IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士通株式会社の特許一覧

特許7240845画像処理プログラム、画像処理装置、及び画像処理方法
<>
  • 特許-画像処理プログラム、画像処理装置、及び画像処理方法 図1
  • 特許-画像処理プログラム、画像処理装置、及び画像処理方法 図2
  • 特許-画像処理プログラム、画像処理装置、及び画像処理方法 図3
  • 特許-画像処理プログラム、画像処理装置、及び画像処理方法 図4
  • 特許-画像処理プログラム、画像処理装置、及び画像処理方法 図5
  • 特許-画像処理プログラム、画像処理装置、及び画像処理方法 図6A
  • 特許-画像処理プログラム、画像処理装置、及び画像処理方法 図6B
  • 特許-画像処理プログラム、画像処理装置、及び画像処理方法 図7
  • 特許-画像処理プログラム、画像処理装置、及び画像処理方法 図8
  • 特許-画像処理プログラム、画像処理装置、及び画像処理方法 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-08
(45)【発行日】2023-03-16
(54)【発明の名称】画像処理プログラム、画像処理装置、及び画像処理方法
(51)【国際特許分類】
   A61B 6/03 20060101AFI20230309BHJP
【FI】
A61B6/03 370Z
【請求項の数】 6
(21)【出願番号】P 2018190306
(22)【出願日】2018-10-05
(65)【公開番号】P2020058472
(43)【公開日】2020-04-16
【審査請求日】2021-06-10
(73)【特許権者】
【識別番号】000005223
【氏名又は名称】富士通株式会社
(74)【代理人】
【識別番号】100121083
【弁理士】
【氏名又は名称】青木 宏義
(74)【代理人】
【識別番号】100138391
【弁理士】
【氏名又は名称】天田 昌行
(74)【代理人】
【識別番号】100074099
【弁理士】
【氏名又は名称】大菅 義之
(74)【代理人】
【識別番号】100133570
【弁理士】
【氏名又は名称】▲徳▼永 民雄
(72)【発明者】
【氏名】森脇 康貴
(72)【発明者】
【氏名】武部 浩明
(72)【発明者】
【氏名】馬場 孝之
(72)【発明者】
【氏名】杉村 昌彦
(72)【発明者】
【氏名】石原 正樹
(72)【発明者】
【氏名】鄭 明燮
(72)【発明者】
【氏名】宮▲崎▼ 信浩
【審査官】倉持 俊輔
(56)【参考文献】
【文献】特開2007-289335(JP,A)
【文献】特開2017-202208(JP,A)
【文献】特開2004-135976(JP,A)
【文献】特開2008-029415(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 6/03,
G01T 1/161,
G06T 7/00
(57)【特許請求の範囲】
【請求項1】
コンピュータのための画像処理プログラムであって、
前記画像処理プログラムは、
身体部位の隣接する2枚のスライスを含む複数のスライス各々のコンピュータ断層撮影画像内において、前記身体部位に作用する重力の方向に対応する所定位置に存在する第1領域の画像特徴量が、特定の症例のコンピュータ断層撮影画像に現れる高吸収領域の画像特徴量と類似しており、かつ、前記所定位置を基準として前記重力の方向とは逆の方向に存在する第2領域の画素値の統計値が所定値よりも小さい場合、前記第1領域が重力効果に起因する高吸収領域であると判定する、
処理を前記コンピュータに実行させ、
前記統計値は、平均値、中央値、最頻値、最大値、最小値、又は総和であることを特徴とする画像処理プログラム。
【請求項2】
コンピュータのための画像処理プログラムであって、
前記画像処理プログラムは、
身体部位の隣接する2枚のスライスを含む複数のスライス各々のコンピュータ断層撮影画像を、複数のブロックに分割し、
前記複数のブロックのうち、前記身体部位に作用する重力の方向に対応する所定位置に存在するブロックの画像特徴量が、特定の症例のコンピュータ断層撮影画像に現れる高吸収領域の画像特徴量と類似しており、かつ、前記所定位置に存在するブロックを含む列において、前記所定位置に存在するブロック以外のブロックの画素値の統計値が所定値よりも小さい場合、前記所定位置に存在するブロックが重力効果に起因する高吸収領域であると判定する、
処理を前記コンピュータに実行させ、
前記所定位置に存在するブロックを含む列は、前記複数のスライス各々のコンピュータ断層撮影画像内における前記重力の方向の列であり、前記統計値は、平均値、中央値、最頻値、最大値、最小値、又は総和であることを特徴とする画像処理プログラム。
【請求項3】
身体部位の隣接する2枚のスライスを含む複数のスライスのコンピュータ断層撮影画像を記憶する記憶部と、
前記複数のスライス各々のコンピュータ断層撮影画像内において、前記身体部位に作用する重力の方向に対応する所定位置に存在する第1領域の画像特徴量が、特定の症例のコンピュータ断層撮影画像に現れる高吸収領域の画像特徴量と類似しており、かつ、前記所定位置を基準として前記重力の方向とは逆の方向に存在する第2領域の画素値の統計値が所定値よりも小さい場合、前記第1領域が重力効果に起因する高吸収領域であると判定する判定部と、
を備え、
前記統計値は、平均値、中央値、最頻値、最大値、最小値、又は総和であることを特徴とする画像処理装置。
【請求項4】
身体部位の隣接する2枚のスライスを含む複数のスライスのコンピュータ断層撮影画像を記憶する記憶部と、
前記複数のスライス各々のコンピュータ断層撮影画像を、複数のブロックに分割し、前記複数のブロックのうち、前記身体部位に作用する重力の方向に対応する所定位置に存在するブロックの画像特徴量が、特定の症例のコンピュータ断層撮影画像に現れる高吸収領域の画像特徴量と類似しており、かつ、前記所定位置に存在するブロックを含む列において、前記所定位置に存在するブロック以外のブロックの画素値の統計値が所定値よりも小さい場合、前記所定位置に存在するブロックが重力効果に起因する高吸収領域であると判定する判定部と、
を備え、
前記所定位置に存在するブロックを含む列は、前記複数のスライス各々のコンピュータ断層撮影画像内における前記重力の方向の列であり、前記統計値は、平均値、中央値、最頻値、最大値、最小値、又は総和であることを特徴とする画像処理装置。
【請求項5】
コンピュータにより実行される画像処理方法であって、
前記コンピュータが、
身体部位の隣接する2枚のスライスを含む複数のスライス各々のコンピュータ断層撮影画像内において、前記身体部位に作用する重力の方向に対応する所定位置に存在する第1領域の画像特徴量が、特定の症例のコンピュータ断層撮影画像に現れる高吸収領域の画像特徴量と類似しており、かつ、前記所定位置を基準として前記重力の方向とは逆の方向に存在する第2領域の画素値の統計値が所定値よりも小さい場合、前記第1領域が重力効果に起因する高吸収領域であると判定し、
前記統計値は、平均値、中央値、最頻値、最大値、最小値、又は総和であることを特徴とすることを特徴とする画像処理方法。
【請求項6】
コンピュータにより実行される画像処理方法であって、
前記コンピュータが、
身体部位の隣接する2枚のスライスを含む複数のスライス各々のコンピュータ断層撮影画像を、複数のブロックに分割し、
前記複数のブロックのうち、前記身体部位に作用する重力の方向に対応する所定位置に存在するブロックの画像特徴量が、特定の症例のコンピュータ断層撮影画像に現れる高吸収領域の画像特徴量と類似しており、かつ、前記所定位置に存在するブロックを含む列において、前記所定位置に存在するブロック以外のブロックの画素値の統計値が所定値よりも小さい場合、前記所定位置に存在するブロックが重力効果に起因する高吸収領域であると判定し、
前記所定位置に存在するブロックを含む列は、前記複数のスライス各々のコンピュータ断層撮影画像内における前記重力の方向の列であり、前記統計値は、平均値、中央値、最頻値、最大値、最小値、又は総和であることを特徴とする画像処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像処理プログラム、画像処理装置、及び画像処理方法に関する。
【背景技術】
【0002】
コンピュータ断層撮影(Computed Tomography,CT)画像を用いて症例を診断する画像診断では、びまん性肺疾患等のように、異常陰影が広い範囲に渡って複数の領域に分布する症例の診断が難しいと言われている。医師は、そのような症例を診断する際に、過去に確定診断が行われた類似症例を参考にして、病名の候補を絞り込んでいる。
【0003】
しかし、過去の類似症例を検索する作業は時間がかかり、医師にとって大きな負担となっている。そこで、過去の症例から類似する症例のCT画像を自動的に検索し、検索結果を提示することで、医師の診断業務を支援する技術が提案されている(例えば、非特許文献1を参照)。
【0004】
CT画像を用いた画像診断に関して、コンピュータを用いて間質性肺炎のCT画像の定量評価を行う方法も知られている(例えば、非特許文献2を参照)。重力によるCT値の抽出誤差を考慮した医用画像診断支援装置、塊形状の観察対象物を抽出する画像処理装置、胸部CT画像を解析する自動解析装置、及び症例画像検索装置も知られている(例えば、特許文献1~特許文献4を参照)。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2007-289335号公報
【文献】特開2015-29860号公報
【文献】特開2016-174773号公報
【文献】特開2011-118543号公報
【非特許文献】
【0006】
【文献】“CT検査におけるAIを活用した類似症例検索技術を開発”、 [online]、2017年6月23日、株式会社富士通研究所プレスリリース、[平成30年7月13日検索]、インターネット<URL:http://pr.fujitsu.com/jp/news/2017/06/23.html>
【文献】岩澤多恵、「コンピュータによる間質性肺炎のCT画像の定量評価」、断層映像研究会雑誌、第41巻、第2号、pp.67-76、2014年8月
【発明の概要】
【発明が解決しようとする課題】
【0007】
びまん性肺疾患の症例では、胸部CT画像において複数種類の異常陰影が肺野全体に広がるため、過去の類似症例を検索するためには、異常陰影を識別し、その分布を定量化することが望ましい。現状の類似症例画像検索技術では、異常陰影の識別に関する問題がいくつか存在するが、その中の1つとして、正常部分の画像領域を重力効果によって異常陰影と誤識別する問題がある。
【0008】
CT検査では、患者が仰臥位になってCT撮影が行われることが多い。仰臥位においては、最も低い位置にある肺底部背側の静脈圧及びリンパ管圧が重力によって高くなり、肺末梢間質の容積が増えることにより、肺実質が圧排されてしまう。この現象は、重力効果と呼ばれる。この場合、CT画像内では、間質の容積が増えた部分が白っぽい高吸収領域として現れる。高吸収領域は、CT画像の画素値であるCT値が正常な肺野よりも高い領域である。
【0009】
このように、実際には異常陰影が存在しないにも関わらず、重力効果の影響により、CT画像内の肺野領域において、背側の位置に高吸収領域が発生する。特に、患者が肥満体であったり、CT撮影中に吸気が不足していたりする場合には、重力効果の影響が顕著に現れる。
【0010】
一方、肺疾患による異常陰影の1つである、すりガラス陰影(Ground Glass Opacity,GGO)にも、高吸収領域が含まれており、重力効果によって発生する高吸収領域の画像特徴量は、GGOの画像特徴量と類似している。このため、重力効果に起因する高吸収領域を、機械学習によって生成された画像識別モデルを用いて識別すると、GGOとして誤識別される可能性がある。高吸収領域の誤識別によって、画像識別モデルによる異常陰影の識別精度が低下すると、類似症例の検索精度も低下する。
【0011】
なお、かかる問題は、胸部CT画像の異常陰影を識別する場合に限らず、他の身体部位のCT画像の異常陰影を識別する場合においても生ずるものである。
【0012】
1つの側面において、本発明は、CT画像の識別精度を向上させることを目的とする。
【課題を解決するための手段】
【0013】
1つの案では、画像処理プログラムは、以下の処理をコンピュータに実行させる。
(1)コンピュータは、身体部位の隣接する2枚のスライスを含む複数のスライス各々のコンピュータ断層撮影画像内において、身体部位に作用する重力の方向に対応する所定位置に、第1高吸収領域と類似する第2高吸収領域が含まれるか否かを判定する。第1高吸収領域は、特定の症例のコンピュータ断層撮影画像に現れる高吸収領域である。
(2)コンピュータは、複数のスライスのコンピュータ断層撮影画像内の所定位置に第2高吸収領域が含まれている場合、第2高吸収領域が重力効果に起因する高吸収領域であると判定する。
【発明の効果】
【0014】
実施形態によれば、CT画像の識別精度を向上させることができる。
【図面の簡単な説明】
【0015】
図1】閾値補正曲線を示す図である。
図2】画像処理装置の機能的構成図である。
図3】画像処理のフローチャートである。
図4】画像処理装置の具体例を示す機能的構成図である。
図5】胸部CT画像を示す図である。
図6A】画像処理の具体例を示すフローチャート(その1)である。
図6B】画像処理の具体例を示すフローチャート(その2)である。
図7】複数のブロックに分割されたCT画像を示す図である。
図8】平均CT値の変化を示す図である。
図9】情報処理装置の構成図である。
【発明を実施するための形態】
【0016】
以下、図面を参照しながら、実施形態を詳細に説明する。
【0017】
特許文献1の医用画像診断支援装置は、1枚のCT画像において、肺野の腹側から背側へ向かう方向のCT値の変化を求めることで、CT値に対する重力効果の影響を、肺気腫を検出するための閾値に反映させている。まず、医用画像診断支援装置は、肺野のCT画像を、腹側から背側へ向かう方向において複数の部分空間(部分領域)に分割し、各部分領域における平均CT値を求める。
【0018】
次に、医用画像診断支援装置は、部分領域毎の平均CT値を腹側から背側へ向かう方向に沿ってプロットして、閾値補正曲線を作成し、肺気腫の代表的なCT値を通るように閾値補正曲線を平行移動させることで、閾値設定曲線を作成する。そして、医用画像診断支援装置は、腹側から背側へ向かう方向の各位置における閾値を、閾値設定曲線に従って変化させる。
【0019】
しかしながら、重力効果に起因する高吸収領域を含む部分領域の平均CT値は、肺疾患によるGGOを含む部分領域の平均CT値に近くなる可能性がある。このため、重力効果に起因する高吸収領域を含むCT画像と、GGOを含むCT画像とでは、閾値補正曲線が類似していることがある。
【0020】
図1は、平均CT値の変化を示す閾値補正曲線の例を示している。図1(a)は、間質性肺炎によるGGOを含むCT画像の閾値補正曲線101を示しており、図1(b)は、重力効果に起因する高吸収領域を含むCT画像の閾値補正曲線102の例を示している。横軸は、腹側から背側へ向かう方向における位置を表し、縦軸は、部分領域の平均CT値を表す。成人の正常な肺のCT値の上限値は、約-700HUである。
【0021】
閾値補正曲線101又は閾値補正曲線102のいずれの場合も、背側の位置P1における平均CT値が-700HUを超えているため、位置P1に高吸収領域が存在していることが分かる。しかし、閾値補正曲線101と閾値補正曲線102が酷似しているため、1枚のCT画像における平均CT値の変化を調べても、GGOを含む高吸収領域と重力効果に起因する高吸収領域とを区別することは困難である。
【0022】
図2は、実施形態の画像処理装置の機能的構成例を示している。図2の画像処理装置201は、記憶部211及び判定部212を含む。記憶部211は、身体部位の隣接する2枚のスライスを含む複数のスライスのCT画像221を記憶する。判定部212は、CT画像221に対する画像処理を行う。
【0023】
図3は、図2の画像処理装置201が行う画像処理の例を示すフローチャートである。判定部212は、複数のスライス各々のCT画像221内において、身体部位に作用する重力の方向に対応する所定位置に、特定の症例のCT画像に現れる第1高吸収領域と類似する第2高吸収領域が含まれるか否かを判定する(ステップ301)。
【0024】
複数のスライスのCT画像内の所定位置に第2高吸収領域が含まれている場合、判定部212は、第2高吸収領域が重力効果に起因する高吸収領域であると判定する(ステップ302)。
【0025】
図2の画像処理装置201によれば、CT画像に基づく画像診断の精度を向上させることができる。
【0026】
図4は、図2の画像処理装置201の具体例を示している。図4の画像処理装置401は、記憶部411、取得部412、前処理部413、判定部414、及び出力部415を含む。記憶部411及び判定部414は、図2の記憶部211及び判定部212にそれぞれ対応する。
【0027】
CT装置402は、医療機関に設置され、患者のCT画像を撮影する。ストレージ装置403は、CT装置402が撮影した複数の患者のCT画像を記憶する。画像処理装置401、CT装置402、及びストレージ装置403は、通信ネットワークを介して互いに通信することができる。
【0028】
取得部412は、CT装置402又はストレージ装置403から、診断対象の患者の複数のCT画像を取得し、取得したCT画像をCT画像421として記憶部411に格納する。CT画像421は、図2のCT画像221に対応し、所定の身体部位の連続する複数のスライスのCT画像である。
【0029】
所定の身体部位は、頭部、胸部、腹部等であってもよい。以下では、所定の身体部位が胸部であり、各CT画像421が肺野の画像を含んでいる場合について説明する。患者が仰臥位になってCT撮影が行われる場合、胸部に作用する重力の方向に対応する所定位置は、肺野の背側の位置になる。
【0030】
ただし、各CT画像421には、肺疾患による異常陰影に対応する高吸収領域、又は重力に起因する高吸収領域のいずれか一方が含まれており、両方が同時に含まれることはないものと仮定する。例えば、肺野の背側にGGOが含まれており、かつ、重力効果に起因する高吸収領域も重複して含まれているCT画像では、GGOと重力効果に起因する高吸収領域とを区別することは困難である。しかし、この場合、肺野の背側にGGOが含まれているため、画像識別モデルによってすべての高吸収領域をGGOと識別しても、類似症例の検索精度に大きな影響を与えることはない。
【0031】
上述したように、重力効果に起因する高吸収領域の画像特徴量は、GGOの画像特徴量と類似しているため、重力効果に起因する高吸収領域は、GGOとして誤識別される可能性がある。一方、GGO以外の異常陰影の画像特徴量は、重力効果に起因する高吸収領域の画像特徴量と必ずしも類似していないため、誤識別の問題は発生しない。
【0032】
そこで、前処理部413は、CT画像421の肺野の背側にGGO以外の異常陰影が含まれているか否かをチェックする。例えば、前処理部413は、機械学習によって生成された画像識別モデルを用いて、CT画像421にGGO以外の異常陰影が含まれているか否かを判定することができる。この場合、非特許文献1の類似症例検索技術等を用いて、GGO以外の異常陰影を含む複数のCT画像に対する機械学習を行うことによって、画像識別モデルが生成される。
【0033】
CT画像421の肺野の背側にGGO以外の異常陰影が含まれている場合、前処理部413は、CT画像421を判定部414の判定対象から除外する。これにより、判定部414は、GGOを含む高吸収領域又は重力効果に起因する高吸収領域のみを判定対象として、画像処理を行うことができる。
【0034】
図5は、高吸収領域を含む胸部CT画像の例を示している。図5(a)は、重力効果に起因する高吸収領域を含むCT画像の例を示している。連続して撮影された複数のスライスのCT画像において、重力効果によって高吸収領域501及び高吸収領域502が発生する場合、上肺野、中肺野、及び下肺野それぞれにおいて等しく重力が作用する。このため、背側に高吸収領域を含むCT画像に隣接する前後のスライスのCT画像においても、同様の高吸収領域が観察される。
【0035】
図5(b)は、GGOの高吸収領域を含むCT画像の例を示している。連続して撮影された複数のスライスのCT画像において、GGOによって高吸収領域511及び高吸収領域512が発生する場合、上肺野、中肺野、及び下肺野それぞれにおいてGGOが出現する位置が異なる。このため、背側に高吸収領域を含むCT画像に隣接する前後のスライスのCT画像において、高吸収領域の位置及び面積が変化する。
【0036】
このように、重力効果に起因する高吸収領域は、上肺野から下肺野に渡って連続的に背側に観察される、という知見を利用して、CT画像内の高吸収領域が重力効果に起因するか否かを判定することが可能である。
【0037】
そこで、判定部414は、連続して撮影された複数のスライス各々のCT画像421内において、肺野の背側の位置に、GGOを含む高吸収領域と類似する高吸収領域が含まれるか否かを判定する。以下では、GGOを含む高吸収領域と類似する高吸収領域を指して、類似高吸収領域と記載することがある。
【0038】
複数のスライスそれぞれのCT画像421内において、肺野の背側の位置に類似高吸収領域が含まれている場合、判定部414は、その類似高吸収領域が重力効果に起因する高吸収領域であると判定する。一方、類似高吸収領域を含むCT画像421に隣接するスライスのCT画像421において、肺野の背側の位置に類似高吸収領域が含まれていない場合、判定部414は、その類似高吸収領域が重力効果に起因する高吸収領域ではないと判定する。
【0039】
そして、判定部414は、重力効果に起因する高吸収領域であるか否かを示す判定結果422を生成して、記憶部411に格納し、出力部415は、判定結果422を出力する。
【0040】
図4の画像処理装置401によれば、各CT画像421内の肺野の背側に高吸収領域が含まれている場合、その高吸収領域が重力効果に起因するものであるか否かを判定することができる。これにより、機械学習により生成された画像識別モデルによって、重力効果に起因する高吸収領域がGGOとして誤識別される可能性が低下し、CT画像の識別精度が向上する。したがって、画像識別モデルを用いた類似症例検索処理の検索精度も向上する。
【0041】
例えば、判定部414は、次のような条件を用いて、重力効果によって発生している可能性がある高吸収領域を特定する。
(C1)複数のスライス各々のCT画像421内において、肺野の背側の位置に存在する領域の画像特徴量が、GGOを含む高吸収領域の画像特徴量に対応する。
(C2)背側の位置を基準として、重力の方向とは逆の方向に存在する領域のCT値の統計値が、所定値よりも小さい。
【0042】
判定部414は、機械学習によって生成された画像識別モデルを用いて、肺野の背側の位置に存在する領域の画像特徴量が条件(C1)を満たすか否かをチェックすることができる。この場合、非特許文献1の類似症例検索技術等を用いて、GGOを含む複数のCT画像に対する機械学習を行うことによって、画像識別モデルが生成される。
【0043】
条件(C2)において、重力の方向とは逆の方向に存在する領域は、肺野の背側以外の位置に存在する領域であってもよく、所定値は、成人の正常な肺のCT値の上限値であってもよい。
【0044】
条件(C1)及び条件(C2)が満たされる場合、背側の位置に存在する領域は、肺野の背側のみに存在する類似高吸収領域である。したがって、これらの条件を用いることで、重力効果によって発生している可能性がある高吸収領域を特定することができる。
【0045】
図6A及び図6Bは、図4の画像処理装置401が条件(C1)及び条件(C2)を用いて行う画像処理の具体例を示すフローチャートである。まず、取得部412は、CT装置402又はストレージ装置403から、連続して撮影されたN枚のスライスのCT画像421を取得する(ステップ601)。前処理部413は、CT画像421の肺野の背側にGGO以外の異常陰影が含まれている場合、CT画像421を判定部414の判定対象から除外する。
【0046】
CT画像421の肺野の背側にGGO以外の異常陰影が含まれていない場合、判定部414は、1枚のスライスを指定する制御変数iに1を設定し(ステップ602)、i番目のスライスのCT画像421を、所定サイズのブロックに分割する(ステップ603)。ブロックのサイズは、16×16画素であってもよく、8×8画素であってもよい。また、ブロックの形状は正方形であってもよく、長方形であってもよい。
【0047】
図7は、複数のブロックに分割されたCT画像421の例を示している。この例では、肺野の画像を含む胸部CT画像が260個のブロックに分割されている。この場合、CT画像421の水平方向が身体の左右の方向に対応し、垂直方向が身体の前後の方向に対応する。CT画像421の垂直方向において、腹側から背側へ向かう方向が重力の方向を表し、背側から腹側へ向かう方向が重力とは逆の方向を表す。
【0048】
次に、判定部414は、画像識別モデルを用いて、各ブロックが類似高吸収領域に対応するか否かを識別する(ステップ604)。ブロックの画像特徴量が、GGOを含む高吸収領域の画像特徴量に対応する場合、そのブロックは類似高吸収領域に対応すると判定される。
【0049】
次に、判定部414は、CT画像421内の背側の位置に、類似高吸収領域に対応すると識別されたブロックが存在するか否かをチェックする(ステップ605)。例えば、背側の位置としては、CT画像421内の下端(背)から所定長の範囲にある領域を用いることができる。所定長は、CT画像421の上端(腹)から下端までの長さの1/3~1/5であってもよい。
【0050】
図7の例では、所定長として、上端から下端までの長さの1/4の長さが用いられており、領域701に含まれる17個のブロックが類似高吸収領域に対応する。この例では、簡単のため、左肺のみに類似高吸収領域が示されているが、重力効果に起因する高吸収領域は、図5(a)に示したように、左右両方の肺に発生することが多い。
【0051】
背側の位置に類似高吸収領域に対応するブロックが存在する場合(ステップ605,YES)、判定部414は、そのブロックを含む列における背側以外の位置のブロックについて、CT値の統計値Vを計算する(ステップ606)。
【0052】
例えば、判定部414は、背側以外の位置の各ブロックに含まれる複数の画素のCT値の統計値を計算し、それらのブロックの統計値に対する統計処理を行うことで、統計値Vを求めることができる。各ブロックの統計値は、平均値、中央値、最頻値、最大値、最小値、総和等であってもよい。また、統計値に対する統計処理は、平均値、中央値、最頻値、最大値、最小値、総和等を求める処理であってもよい。
【0053】
図8は、類似高吸収領域に対応するブロックを含む列における平均CT値の変化の例を示している。横軸は、腹側から背側へ向かう方向における位置を表し、縦軸は、各ブロックの平均CT値を表す。曲線801は、図7の列702に含まれる各ブロックの平均CT値を示している。-700HUは、成人の正常な肺のCT値の上限値に対応する。
【0054】
この例では、背側の位置のブロックの平均CT値が-700HUを超えており、背側以外の位置のブロックの平均CT値は、概ね-700HU以下である。このように、背側のブロックの平均CT値のみが上限値を超えている場合、重力効果によって高吸収領域が発生している可能性がある。
【0055】
そこで、判定部414は、背側以外の位置のブロックの統計値Vを所定値と比較する(ステップ607)。例えば、統計値Vがブロック毎の平均CT値の平均値である場合、所定値は-700HUであってもよい。ステップ606及びステップ607の処理は、背側の位置に類似高吸収領域に対応するブロックが存在する、すべての列について行われる。
【0056】
すべての列について統計値Vが所定値以下である場合(ステップ607,YES)、i番目のスライスのCT画像421の背側のみに類似高吸収領域が含まれていることが分かる。そこで、判定部414は、そのCT画像421に重力効果に起因する高吸収領域が含まれている可能性があると判定し、iを1だけインクリメントすることで、現在のスライスに隣接するスライスのCT画像421を指定する(ステップ608)。そして、判定部414は、iをNと比較する(ステップ609)。
【0057】
iがN以下である場合(ステップ609,NO)、判定部414は、ステップ603以降の処理を繰り返す。これにより、現在のスライスに隣接するスライスのCT画像421について、重力効果に起因する高吸収領域が含まれている可能性があるか否かがチェックされる。
【0058】
そして、iがNを超えた場合(ステップ609,YES)、N枚のスライスのCT画像421それぞれの背側に類似高吸収領域が含まれていることが分かる。そこで、判定部414は、CT画像421に重力効果に起因する高吸収領域が含まれていることを示す判定結果422を生成し(ステップ610)、出力部415は、判定結果422を出力する(ステップ611)。
【0059】
背側の位置に類似高吸収領域に対応するブロックが存在しない場合(ステップ605,NO)、判定部414は、CT画像421に重力効果に起因する高吸収領域が含まれていないことを示す判定結果422を生成する(ステップ612)。そして、出力部415は、判定結果422を出力する(ステップ611)。
【0060】
いずれかの列について統計値Vが所定値よりも大きい場合(ステップ607,NO)、判定部414は、CT画像421に含まれる類似高吸収領域は、GGOを含む高吸収領域であると判定する。そこで、判定部414は、CT画像421に重力効果に起因する高吸収領域が含まれていないことを示す判定結果422を生成し(ステップ610)、出力部415は、判定結果422を出力する(ステップ611)。
【0061】
図6A及び図6Bの画像処理によれば、CT画像421を複数のブロックに分割することで、ブロック毎に、条件(C1)が満たされるか否かがチェックされ、条件(C1)を満たすブロックを含む列毎に、条件(C2)が満たされるか否かがチェックされる。また、隣接するスライスのCT画像421も条件(C1)及び条件(C2)を満たすことを確認することで、重力効果に起因する高吸収領域がスライス間で連続して存在することが分かる。さらに、ブロックのサイズを適切に設定することで、高精度な判定結果422を効率よく求めることが可能になる。
【0062】
例えば、画像処理の対象となるN枚のスライスとしては、下肺野の長さよりも長い部分に対応する、連続したスライスが用いられる。下肺野の背側に有意に見られるGGOといった症例が存在するため、上肺野から下肺野までの長さの1/3程度の部分のみでは、そのようなGGOを、重力効果に起因する高吸収領域として誤識別する可能性がある。例えば、上肺野から下肺野までの長さの2/3の部分をカバーするスライスを用いることで、このような誤識別を防止することができる。
【0063】
図2の画像処理装置201及び図4の画像処理装置401の構成は一例に過ぎず、画像処理装置の用途又は条件に応じて一部の構成要素を省略又は変更してもよい。例えば、図4の画像処理装置401において、CT画像421が事前に記憶部411に格納されている場合は、取得部412を省略することができる。CT画像421がGGO以外の異常陰影を含んでいない場合は、前処理部413を省略することができ、判定結果422を出力する必要がない場合は、出力部415を省略することができる。
【0064】
図3図6A、及び図6Bのフローチャートは一例に過ぎず、画像処理装置の構成又は条件に応じて一部の処理を省略又は変更してもよい。例えば、図6A及び図6Bの画像処理において、CT画像421が事前に記憶部411に格納されている場合は、ステップ601の処理を省略することができる。判定結果422を出力する必要がない場合は、ステップ611の処理を省略することができる。
【0065】
患者が伏臥位になってCT撮影が行われる場合、胸部に作用する重力の方向に対応する所定位置は、肺野の腹側の位置になる。したがって、ステップ605において、判定部414は、CT画像421内の腹側の位置に、類似高吸収領域に対応すると識別されたブロックが存在するか否かをチェックする。この場合、ステップ606において、判定部414は、類似高吸収領域に対応するブロックを含む列における腹側以外の位置のブロックについて、CT値の統計値Vを計算する。
【0066】
図1(a)及び図1(b)に示した閾値補正曲線は一例に過ぎず、閾値補正曲線は、撮影されるCT画像に応じて変化する。図5(a)、図5(b)、及び図7に示したCT画像は一例に過ぎず、CT画像は、撮影される患者及び身体部位に応じて変化する。図8に示した平均CT値の変化は一例に過ぎず、平均CT値の変化は、撮影されるCT画像に応じて変化する。
【0067】
図9は、図2の画像処理装置201及び図4の画像処理装置401として用いられる情報処理装置(コンピュータ)の構成例を示している。図9の情報処理装置は、CPU(Central Processing Unit)901、メモリ902、入力装置903、出力装置904、補助記憶装置905、媒体駆動装置906、及びネットワーク接続装置907を含む。これらの構成要素はバス908により互いに接続されている。図4のCT装置402及びストレージ装置403は、ネットワーク接続装置907に接続されていてもよい。
【0068】
メモリ902は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリであり、処理に用いられるプログラム及びデータを格納する。メモリ902は、図2の記憶部211又は図4の記憶部411として用いることができる。
【0069】
CPU901(プロセッサ)は、例えば、メモリ902を利用してプログラムを実行することにより、図2の判定部212、図4の取得部412、前処理部413、及び判定部414として動作する。
【0070】
入力装置903は、例えば、キーボード、ポインティングデバイス等であり、オペレータ又はユーザからの指示又は情報の入力に用いられる。出力装置904は、例えば、表示装置、プリンタ、スピーカ等であり、オペレータ又はユーザへの問い合わせ又は指示、及び処理結果の出力に用いられる。出力装置904は、図4の出力部415として用いることができる。処理結果は、判定結果422であってもよい。
【0071】
補助記憶装置905は、例えば、磁気ディスク装置、光ディスク装置、光磁気ディスク装置、テープ装置等である。補助記憶装置905は、ハードディスクドライブ又はフラッシュメモリであってもよい。情報処理装置は、補助記憶装置905にプログラム及びデータを格納しておき、それらをメモリ902にロードして使用することができる。補助記憶装置905は、図2の記憶部211又は図4の記憶部411として用いることができる。
【0072】
媒体駆動装置906は、可搬型記録媒体909を駆動し、その記録内容にアクセスする。可搬型記録媒体909は、メモリデバイス、フレキシブルディスク、光ディスク、光磁気ディスク等である。可搬型記録媒体909は、CD-ROM(Compact Disk Read Only Memory)、DVD(Digital Versatile Disk)、USB(Universal Serial Bus)メモリ等であってもよい。オペレータ又はユーザは、この可搬型記録媒体909にプログラム及びデータを格納しておき、それらをメモリ902にロードして使用することができる。
【0073】
このように、処理に用いられるプログラム及びデータを格納するコンピュータ読み取り可能な記録媒体は、メモリ902、補助記憶装置905、又は可搬型記録媒体909のような、物理的な(非一時的な)記録媒体である。
【0074】
ネットワーク接続装置907は、LAN(Local Area Network)、WAN(Wide Area Network)等の通信ネットワークに接続され、通信に伴うデータ変換を行う通信インタフェース回路である。情報処理装置は、プログラム及びデータを外部の装置からネットワーク接続装置907を介して受信し、それらをメモリ902にロードして使用することができる。ネットワーク接続装置907は、図4の出力部415として用いることができる。
【0075】
情報処理装置は、ネットワーク接続装置907を介して、ユーザ端末からCT画像421及び処理要求を受信し、判定結果422をユーザ端末へ送信することもできる。
【0076】
なお、情報処理装置が図9のすべての構成要素を含む必要はなく、用途又は条件に応じて一部の構成要素を省略することも可能である。例えば、情報処理装置がユーザ端末から処理要求を受信する場合は、入力装置903及び出力装置904を省略してもよい。可搬型記録媒体909又は通信ネットワークを使用しない場合は、媒体駆動装置906又はネットワーク接続装置907を省略してもよい。
【0077】
開示の実施形態とその利点について詳しく説明したが、当業者は、特許請求の範囲に明確に記載した本発明の範囲から逸脱することなく、様々な変更、追加、省略をすることができるであろう。
【0078】
図1乃至図9を参照しながら説明した実施形態に関し、さらに以下の付記を開示する。
(付記1)
身体部位の隣接する2枚のスライスを含む複数のスライス各々のコンピュータ断層撮影画像内において、前記身体部位に作用する重力の方向に対応する所定位置に、特定の症例のコンピュータ断層撮影画像に現れる第1高吸収領域と類似する第2高吸収領域が含まれるか否かを判定し、
前記複数のスライスのコンピュータ断層撮影画像内の前記所定位置に前記第2高吸収領域が含まれている場合、前記第2高吸収領域が重力効果に起因する高吸収領域であると判定する、
処理をコンピュータに実行させるための画像処理プログラム。
(付記2)
前記コンピュータは、前記複数のスライス各々のコンピュータ断層撮影画像内の前記所定位置に存在する領域の画像特徴量が前記第1高吸収領域の画像特徴量に対応し、かつ、前記所定位置を基準として前記重力の方向とは逆の方向に存在する領域の画素値の統計値が所定値よりも小さい場合、前記所定位置に前記第2高吸収領域が含まれていると判定することを特徴とする付記1記載の画像処理プログラム。
(付記3)
前記コンピュータは、前記複数のスライス各々のコンピュータ断層撮影画像を複数のブロックに分割し、前記複数のブロックのうち前記所定位置に存在するブロックの画像特徴量が前記第1高吸収領域の画像特徴量に対応するか否かを判定し、前記所定位置に存在するブロックの画像特徴量が前記第1高吸収領域の画像特徴量に対応する場合、前記所定位置に存在するブロックを含む列において、前記所定位置に存在するブロック以外のブロックの画素値の統計値を求め、前記統計値が所定値よりも小さい場合、前記所定位置に前記第2高吸収領域が含まれていると判定することを特徴とする付記1記載の画像処理プログラム。
(付記4)
前記コンピュータは、機械学習によって生成された画像識別モデルを用いて、前記所定位置に存在するブロックの画像特徴量が前記第1高吸収領域の画像特徴量に対応するか否かを判定することを特徴とする付記3記載の画像処理プログラム。
(付記5)
前記身体部位は胸部であり、前記複数のスライス各々のコンピュータ断層撮影画像には肺野の画像が含まれており、前記所定位置は前記肺野内の背側の位置であり、前記特定の症例は肺疾患であり、前記第1高吸収領域はすりガラス陰影を含む領域であることを特徴とする付記1乃至4のいずれか1項に記載の画像処理プログラム。
(付記6)
前記複数のスライスは、前記肺野のうち下肺野の長さよりも長い部分に対応する、連続したスライスであることを特徴とする付記5記載の画像処理プログラム。
(付記7)
身体部位の隣接する2枚のスライスを含む複数のスライスのコンピュータ断層撮影画像を記憶する記憶部と、
前記複数のスライス各々のコンピュータ断層撮影画像内において、前記身体部位に作用する重力の方向に対応する所定位置に、特定の症例のコンピュータ断層撮影画像に現れる第1高吸収領域と類似する第2高吸収領域が含まれるか否かを判定し、前記複数のスライスのコンピュータ断層撮影画像内の前記所定位置に前記第2高吸収領域が含まれている場合、前記第2高吸収領域が重力効果に起因する高吸収領域であると判定する判定部と、
を備えることを特徴とする画像処理装置。
(付記8)
前記判定部は、前記複数のスライス各々のコンピュータ断層撮影画像内の前記所定位置に存在する領域の画像特徴量が前記第1高吸収領域の画像特徴量に対応し、かつ、前記所定位置を基準として前記重力の方向とは逆の方向に存在する領域の画素値の統計値が所定値よりも小さい場合、前記所定位置に前記第2高吸収領域が含まれていると判定することを特徴とする付記7記載の画像処理装置。
(付記9)
前記判定部は、前記複数のスライス各々のコンピュータ断層撮影画像を複数のブロックに分割し、前記複数のブロックのうち前記所定位置に存在するブロックの画像特徴量が前記第1高吸収領域の画像特徴量に対応するか否かを判定し、前記所定位置に存在するブロックの画像特徴量が前記第1高吸収領域の画像特徴量に対応する場合、前記所定位置に存在するブロックを含む列において、前記所定位置に存在するブロック以外のブロックの画素値の統計値を求め、前記統計値が所定値よりも小さい場合、前記所定位置に前記第2高吸収領域が含まれていると判定することを特徴とする付記7記載の画像処理装置。
(付記10)
前記判定部は、機械学習によって生成された画像識別モデルを用いて、前記所定位置に存在するブロックの画像特徴量が前記第1高吸収領域の画像特徴量に対応するか否かを判定することを特徴とする付記9記載の画像処理装置。
(付記11)
コンピュータにより実行される画像処理方法であって、
前記コンピュータが、
身体部位の隣接する2枚のスライスを含む複数のスライス各々のコンピュータ断層撮影画像内において、前記身体部位に作用する重力の方向に対応する所定位置に、特定の症例のコンピュータ断層撮影画像に現れる第1高吸収領域と類似する第2高吸収領域が含まれるか否かを判定し、
前記複数のスライスのコンピュータ断層撮影画像内の前記所定位置に前記第2高吸収領域が含まれている場合、前記第2高吸収領域が重力効果に起因する高吸収領域であると判定する、
ことを特徴とする画像処理方法。
(付記12)
前記コンピュータは、前記複数のスライス各々のコンピュータ断層撮影画像内の前記所定位置に存在する領域の画像特徴量が前記第1高吸収領域の画像特徴量に対応し、かつ、前記所定位置を基準として前記重力の方向とは逆の方向に存在する領域の画素値の統計値が所定値よりも小さい場合、前記所定位置に前記第2高吸収領域が含まれていると判定することを特徴とする付記11記載の画像処理方法。
(付記13)
前記コンピュータは、前記複数のスライス各々のコンピュータ断層撮影画像を複数のブロックに分割し、前記複数のブロックのうち前記所定位置に存在するブロックの画像特徴量が前記第1高吸収領域の画像特徴量に対応するか否かを判定し、前記所定位置に存在するブロックの画像特徴量が前記第1高吸収領域の画像特徴量に対応する場合、前記所定位置に存在するブロックを含む列において、前記所定位置に存在するブロック以外のブロックの画素値の統計値を求め、前記統計値が所定値よりも小さい場合、前記所定位置に前記第2高吸収領域が含まれていると判定することを特徴とする付記11記載の画像処理方法。
(付記14)
前記コンピュータは、機械学習によって生成された画像識別モデルを用いて、前記所定位置に存在するブロックの画像特徴量が前記第1高吸収領域の画像特徴量に対応するか否かを判定することを特徴とする付記13記載の画像処理方法。
【符号の説明】
【0079】
101、102 閾値補正曲線
201、401 画像処理装置
211、411 記憶部
212、414 判定部
221、421 CT画像
402 CT装置
403 ストレージ装置
412 取得部
413 前処理部
415 出力部
422 判定結果
501、502、511、512 高吸収領域
701 領域
702 列
801 曲線
901 CPU
902 メモリ
903 入力装置
904 出力装置
905 補助記憶装置
906 媒体駆動装置
907 ネットワーク接続装置
908 バス
909 可搬型記録媒体
図1
図2
図3
図4
図5
図6A
図6B
図7
図8
図9