1つだけ共有(縮合)している)環状構造を意味する。架橋環は、2つ以上の単環が3個以上の原子を共有している環状構造を意味する。
【0027】
単環シクロアルキル基は、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロデシル基、3,5,5-トリメチルシクロヘキシル基等が例示される。
【0028】
架橋環シクロアルキル基は、トリシクロデシル基、アダマンチル基、ノルボルニル基等が例示される。
【0029】
縮合環シクロアルキル基は、ビシクロデシル基等が例示される。
【0030】
上記(メタ)アクリルアミド基含有化合物(a)は、(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、マレイン酸アミド、(メタ)アクリルアミドt-ブチルスルホン酸、(メタ)アクリロイルモルフォリン、ヒドロキシエチル(メタ)アクリルアミド、及びその塩等が例示され、上記塩は、ジメチルアミノプロピル(メタ)アクリルアミド塩化メチル4級塩、ジメチルアミノエチル(メタ)アクリレートベンジルクロライド4級塩等が例示される。これらの中でも(メタ)アクリルアミド、特にアクリルアミドを用いると、水溶性が高く、電極活物質との相互作用が高く、スラリーの分散性や、電極内部における電極活物質同士の結着性が高いバインダーを作製することができる。
【0031】
上記単量体群100モル%中に対する(メタ)アクリルアミド基含有化合物の含有量の上限は、95、90、80、70、60、59、50、40、35モル%等が例示され、下限は、90、80、70、60、59、50、40、35、30モル%等が例示される。1つの実施形態において、上記含有量の下限は30モル%以上が好ましい。また、上記含有量の範囲は、30~95モル%が好ましく、30~93モル%がより好ましく、30~90モル%が特に好ましい。上記含有量とすることにより、電極活物質やフィラーの分散性が良好となり、均一な電極活物質層や保護膜の作製が可能となるため構造欠陥がなくなり、良好な充放電特性を示し、さらに、ポリマーの耐酸化性が良好となるため、高電圧時の劣化が抑制され良好な充放電耐久特性を示すと考えられるが、本発明がこれに限定されることを意図するものではない。
【0032】
上記単量体群100質量%に対する(メタ)アクリルアミド基含有化合物の含有量の上限は、80、75、70、60、50、40、30、25質量%等が例示され、下限は、75、70、60、50、40、30、25、20質量%等が例示される。1つの実施形態において、上記単量体群100質量%に対する(メタ)アクリルアミド基含有化合物の含有量は、20~80質量%が好ましい。
【0033】
<水酸基含有(メタ)アクリルエステル(b)((b)成分ともいう)>
本開示において「水酸基含有(メタ)アクリルエステル」とは、水酸基及び(メタ)アクリル酸エステル基を有する化合物を意味する。水酸基含有(メタ)アクリルエステルは、各種公知のものを特に制限なく使用でき、単独で用いてもよいし、二種以上を併用してもよい。
【0034】
水酸基含有(メタ)アクリルエステル(b)は、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシ-1-アダマンチル、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、(メタ)アクリル酸2-ヒドロキシ-3-フェノキシプロピル、トリ(メタ)アクリル酸ペンタエリスリトール、ポリエチレングリコール―モノ(メタ)アクリレート、ポリプロピレングリコール―モノ(メタ)アクリレート、ポリエチレングリコール―プロピレングリコール―モノ(メタ)アクリレート等が例示される。
これらの中でも一般式(1):
【化8】
<式中、Rは水素原子又はメチル基を表し、Rは置換若しくは非置換の炭素数が1~5のオキシアルキレン基、一般式(2):
【化9】
(式中、qは1~3の整数であり、nは1以上の整数である。)
で示されるポリオキシアルキレン基、
【化10】
又はこれらの組合せを表す。>
で表わされる水酸基含有(メタ)アクリルエステル(b)、特に(メタ)アクリル酸ヒドロキシエチル、ポリエチレングリコール-モノ(メタ)アクリレートは入手が容易であることと、これらを用いると水溶性が高い水酸基含有水溶性ポリ(メタ)アクリルアミド(A)を合成できることから好ましい。
【0035】
アルキレン基は、直鎖アルキレン基、分岐アルキレン基、シクロアルキレン基等が例示される。
【0036】
直鎖アルキレン基は、-(CH-(nは1以上の整数)の一般式で表現できる。直鎖アルキレン基は、メチレン基、エチレン基、プロピレン基、n-ブチレン基、n-ペンチレン基等が例示される。
【0037】
分岐アルキレン基は、直鎖アルキレン基の少なくとも1つの水素がアルキル基によって置換された基である。分岐アルキレン基は、メチルメチレン基、エチルメチレン基、プロピルメチレン基、ブチルメチレン基、メチルエチレン基、エチルエチレン基、プロピルエチレン基、メチルプロピレン基、2-エチルプロピレン基、ジメチルプロピレン基、メチルブチレン基等が例示される。
【0038】
シクロアルキレン基は、単環シクロアルキレン基、架橋環シクロアルキレン基、縮合環シクロアルキレン基等が例示される。
【0039】
単環シクロアルキレン基は、シクロペンチレン基等が例示される。
【0040】
1つの実施形態において、上記単量体群100モル%に対する水酸基含有(メタ)アクリルエステル(b)の含有量の上限は、50、48、45、40、30、20、10、5.5、5.1モル%等が例示され、下限は48、45、40、30、20、10、5.5、5.1、5モル%等が例示される。1つの実施形態において、上記含有量は5~50モル%が好ましく、5.5~48モル%がより好ましい。上記単量体群100モル%に対する水酸基含有(メタ)アクリルエステル(b)の含有量が上記範囲とすることにより、熱架橋が十分に進行し、熱架橋性バインダー水溶液、或いは熱架橋性電極スラリーの貯蔵安定性を担保しながら、充放電時における耐スプリングバック性の効果を発現させることができると考えられるが、本発明がこれに限定されることを意図するものではない。
【0041】
上記単量体群100質量%に対する水酸基含有(メタ)アクリルエステル(b)の含有量の上限は、70、65、60、50、40、30、20、15質量%等が例示され、下限は、65、60、50、40、30、20、15、10質量%等が例示される。1つの実施形態において、上記単量体群100質量%に対する水酸基含有(メタ)アクリルエステル(b)の含有量は、10~70質量%が好ましい。
【0042】
<(a)成分、(b)成分以外の単量体((c)成分ともいう)>
上記単量体群には、(a)成分、(b)成分以外の単量体((c)成分)を本発明の所望の効果を損ねない限り使用することができる。(c)成分は、単独で用いてもよいし、二種以上を併用してもよい。(c)成分は、不飽和カルボン酸、不飽和スルホン酸、不飽和リン酸等の酸基含有単量体、水酸基非含有不飽和カルボン酸エステル、α,β-不飽和ニトリル化合物、共役ジエン化合物、芳香族ビニル化合物等が例示される。
【0043】
不飽和カルボン酸は、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸及びこれらの塩等が例示される。
【0044】
不飽和カルボン酸の含有量は特に限定されないが、上記(b)成分との反応を考慮すると、単量体群100モル%に対し45モル%未満(例えば42、41、40、30、20、19、15、10、5、1モル%未満、0モル%)が好ましい。
【0045】
1つの実施形態において、上記単量体群100質量%に対する不飽和カルボン酸の含有量は、45質量%未満(例えば42、41、40、30、20、19、15、10、5、1質量%未満、0質量%)が好ましい。
【0046】
不飽和スルホン酸は、ビニルスルホン酸、スチレンスルホン酸、(メタ)アリルスルホン酸等のα,β-エチレン性不飽和スルホン酸;(メタ)アクリルアミドt-ブチルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリルアミド-2-ヒドロキシプロパンスルホン酸、3-スルホプロパン(メタ)アクリル酸エステル、ビス-(3-スルホプロピル)イタコン酸エステル及びこれらの塩等が例示される。不飽和スルホン酸の含有量は特に限定されないが、上記(b)成分との反応を考慮すると、単量体群100モル%に対する不飽和スルホン酸の含有量の上限は、40、30、20、19、15、10、5、1、0.5、0.1、0.05、0.02、0.01モル%等が例示され、下限は、30、20、19、15、10、5、1、0.5、0.1、0.05、0.02、0.01、0モル%等が例示される。
【0047】
単量体群100質量%に対する不飽和スルホン酸の含有量の上限は、40、30、20、19、15、10、5、1、0.5、0.1、0.05、0.02、0.01質量%等が例示され、下限は、30、20、19、15、10、5、1、0.5、0.1、0.05、0.02、0.01、0質量%等が例示される。
【0048】
不飽和リン酸単量体は、ビニルホスホン酸、ビニルホスフェート、ビス((メタ)アクリロキシエチル)ホスフェート、ジフェニル-2-(メタ)アクリロイロキシエチルホスフェート、ジブチル-2-(メタ)アクリロイロキシエチルホスフェート、ジオクチル-2-(メタ)アクリロイロキシエチルホスフェート、モノメチル-2-(メタ)アクリロイロキシエチルホスフェート、3-(メタ)アクリロキシ-2-ヒドロキシプロパンリン酸及びこれらの塩等が例示される。不飽和リン酸の含有量は特に限定されないが、上記(b)成分との反応を考慮すると、単量体群100モル%に対し40モル%未満(例えば30、20、19、15、10、5、1モル%未満、0モル%)が好ましい。
【0049】
単量体群100質量%に対する不飽和リン酸単量体の含有量は、40質量%未満(例えば30、20、19、15、10、5、1質量%未満、0質量%)が好ましい。
【0050】
1つの実施形態において、単量体群100モル%に対する不飽和カルボン酸、不飽和スルホン酸、不飽和リン酸等の酸基含有単量体の含有量は、40モル%未満(例えば30、20、19、15、10、5、1モル%未満、0モル%)が好ましい。
【0051】
1つの実施形態において、単量体群100質量%に対する不飽和カルボン酸、不飽和スルホン酸、不飽和リン酸等の酸基含有単量体の含有量は、40質量%未満(例えば30、20、19、15、10、5、1質量%未満、0質量%)が好ましい。
【0052】
水酸基非含有不飽和カルボン酸エステルは、水酸基非含有(メタ)アクリル酸エステルが好ましい。水酸基非含有(メタ)アクリル酸エステルは、水酸基非含有直鎖(メタ)アクリル酸エステル、水酸基非含有分岐(メタ)アクリル酸エステル、水酸基非含有脂環(メタ)アクリル酸エステル、水酸基非含有置換(メタ)アクリル酸エステル等が例示される。
【0053】
水酸基非含有直鎖(メタ)アクリル酸エステルは、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル等が例示される。
【0054】
水酸基非含有分岐(メタ)アクリル酸エステルは、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸i-アミル、(メタ)アクリル酸2-エチルヘキシル等が例示される。
【0055】
水酸基非含有脂環(メタ)アクリル酸エステルは、(メタ)アクリル酸シクロヘキシル等が例示される。
【0056】
水酸基非含有不飽和カルボン酸エステルの含有量は特に限定されないが、水酸基非含有不飽和カルボン酸エステルを使用することで本発明の水酸基含有水溶性ポリ(メタ)アクリルアミド(A)のガラス転移温度低下による電極のカールを抑制することができる。一方、本発明のリチウムイオン電池の耐スプリングバック性を考慮すると、水酸基非含有不飽和カルボン酸エステルの含有量は単量体群100モル%に対し40モル%未満(例えば30、20、19、15、10、5、1モル%未満、0モル%)が好ましい。
【0057】
1つの実施形態において、単量体群100質量%に対する水酸基非含有不飽和カルボン酸エステルの含有量は40質量%未満(例えば30、20、19、15、10、5、1質量%未満、0質量%)が好ましい。
【0058】
α,β-不飽和ニトリル化合物は、本発明の電極に柔軟性を与える目的で好適に使用できる。α,β-不飽和ニトリル化合物は、(メタ)アクリロニトリル、α-クロル(メタ)アクリロニトリル、α-エチル(メタ)アクリロニトリル、シアン化ビニリデン等が例示される。これらのうち、(メタ)アクリロニトリルが好ましく、特にアクリロニトリルが好ましい。α,β-不飽和ニトリル化合物の含有量は特に限定されないが、単量体群100モル%に対し40モル%未満(例えば30、20、19、15、10、5、1モル%未満、0モル%)が好ましい。単量体群100モル%に対し40モル%未満であることで、水酸基含有水溶性ポリ(メタ)アクリルアミド(A)の水への溶解性を保ちつつ、上記スラリーの電極層が均一となり、前記柔軟性を発揮させやすくなる。
【0059】
1つの実施形態において、単量体群100質量%に対するα,β-不飽和ニトリル化合物の含有量は、40質量%未満(例えば30、20、19、15、10、5、1質量%未満、0質量%)が好ましい。
【0060】
共役ジエン化合物は、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロル-1,3-ブタジエン、置換直鎖共役ペンタジエン、置換及び側鎖共役ヘキサジエン等が例示される。共役ジエン化合物の含有量は特に限定されないが、本発明に係るリチウムイオン電池の耐スプリングバック性の観点より、前記単量体群100モル%のうち10モル%未満が好ましく、0モル%がより好ましい。
【0061】
1つの実施形態において、単量体群100質量%に対する共役ジエン化合物の含有量は、10質量%未満が好ましく、0質量%がより好ましい。
【0062】
また、芳香族ビニル化合物は、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエン、クロルスチレン、ジビニルベンゼン等が例示される。芳香族ビニル化合物の含有量は特に限定されないが、本発明に係るリチウムイオン電池の耐スプリングバック性の観点より、前記単量体群100モル%のうち10モル%未満が好ましく、0モル%がより好ましい。
【0063】
1つの実施形態において、単量体群100質量%に対する芳香族ビニル化合物の含有量は、10質量%未満が好ましく、0質量%がより好ましい。
【0064】
上記不飽和カルボン酸、不飽和スルホン酸、不飽和リン酸等の酸基含有単量体、不飽和カルボン酸エステル、α,β-不飽和ニトリル化合物、共役ジエン化合物、芳香族ビニル化合物以外の(c)成分の単量体群に占める割合は、単量体群100モル%に対して、10モル%未満、5モル%未満、1モル%未満、0.1モル%未満、0.01モル%未満、0モル%であり、単量体群100質量%に対して、10質量%未満、5質量%未満、1質量%未満、0.5質量%未満、0.1質量%未満、0.01質量%未満、0質量%である。
【0065】
<水酸基含有水溶性ポリ(メタ)アクリルアミド(A)の製造方法>
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)は、各種公知の重合法、好ましくはラジカル重合法で合成できる。重合反応は、(a)成分、及び(b)成分並びに必要に応じて(c)成分を含む単量体混合液にラジカル重合開始剤及び必要に応じて連鎖移動剤を加え、撹拌しながら、反応温度50~100℃程度で行えばよい。反応時間は特に限定されず、1~10時間程度が好ましい。
【0066】
ラジカル重合開始剤は、各種公知のものが特に制限なく使用される。ラジカル重合開始剤は、過硫酸カリウム及び過硫酸アンモニウム等の過硫酸塩;上記過硫酸塩と亜硫酸水素ナトリウム等の還元剤とを組み合わせたレドックス系重合開始剤;2,2’-アゾビス-2-アミジノプロパン 二塩酸塩等のアゾ系開始剤等が例示される。ラジカル重合開始剤の使用量は特に制限されないが、(A)成分を与える単量体群100質量%に対し0.05~5.00質量%が好ましく、0.1~3.0質量%がより好ましい。
【0067】
ラジカル重合反応前及び/又は得られた(A)成分を水溶化する際等に、製造安定性を向上させる目的で、アンモニアや有機アミン、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等の一般的な中和剤で反応溶液のpH調整を行ってもよい。その場合、pHは2~11が好ましい。また、同様の目的で、金属イオン封止剤であるEDTA又はその塩等を使用することも可能である。
【0068】
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)が酸基を有する場合には、用途に応じて適宜中和率(中和率100%は水酸基含有水溶性ポリ(メタ)アクリルアミド(A)に含まれる酸成分と同モル数のアルカリにより中和することを示している。中和率50%は水酸基含有水溶性ポリ(メタ)アクリルアミド(A)に含まれる酸成分に対して半分のモル数のアルカリにより中和されたことを示す)を調整して使用できる。電極活物質を分散させるときの中和率は特に限定されないが、コーティング層等の形成後には70~120%であることが好ましく、80~120%であることがより好ましい。上記コーティング層作製後の中和率を上記範囲とすることで、酸の大半が中和された状態となり、電池内でLiイオン等と結合して、容量低下を起こすことがなくなるため好ましい。中和塩は、Li塩、Na塩、K塩、アンモニウム塩、Mg塩、Ca塩、Zn塩、Al塩等が例示される。
【0069】
<水酸基含有水溶性ポリ(メタ)アクリルアミド(A)の物性>
本開示において、「水溶性」とは、25℃において、その化合物0.5gを100gの水に溶解した際に、不溶分が0.5質量%未満であることを意味する。
【0070】
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)のガラス転移点は特に限定されないが、0℃以上(10℃以上、20℃以上等)が好ましく、機械的強度、耐熱性の観点から30℃以上(40℃以上、45℃以上等)がより好ましい。
【0071】
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)のガラス転移温度は、(メタ)アクリルアミド基含有化合物(a)・水酸基含有(メタ)アクリルエステル(b)・共重合単量体(c)の組み合わせによって調整可能である。水酸基含有水溶性ポリ(メタ)アクリルアミド(A)において、そのガラス転移温度は、(メタ)アクリルアミド基含有化合物(a)・水酸基含有(メタ)アクリルエステル(b)・共重合単量体(c)のホモポリマーのガラス転移温度(Tg)(絶対温度:K)とそれらの質量分率から、以下に示すFoxの式に基づいて求めることができる。
1/Tg=(W/Tg)+(W/Tg)+(W/Tg)+・・・+(W/Tg
[式中、Tgは、求めようとしているポリマーのガラス転移温度(K)、W~Wは、各単量体の質量分率、Tg~Tgは、各単量体のホモポリマーのガラス転移温度(K)を示す]
【0072】
例えば、ガラス転移温度は、アクリルアミドのホモポリマーでは165℃、アクリル酸のホモポリマーでは106℃、アクリル酸ヒドロキシエチルのホモポリマーでは―15℃、アクリロニトリルのホモポリマーでは105℃である。所望のガラス転移温度を有する幹ポリマー(A)が得られるように、それを構成する、(メタ)アクリルアミド基含有化合物(a)・水酸基含有(メタ)アクリルエステル(b)・共重合単量体(c)の組成を決定することができる。なお、単量体のホモポリマーのガラス転移温度は、DSC(示差走査熱量測定装置)、DTA(示差熱分析装置)、TMA(熱機械測定装置)等によって例えば-100℃から300℃へ昇温させる条件(昇温速度10℃/min.)で測定することができる。また、文献に記載されている値を用いることもできる。文献は、「化学便覧 基礎編II 日本化学会編 (改訂5版)」、p325等が例示される。
【0073】
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)の硬化物のゲル分率は特に限定されないが、(A)成分のゲル分率の上限は、99.9%、95%、90%、80%、70%、60%、50%、40%、30%、25%等が例示され、下限は95%、90%、80%、70%、60%、50%、40%、30%、25%、20%等が例示される。1つの実施形態において、充放電サイクルに伴う耐スプリングバック性の発現効果の観点から好ましくは20%以上、より好ましくは25%以上である。なお、水酸基含有水溶性ポリ(メタ)アクリルアミド(A)のゲル分率は下記式
ゲル分率(%)={水への不溶物残渣(g)/固形樹脂の質量(g)}×100
により算出される値である。
【0074】
1つの実施形態において、上記硬化物の硬化条件は、120℃で4時間等が例示される。
【0075】
上記ゲル分率は、例えば以下のようにして測定される。水酸基含有水溶性ポリ(メタ)アクリルアミド(A)を含む、リチウムイオン電池用熱架橋性バインダー水溶液を適切な量(例えば10g)、適切な容器(例えば軟膏缶(株式会社相互理化学硝子製作所製、商品名「軟膏缶 ブリキ製」))に入れ適切な乾燥条件(例えば循風乾燥機(アドバンテック東洋株式会社製、商品名「送風定温乾燥器 DSR420DA」)にて120℃4時間)にて乾燥後、熱架橋後の固形樹脂を得る。その固形樹脂の質量を25℃で正確に適切な質量計(例えば、ザルトリウス・ジャパン株式会社製、商品名「スタンダード天秤 CPA324S」)で測定する。測定した固形樹脂を純水が適切な量(例えば150mL)入っている適切な容器(例えば300mLビーカー)に移し、水中に適切な条件(例えば25℃で3時間)適切なマグネチックスターラー(例えば東京理化器械株式会社製、商品名「強力マグネチックスターラー RCX-1000D」)を用いて攪拌させた条件で浸漬後、適切な器具(例えば桐山ロート(有限会社桐山製作所製、商品名「桐山ロート SB-60」)と吸引鐘(有限会社桐山製作所製、商品名「吸引鐘 VKB-200」)を用い、ろ紙(有限会社桐山製作所製、「No.50B」))で減圧濾過した。その後、ろ紙上に残った不溶物残渣を適切な乾燥機(例えば上記循風乾燥機)にて適切な条件(例えば120℃3時間)乾燥した後、不溶物残渣の質量を適切な温度(例えば25℃)で正確に適切な質量計(例えば上記質量計)で測定して、上記式から水溶性電池用バインダーの熱架橋後の樹脂のゲル分率を算出する。
【0076】
メカニズム
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)には、(メタ)アクリルアミド基含有化合物(a)に由来するアミド基及び水酸基含有(メタ)アクリルエステル(b)に由来する水酸基を含有している。これらが熱により化学結合を形成することで熱架橋が進行する。その結果、水に不溶化することでゲル分率が発現する。リチウムイオン電池用バインダー溶液、又は後述するリチウムイオン電池用電極スラリー中ではアミド基と水酸基が独立して存在しているため水溶液の保存安定性又はスラリー安定性を示す事ができる。なお、本メカニズムは、あくまで1つの説であり、本発明はこれに制限されるわけではない。
【0077】
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)の熱架橋は、(メタ)アクリルアミド基含有化合物(a)に由来するアミド基及び水酸基含有(メタ)アクリルエステル(b)に由来する水酸基によるものと考えられる。水酸基含有水溶性ポリ(メタ)アクリルアミド(A)における、アミド基と水酸基とのモル比(アミド基/水酸基)は、特に限定されないが、アミド基が過剰であることが好ましい。アミド基と水酸基とのモル比(アミド基/水酸基)の上限は、19、18、17.5、15、12.5、10、9、7.5、5、2.5、1.2等が例示され、下限は、18、17.5、15、12.5、10、9、7.5、5、2.5、1.2、1.0等が例示される。1つの実施形態において、アミド基/水酸基=1.0~19.0が好ましく、1.2~18.0がより好ましい。上記を満たすことで、活物質層の集電体への密着性を損なうことなく、充放電サイクルに伴う耐スプリングバック性の発現効果が得られると考えられるが、本発明がこれに限定されることを意図するものではない。
【0078】
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)の重量平均分子量(Mw)は特に限定されないが、その上限は、600万、550万、500万、450万、400万、350万、300万、250万、200万、150万、100万、95万、90万、85万、80万、75万、70万、65万、60万、55万、50万、45万、40万等が例示され、下限は、550万、500万、450万、400万、350万、300万、290万、250万、200万、150万、100万、95万、90万、85万、80万、75万、70万、65万、60万、55万、50万、45万、40万、35万、30万等が例示される。1つの実施形態において、リチウムイオン電池用電極スラリーの分散安定性の観点から好ましくは30万~600万、より好ましくは35万~600万である。
【0079】
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)の数平均分子量(Mn)は特に限定されないが、その上限は、600万、550万、500万、450万、400万、350万、300万、250万、200万、150万、100万、95万、90万、85万、80万、75万、70万、65万、60万、55万、50万、45万、40万、30万、20万、10万、5万等が例示され、下限は、550万、500万、450万、400万、350万、300万、290万、250万、200万、150万、100万、95万、90万、85万、80万、75万、70万、65万、60万、55万、50万、45万、40万、35万、30万、20万、10万、5万、1万等が例示される。1つの実施形態において、水酸基含有水溶性ポリ(メタ)アクリルアミド(A)の数平均分子量(Mn)は、1万以上が好ましい。
【0080】
重量平均分子量及び数平均分子量は、例えばゲルパーミエーションクロマトグラフィー(GPC)により適切な溶媒下で測定したポリアクリル酸換算値として求められ得る。
【0081】
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)の分子量分布(Mw/Mn)の上限は、15、14、13、11、10、9、7.5、5、4、3、2.9、2.5、2、1.5等が例示され、下限は、14、13、11、10、9、7.5、5、4、3、2.9、2.5、2、1.5、1.1等が例示される。1つの実施形態において、水酸基含有水溶性ポリ(メタ)アクリルアミド(A)の分子量分布(Mw/Mn)は、1.1~15が好ましい。
【0082】
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)を含む水溶液のB型粘度は特に限定されないが、その上限は、10万、9万、8万、7万、6万、5万、4万、3万、2万、1万、9000、8000、7000、6000、5000、4000、3000、2000mPa・s等が例示され、下限は、9万、8万、7万、6万、5万、4万、3万、2万、1万、9000、8000、7000、6000、5000、4000、3000、2000、1000mPa・s等が例示される。1つの実施形態において、B型粘度の範囲は1000~10万mPa・sが好ましい。なお、B型粘度は東機産業株式会社製 製品名「B型粘度計モデルBM」等のB型粘度計により測定される。
【0083】
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)を含む水溶液のpH(25℃)の上限は、13、12、11、10、9、8、7、6.9、6.5、6、5.9、5.6、5.5、5.4、5、4.5、4、3、2.5等が例示され、下限は、12、11、10、9、8、7、6.9、6.5、6、5.9、5.6、5.5、5.4、5、4.5、4、3、2.5、2等が例示される。1つの実施形態において、水酸基含有水溶性ポリ(メタ)アクリルアミド(A)を含む水溶液のpH(25℃)は、溶液安定性の観点からpH2~13が好ましく、pH2~9がより好ましく、pH2~7がさらに好ましく、pH7未満が特に好ましい。水溶液のpHは、ガラス電極pHメーター(例えば株式会社堀場製作所製 製品名「pHメータ D-52」)を用い、25℃で測定され得る。
【0084】
リチウムイオン電池用バインダー水溶液100質量%に対する水酸基含有水溶性ポリ(メタ)アクリルアミド(A)の含有量の上限は、20、19、15、14、12、10、9、7、6質量%等が例示され、下限は、19、15、14、12、10、9、7、6、5質量%等が例示される。1つの実施形態において、リチウムイオン電池用バインダー水溶液100質量%に対する水酸基含有水溶性ポリ(メタ)アクリルアミド(A)の含有量は、5~20質量%が好ましい。
【0085】
<添加剤>
リチウムイオン電池用バインダー水溶液には、(A)成分、及び水のいずれにも該当しない剤を添加剤として含み得る。添加剤は、分散剤、レベリング剤、酸化防止剤、増粘剤、分散体(エマルジョン)、架橋剤、ヒドロキシシリル化合物等が例示される。添加剤の含有量は、(A)成分100質量%に対し、0~5質量%、1質量%未満、0.1質量%未満、0.01質量%未満等が例示され、また水溶液100質量%に対し、0~5質量%、1質量%未満、0.1質量%未満、0.01質量%未満、0質量%等が例示される。
【0086】
分散剤は、用いる電極活物質に応じて選択でき、アニオン性分散剤、カチオン性分散剤、非イオン性分散剤、高分子分散剤等が例示される。
【0087】
レベリング剤は、アルキル系界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤等の界面活性剤等が例示される。界面活性剤を用いることにより、塗工時に発生するはじきを防止し、上記スラリーの層(コーティング層)の平滑性を向上させ得る。
【0088】
酸化防止剤は、フェノール化合物、ハイドロキノン化合物、有機リン化合物、硫黄化合物、フェニレンジアミン化合物、ポリマー型フェノール化合物等が例示される。ポリマー型フェノール化合物は、分子内にフェノール構造を有する重合体である。ポリマー型フェノール化合物の重量平均分子量は200~1000が好ましく、600~700がより好ましい。
【0089】
増粘剤は、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース系ポリマー及びこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリ(メタ)アクリル酸及びこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸若しくはフマル酸とビニルアルコールの共重合体等のポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、アクリロニトリル-ブタジエン共重合体水素化物等が例示される。
【0090】
分散体(エマルジョン)は、スチレン-ブタジエン系共重合体ラテックス、ポリスチレン系重合体ラテックス、ポリブタジエン系重合体ラテックス、アクリロニトリル-ブタジエン系共重合体ラテックス、ポリウレタン系重合体ラテックス、ポリメチルメタクリレート系重合体ラテックス、メチルメタクリレート-ブタジエン系共重合体ラテックス、ポリアクリレート系重合体ラテックス、塩化ビニル系重合体ラテックス、酢酸ビニル系重合体エマルジョン、酢酸ビニル-エチレン系共重合体エマルジョン、ポリエチレンエマルジョン、カルボキシ変性スチレンブタジエン共重合樹脂エマルジョン、アクリル樹脂エマルジョン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、芳香族ポリアミド、アルギン酸とその塩、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン-テトラフルオロエチレン共重合体(ETFE)等が例示される。
【0091】
架橋剤は、ホルムアルデヒド、グリオキサール、ヘキサメチレンテトラミン、尿素ホルムアルデヒド樹脂、メチロールメラミン樹脂、カルボジイミド化合物、多官能エポキシ化合物、オキサゾリン化合物、多官能ヒドラジド化合物、イソシアネート化合物、メラミン化合物、尿素化合物、及びこれらの混合物が例示される。
【0092】
ヒドロキシシリル化合物とはケイ素原子にヒドロキシ基(-OH)が直接結合している構造を有する化合物を意味し、トリヒドロキシシリル化合物とは、トリヒドロキシシリル基(-Si(OH))を有する化合物を意味し、テトラヒドロキシシリル化合物とは、Si(OH)で表わされる化合物を意味する。1つの実施形態において、トリヒドロキシシリル化合物は下記一般式
RSi(OH)
(式中、Rは置換又は無置換のアルキル基、ビニル基、又は(メタ)アクリロキシ基を表し、上記置換基は、アミノ基、メルカプト基、グリシドキシ基、(メタ)アクリロキシ基、エポキシ基等が例示される。)で表わされる化合物である。ヒドロキシシリル化合物はシランカップリング剤やテトラアルコキシシランを加水分解して調製することが好ましい。ヒドロキシシリル化合物は水溶性を失わない範囲内で、部分的に縮重合していても構わない。シランカップリング剤は、一般的に使用されているシランカップリング剤を使用することができる。シランカップリング剤は、特に制限されない。シランカップリング剤から製造されるヒドロキシシリル化合物は、単独で用いてもよいし、又は2種以上を併用してもよい。1つの実施形態において、ヒドロキシシリル化合物はトリヒドロキシシリルプロピルアミンを含む。トリアルコキシシランは、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2(アミノエチル) 3- アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3- イソシアネートプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、テトラヒドロキシシラン等が例示される。またテトラアルコキシシランは、テトラメトキシシラン、テトラメトキシシランオリゴマー、テトラエトキシシラン、テトラエトキシシランオリゴマー等が例示される。これらのうち、安定性及び耐電解液性の観点から、3-アミノプロピルトリメトキシシランを用いてヒドロキシシリル化合物を製造することが好ましい。
【0093】
上記以外の添加剤としては、不飽和カルボン酸、不飽和アミド、及びこれらの塩よりなる群から選択される少なくとも1種の化合物等が例示される。
【0094】
上記リチウムイオン電池用熱架橋性バインダー水溶液は、リチウムイオン電池負極用熱架橋性バインダー水溶液としても、リチウムイオン電池正極用熱架橋性バインダー水溶液としても用いられ得る。
【0095】
[2.リチウムイオン電池用電極スラリー]
本開示は、上記リチウムイオン電池用熱架橋性バインダー水溶液と、電極活物質(B)を含む、リチウムイオン電池用電極スラリーを提供する。
【0096】
<電極活物質(B)((B)成分ともいう)>
電極活物質は、リチウムを可逆的に吸蔵及び放出できるものであれば特に制限されず、単独で用いてもよいし、二種以上を併用してもよい。電極活物質は、目的とする蓄電デバイスの種類により適宜適当な材料を選択され得る。電極活物質は、炭素材料、並びにシリコン材料、リチウム原子を含む酸化物、鉛化合物、錫化合物、砒素化合物、アンチモン化合物、及びアルミニウム化合物等のリチウムと合金化する材料等が例示される。炭素材料やリチウムと合金化する材料は、電池の充電時の体積膨張率が大きいため、本発明の効果を顕著に発揮し得る。
【0097】
上記炭素材料は、高結晶性カーボンであるグラファイト(黒鉛ともいい、天然グラファイト、人造グラファイト等が例示される)、低結晶性カーボン(ソフトカーボン、ハードカーボン)、カーボンブラック(ケッチェンブラック、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラック等)、フラーレン、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、カーボンフィブリル、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維等が例示される。
【0098】
上記シリコン材料は、シリコン、シリコンオキサイド、シリコン合金に加え、SiC、SiO(0<x≦3、0<y≦5)、Si、SiO、SiO(0<x≦2)で表記されるシリコンオキサイド複合体(例えば特開2004-185810号公報や特開2005-259697号公報に記載されている材料等)、特開2004-185810号公報に記載されたシリコン材料等が例示される。また、特許第5390336号、特許第5903761号に記載されたシリコン材料を用いても良い。
【0099】
上記シリコンオキサイドは、組成式SiO(0<x<2、好ましくは0.1≦x≦1)で表されるシリコンオキサイドが好ましい。
【0100】
上記シリコン合金は、ケイ素と、チタン、ジルコニウム、ニッケル、銅、鉄及びモリブデンよりなる群から選ばれる少なくとも一種の遷移金属との合金が好ましい。これらの遷移金属のシリコン合金は、高い電子伝導度を有し、かつ高い強度を有することから好ましい。シリコン合金は、ケイ素-ニッケル合金又はケイ素-チタン合金がより好ましく、ケイ素-チタン合金が特に好ましい。シリコン合金におけるケイ素の含有割合は、上記合金中の金属元素100モル%に対して10モル%以上が好ましく、20~70モル%がより好ましい。なお、シリコン材料は、単結晶、多結晶及び非晶質のいずれであってもよい。
【0101】
また、電極活物質としてシリコン材料を用いる場合には、シリコン材料以外の電極活物質を併用してもよい。このような電極活物質は、上記の炭素材料;ポリアセン等の導電性高分子;A(Aはアルカリ金属又は遷移金属、Bはコバルト、ニッケル、アルミニウム、スズ、マンガン等の遷移金属から選択される少なくとも一種、Oは酸素原子を表し、X、Y及びZはそれぞれ0.05<X<1.10、0.85<Y<4.00、1.5<Z<5.00の範囲の数である。)で表される複合金属酸化物や、その他の金属酸化物等が例示される。電極活物質としてシリコン材料を用いる場合は、リチウムの吸蔵及び放出に伴う体積変化が小さいことから、炭素材料を併用することが好ましい。
【0102】
上記リチウム原子を含む酸化物は、三元系ニッケルコバルトマンガン酸リチウム、リチウム-マンガン複合酸化物(LiMn等)、リチウム-ニッケル複合酸化物(LiNiO等)、リチウム-コバルト複合酸化物(LiCoO等)、リチウム-鉄複合酸化物(LiFeO等)、リチウム-ニッケル-マンガン複合酸化物(LiNi0.5Mn0.5等)、リチウム-ニッケル-コバルト複合酸化物(LiNi0.8Co0.2等)、リチウム-遷移金属リン酸化合物(LiFePO等)、及びリチウム-遷移金属硫酸化合物(LiFe(SO)、リチウム-チタン複合酸化物(チタン酸リチウム:LiTi12)等のリチウム-遷移金属複合酸化物、及びその他の従来公知の電極活物質等が例示される。
【0103】
電極活物質の形状は特に制限されず、微粒子状、薄膜状等の任意の形状であってよいが、好ましくは微粒子状である。電極活物質の平均粒子径は特に制限されないが、その上限は、50、45、40、35、30、25、20、15、10、5、4、3、2.9、2、1、0.5、0.1μm等が例示され、下限は、45、40、35、30、25、20、15、10、5、4、3、2.9、2、1、0.5、0.1μm等が例示される。1つの実施形態において、好ましくは0.1~50μmである。0.1μm以上であればハンドリング性が良好であり、50μm以下であれば電極の塗布が容易である。より好ましくは0.1~45μmであり、さらに好ましくは1~10μmであり、特に好ましくは5μm程度である。このような範囲にあると均一で薄い塗膜を形成することができるため好ましい。なお、本開示における「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味するものとする。また「平均粒子径」の値は、特に言及のない限り、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)等の観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。
【0104】
本発明の効果を顕著に発揮するためには、炭素材料及び/又はリチウムと合金化する材料を電極活物質中に好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは100質量%含む。
【0105】
1つの実施形態において、電極活物質における炭素層で覆われたシリコン又はシリコンオキサイドの含有量はリチウムイオン電池の電池容量を高める観点から電極活物質100質量%に対し、5質量%以上(例えば、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、100質量%)が好ましい。
【0106】
本発明のスラリー100質量%に対する、(A)成分の含有量の上限は、15、14、12、10、9、7、5、4、3、2、1、0.9、0.6質量%等が例示され、下限は、14、12、10、9、7、5、4、3、2、1、0.9、0.6、0.5質量%等が例示される。1つの実施形態において、本発明のスラリー100質量%に対する、(A)成分の含有量は、0.5~10質量%が好ましい。
【0107】
本発明のスラリーにおける、前記(A)成分の含有量は特に限定されないが、(B)成分100質量%に対する(A)成分含有量の上限は、15、14、11、10、9、5、4、2質量%程度が例示され、下限は、14、11、10、9、5、4、2、1質量%程度が例示される。1つの実施形態において、(B)成分100質量%に対して(A)成分が1~15質量%程度が好ましい。
【0108】
また、本発明のスラリーにおける、前記(B)成分の含有量も特に限定されないが、本発明のスラリー100質量%に対する、(B)成分の含有量の上限は、65、60、55、50、45、40、35、30、25質量%等が例示され、下限は、60、55、50、45、40、35、30、25、20質量%等が例示される。1つの実施形態において、本発明のスラリー100質量%に対する、(B)成分の含有量は、20~65質量%が好ましい。
【0109】
また、本発明のリチウムイオン電池用電極スラリーには、水酸基含有水溶性ポリ(メタ)アクリルアミド(A)以外のバインダーを使用しても構わないが、全バインダー中の水酸基含有水溶性ポリ(メタ)アクリルアミド(A)90質量%以上(95、99質量%以上、100質量%等)が好ましい。
【0110】
(スラリー粘度調整溶媒)
スラリー粘度調整溶媒は、各種公知のものを特に制限なく使用でき、単独で用いてもよいし、二種以上を併用してもよい。上記溶媒は、エーテル溶媒、ケトン溶媒、アルコール溶媒、アミド溶媒、水等が例示される。エーテル溶媒は、ジオキサン、テトラヒドロフラン(THF)等が例示される。ケトン溶媒は、アセトン、メチルエチルケトン(MEK)等が例示される。アルコール溶媒は、メタノール、エタノール、2-プロパノール、イソプロピルアルコール等が例示される。アミド溶媒は、N-メチル-2-ピロリドン(NMP)等が例示される。
【0111】
バインダー又はスラリーに架橋剤を添加し、スラリーを集電体に塗工し乾燥させることで電極中のバインダー樹脂を熱架橋させる試みはこれまでになされている(例えば国際公開第2015/098507号に記載の材料等)。これにより、電極中のバインダー樹脂を架橋させることで、充放電サイクルに伴う活物質層の膨張を抑制させる効果がある。本発明の熱架橋性バインダー溶液においても、電極中のバインダー樹脂が熱架橋することにより、充放電サイクルに伴う活物質層の膨張を抑制させる効果がある。本発明の熱架橋性バインダー溶液、或いは当該熱架橋性バインダー溶液を用いた熱架橋性電極スラリーは貯蔵安定性に優れる。貯蔵安定性の評価方法は、作製した熱架橋性バインダー溶液、或いは熱架橋性電極スラリーの溶液粘度をB型粘度計で測定した後、40℃に加温したオーブンに3日間貯蔵し、貯蔵後の溶液粘度を再びB型粘度計を測定し、粘度変化の有無を確認することで評価できる。
【0112】
<添加剤>
上記スラリーには、(A)、(B)成分、及び水のいずれにも該当しない剤を添加剤として含み得る。添加剤の含有量は、上記スラリー100質量%に対し、0~5質量%、1質量%未満、0.1質量%未満、0.01質量%未満、0質量%等が例示される。なお添加剤は、上述したもの等が例示される。
【0113】
上記リチウムイオン電池用電極スラリーは、リチウムイオン電池負極用電極スラリーとしても、リチウムイオン電池正極用電極スラリーとしても用いられ得る。
【0114】
[3.リチウムイオン電池用電極スラリーの製造方法]
本開示は、単量体群100モル%に対して、
(メタ)アクリルアミド基含有化合物(a)を30~95モル%、
水酸基含有(メタ)アクリルエステル(b)を5~50モル%含む単量体群の重合物であり、硬化物のゲル分率が20%以上である
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)、及び電極活物質(B)を混合する工程を含む、上記リチウムイオン電池用電極スラリーの製造方法を提供する。
【0115】
本発明のスラリーの製造法は、(A)成分の水溶液(上記リチウムイオン電池用バインダー水溶液)と、電極活物質とを混合する方法、(A)成分、(B)成分、水を別々に混合する方法が例示される。なお、上記方法において混合の順番は特に限定されない。スラリーの混合手段は、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサー等が例示される。
【0116】
[4.リチウムイオン電池用電極]
本開示は、リチウムイオン電池用電極スラリーを集電体に塗布し乾燥させることにより得られる、リチウムイオン電池用電極を提供する。
【0117】
塗布手段は特に限定されず、コンマコーター、グラビアコーター、マイクログラビアコーター、ダイコーター、バーコーター等従来公知のコーティング装置が例示される。
【0118】
乾燥手段も特に限定されず、温度は好ましくは80~200℃程度、より好ましくは90~180℃程度であり、雰囲気は乾燥空気又は不活性雰囲気であればよい。適切な温度で乾燥をすることで、リチウムイオン電池用熱架橋性バインダーである水酸基含有水溶性ポリ(メタ)アクリルアミド(A)の架橋が進行し、充放電サイクルに伴う耐スプリングバック性が発現する。
【0119】
電極(硬化塗膜)の厚さは特に限定されないが、5μm~300μm程度が好ましく、10μm~250μm程度がより好ましい。上記範囲とすることにより、高密度の電流値に対する十分なLiの吸蔵・放出の機能が得られやすくなる。
【0120】
集電体は、各種公知のものを特に制限なく使用され得る。集電体の材質は特に限定されず、銅、鉄、アルミ、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料が例示される。集電体の形態も特に限定されず、金属材料の場合、金属箔、金属円柱、金属コイル、金属板等が、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が例示される。中でも、電極活物質を負極に用いる場合には集電体として銅箔が、現在工業化製品に使用されていることから好ましい。
【0121】
上記リチウムイオン電池用電極は、リチウムイオン電池負極としても、リチウムイオン電池正極としても用いられ得る。
【0122】
[5.リチウムイオン電池]
本開示は、上記リチウムイオン電池用電極を含む、リチウムイオン電池を提供する。上記電池には、電解質溶液、セパレータ、正極、及び包装材料も含まれ、これらは特に限定されない。
【0123】
電解質溶液は、非水系溶媒に支持電解質を溶解した非水系電解液等が例示される。また、上記非水系電解液には、被膜形成剤を含めてもよい。
【0124】
非水系溶媒は、各種公知のものを特に制限なく使用でき、単独で用いてもよいし、二種以上を併用してもよい。非水系溶媒は、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート溶媒;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート溶媒;1,2-ジメトキシエタン等の鎖状エーテル溶媒;テトラヒドロフラン、2-メチルテトラヒドロフラン、スルホラン、1,3-ジオキソラン等の環状エーテル溶媒;ギ酸メチル、酢酸メチル、プロピオン酸メチル等の鎖状エステル溶媒;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル溶媒;アセトニトリル等が例示される。これらのなかでも、環状カーボネートと鎖状カーボネートを含む混合溶媒の組み合わせが好ましい。
【0125】
支持電解質は、リチウム塩が用いられる。リチウム塩は、各種公知のものを特に制限なく使用でき、単独で用いてもよいし、二種以上を併用してもよい。支持電解質は、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLi等が例示される。中でも、溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiが好ましい。解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなるので、支持電解質の種類によりリチウムイオン伝導度を調節できる。
【0126】
被膜形成剤は、各種公知のものを特に制限なく使用でき、単独で用いてもよいし、二種以上を併用してもよい。被膜形成剤は、ビニレンカーボネート、ビニルエチレンカーボネート、ビニルエチルカーボネート、メチルフェニルカーボネート、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート等のカーボネート化合物;エチレンサルファイド、プロピレンサルファイド等のアルケンサルファイド;1,3-プロパンスルトン、1,4-ブタンスルトン等のスルトン化合物;マレイン酸無水物、コハク酸無水物等の酸無水物等が例示される。電解質溶液における被膜形成剤の含有量は特に限定されないが、10質量%以下、8質量%以下、5質量%以下、及び2質量%以下の順で好ましい。含有量を10質量%以下とすることで、被膜形成剤の利点である、初期不可逆容量の抑制や、低温特性及びレート特性の向上等が得られやすくなる。
【0127】
セパレータは、正極と負極との間に介在する物品であって、電極間の短絡を防止するために使用される。具体的には、多孔膜や不織布等の多孔性のセパレータを好ましく使用でき、それらには前記非水系電解液を含浸させて用いられる。セパレータの材料は、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエーテルスルホン等が用いられ、好ましくはポリオレフィンである。
【0128】
なお、負極として上記リチウムイオン電池用電極スラリーを用いて製造した負極、正極として上記リチウムイオン電池用電極スラリーを用いないで製造した正極を用いて、リチウムイオン電池を製造した場合、正極は、各種公知のものを特に制限なく使用できる。正極は、正極活物質、導電助剤、正極用バインダーを有機溶媒と混合することによってスラリーを調製し、調製したスラリーを正極集電体に塗布、乾燥、プレスすることによって得られたもの等が例示される。
【0129】
正極活物質は、無機正極活物質、有機正極活物質が例示される。無機正極活物質は、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物等が例示される。上記遷移金属は、Fe、Co、Ni、Mn、Al等が例示される。正極活物質に使用される無機化合物は、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiNi1/2Mn3/2、LiCo1/3Ni1/3Mn1/3、Li[Li0.1Al0.1Mn1.8]O、LiFeVO等のリチウム含有複合金属酸化物;TiS、TiS、非晶質MoS等の遷移金属硫化物;Cu、非晶質VO-P、MoO、V、V13等の遷移金属酸化物等が例示される。これらの化合物は、部分的に元素置換したものであってもよい。有機正極活物質は、ポリアセチレン、ポリ-p-フェニレン等の導電性重合体が例示される。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた電極活物質として用いてもよい。また、これらの化合物は、部分的に元素置換したものであってもよい。これらの中でも実用性、電気特性、長寿命の点で、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiNi1/2Mn3/2、LiCo1/3Ni1/3Mn1/3、Li[Li0.1Al0.1Mn1.8]Oが好ましい。
【0130】
導電助剤は、気相成長炭素繊維(VGCF)、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)等の繊維状炭素、黒鉛粒子、アセチレンブラック、ケッチェンブラック、ファーネスブラック等のカーボンブラック;平均粒径10μm以下のCu、Ni、Al、Si又はこれらの合金からなる微粉末等が例示される。
【0131】
正極用バインダーは、各種公知のものを特に制限なく使用でき、単独で用いてもよいし、二種以上を併用してもよい。正極用バインダーは、フッ素系樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等)、ポリオレフィン(ポリエチレン、ポリプロピレン等)、不飽和結合を有する重合体(スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等)、アクリル酸系重合体(アクリル酸共重合体、メタクリル酸共重合体等)等が例示される。
【0132】
正極集電体は、アルミニウム箔、ステンレス鋼箔等が例示される。
【0133】
上記リチウムイオン電池の形態は特に制限されない。リチウムイオン電池の形態は、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が例示される。また、これらの形態の電池を任意の外装ケースに収めることにより、コイン型、円筒型、角型等の任意の形状にして用いることができる。
【0134】
上記リチウムイオン電池の製造方法は特に制限されず、電池の構造に応じて適切な手順で組み立てればよい。リチウムイオン電池の製造方法は、特開2013-089437号公報に記載する方法等が例示される。外装ケース上に負極を乗せ、その上に電解液とセパレータを設け、更に負極と対向するように正極を乗せて、ガスケット、封口板によって固定して電池を製造できる。
【実施例
【0135】
以下、実施例及び比較例により本発明を更に詳しく説明するが、本発明は、これらに限定されない。なお、実施例中特に説明がない限り「%」は「質量%」を示し、「部」は「質量部」を示す。
【0136】
1.(A)成分の製造
実施例1-1
撹拌機、温度計、還流冷却管、窒素ガス導入管を備えた反応装置に、イオン交換水1020g、50%アクリルアミド水溶液250g(1.76mol)、アクリルアミドt-ブチルスルホン酸22.4g(0.108mol)、アクリル酸2-ヒドロキシエチル33.9g(0.292mol)、メタリルスルホン酸ナトリウム0.34g(0.0022mol)を入れ、窒素ガスを通じて反応系内の酸素を除去した後、50℃まで昇温した。そこに2,2’-アゾビス-2-アミジノプロパン 二塩酸塩(日宝化学株式会社製 製品名「NC-32」)1.8g、イオン交換水50gを投入し、80℃まで昇温し3時間反応を行い、水酸基含有水溶性ポリアクリルアミドを含有する水溶液を得た。
【0137】
実施例1-2~1-9
上記実施例1-1において、モノマー組成と開始剤の量を表1で示すものに変更した他は実施例1-1と同様にして、水酸基含有水溶性ポリアクリルアミドを含有する水溶液を調製した。
【0138】
比較例1-1
撹拌機、温度計、還流冷却管、窒素ガス導入管を備えた反応装置に、イオン交換水1000g、50%アクリルアミド水溶液380g(2.67mol)、メタリルスルホン酸ナトリウム0.42g(0.0027mol)を入れ、窒素ガスを通じて反応系内の酸素を除去した後、50℃まで昇温した。そこに2,2’-アゾビス-2-アミジノプロパン 二塩酸塩(日宝化学株式会社製 製品名「NC-32」)1.9g、イオン交換水50gを投入し、80℃まで昇温し3時間反応を行い、ポリアクリルアミドを含有する水溶液を得た。
【0139】
比較例1-2~1-3
上記比較例1-1において、モノマー組成と開始剤の量を表1で示すものに変更した他は比較例1-1と同様にして、水溶性ポリ(メタ)アクリルアミドを含有する水溶液を調製した。
【0140】
比較例1-4
撹拌機、温度計、還流冷却管、窒素ガス導入管を備えた反応装置に、イオン交換水990g、50%アクリルアミド水溶液190g(1.34mol)、80%アクリル酸80.4g(0.892mol)、メタリルスルホン酸ナトリウム0.35g(0.0022mol)を入れ、窒素ガスを通じて反応系内の酸素を除去した後、50℃まで昇温した。そこに2,2’-アゾビス-2-アミジノプロパン 二塩酸塩(日宝化学株式会社製 製品名「NC-32」)1.6g、イオン交換水50gを投入し、80℃まで昇温し3時間反応を行った。その後、室温まで冷却しカルボジイミド化合物14.8g(日清紡ケミカル株式会社「カルボジライトV-02」)を加え、ポリアクリルアミドと架橋剤を含有する水溶液を得た。
【0141】
B型粘度
各バインダー水溶液の粘度は、B型粘度計(東機産業株式会社製 製品名「B型粘度計モデルBM」)を用い、25℃にて、以下の条件で測定した。
粘度100,000~20,000mPa・sの場合:No.4ローター使用、回転数6rpm、粘度20,000mPa・s未満の場合:No.3ローター使用、回転数6rpm。
【0142】
重量平均分子量
重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により0.2Mリン酸緩衝液/アセトニトリル溶液(90/10、PH8.0)下で測定したポリアクリル酸換算値として求めた。GPC装置はHLC-8220(東ソー(株)製)を、カラムはSB-806M-HQ(SHODEX製)を用いた。
【0143】
ゲル分率
水酸基含有水溶性ポリ(メタ)アクリルアミド(A)を含む、リチウムイオン電池用熱架橋性バインダー水溶液10gを軟膏缶(株式会社相互理化学硝子製作所製、商品名「軟膏缶 ブリキ製」)に入れ循風乾燥機(アドバンテック東洋株式会社製、商品名「送風定温乾燥器 DSR420DA」)にて120℃4時間乾燥後、熱架橋後の固形樹脂を得た。その固形樹脂の質量を25℃で正確に質量計(ザルトリウス・ジャパン株式会社製、商品名「スタンダード天秤 CPA324S」)で測定した。測定した固形樹脂を純水が150mL入っている容器(300mLビーカー)に移し、水中に25℃で3時間マグネチックスターラー(東京理化器械株式会社製、商品名「強力マグネチックスターラー RCX-1000D」)を用いて攪拌させた条件で浸漬後、桐山ロート(有限会社桐山製作所製、商品名「桐山ロート SB-60」)と吸引鐘(有限会社桐山製作所製、商品名「吸引鐘 VKB-200」)を用い、ろ紙(有限会社桐山製作所製、「No.50B」)で減圧濾過した。その後、ろ紙上に残った不溶物残渣を上記循風乾燥機にて120℃3時間乾燥した後、不溶物残渣の質量を25℃で正確に上記質量計で測定して、以下の式から水溶性電池用バインダーの熱架橋後の樹脂のゲル分率を算出した。
ゲル分率(%)={不溶物残渣(g)/固形樹脂の質量(g)}×100
【0144】
【表1】
・AM:アクリルアミド(三菱ケミカル株式会社製 「50%アクリルアミド」)
・ATBS:アクリルアミドt-ブチルスルホン酸(東亞合成株式会社製 「ATBS」)
・TBAA:t-ブチルアクリルアミド(MCCユニテック株式会社製 「N-t-ブチルアクリルアミド」)
・DMAA:N,N-ジメチル(メタ)アクリルアミド(KJケミカルズ株式会社製 「DMAA」)
・HEA:アクリル酸2-ヒドロキシエチル(大阪有機化学工業株式会社製 「HEA」)
・GLM:グリセリンモノメタクリレート(日油株式会社製 「ブレンマー GLM」)
・PE-90:ポリエチレングリコールモノメタクリレート(日油株式会社製 「ブレンマー PE-90」)
・PE-200:ポリエチレングリコールモノメタクリレート(日油株式会社製 「ブレンマー PE-200」)
・AA:アクリル酸(大阪有機化学工業株式会社製 「80%アクリル酸」)
・AN:アクリロニトリル(三菱ケミカル株式会社製 「アクリロニトリル」)
・SMAS:メタリルスルホン酸ナトリウム
・カルボジイミド:カルボジイミド化合物(日清紡ケミカル株式会社「カルボジライトV-02」)
【0145】
2.電極用スラリーの製造及びセル作製と評価
実施例2-1
市販の自転公転ミキサー(製品名「あわとり練太郎」、シンキー(株)製)を用い、該ミキサー専用の容器に、実施例1-1で得られた水酸基含有水溶性ポリ(メタ)アクリルアミド(A)を含む、リチウムイオン電池用熱架橋性バインダー水溶液を固形分換算で7質量部と、D50が5μmのシリコン粒子を50質量部と、天然黒鉛(伊藤黒鉛工業株式会社製 製品名「Z-5F」)を50質量部とを混合した。そこにイオン交換水を固形分濃度40%となるように加えて、当該容器を上記ミキサーにセットした。次いで、2000rpmで10分間混練後、1分間脱泡を行い、電極用スラリーを得た。
【0146】
実施例2-2~2-11、比較例2-1~2-4
上記実施例2-1において、組成を表2で示すものに変更した他は実施例2-1と同様にして、スラリーを調製した。
【0147】
<スプリングバック率の算出>
得られたスラリーを銅箔からなる集電体の表面に、乾燥後の膜厚が25μmとなるようにドクターブレード法によって均一に塗布し、80℃で1時間乾燥後、150℃/真空で2時間加熱処理して電極を得た。その後、膜(電極活物質層)の密度が1.5g/cmになるようにロールプレス機によりプレス加工することにより、電極を得た。得られた電極を用いてリチウムハーフセルを下記手順により作製し、充放電測定を実施し、スプリングバック率を算出した。
【0148】
<電極スラリーの貯蔵安定性試験>
電極スラリーの粘度(単位:mPa・s)をB型粘度計で測定した後、40℃に加温したオーブンに3日間貯蔵した。貯蔵後に、B型粘度計で再び粘度を測定し、粘度変化を次式で計算し、下記評価基準にて評価した。
粘度変化(%)=(貯蔵後の電極スラリーの粘度)/(貯蔵前の電極スラリーの粘度)×100
A:110%未満
B:110%以上120%未満
C:120%以上130%未満
D:130%以上
【0149】
<リチウムハーフセルの組み立て>
アルゴン置換されたグローブボックス内で、上記電極を直径16mmに打ち抜き成形したものを、試験セル(有限会社日本トムセル社製)のAl製の下蓋の上のパッキンの内側に載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレータ(CS TECH CO., LTD製、商品名「Selion P2010」)を載置し、さらに、空気が入らないように電解液を注入した後、金属リチウム箔を16mmに打ち抜き成形したものを載置した。その後、電極と金属リチウムを均一に圧迫するためにSUS製の円盤と板ばねをのせ、最後にSUS製の上蓋をのせたのちにナットをもちいて均等に締めた。ここで使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPFを1モル/Lの濃度で溶解した溶液である。
【0150】
<充放電測定>
リチウムハーフセルを25℃の恒温槽に入れ、定電流(0.1C)にて充電を開始し、電圧が0.01Vになった時点で充電完了(カットオフ)とした。次いで、定電流(0.1C)にて放電を開始し、電圧が1.0Vになった時点を放電完了(カットオフ)とする充放電を30回繰り返した。
なお、上記測定条件において「1C」とは、ある一定の電気容量を有するセルを定電流放電して1時間で放電終了となる電流値を示す。例えば「0.1C」とは、10時間かけて放電終了となる電流値のことであり、「10C」とは0.1時間かけて放電完了となる電流値のことをいう。
【0151】
<スプリングバック率の測定>
充放電サイクル試験を室温(25℃)で30サイクル行った後、リチウムハーフセルを解体し、電極の厚みを測定した。電極のスプリングバック率は下記式によって求めた。
スプリングバック率={(30サイクル後の電極厚み-集電体厚み)/(充放電前の電極厚み-集電体厚み)}×100-100 (%)
【0152】
【表2】
【0153】
表2から明らかなように、実施例のバインダー水溶液を用いて作製した電極スラリー、この電極スラリーから作製したリチウムハーフセル評価ではいずれも、電極スラリーの貯蔵安定性、及びスプリングバック率の評価が良好であった。