(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-10
(45)【発行日】2023-03-20
(54)【発明の名称】距離測定を行うための動作可能な光電子モジュール
(51)【国際特許分類】
H01L 31/12 20060101AFI20230313BHJP
G01B 11/00 20060101ALI20230313BHJP
G01V 8/12 20060101ALI20230313BHJP
【FI】
H01L31/12 E
G01B11/00 B
G01V8/12 D
(21)【出願番号】P 2017562624
(86)(22)【出願日】2016-05-11
(86)【国際出願番号】 SG2016050219
(87)【国際公開番号】W WO2016195592
(87)【国際公開日】2016-12-08
【審査請求日】2019-04-09
【審判番号】
【審判請求日】2021-03-05
(32)【優先日】2015-06-03
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】512195902
【氏名又は名称】ヘプタゴン・マイクロ・オプティクス・プライベート・リミテッド
【氏名又は名称原語表記】HEPTAGON MICRO OPTICS PTE. LTD.
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】ガイガー,イェンス
(72)【発明者】
【氏名】レントゲン,ペーター
(72)【発明者】
【氏名】ロッシ,マルクス
(72)【発明者】
【氏名】アイラートセン,ジェームズ
【合議体】
【審判長】山村 浩
【審判官】野村 伸雄
【審判官】吉野 三寛
(56)【参考文献】
【文献】特開2001-156325(JP,A)
【文献】特開2013-131601(JP,A)
【文献】特表2014-521226(JP,A)
【文献】米国特許出願公開第2004/0081409(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 31/12
(57)【特許請求の範囲】
【請求項1】
光電子モジュールであって、
光を出射するように動作可能なエミッタと、
前記エミッタによって出射された光を用いて前記光電子モジュール外側の対象物を照明するように、前記エミッタと位置合わせられたエミッタ光学組立体と、
前記エミッタによって出射された1つ以上の波長の光を検出するように動作可能な検出器と、
前記対象物によって反射された光を前記検出器に導くように、前記検出器と位置合わせられた検出器光学組立体とを含み、
前記検出器の光電流応答が線形となる、前記光電子モジュールと前記対象物との間の距離の範囲を拡大またはシフトするために、前記エミッタ光学組立体は
、エミッタ視界を160°よりも大きく広げるディフューザを含み、
前記検出器によって検出された前記光電流応答は、前記光電子モジュールと前記対象物との間の距離に相関させられる、光電子モジュール。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願は、2015年6月3日に出願された米国仮特許出願第62/170412号の優先権利益を主張し、その開示の全体が本明細書に組み込まれる。
【0002】
技術分野
本開示は、距離データを取得するように動作可能な光電子モジュールに関する。
【背景技術】
【0003】
背景
光電子モジュールは、エミッタおよび検出器を用いて、距離データ、例えば、光電子モジュールと対象物との間の距離を捕捉するように動作可能である。検出器は、エミッタによって出射され、対象物によって反射された光を検出することができる。検出器の応答、すなわち光電流応答は、対象物との距離に相関させられる。一部の距離範囲において、光電流応答は、距離に対して線形になる傾向がある。光電流応答の線形領域は、正確且つ精確な距離データを得るための理想範囲である。また、光電流応答の線形領域は、エミッタおよび検出器の効率の変動および/または対象物の反射率の変動に左右されない。したがって、上述したように、光電流応答が線形である距離の範囲を広げることが有利であろう。さらに、線形領域は、ゼロ距離の位置から開始しなくてもよい。しかしながら、場合によって、ゼロ距離の位置から開始するように線形領域をシフトすることが有利であり得る。例えば、光電流応答の線形領域を距離ゼロに近い位置にシフトした場合、短い距離(すなわち、距離データを捕捉するように動作可能な光電子モジュールと対象物との間の距離)を近距離でより正確且つ精確に測定し、決定することができる。さらに他の例において、非常に大きな距離から開始するように線形領域をシフトすることが有利であり得る。
【発明の概要】
【課題を解決するための手段】
【0004】
概要
本開示は、光電子モジュール内の検出器の線形光電流応答を拡大またはシフトするための様々な実施形態を記載する。
【0005】
例えば、一態様において、記載された様々な光電子モジュールは、光(例えば、可視域または非可視域の電磁放射線)を出射するように動作可能なエミッタと、エミッタによって出射された光を用いて光電子モジュール外側の対象物を照明するように、エミッタと位置合わせられたエミッタ光学組立体と、エミッタによって出射された1つ以上の波長の光を検出するように動作可能な検出器と、対象物によって反射された光を検出器に導くように、検出器と位置合わせられた検出器光学組立体とを含む。いくつかの実施形態において、光電子モジュールは、検出器の線形光電流応答を拡大またはシフトするように動作可能な要素を含む。
【0006】
いくつかの実施形態によれば、エミッタ光学組立体は、アナモルフィックレンズ素子を含む。いくつかの例において、アナモルフィックレンズ素子は、エミッタ視界を検出器に向かって偏向させる。また、いくつかの例において、対象物上の照明光の強度が横方向に変化する。
【0007】
別の実施形態によれば、エミッタ光学組立体は、回折レンズ素子を含む。いくつかの例において、対象物上の照明光は、離散的照明特徴として現れる。また、いくつかの例において、各々の離散的照明特徴は、検出器によって検出される段階状の光電流応答を生成する。いくつかの実施形態において、各々の離散的照明特徴は、他の離散的照明特徴と同様の寸法を有する。また、いくつかの実施形態において、各々の離散的照明特徴または各々の離散的照明特徴の部分集合は、他の離散的照明特徴と異なる寸法を有してもよい。また、いくつかの例において、各々の離散的照明特徴または各々の離散的照明特徴の部分集合は、他の離散的照明特徴と異なる強度を有する。対象物上の照明光は、例えば、幾何学的形状または一連の形状を有することができる。
【0008】
更なる実施形態によれば、光電子モジュールは、少なくともエミッタ光学組立体の上方に設けられたフィルタを含む。いくつかの例において、フィルタは、エミッタ光学組立体および検出器光学組立体の上方に設けられた分光フィルタである。分光フィルタは、例えば、エミッタおよび検出器光学組立体の上方のカバーガラスの上面に設けられてもよい。
【0009】
別の実施形態によれば、エミッタ光学組立体は、ディフューザを含む。
別の態様によれば、光電子モジュールは、光を出射する複数のエミッタを含む。複数のエミッタのうち第1エミッタは、モジュールからの第1距離範囲に位置する対象物を検出するように動作可能であり、複数のエミッタのうち第2エミッタは、モジュールからの第2距離範囲に位置する対象物を検出するように動作可能である。いくつかの例において、複数のエミッタは、順次に作動するように動作可能である。また、いくつかの例において、複数のエミッタは、互いに異なる波長の光を出射する。
【0010】
さらに別の態様によれば、光電子モジュールは、第1モードおよび第2モードで動作可能である。第1モードにおいて、エミッタ視界と検出器視界との横向重なり部の増加は、対象物から反射され且つ検出器によって収集された光の強度の増加をもたらし、検出器の光電流応答は、光電子モジュールと対象物との間の距離に相関させられる。第2モードにおいて、検出器は、対象物から反射された光に基づいて位相シフトを検出し、位相シフトは、光電子モジュールと対象物との間の距離に相関させられる。いくつかの例において、光電子モジュールと対象物との間の距離が検出器の光電流応答の線形領域に相関させられた場合、光電子モジュールは、第1モードで動作する。例えば、光電子モジュールと対象物との間の距離が検出器の光電流応答の非線形領域に相関させられた場合、光電子モジュールは、第2モードで動作することができる。
【0011】
他の態様、特徴および利点は、以下の詳細な説明、添付の図面および特許請求の範囲から容易に明らかになるであろう。
【図面の簡単な説明】
【0012】
【
図1A】距離測定を行うために動作可能な光電子モジュールを示す図である。
【
図1B】対象物との距離に対する光電流応答を示す例示的なプロットである。
【
図2A】アナモルフィックエミッタ光学組立体を備えた光電子モジュールを示す図である。
【
図2B】アナモルフィックエミッタ光学組立体を備えた光電子モジュールを示す図である。
【
図3A】回折エミッタ光学組立体を備えた光電子モジュールを示す図である。
【
図3B】回折エミッタ光学組立体を備えた光電子モジュールを示す図である。
【
図3C】回折エミッタ光学組立体に起因する例示的な照明特徴を示す図である。
【
図3D】回折エミッタ光学組立体に起因する例示的な照明特徴を示す図である。
【
図4A】変調光源および復調画素を有し、第1動作モードで動作する光電子モジュールを示す図である。
【
図4B】変調光源および復調画素を有し、第1動作モードで動作する光電子モジュールを示す図である。
【
図4C】第2動作モードで動作する光電子モジュールを示す図である。
【
図5A】複数の光源からなるエミッタを備えた光電子モジュールを示す図である。
【
図5B】複数の光源からなるエミッタを備えた光電子モジュールを示す図である。
【
図5C】複数の光源からなるエミッタを備えた光電子モジュールを示す図である。
【
図5D】複数の光源からなるエミッタを備えた光電子モジュールを示す図である。
【
図6A】距離データを取得するように動作可能な光電子モジュールの追加の実施形態を示す図である。
【
図6B】距離データを取得するように動作可能な光電子モジュールの追加の実施形態を示す図である。
【
図7A】ディフューザを備えた光電子モジュールを示す図である。
【
図7B】対象物との距離に対する光電流応答を示す例示的なプロットである。
【
図8A】3つの異なる温度で動作するフィルタを用いて実装された光電子モジュールの発光強度対発光波長を示す例示的なプロットである。
【
図8B】フィルタを備えた光電子モジュールを示す図である。
【発明を実施するための形態】
【0013】
詳細な説明
図1Aは、距離データを取得するように動作可能な光電子モジュール100を示す。光電子モジュール100は、基板103(例えば、PCBガラス繊維ラミネートおよび/またはシリコン)に設けられたまたは一体化されたエミッタ101(例えば、発光ダイオード、端面発光レーザ(EEL)、垂直共振器面発光レーザ(VCSEL)、または前述した要素の任意のアレイまたは組み合わせ)と、検出器102(例えば、フォトダイオード、強度ピクセル、復調ピクセル、または前述した要素の任意のアレイまたは組み合わせ)とを含む。エミッタ101は、「光」と呼ぶことができる任意の波長または任意の波長範囲の電磁放射線(例えば、近赤外線、中赤外線または遠赤外線のような可視または非可視放射線)を出射するように構成することができる。また、エミッタ101は、変調光を出射するように構成することができる。さらに、検出器102は、任意の波長または任意の波長範囲の電磁放射線(例えば、近赤外線、中赤外線または遠赤外線のような可視または非可視放射線)を検出するように構成することができる。
【0014】
エミッタ101および検出器102は、スペーサ104によって横方向に取り囲まれ得る。スペーサ104は、エミッタ101によって出射されおよび/または検出器102によって検出可能な波長の光に対して実質的に非透過である。スペーサ104は、例えば、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができ、実質的に不透明な充填材および/または低熱膨張充填材(例えば、カーボンブラックおよび/または無機充填材)をさらに含むことができる。また、スペーサ104は、実質的に不透明なウエハ(例えば、PCBガラス繊維ラミネート)から製造することができる。
【0015】
光電子モジュール100は、エミッタ101と位置合わせられたエミッタ光学組立体105と、検出器102と位置合わせられた検出器光学組立体106とをさらに含む。光学組立体105および106の各々は、回折格子、マイクロレンズアレイ、レンズ、アナモフィックレンズ、プリズム、マイクロプリズムアレイおよび回折光学素子を含む光学素子のうち1つ、複数またはそれらの組み合わせを含むことができる。光学組立体105および106内の光学素子は、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができる。
【0016】
光学組立体105および106の各々は、絞り、フィルタ、スペーサ、位置合わせ機構、および対応の機能に関連する他の要素をさらに含むことができる。光学組立体105および106は、スペーサ104に設けられまたは一体化されてもよい。光電子モジュール100は、バッフル107をさらに含むことができる。バッフル107は、エミッタ101によって出射されおよび/または検出器102によって検出可能な波長の光に対して実質的に非透過であってもよい。バッフル107は、例えば、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができ、実質的に不透明な充填材および/または(例えば、カーボンブラックおよび/または無機充填材)をさらに含むことができる。また、バッフル107は、実質的に不透明なウエハ(例えば、PCBガラス繊維ラミネート)から製造することができる。いくつかの実施形態において、バッフル107は、迷光による不良影響を軽減することができる。さらに、バッフル107は、エミッタ視界111および検出器視界113を最適にすると共に、迷光が検出器に到達しないように実質的に防止する寸法(例えば、高さ、厚さ)を有するように構成することができる。
【0017】
図1Aは、距離zで光電子モジュール100から離れている対象物110(例えば、人物または人物の付属物)をさらに示す。エミッタ101から出射され、エミッタ光学組立体105を透過する光は、エミッタ視界(FOV:field-of-view)111に一致する。さらに、エミッタ視界111に一致し、対象物110に入射する光は、照明112を画定する。対象物110からの反射光は、検出器視界113内の検出器光学組立体106を透過し、検出器102によって検出することができる。エミッタ視界111と検出器視界113とが重なっている領域は、重なり領域114を画定する。重なり領域114の横方向の延在は、横向重なり部115を画定する。いくつかの実施形態において、横向重なり部115から反射され、検出器102に導かれた光を用いて、距離を決定することができる。例えば、対象物との距離zの増加は、重なり領域114の増加および横向重なり部115の増加をそれぞれもたらす。横向重なり部115の増加は、対象物110から反射され、検出器102によって収集される光の強度を増加することができる。距離範囲に対する検出器102の光電流応答は、光電子モジュール100と対象物110との間の距離zに相関させることができる。
【0018】
図1Bは、光電子モジュール100と対象物110との間の距離zに対する検出器102の光電流応答を示す例示的なプロットである。この例示的なプロットは、概ね3つの区域を含む。第1区域は、距離zの約0~1.0mmの間に位置し、第2区域は、距離zの約1.0mm~2.0mmの間に位置し、第3区域は、2.0mmを超える距離zに位置する。他の例において、これらの区域は、異なる距離zに位置してもよい。さらに他の例において、異なる数の区域が存在してもよい。図示した例において、第1区域は、距離zに対して光電流の非線形増加を示し、第2区域は、距離zに対して光電流の線形増加を示し、第3区域は、距離zに対して光電流の非線形減少を示す。いくつかの実施形態において、第2区域によって示された光電流応答、具体的に距離zに対する線形応答は、距離データを取得するために特に有利であり得る。
【0019】
(例えば、第2領域において)線形応答を生成するように構成された光電子モジュールは、改善した精度で距離データを測定することができる。例えば、同様の組立/製造プロセスによって製造された光電子モジュールは、(例えば、組立公差によって)本質的に寸法が変動する。寸法の変動は、
図1Bに示されたプロットの左右方向のシフトをもたらすことができる。さらに、光電子モジュールの他の変動(例えば、エミッタ101および/または検出器102の効率の変動)は、
図1Bに示されたプロットの上下方向のシフトをもたらすことができる。さらに、対象物の性質(例えば、対象物の反射率)の変動は、
図1Bに示されたプロットの上下方向のシフトをもたらすことができる。上述した変動の一部(例えば、寸法の変動および/またはエミッタおよび/または検出器の効率の変動)は、較正手順によって軽減することができる。しかしながら、他の変動(例えば、対象物の反射率の変動)は、較正手順によって容易に軽減されない可能性がある。それにも拘わらず、第2区域、すなわち、上述した線形区域において、対象物110の反射率に関係なく、格別の精度で距離(特に距離の相対変化)を測定することができる。したがって、説明した多くの実施形態は、この線形区域を利用および/または拡大および/またはシフトすることによって、改善した精度で距離を測定することができる。
【0020】
図2Aは、距離データを取得するように動作可能な光電子モジュール200を示す。光電子モジュール200は、基板203(例えば、PCBガラス繊維ラミネートおよび/またはシリコン)に設けられたまたは一体化されたエミッタ201(例えば、発光ダイオード、端面発光レーザ(EEL)、垂直共振器面発光レーザ(VCSEL)、または前述した要素の任意のアレイまたは組み合わせ)と、検出器202(例えば、フォトダイオード、強度ピクセル、復調ピクセル、または前述した要素の任意のアレイまたは組み合わせ)とを含む。エミッタ201は、任意の波長または任意の波長範囲の電磁放射線(例えば、近赤外線、中赤外線または遠赤外線のような可視または非可視放射線)を出射するように構成することができる。また、エミッタ201は、変調光を出射するように構成することができる。さらに、検出器202は、任意の波長または任意の波長範囲の電磁放射線(例えば、近赤外線、中赤外線または遠赤外線のような可視または非可視放射線)を検出するように構成することができる。
【0021】
エミッタ201および検出器202は、スペーサ204によって横方向に取り囲まれ得る。スペーサ204は、エミッタ201によって出射されおよび/または検出器202によって検出可能な波長の光に対して実質的に非透過である。スペーサ204は、例えば、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができ、実質的に不透明な充填材および/または低熱膨張充填材(例えば、カーボンブラックおよび/または無機充填材)をさらに含むことができる。また、スペーサ204は、実質的に不透明なウエハ(例えば、PCBガラス繊維ラミネート)から製造することができる。
【0022】
光電子モジュール200は、エミッタ201と位置合わせられたエミッタ光学組立体205と、検出器202と位置合わせられた検出器光学組立体206とをさらに含む。光学組立体205および206の各々は、回折格子、マイクロレンズアレイ、レンズ、アナモフィックレンズ、プリズム、マイクロプリズムアレイおよび回折光学素子を含む光学素子のうち1つ、複数またはそれらの組み合わせを含むことができる。光学組立体205および206内の光学素子は、例えば、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができる。
【0023】
光学組立体205および206の各々は、絞り、分光フィルタ、スペーサ、位置合わせ機構、および対応の機能に関連する他の要素をさらに含むことができる。光学組立体205および206は、スペーサ204に設けられまたは一体化されてもよい。光電子モジュール200は、バッフル207をさらに含むことができる。バッフル207は、エミッタ201によって出射されおよび/または検出器202によって検出可能な波長の光に対して実質的に非透過である。バッフル207は、例えば、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができ、実質的に不透明な充填材および/または(例えば、カーボンブラックおよび/または無機充填材)をさらに含むことができる。また、バッフル207は、実質的に不透明なウエハ(例えば、PCBガラス繊維ラミネート)から製造することができる。いくつかの実施形態において、バッフル207は、迷光による不良影響を軽減することができる。さらに、バッフル207は、エミッタ視界211および検出器視界213を最適にすると共に、迷光が検出器に到達しないように実質的に防止する寸法(例えば、高さ、厚さ)を有するように構成することができる。
【0024】
図2Aは、距離zで光電子モジュール200から離れている対象物210(例えば、人物または人物の付属物)をさらに示す。エミッタ201から出射され、エミッタ光学組立体205を透過する光は、エミッタ視界211に一致する。さらに、エミッタ視界211に一致し、対象物210に入射する光は、照明212を画定する。対象物210からの反射光は、検出器視界213内の検出器光学組立体206を透過し、検出器202によって検出することができる。エミッタ視界211と検出器視界213とが重なっている領域は、重なり領域214を画定する。重なり領域214の横方向の延在は、横向重なり部215を画定する。いくつかの実施形態において、横向重なり部215から反射され、検出器202に導かれた光を用いて、距離を決定することができる。
図2Aに示された光電子モジュール200のエミッタ光学組立体205は、アナモルフィックレンズを備える。アナモルフィックレンズは、エミッタ201から発する光を透過させるように動作可能である。透過光は、照明212を画定することができる(またはエミッタ光学組立体205の他の要素と協働して、照明212を画定することができる)。このような照明の一例は、
図2Bに示されている。
【0025】
図2Bは、アナモルフィックレンズを有するエミッタ光学組立体205を備えた光電子モジュール200を示している。アナモルフィックレンズを有するエミッタ光学組立体205から出射された光は、エミッタ視界211に一致する。いくつかの実施形態において、
図2Bに示すように、上述した検出器202の線形応答区域(すなわち、光電流が線形に変化する距離範囲)を増加させるために、エミッタ視界211を傾けることができる。例えば、(
図2Bに示すように)検出器202に向かってエミッタ視界211を傾けることによって、線形区域の距離zの下限値を拡大および/またはシフトすることができる。すなわち、傾けられたエミッタ視界211は、より短い距離zで横向重なり部215を増加させることができる。
【0026】
さらに、
図2Bに示すように、エミッタ光学組立体205は、照明212を生成するように構成することができる。照明212は、特定の寸法dに一致する。例えば、寸法dは、照明212の横方向寸法に対して小さく(例えば、少量)てもよい。場合によって、寸法dは、エミッタ201から出射された光を特に効率的に利用するように構成することができる。また、線形区域を拡大するように照明212の強度を横方向に変化させることができる。さらに、他の実施形態において、線形区域の増加および/または線形区域のシフト(例えば、ゼロ距離の位置に近づける)および/またはエミッタ201から出射された光の特に効率的な利用を達成するように、照明212の寸法dおよび/または強度を変化させることができる。
【0027】
図3Aは、距離データを取得するように動作可能な光電子モジュール300を示す。光電子モジュール300は、基板303(例えば、PCBガラス繊維ラミネートおよび/またはシリコン)に設けられたまたは一体化されたエミッタ301(例えば、発光ダイオード、端面発光レーザ(EEL)、垂直共振器面発光レーザ(VCSEL)、または前述した要素の任意のアレイまたは組み合わせ)と、検出器302(例えば、フォトダイオード、強度ピクセル、復調ピクセル、または前述した要素の任意のアレイまたは組み合わせ)とを含む。エミッタ301は、任意の波長または任意の波長範囲の電磁放射線(例えば、近赤外線、中赤外線または遠赤外線のような可視または非可視放射線)を出射するように構成することができる。また、エミッタ301は、変調光を出射するように構成することができる。さらに、検出器302は、任意の波長または任意の波長範囲の電磁放射線(例えば、近赤外線、中赤外線または遠赤外線のような可視または非可視放射線)を検出するように構成することができる。
【0028】
エミッタ301および検出器302は、スペーサ304によって横方向に取り囲まれ得る。スペーサ304は、エミッタ301によって出射されおよび/または検出器302によって検出可能な波長の光に対して実質的に非透過である。スペーサ304は、例えば、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができ、実質的に不透明な充填材および/または低熱膨張充填材(例えば、カーボンブラックおよび/または無機充填材)をさらに含むことができる。また、スペーサ304は、実質的に不透明なウエハ(例えば、PCBガラス繊維ラミネート)から製造することができる。
【0029】
光電子モジュール300は、エミッタ301と位置合わせられたエミッタ光学組立体305と、検出器302と位置合わせられた検出器光学組立体306とをさらに含む。光学組立体305および306の各々は、回折格子、マイクロレンズアレイ、レンズ、アナモフィックレンズ、プリズム、マイクロプリズムアレイおよび回折光学素子を含む光学素子のうち1つ、複数またはそれらの組み合わせを含むことができる。光学組立体305および306内の光学素子は、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができる。
【0030】
光学組立体305および306の各々は、絞り、分光フィルタ、スペーサ、位置合わせ機構、および対応の機能に関連する他の要素をさらに含むことができる。光学組立体305および306は、スペーサ304に設けられまたは一体化されてもよい。光電子モジュール300は、バッフル307をさらに含むことができる。バッフル307は、エミッタ301によって出射されおよび/または検出器302によって検出可能な波長の光に対して実質的に非透過である。バッフル307は、例えば、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができ、実質的に不透明な充填材および/または(例えば、カーボンブラックおよび/または無機充填材)をさらに含むことができる。また、バッフル307は、実質的に不透明なウエハ(例えば、PCBガラス繊維ラミネート)から製造することができる。いくつかの実施形態において、バッフル307は、迷光による不良影響を軽減することができる。さらに、バッフル307は、エミッタ視界311および検出器視界313を最適にすると共に、迷光が検出器に到達しないように実質的に防止する寸法(例えば、高さ、厚さ)を有するように構成することができる。
【0031】
図3Aは、距離zで光電子モジュール300から離れている対象物310(例えば、人物または人物の付属物)をさらに示す。エミッタ301から出射され、エミッタ光学組立体305を透過する光は、エミッタ視界311に一致する。さらに、エミッタ視界311に一致し、対象物310に入射する光は、照明312を画定する。対象物310からの反射光は、検出器視界313内の検出器光学組立体306を透過し、検出器302によって検出することができる。エミッタ視界311と検出器視界313とが重なっている領域は、重なり領域314を画定する。重なり領域314の横方向の延在は、横向重なり部315を画定する。いくつかの実施形態において、横向重なり部315から反射され、検出器302に導かれた光を用いて、距離を決定することができる。
図3Aに示された光電子モジュール300のエミッタ光学組立体305は、回折レンズ素子を備える。回折レンズ素子は、エミッタ301から発する光を透過させるように動作可能である。透過光は、照明312を画定することができる(またはエミッタ光学組立体305の他の要素と協働して照明312を画定することができる)。
図3Aにおいて、照明312は、記号上では複数の星として示される。照明312は、バー、ドット、円、楕円、またはそれらの各々の組み合わせなどの任意の幾何学的形状または一連の形状を有することができる。このような照明の一例は、
図3Aおよび
図3Bに示されている。照明312は、離散的照明特徴312A、312B、312Cおよび312Dを含むことができる。場合によって、離散的照明特徴は、段階状の光電流応答を生成することができる。各段階(すなわち、閾値電流)は、例えば、距離zにまたは距離zの特定の範囲に対応することができる。いくつかの実施形態において、段階状の光電流応答および/または離散的照明特徴は、較正ステップ(例えば、ウエハレベル/ウエハスケールで生成された光電子モジュール間のエミッタおよび/または検出器効率の差異/変動を軽減するように設計された較正ステップ)を行う必要性を省くことができる。
【0032】
図3Bは、
図3Aに示す距離zに対して異なる距離zで配置された光電子モジュール300および対象物310を示す図である。この例において、照明312は、記号上では複数の星(すなわち、照明特徴312A~312D)として示される。照明312は、バー、ドット、円、楕円、またはそれらの各々の組み合わせなどの任意の幾何学的形状または一連の形状を有することができる。この例において、1つの照明特徴312Aは、
図3Aの重なり領域314内の対象物310上に投影される。2つの照明特徴312Aおよび312Bは、重なり領域314内の対象物310上に投影される。したがって、横向重なり部315は、
図3Aに示された距離zよりも、
図3Bに示された距離zで2倍の光を反射する。異なる実施形態において、線形区域の増加および/または線形区域のシフトおよび/またはエミッタ301から出射された光の特に効率的な利用を達成するように、照明特徴(例えば、312A、312B、312Cおよび312D)の数、間隔、形状、強度および寸法を構成することができる。
【0033】
図3Cおよび
図3Dは、異なる照明特徴312A、312B、312Cおよび312Dを有する光電子モジュール300を示す。照明特徴312A、312B、312Cおよび312Dは、上述したように検出器302の線形応答領域(すなわち、光電流の線形変化をもたらす距離範囲)を増加させるように、互いに対して異なる距離lに一致することができる。また、
図3Cおよび
図3Dに示すように、エミッタ光学組立体305は、照明特徴312A、312B、312Cおよび312Dを生成するように構成することができる。照明特徴312A、312B、312Cおよび312Dは、特定の寸法dに一致する。検出器302の線形応答領域(すなわち、光電流の線形変化をもたらす距離範囲)を増加させるように、またはエミッタ301から出射された光を特に効率的に利用するように、
図3Cに示すように、寸法dは、照明特徴312A、312B、312Cおよび312Dに対して同様であってもよく、または
図3Dに示すように、寸法dは、照明特徴312A、312Bおよび312Dの各々または一部に対して異なってもよい。また、各照明特徴312A、312B、312Cおよび312Dの強度は、線形区域を増加するように互いに異なってもよい。さらに、他の実施形態において、照明特徴312A、312B、312Cおよび312Dの距離lと、寸法dまたは強度との両方を変更して、線形区域の増加および/または線形区域のシフトおよび/またはエミッタ301から出射された光の特に効率的な利用を達成することができる。
【0034】
図4Aは、距離データを取得するように動作可能な光電子モジュール400を示す。光電子モジュール400は、基板403(例えば、PCBガラス繊維ラミネートおよび/またはシリコン)に設けられたまたは一体化されたエミッタ401(例えば、発光ダイオード、端面発光レーザ(EEL)、垂直共振器面発光レーザ(VCSEL)、または前述した要素の任意のアレイまたは組み合わせ)と、検出器402(例えば、フォトダイオード、強度ピクセル、復調ピクセル、または前述した要素の任意のアレイまたは組み合わせ)とを含む。エミッタ401は、任意の波長または任意の波長範囲の電磁放射線(例えば、近赤外線、中赤外線または遠赤外線のような可視または非可視放射線)を出射するように構成することができる。また、エミッタ401は、変調光を出射するように構成することができる。さらに、検出器402は、任意の波長または任意の波長範囲の電磁放射線(例えば、近赤外線、中赤外線または遠赤外線のような可視または非可視放射線)を検出するように構成することができる。
【0035】
エミッタ401および検出器402は、スペーサ404によって横方向に取り囲まれ得る。スペーサ404は、エミッタ401によって出射されおよび/または検出器402によって検出可能な波長の光に対して実質的に非透過である。スペーサ404は、例えば、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができ、実質的に不透明な充填材および/または低熱膨張充填材(例えば、カーボンブラックおよび/または無機充填材)をさらに含むことができる。また、スペーサ404は、実質的に不透明なウエハ(例えば、PCBガラス繊維ラミネート)から製造することができる。光電子モジュール400は、エミッタ401と位置合わせられたエミッタ光学組立体405と、検出器402と位置合わせられた検出器光学組立体406とをさらに含む。光学組立体405および406の各々は、回折格子、マイクロレンズアレイ、レンズ、アナモフィックレンズ、プリズム、マイクロプリズムアレイおよび回折光学素子を含む光学素子のうち1つ、複数またはそれらの組み合わせを含むことができる。光学組立体405および406内の光学素子は、例えば、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができる。
【0036】
光学組立体405および406の各々は、絞り、分光フィルタ、スペーサ、位置合わせ機構、および対応の機能に関連する他の要素をさらに含むことができる。光学組立体405および406は、スペーサ404に設けられまたは一体化されてもよい。光電子モジュール400は、バッフル407をさらに含むことができる。バッフル407は、エミッタ401によって出射されおよび/または検出器402によって検出可能な波長の光に対して実質的に非透過である。バッフル407は、例えば、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができ、実質的に不透明な充填材および/または(例えば、カーボンブラックおよび/または無機充填材)をさらに含むことができる。また、バッフル407は、実質的に不透明なウエハ(例えば、PCBガラス繊維ラミネート)から製造することができる。いくつかの実施形態において、バッフル407は、迷光による不良影響を軽減することができる。さらに、バッフル407は、エミッタ視界411および検出器視界413を最適にすると共に、迷光が検出器に到達しないように実質的に防止する寸法(例えば、高さ、厚さ)を有するように構成することができる。
【0037】
図4Aは、距離zで光電子モジュール400から離れている対象物410(例えば、人物または人物の付属物)をさらに示す。エミッタ401から出射され、エミッタ光学組立体405を透過する光は、エミッタ視界(FOV:field-of-view)111に一致する。さらに、エミッタ視界411に一致し、対象物410に入射する光は、照明412を画定する。対象物410からの反射光は、検出器視界413内の検出器光学組立体406を透過し、検出器402によって検出することができる。エミッタ視界411と検出器視界413とが重なっている領域は、重なり領域414を画定する。重なり領域414の横方向の延在は、横向重なり部415を画定する。いくつかの実施形態において、横向重なり部415から反射され、検出器402に導かれた光を用いて、距離を決定することができる。この例において、光電子モジュール400のエミッタ401は、変調光源(例えば、飛行時間法に使用された光源)として示され、光電子モジュール400の検出器402は、復調センサ(例えば、飛行時間法に使用されたセンサ)として示される。
【0038】
光電子モジュール400は、2つの動作モードで動作することができる。第1動作モードにおいて、光電子モジュール400は、上述したように距離データを取得することができる。すなわち、横向重なり部415の増加は、対象物410から反射され、検出器402によって収集される光の強度の増加をもたらすことができる。検出器402の距離範囲に対する光電流応答は、光電子モジュール400と対象物410との間の距離zに相関させることができる。このような例は、
図4Aおよび
図4Bに示される。すなわち、距離zが増加すると(
図4A~
図4B)、重なり領域414および横向重なり部415が増加する(
図4A~
図4B)。この実施形態において、(復調センサとして実装された)検出器402は、強度感度性モードで動作することができる。すなわち、上述したように、対象物410から反射され、検出器402に導かれる光の強度を用いて、距離を決定することができる。
【0039】
第2動作モードにおいて、光電子モジュール400は、飛行時間法に従って距離データを取得することができる。すなわち、この例では、エミッタ401から出射され、対象物410に入射し、その後検出器402(例えば、復調センサ)に反射された変調光は、位相シフトを受ける。位相シフトは、検出器402によって検出および記録され、距離zと相関させられる。第2動作モードは、上述した線形区域の外側、すなわち、線形区域の下限極値および上限極値を定義する特定の距離zの外側で作動させることができる。
【0040】
例えば、
図4Cは、線形区域の下限極値および上限極値を定義する距離zの外側の第3距離z(例えば、
図4Aおよび
図4Bに示された距離よりも大きい)に位置する光電子モジュール400を示す。この例において、重なり領域414は、対象物に入射する照明412と横向重なり部415とが実質的に等しくなるように十分に大きい。対象物に入射する照明412と横向重なり部415とが実質的に等しい距離zにおいて、第2動作モードで距離データを取得することができる。いくつかの実施形態において、上述した線形区域の外側で第2動作モードを作動させることができる。他の実施形態において、(例えば、較正を行うために)上述した線形区域内で第2動作モードを作動させることができる。この例において、エミッタ401および検出器402は、それぞれ、変調光源および復調センサとして実装される。しかしながら、他の実施形態において、エミッタ401および検出器402は、パルス飛行時間法または他の距離捕捉技術を用いて距離zを決定するように構成することができる。
【0041】
図5Aは、距離データを取得するように動作可能な光電子モジュール500を示す。光電子モジュール500は、基板503(例えば、PCBガラス繊維ラミネートおよび/またはシリコン)に設けられたまたは一体化されたエミッタ501(例えば、発光ダイオード、端面発光レーザ(EEL)、垂直共振器面発光レーザ(VCSEL)、または前述した要素の任意のアレイまたは組み合わせ)と、検出器502(例えば、フォトダイオード、強度ピクセル、復調ピクセル、または前述した要素の任意のアレイまたは組み合わせ)とを含む。エミッタ501は、任意の波長または任意の波長範囲の電磁放射線(例えば、近赤外線、中赤外線または遠赤外線のような可視または非可視放射線)を出射するように構成することができる。また、エミッタ501は、変調光を出射するように構成することができる。さらに、検出器502は、任意の波長または任意の波長範囲の電磁放射線(例えば、近赤外線、中赤外線または遠赤外線のような可視または非可視放射線)を検出するように構成することができる。
【0042】
エミッタ501および検出器502は、スペーサ504によって横方向に取り囲まれ得る。スペーサ504は、エミッタ501によって出射されおよび/または検出器502によって検出可能な波長の光に対して実質的に非透過である。スペーサ504は、例えば、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができ、実質的に不透明な充填材および/または低熱膨張充填材(例えば、カーボンブラックおよび/または無機充填材)をさらに含むことができる。また、スペーサ504は、実質的に不透明なウエハ(例えば、PCBガラス繊維ラミネート)から製造することができる。光電子モジュール500は、エミッタ501と位置合わせられたエミッタ光学組立体505と、検出器502と位置合わせられた検出器光学組立体506とをさらに含む。光学組立体505および506の各々は、回折格子、マイクロレンズアレイ、レンズ、アナモフィックレンズ、プリズム、マイクロプリズムアレイおよび回折光学素子を含む光学素子のうち1つ、複数またはそれらの組み合わせを含むことができる。光学組立体505および506内の光学素子は、例えば、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができる。
【0043】
光学組立体505および506の各々は、絞り、分光フィルタ、スペーサ、位置合わせ機構、および対応の機能に関連する他の要素をさらに含むことができる。光学組立体505および506は、スペーサ504に設けられまたは一体化されてもよい。光電子モジュール500は、バッフル507をさらに含むことができる。バッフル507は、エミッタ501によって出射されおよび/または検出器502によって検出可能な波長の光に対して実質的に非透過である。バッフル507は、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができ、実質的に不透明な充填材および/または(例えば、カーボンブラックおよび/または無機充填材)をさらに含むことができる。また、バッフル507は、実質的に不透明なウエハ(例えば、PCBガラス繊維ラミネート)から製造することができる。いくつかの実施形態において、バッフル507は、迷光による不良影響を軽減することができる。さらに、バッフル507は、エミッタ視界511および検出器視界513を最適にすると共に、迷光が検出器に到達しないように実質的に防止する寸法(例えば、高さ、厚さ)を有するように構成することができる。
【0044】
図5Aは、距離zで光電子モジュール500から離れている対象物510(例えば、人物または人物の付属物)をさらに示す。光電子モジュール500は、第1光源501Aおよび第2光源501Bからなるエミッタ501を含む。光電子モジュール500は、第1光学領域505Aおよび第2光学領域505Bからなるエミッタ光学組立体505をさらに含む。第1光源501Aから出射された光は、エミッタ光学組立体505の第1光学領域505Aを透過することができる。透過光は、第1エミッタ視界511Aに一致する。第1発光体視界511Aに一致し、対象物510に入射する光は、第1照明512Aを画定する。また、第2光源501Bから出射された光は、エミッタ光学組立体505の第2光学領域505Bを透過することができる。透過光は、第2エミッタ視界511Bに一致する。第2エミッタ視界511Bに一致し、対象物510に入射する光は、第2照明512Bを画定する。
【0045】
対象物510からの反射光は、検出器視界513内の検出器光学組立体506を透過し、検出器502によって検出することができる。第1エミッタ視界511Aおよび/または第2エミッタ視界511Bと検出器視界513とが重なっている領域は、重なり領域514を画定する。重なり領域514の横方向の延在は、横向重なり部515を画定する。いくつかの実施形態において、横向重なり部515から反射され、検出器502に導かれた光を用いて、距離を決定することができる。例えば、対象物の距離zの増加は、重なり領域514の増加および横向重なり部515の増加をそれぞれもたらす。横向重なり部515の増加は、対象物510から反射され、検出器502によって収集される光の強度を増加することができる。距離範囲に対する検出器502の光電流応答は、光電子モジュール500と対象物510との間の距離zに相関させることができる。エミッタ501は、第1エミッタ501Aおよび第2エミッタ501Bから順次に光を出射するように動作可能である。例えば、第1エミッタ501Aおよび第2エミッタ501Bの両方が同一波長の光を出射する実施形態において、第1エミッタ501Aおよび第2エミッタ501Bの順次動作によって、上述した線形区域を増加させることができる。この例示的な実施形態は、
図5Aおよび
図5Bに示される。第1エミッタ501Aは、距離zまたは距離zの範囲で光を出射し、
図5Bに示された第2エミッタ501Bは、別の距離zまたは距離zの範囲で光を出射する。
【0046】
図5Cは、第1エミッタ501Aおよび第2エミッタ501Bからなるエミッタ501を備える光電子モジュール500Cの一例を示す。この例において、第1エミッタ501Aおよび第2エミッタ501Bは、異なる波長の光を出射するように構成される。光電子モジュール500は、第1光学領域505Aおよび第2光学領域505Bからなるエミッタ光学組立体505をさらに含む。第1エミッタ501Aから出射された光は、エミッタ光学組立体505の第1光学領域505Aを透過することができる。透過光は、第1エミッタ視界511Aに一致する。第1発光体視界511Aに一致し、対象物510に入射する光は、第1照明512Aを画定する。また、第2エミッタ501Bから出射された光は、エミッタ光学組立体505の第2光学領域505Bを透過することができる。透過光は、第2エミッタ視界511Bに一致する。第2エミッタ視界511Bに一致し、対象物510に入射する光は、第2照明512Bを画定する。
【0047】
上述したように、対象物510からの反射光は、検出器視界513内の検出器光学組立体506を透過し、検出器502によって検出することができる。検出器502は、第1エミッタ501Aおよび第2エミッタ501Bから出射された異なる波長の光を検出および区別するように構成することができる。検出器502は、例えばデュアル接合式フォトダイオードとして実装することができる。いくつかの例において、エミッタ501Aおよび501Bを順次に作動することができ、他の例において、エミッタ501Aおよび501Bを同時に作動することができる。
図5Cに示された例示的な光電子モジュール500Cは、上述した光電流応答の線形区域を増加させるように動作可能である。
【0048】
図5Dは、第1エミッタ501Aおよび第2エミッタ501Bからなるエミッタ501を備える光電子モジュール500Dの一例を示す。この例において、第1エミッタ501Aおよび第2エミッタ501Bは、異なる波長の光を出射するように構成される。光電子モジュール500は、エミッタ光学組立体505をさらに含む。第1エミッタ501Aから出射された光は、エミッタ光学組立体505を透過することができる。透過光は、第1エミッタ視界511Aに一致する。第1エミッタ視界511Aに一致し、対象物510に入射する光は、第1照明512Aを画定する。また、第2エミッタ501Bから出射された光は、エミッタ光学組立体505を透過することができる。透過光は、第2エミッタ視界511Bに一致する。第2エミッタ視界511Bに一致し、対象物510に入射する光は、第2照明512Bを画定する。
図5Dに示す例において、第1エミッタ視界511Aおよび第2エミッタ視界511Bは、実質的に同様である。
【0049】
上述したように、対象物510からの反射光は、検出器視界513内の検出器光学組立体506を透過し、検出器502によって検出することができる。検出器502は、第1エミッタ501Aおよび第2エミッタ501Bから出射された異なる波長の光を検出および区別するように構成することができる。検出器502は、例えばデュアル接合式フォトダイオードとして実装することができる。いくつかの例において、エミッタ501Aおよび501Bを順次に作動することができ、他の例において、エミッタ501Aおよび501Bを同時に作動することができる。
図5Dに示された例示的な光電子モジュール500Dは、上述した光電流応答の線形区域を増加させるように動作可能である。
【0050】
図6Aは、距離データを取得するように動作可能な光電子モジュール600を示す。光電子モジュール600は、基板603(例えば、PCBガラス繊維ラミネートおよび/またはシリコン)に設けられたまたは一体化されたエミッタ601(例えば、発光ダイオード、端面発光レーザ(EEL)、垂直共振器面発光レーザ(VCSEL)、または前述した要素の任意のアレイまたは組み合わせ)と、検出器602(例えば、フォトダイオード、強度ピクセル、復調ピクセル、または前述した要素の任意のアレイまたは組み合わせ)とを含む。エミッタ601は、任意の波長または任意の波長範囲の電磁放射線(例えば、近赤外線、中赤外線または遠赤外線のような可視または非可視放射線)を出射するように構成することができる。また、エミッタ601は、変調光を出射するように構成することができる。さらに、検出器602は、任意の波長または任意の波長範囲の電磁放射線(例えば、近赤外線、中赤外線または遠赤外線のような可視または非可視放射線)を検出するように構成することができる。
【0051】
エミッタ601および検出器602は、スペーサ604によって横方向に囲まれることができる。スペーサ604は、エミッタ601によって出射されおよび/または検出器602によって検出可能な波長の光に対して実質的に非透過である。スペーサ604は、例えば、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができ、実質的に不透明な充填材および/または低熱膨張充填材(例えば、カーボンブラックおよび/または無機充填材)をさらに含むことができる。また、スペーサ604は、実質的に不透明なウエハ(例えば、PCBガラス繊維ラミネート)から製造することができる。光電子モジュール600は、エミッタ601と位置合わせられたエミッタ光学組立体605と、検出器602と位置合わせられた検出器光学組立体606とをさらに含む。光学組立体605および606の各々は、回折格子、マイクロレンズアレイ、レンズ、アナモフィックレンズ、プリズム、マイクロプリズムアレイおよび回折光学素子を含む光学素子のうち1つ、複数またはそれらの組み合わせを含むことができる。光学組立体605および606内の光学素子は、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができる。
【0052】
光学組立体605および606の各々は、絞り、フィルタ、スペーサ、位置合わせ機構、および対応の機能に関連する他の要素をさらに含むことができる。光電子モジュール600は、光学組立体ハウジング607をさらに含む。光学組立体605および606は、光学組立体ハウジング607内に設けられまたは一体化されてもよい。光学組立体ハウジング607は、エミッタ601によって出射されおよび/または検出器602によって検出可能な波長の光に対して実質的に非透過である。光学組立体ハウジング607は、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができ、実質的に不透明な充填材および/または(例えば、カーボンブラックおよび/または無機充填材)をさらに含むことができる。また、光学組立体ハウジング607は、実質的に不透明なウエハ(例えば、PCBガラス繊維ラミネート)から製造することができる。光電子モジュール600は、カバーガラス608をさらに含むことができる。カバーガラス608は、実質的に透明な材料(例えば、無機ガラス、サファイア、アルミナ、またはポリマー材料などの他の実質的に透明な材料)を含むことができる。光電子モジュール600は、絞り609をさらに含むことができる。絞り609は、実質的に不透明な材料(例えば、黒色クロム)を含むことができる。絞り609は、例えば、フォトリソグラフィ法を介してカバーガラス608上に形成することができる。更に他の実施形態において、絞り609は、カバーガラス608上に印刷することができ、またはレーザ黒化処理を介してカバーガラス608上に形成することができる。いくつかの実装において、絞り609は、迷光による不良影響を軽減することができる。
【0053】
図6Aは、距離zで光電子モジュール600から離れている対象物610(例えば、人物または人物の付属物)をさらに示す。エミッタ601から出射され、エミッタ光学組立体605を通過する光は、エミッタ視界611に一致する。また、エミッタ視界611に一致し、対象物610に入射する光は、照明612を画定する。対象物610からの反射光は、検出器視界613内の検出器光学組立体606を透過し、検出器602によって検出される。エミッタ視界611と検出器視界613とが重なっている領域は、重なり領域614を画定する。重なり領域614の横方向の延在は、横向重なり部615を画定する。いくつかの実施形態において、横向重なり部615から反射され、検出器602に導かれた光を用いて、距離を決定することができる。例えば、対象物の距離zの増加は、重なり領域614の増加および横向重なり部615の増加をそれぞれもたらす。横向重なり部615の増加は、対象物610から反射され、検出器602によって収集される光の強度を増加することができる。距離範囲に対する検出器602の光電流応答は、光電子モジュール600と対象物610との間の距離zに相関させることができる。
【0054】
図6Bは、カバーガラス608の上面に設けられた分光フィルタ616を用いて距離データを取得するように動作可能な光電子モジュール600を示す。分光フィルタ616は、エミッタ601から出射された特定の波長または波長範囲の光に対して実質的に透過であるが、他の波長または波長範囲の光に対して実質的に非透過である。いくつかの例において、分光フィルタは、有機材料(例えば、フォトレジスト)として実装することができ、他の例において、分光フィルタは、無機材料(例えば、誘電体材料)として実装することができる。分光フィルタ616は、例えば、フォトリソグラフィ法によって形成されてもよい。他の例において、分光フィルタ616は、スパッタリングまたは他の堆積技術によって形成されてもよい。
【0055】
図7Aは、距離データを取得するように動作可能な光電子モジュール700を示す。光電子モジュール700は、基板703(例えば、PCBガラス繊維ラミネートおよび/またはシリコン)に設けられたまたは一体化されたエミッタ701(例えば、発光ダイオード、端面発光レーザ(EEL)、垂直共振器面発光レーザ(VCSEL)、または前述した要素の任意のアレイまたは組み合わせ)と、検出器702(例えば、フォトダイオード、強度ピクセル、復調ピクセル、または前述した要素の任意のアレイまたは組み合わせ)とを含む。エミッタ701は、任意の波長または任意の波長範囲の電磁放射線(例えば、近赤外線、中赤外線または遠赤外線のような可視または非可視放射線)を出射するように構成することができる。また、エミッタ701は、変調光を出射するように構成することができる。さらに、検出器702は、任意の波長または任意の波長範囲の電磁放射線(例えば、近赤外線、中赤外線または遠赤外線のような可視または非可視放射線)を検出するように構成することができる。
【0056】
エミッタ701および検出器702は、スペーサ704によって横方向に取り囲まれ得る。スペーサ704は、エミッタ701によって出射されおよび/または検出器702によって検出可能な波長の光に対して実質的に非透過である。スペーサ704は、例えば、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができ、実質的に不透明な充填材および/または低熱膨張充填材(例えば、カーボンブラックおよび/または無機充填材)をさらに含むことができる。また、スペーサ704は、実質的に不透明なウエハ(例えば、PCBガラス繊維ラミネート)から製造することができる。光電子モジュール700は、エミッタ701と位置合わせられたエミッタ光学組立体705と、検出器702と位置合わせられた検出器光学組立体706とをさらに含む。光学組立体705および706の各々は、回折格子、マイクロレンズアレイ、レンズ、アナモフィックレンズ、プリズム、マイクロプリズムアレイおよび回折光学素子を含む光学素子のうち1つ、複数またはそれらの組み合わせを含むことができる。光学組立体705および706内の光学素子は、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができる。光学組立体705および706の各々は、絞り、フィルタ、スペーサ、位置合わせ機構、および対応の機能に関連する他の要素をさらに含むことができる。光学組立体705および706は、スペーサ704内に設けられまたは一体化されてもよい。
【0057】
図7Aは、距離zで光電子モジュール700から離れている対象物710(例えば、人物または人物の付属物)をさらに示す。エミッタ701から出射され、エミッタ光学組立体705を通過する光光は、エミッタ視界711に一致する。
図7Aに示された例示的な光電子モジュールにおいて、エミッタ光学組立体705は、ディフューザとして実装される。したがって、エミッタ視界711は、非常に大きい(例えば、160°よりも大きい)。対象物710からの反射光は、検出器視界713内の検出器光学組立体706を透過し、検出器702によって検出することができる。対象物710からの反射光は、検出器視界713内の検出器光学組立体706を透過し、検出器702によって検出することができる。重なり領域714の横方向の延在は、横向重なり部715を画定する。いくつかの実施形態において、横向重なり部715から反射され、検出器702に導かれた光を用いて、距離を決定することができる。例えば、対象物の距離zの増加は、重なり領域714の増加および横向重なり部715の増加をそれぞれもたらす。横向重なり部715の増加は、対象物710から反射され、検出器702によって収集される光の強度を増加することができる。距離範囲に対する検出器702の光電流応答は、光電子モジュール700と対象物710との間の距離zに相関させることができる。いくつかの実施形態において、
図7Bの点線(および矢印)によって描かれているように、非常に大きなエミッタ視界711は、線形応答区域を増加させることができる。
図7Bは、典型的なエミッタ視界の光電流応答(黒い実線)およびエミッタ視界711の光電流応答(点線)を示す図である。この例において、線形応答区域は、非常に大きな視界711によって拡大される。
【0058】
図8Aは、3つの異なる温度(T
1、T
2、T
3)で動作するエミッタの発光強度対発光波長の例示的なプロットを示す。
図8Bは、距離データを取得するように動作可能な光電子モジュールを示す。光電子モジュール800は、基板803(例えば、PCBガラス繊維ラミネートおよび/またはシリコン)に設けられたまたは一体化されたエミッタ801(例えば、発光ダイオード、端面発光レーザ(EEL)、垂直共振器面発光レーザ(VCSEL)、または前述した要素の任意のアレイまたは組み合わせ)と、検出器802(例えば、フォトダイオード、強度ピクセル、復調ピクセル、または前述した要素の任意のアレイまたは組み合わせ)とを含む。エミッタ801は、任意の波長または任意の波長範囲の電磁放射線(例えば、近赤外線、中赤外線または遠赤外線のような可視または非可視放射線)を出射するように構成することができる。また、エミッタ801は、変調光を出射するように構成することができる。さらに、検出器802は、任意の波長または任意の波長範囲の電磁放射線(例えば、近赤外線、中赤外線または遠赤外線のような可視または非可視放射線)を検出するように構成することができる。
【0059】
エミッタ801および検出器802は、スペーサ804によって横方向に囲まれることができる。スペーサ804は、スペーサ804は、エミッタ801によって出射されおよび/または検出器802によって検出可能な波長の光に対して実質的に非透過である。スペーサ804は、例えば、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができ、実質的に不透明な充填材および/または低熱膨張充填材(例えば、カーボンブラックおよび/または無機充填材)をさらに含むことができる。また、スペーサ804は、実質的に不透明なウエハ(例えば、PCBガラス繊維ラミネート)から製造することができる。光電子モジュール800は、エミッタ801と位置合わせられたエミッタ光学組立体805と、検出器802と位置合わせられた検出器光学組立体806とをさらに含む。光学組立体805および806の各々は、回折格子、マイクロレンズアレイ、レンズ、アナモフィックレンズ、プリズム、マイクロプリズムアレイおよび回折光学素子を含む光学素子のうち1つ、複数またはそれらの組み合わせを含むことができる。光学組立体805および806内の光学素子は、射出成形、真空射出成形または他の複製プロセスによって、硬化性ポリマー材料(例えば、エポキシ)から製造することができる。光学組立体805および806の各々は、絞り、フィルタ、スペーサ、位置合わせ機構、および対応の機能に関連する他の要素をさらに含むことができる。光学組立体805および806は、スペーサ804に設けられまたは一体化されてもよい。
【0060】
図8Aは、距離zで光電子モジュール800から離れている対象物810(例えば、人物または人物の付属物)をさらに示す。エミッタ801から出射され、エミッタ光学組立体805を通過する光は、エミッタ視界(FOV)811に一致する。また、エミッタ視界811に一致し、対象物810に入射する光は、照明812を画定する。対象物810からの反射光は、検出器視界813内の検出器光学組立体806を透過し、検出器802によって検出される。エミッタ視界811と検出器視界813とが重なっている領域は、重なり領域814を画定する。重なり領域814の横方向の延在は、横向重なり部815を画定する。いくつかの実施形態において、横向重なり部815から反射され、検出器802に導かれた光を用いて、距離を決定することができる。例えば、対象物の距離zの増加は、重なり領域814の増加および横向重なり部815の増加をそれぞれもたらす。横向重なり部815の増加は、対象物810から反射され、検出器802によって収集される光の強度を増加することができる。距離範囲に対する検出器802の光電流応答は、光電子モジュール800と対象物810との間の距離zに相関させることができる。
【0061】
光電子モジュール、例えば
図8Bに示す光電子モジュールは、一定範囲の周囲温度/動作温度で動作することができる。エミッタ801の効率および発光波長は、周囲温度/動作温度に従って変動することができる。例えば、LEDとして実装されたエミッタの発光強度は、周囲/動作温度の上昇に伴って減少する可能性がある。また、発光波長は、周囲温度/動作温度の上昇に伴って増加する可能性がある。
図8Aは、このような例を示す。さらに、例えばフォトダイオードとして実装された検出器802の効率(例えば、感度)は、周囲温度/動作温度の上昇に伴って増加する可能性がある。したがって、光電流応答、特に上述した線形領域は、異なる動作/周囲温度に従って変動することができる。いくつかの実施形態において、このような変動は、測定距離zの誤差をもたらし、および/または検出器802によって収集された信号の複雑さおよび/または計算上の処理要件を増加させる可能性がある。
【0062】
したがって、
図8Bに示す光電子モジュール800は、フィルタ816をさらに含む。この例において、フィルタは、特定の波長よりも大きい波長を通過させ、特定の波長よりも小さい波長を阻止または実質的に減衰するフィルタとして実装されてもよい。
図8Aに描かれた一点鎖線Pは、特定の波長に対応する。領域A1、A2およびA3は、一点鎖線P(下限)と温度T1、T2およびT3(上限)にそれぞれ対応する曲線とで囲まれた領域として定義される。いくつかの例において、領域A1、A2およびA3が実質的に等しくなるように、点線の特定の波長(x切片)を決定する。他の例において、上述の光電流応答が異なる周囲温度/動作温度に対して実質的に不変であるように、一点鎖線Pの特定の波長(x切片)を決定する。
【0063】
上記の例に記載された光電子モジュールの様々な実装は、光電子モジュールの機能に関連するプロセッサ、他の電気部品または回路要素(例えば、トランジスタ、レジスタ、容量性素子および誘導性素子)をさらに含むことは、当業者にとって明白である。
【0064】
本開示は、上記の様々な実施形態に関して詳細に説明されたが、上述した様々な特徴の組み合わせおよび/または減縮を含む他の実施形態も可能である。したがって、他の実施形態は、特許請求の範囲に含まれる。