IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ジェイディーエス ユニフェイズ コーポレーションの特許一覧

特許7242311誤検知を減少させた分光学的定量化のための装置、非一時的コンピュータ可読媒体及び方法
<>
  • 特許-誤検知を減少させた分光学的定量化のための装置、非一時的コンピュータ可読媒体及び方法 図1A
  • 特許-誤検知を減少させた分光学的定量化のための装置、非一時的コンピュータ可読媒体及び方法 図1B
  • 特許-誤検知を減少させた分光学的定量化のための装置、非一時的コンピュータ可読媒体及び方法 図2
  • 特許-誤検知を減少させた分光学的定量化のための装置、非一時的コンピュータ可読媒体及び方法 図3
  • 特許-誤検知を減少させた分光学的定量化のための装置、非一時的コンピュータ可読媒体及び方法 図4
  • 特許-誤検知を減少させた分光学的定量化のための装置、非一時的コンピュータ可読媒体及び方法 図5
  • 特許-誤検知を減少させた分光学的定量化のための装置、非一時的コンピュータ可読媒体及び方法 図6
  • 特許-誤検知を減少させた分光学的定量化のための装置、非一時的コンピュータ可読媒体及び方法 図7A
  • 特許-誤検知を減少させた分光学的定量化のための装置、非一時的コンピュータ可読媒体及び方法 図7B
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-10
(45)【発行日】2023-03-20
(54)【発明の名称】誤検知を減少させた分光学的定量化のための装置、非一時的コンピュータ可読媒体及び方法
(51)【国際特許分類】
   G01J 3/02 20060101AFI20230313BHJP
   G01J 3/42 20060101ALI20230313BHJP
   G01N 21/359 20140101ALI20230313BHJP
   G06T 7/00 20170101ALI20230313BHJP
   G06T 7/90 20170101ALI20230313BHJP
【FI】
G01J3/02 Z
G01J3/42 U
G01N21/359
G06T7/00 350B
G06T7/90 A
【請求項の数】 18
【外国語出願】
(21)【出願番号】P 2019008034
(22)【出願日】2019-01-21
(65)【公開番号】P2019148583
(43)【公開日】2019-09-05
【審査請求日】2021-03-05
(31)【優先権主張番号】62/622,641
(32)【優先日】2018-01-26
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】16/034,901
(32)【優先日】2018-07-13
(33)【優先権主張国・地域又は機関】US
【早期審査対象出願】
【前置審査】
(73)【特許権者】
【識別番号】502151820
【氏名又は名称】ヴァイアヴィ・ソリューションズ・インコーポレイテッド
【氏名又は名称原語表記】Viavi Solutions Inc.
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【弁護士】
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100186716
【弁理士】
【氏名又は名称】真能 清志
(72)【発明者】
【氏名】チャンメン ション
【審査官】平田 佳規
(56)【参考文献】
【文献】特開2017-049246(JP,A)
【文献】国際公開第2017/127822(WO,A1)
【文献】特表2005-534428(JP,A)
【文献】国際公開第2017/174580(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01J 3/00- G01J 3/52
G01N 21/00- G01N 21/01
G01N 21/17- G01N 21/61
G01N 33/48- G01N 33/98
G06N 3/00- G06N 3/126
G06N 20/00- G06N 20/20
G06T 1/00- G06T 1/40
G06T 3/00- G06T 3/60
G06T 5/00- G06T 5/50
G06T 7/00- G06T 7/90
G06T 9/00- G06T 9/40
(57)【特許請求の範囲】
【請求項1】
一以上のメモリと、
前記一以上のメモリに通信可能に連結された一以上のプロセッサと、
を含み、
前記一以上のプロセッサは、
未知試料に対して実行された分光測定の結果を識別する情報を受信し、
定量化モデルの複数の第1の訓練セット試料が決定境界内にあり、かつ前記定量化モデルの複数の第2の訓練セット試料が前記決定境界外にあるように、構成可能なパラメータに基づいて前記定量化モデルの単一クラスを前記複数の第1の訓練セット試料と前記複数の第2の訓練セット試料とに分割するための前記定量化モデルのための前記決定境界を決定し、
前記定量化モデルは、対象材料の試料における特定の成分の濃度を判定するように構成されており、
前記第1の訓練セット試料は、対象材料の試料であり、前記第2の訓練セット試料は、対象材料ではない材料の試料であり、
前記決定境界に関連する、前記未知試料に対して実行された分光測定のための距離メトリックを決定し、
前記決定境界に関連する、前記定量化モデルの複数の第2の訓練セット試料のための複数の距離メトリックを決定し、
前記複数の距離メトリックに対する前記距離メトリックのための対数正規標準偏差を決定し、
前記対数正規標準偏差が閾値を満足するか否かを判定し、
前記未知試料に対して実行された分光測定が、前記対数正規標準偏差が閾値を満足するか否かの判定に基づいて、前記定量化モデルに対応するか否かを判定し、
未知試料に対して実行された分光測定のための特定の距離メトリックが、複数の第2の訓練セット試料のための距離メトリックに関連する前記閾値を満足するとの判定に基づいて、未知試料に対して実行された分光測定が定量化モデルに対応しないことを示す情報を提供し、非対象試料における前記特定の成分と同種の成分を誤検知することを抑制する、装置。
【請求項2】
前記一以上のプロセッサは、前記未知試料に対して実行された分光測定が前記定量化モデルに対応するか否かを判定するとき、
前記分光測定が前記定量化モデルに対応しないと判定し、
前記一以上のプロセッサは、前記未知試料に対して実行された分光測定が前記定量化モデルに対応するか否かを示す情報を提供するとき、
前記分光測定が前記定量化モデルに対応しないことを示す情報を提供する、請求項1に記載の装置。
【請求項3】
前記一以上のプロセッサは、前記未知試料に対して実行された分光測定が前記定量化モデルに対応するか否かを判定するとき、
前記分光測定が前記定量化モデルに対応すると判定し、
前記一以上のプロセッサは、前記未知試料に対して実行された分光測定が前記定量化モデルに対応するか否かを示す情報を提供するとき、
前記分光測定が前記定量化モデルに対応することを示す情報を提供する、請求項1に記載の装置。
【請求項4】
前記一以上のプロセッサは、前記未知試料に対して実行された分光測定が前記定量化モデルに対応するか否かを判定するとき、
前記複数の距離メトリックに対する前記距離メトリックのための統計メトリックを決定し、
前記未知試料に対して実行された分光測定が、前記統計メトリックに基づいて前記定量化モデルに対応するか否かを判定する、請求項1に記載の装置。
【請求項5】
前記統計メトリックは対数正規標準偏差であり、
前記一以上のプロセッサは、前記未知試料に対して実行された分光測定が、前記統計メトリックに基づいて前記定量化モデルに対応するか否かを判定するとき、
前記対数正規標準偏差は閾値を満足すると判定し、かつ、
前記未知試料に対して実行された分光測定が、前記対数正規標準偏差が閾値を満足するとの判定に基づいて、前記定量化モデルに対応するか否かを判定する、請求項4に記載の装置。
【請求項6】
前記定量化モデルは、単一クラスサポートベクトルマシン(SC-SVM)クラシフィアに関連付けられている、請求項1に記載の装置。
【請求項7】
前記一以上のプロセッサは、更に、
前記複数の第1の訓練セット試料および前記複数の第2の訓練セット試料に関連する複数の分光測定を受信し、
前記複数の分光測定に基づいて前記定量化モデルを決定し、
複数の検証セット試料の別の複数の分光測定に基づいて前記定量化モデルを検証し、
前記定量化モデルを格納し、
前記一以上のプロセッサは、前記決定境界を決定するとき、
ストレージから前記定量化モデルを取得し、かつ、
ストレージから前記定量化モデルを取得した後に、前記決定境界を決定する、請求項1に記載の装置。
【請求項8】
命令を格納する非一時的コンピュータ可読媒体であって、前記命令は、
一以上のプロセッサによって実行されるとき、前記一以上のプロセッサに、
特定の種類の対象材料に関連する定量化モデルを取得させ、
前記定量化モデルは、前記特定の種類の対象材料の試料における特定の成分の濃度を判定するように構成されており、
未知試料に対して実行された特定の分光測定の結果を識別する情報を受信させ、前記未知試料は、前記特定の種類の対象材料とは異なる種類の材料であり、
前記定量化モデルの訓練セット試料の別の分光測定を前記定量化モデルのための単一クラスに集約させ、
前記訓練セット試料の別の分光測定を第1のグループおよび第2のグループに細分させ、
前記第1のグループは、対象材料に対応し、前記第2のグループは、対象材料ではない材料に対応し、
前記別の分光測定の第1のグループは決定境界内にあり、
前記別の分光測定の第2のグループは決定境界外にあり、
前記別の分光測定の第2のグループのための対応するメトリックに関連して、前記未知試料に対して実行された特定の分光測定のためのメトリックが、閾値を満足すると判定させ、
前記未知試料が前記特定の種類の対象材料ではないことを示す情報を提供させ、非対象試料における前記特定の成分と同種の成分を誤検知することを抑制する、一以上の命令を含む、非一時的コンピュータ可読媒体。
【請求項9】
前記未知試料は、前記特定の種類の対象材料であり、かつ、前記未知試料に対する分光測定は不正確に取得された測定値である、請求項8に記載の非一時的コンピュータ可読媒体。
【請求項10】
前記閾値は、前記対応するメトリックの平均からの前記メトリックの標準偏差の閾量である、請求項8に記載の非一時的コンピュータ可読媒体。
【請求項11】
前記メトリックおよび前記対応するメトリックは、単一クラスサポートベクトルマシン技術を使用して決定される、請求項8に記載の非一時的コンピュータ可読媒体。
【請求項12】
前記定量化モデルはローカルモデルであり、
前記一以上の命令は、前記一以上のプロセッサによって実行されるとき、更に、前記一以上のプロセッサに、
前記特定の種類の対象材料に関連するグローバルモデルを使用して、前記未知試料の特定の分光測定に関連する第1の判定を実行させ、
前記第1の判定の特定の結果に基づいて、インサイチュローカルモデリング技術を使用して前記ローカルモデルを生成させ、
前記一以上のプロセッサに前記定量化モデルを取得させる前記一以上の命令は、前記一以上のプロセッサに、
前記ローカルモデルの生成に基づいて前記定量化モデルを取得させる、
請求項8に記載の非一時的コンピュータ可読媒体。
【請求項13】
特定の種類の対象材料の試料における特定の成分の濃度を判定する方法であって、
装置によって、未知試料に対して実行された近赤外(NIR)分光測定の結果を識別する情報を受信するステップと、
装置によって、定量化モデルのための決定境界を決定するステップと、
前記決定境界は、前記定量化モデルの単一クラスを、前記決定境界内の定量化モデルの複数の第1の訓練セット試料と、前記決定境界外の定量化モデルの複数の第2の訓練セット試料とに分割し、
前記第1の訓練セット試料は、対象材料の試料であり、前記第2の訓練セット試料は、対象材料ではない材料の試料であり、
装置によって、前記未知試料に対して実行された前記NIR分光測定のための特定の距離メトリックが、前記複数の第2の訓練セット試料のための別の距離メトリックに関連する閾値を満足するか否かを判定するステップと、
装置によって、前記未知試料に対して実行された前記NIR分光測定のための前記特定の距離メトリックが、前記複数の第2の訓練セット試料のための別の距離メトリックに関連する前記閾値を満足するとの判定に基づいて、前記未知試料に対して実行された前記NIR分光測定が、前記定量化モデルに対応しないことを示す情報を提供し、非対象試料における前記特定の成分と同種の成分を誤検知することを抑制するステップと、を含み、
前記閾値を満足するか否かの判定は、前記別の距離メトリックに対する前記特定の距離メトリックのための対数正規標準偏差を決定し、前記対数正規標準偏差が閾値を満足するか否かを判定する、方法。
【請求項14】
分類モデルを使用する前記NIR分光測定に基づいて、かつ、前記未知試料に対して実行された前記特定の距離メトリックが、前記複数の第2の訓練セット試料のための別の距離メトリックに関連する前記閾値を満足するとの判定に基づいて、前記未知試料の種類を判定するステップと、
前記未知試料の種類を識別する情報を提供するステップと、
を更に含む、請求項13に記載の方法。
【請求項15】
カーネル関数に基づいて前記決定境界を決定するステップを更に含む、請求項13に記載の方法。
【請求項16】
前記カーネル関数は、
ラジアル基底関数、
多項式関数、
線形関数、または
指数関数、
のうちの少なくとも1つである、請求項15に記載の方法。
【請求項17】
前記閾値は、
1標準偏差、
2標準偏差、または
3標準偏差、
のうちの少なくとも1つよりも大きい、請求項13に記載の方法。
【請求項18】
前記複数の第1の訓練セット試料および前記複数の第2の訓練セット試料は、成分の一組の濃度に関連付けられており、
前記成分の一組の濃度のうちの成分の各濃度は、前記複数の第1の訓練セット試料および前記複数の第2の訓練セット試料の訓練セット試料の閾量に関連付けられている、請求項13に記載の方法。
【発明の詳細な説明】
【背景技術】
【0001】
原料識別は、医薬品の品質制御に利用することができる。例えば、原料識別は医用材料に実行して、その医用材料の含有成分がその医用材料と関連するパッケージラベルに一致するか否かを判定することができる。同様に、原料の定量化を実行して、特定の試料の特定の成分の濃度を判定することができる。例えば、原料の定量化を実行して、薬品内の有効成分の濃度を判定することができる。分光法は、他の化学的技法と比較して少ない準備および短いデータ収集時間で非破壊原料識別および/または定量化を容易にする。
【発明の概要】
【0002】
いくつかの可能な実施形態によれば、装置は一以上のプロセッサに通信可能に連結された一以上のメモリを含み得る。一以上のメモリおよび一以上のプロセッサは、未知試料に対して実行された分光測定の結果を識別する情報を受信するように構成することができる。定量化モデルの複数の第1の訓練セット試料が決定境界内にあり、かつ定量化モデルの複数の第2の訓練セット試料が決定境界外にあるように、一以上のメモリおよび一以上のプロセッサは、構成可能なパラメータに基づいて定量化モデルのための決定境界を決定するように構成することができる。一以上のメモリおよび一以上のプロセッサは、決定境界に関連する、未知試料に対して実行された分光測定のための距離メトリックを決定するように構成することができる。一以上のメモリおよび一以上のプロセッサは、決定境界に関連する、定量化モデルの複数の第2の訓練セット試料のための複数の距離メトリックを決定するように構成することができる。一以上のメモリおよび一以上のプロセッサは、未知試料に対して実行された分光測定が、分光測定のための距離メトリックおよび複数の第2の訓練セット試料のための複数の距離メトリックに基づいて、定量化モデルに対応するか否かを判定するように構成することができる。一以上のメモリおよび一以上のプロセッサは、未知試料に対して実行された分光測定が定量化モデルに対応しているか否かを示す情報を提供するように構成することができる。
【0003】
いくつかの可能な実施形態によれば、非一時的コンピュータ可読媒体は、一以上の命令を格納することができる。この一以上の命令は、一以上のプロセッサにより実行されるとき、一以上のプロセッサに、特定の種類の対象材料に関連する定量化モデルを取得させることができる。定量化モデルは、特定の種類の対象材料の試料における特定の成分の濃度を判定するように構成することができる。一以上の命令は、一以上のプロセッサにより実行されるとき、一以上のプロセッサに、未知試料に対して実行された特定の分光測定の結果を識別する情報を受信させることができる。一以上の命令は、一以上のプロセッサにより実行されるとき、一以上のプロセッサに、定量化モデルの訓練セット試料の別の分光測定を定量化モデルのための単一クラスに集約させることができる。一以上の命令は、一以上のプロセッサにより実行されるとき、一以上のプロセッサに、訓練セット試料の別の分光測定を第1のグループおよび第2のグループに細分させることができる。別の分光測定の第1のグループは、決定境界内に含まれ得る。別の分光測定の第2のグループは、決定境界内に含まれなくてもよい。一以上の命令は、一以上のプロセッサにより実行されるとき、一以上のプロセッサに、別の分光測定の第2のグループのための対応するメトリックに関連して、未知試料に対して実行された特定の分光測定のためのメトリックが閾値を満足すると判定させることができる。一以上の命令は、一以上のプロセッサにより実行されるとき、一以上のプロセッサに、未知試料が特定の種類の対象材料ではないことを示す情報を提供させることができる。
【0004】
いくつかの可能な実施形態によれば、方法は、装置によって、未知試料に対して実行された近赤外(NIR)分光測定の結果を識別する情報を受信するステップを含み得る。方法は、装置によって、定量化モデルのための決定境界を決定するステップを含んでよく、ここで、決定境界は、定量化モデルの単一クラスを、決定境界内の定量化モデルの複数の第1の訓練セット試料と、決定境界外の定量化モデルの複数の第2の訓練セット試料とに分割する。方法は、装置によって、未知試料に対して実行されたNIR分光測定のための特定の距離メトリックが、複数の第2の訓練セット試料のための別の距離メトリックに関連する閾値を満足すると判定するステップを含み得る。方法は、装置によって、未知試料に対して実行されたNIR分光測定のための特定の距離メトリックが、複数の第2の訓練セット試料のための別の距離メトリックに関連する閾値を満足するとの判定に基づいて、未知試料に対して実行されたNIR分光測定が定量化モデルに対応しないことを示す情報を提供するステップを含み得る。
【図面の簡単な説明】
【0005】
図1A】本明細書に記載の例示的な実施形態の概略図である。
図1B】本明細書に記載の例示的な実施形態の概略図である。
図2】本明細書に記載のシステムおよび/または方法を実施することができる例示的な環境の説明図である。
図3図2の一以上の装置の例示的なコンポーネントの説明図である。
図4】分光学的定量化のための定量化モデルを生成するための例示的なプロセスのフローチャートである。
図5図4に示す例示的なプロセスに関連する例示的な実施形態の説明図である。
図6】分光学的定量化中の識別時の誤検知を回避するための例示的なプロセスのフローチャートである。
図7A図6に示す例示的なプロセスに関連する例示的な実施形態の説明図である。
図7B図6に示す例示的なプロセスに関連する例示的な実施形態の説明図である。
【発明を実施するための形態】
【0006】
以下の例示的な実施形態の詳細な説明は、添付図面に関する。異なる図面中の同じ参照番号は、同じまたは類似の要素を示す。
【0007】
原料識別(RMID)は、識別、検証等のために特定の試料の成分(例えば、含有成分)を識別するために使用される技術である。例えば、RMIDは、医薬品の含有成分がラベルで確認される一組の含有成分に一致するかを確認するために利用される。同様に、原料の定量化は、特定の試料における特定の成分材料の濃度を判定する等、特定の試料の定量分析を実行するために利用される技術である。スペクトロメータを使用して、試料(例えば、医薬品)の分光測定を実行し、試料の成分や、試料の成分濃度等を判定することができる。スペクトロメータにより、試料の一組の測定を判定し、分光学的判定のための一組の測定結果を提供することができる。分光学的分類技術(例えば、クラシファイア)は、試料の一組の測定に基づく試料の成分または試料の成分の濃度の判定を容易にすることができる。
【0008】
しかしながら、分光学的定量化の対象となる未知試料の一部は、実際には、定量化するために定量化モデルを構成した材料のクラスに含まれていない。例えば、魚の試料における特定の種類のタンパク質の濃度を判定するように訓練された定量化モデルについて、ユーザは、定量化するために誤って牛肉の試料を提供し得る。この場合、制御装置は牛肉の試料の分光学的定量化を実行して、牛肉の試料を特定の種類のタンパク質の特定の濃度を有するものとして識別し得る。しかしながら、牛肉と魚との間の分光学的シグネチャおよびそれらのタンパク質の違いにより、識別は不正確となり、誤検知識別と呼ばれ得る。
【0009】
別の実施例として、定量化モデルにより、未知試料における異なる種類の砂糖(例えば、グルコース、フルクトース、ガラクトース等)の相対濃度を定量化するように訓練することができる。しかしながら、スペクトロメータおよび制御装置のユーザは、誤って、スペクトロメータを不正確に使用して測定を実施することにより、未知試料である砂糖の分類を試みる可能性がある。例えば、ユーザは、未知試料から不正確な距離にて、また、定量化モデルを訓練するために分光法を実行した校正条件とは異なる環境条件等にて、スペクトロメータを操作し、その結果として不正確に取得された測定値となり得る。この場合、制御装置は、未知試料に対して不正確なスペクトルを受信し、その結果、未知試料が実際には第2の濃度の第2の種類の砂糖を含んでいても、第1の濃度の第1の種類の砂糖を有するものとして、未知試料の識別を誤検知し得る。
【0010】
本明細書に記載のいくつかの実施形態では、単一クラスサポートベクトルマシン(SC-SVM)技術を利用して、分光学的定量化における識別時の誤検知の可能性を減少させることができる。例えば、未知試料の分光測定結果を受信する制御装置は、未知試料の分光測定結果が、定量化するために分光モデルを構成した材料のクラスに対応するか否かを判定することができる。いくつかの実施形態では、制御装置により、未知試料が定量化するために分光モデルを構成した材料のクラスに関連しないと判定し、未知試料が材料のクラスに関連しないことを示す情報を提供することによって、未知試料の識別における誤検知を回避することができる。あるいは、未知試料が、定量化するために分光モデルを構成した材料のクラスに関連するとの判定に基づいて、制御装置により未知試料のスペクトルを分析して、濃度や分類等の分光学的判定を提供することができる。更に、制御装置は、識別時の誤検知を除外するために、確率推定値、決定値等の信頼メトリックを利用することができる。
【0011】
このようにして、潜在的なエラー試料(例えば、分光モデルが構成されていない材料のクラスに関連付けられる試料または分光測定が不正確に取得された試料)を識別せずに、および/または信頼メトリックなしに実施される分光法と比較して、分光法の精度を改善することができる。更に、既知の分光試料の訓練セットに基づいて定量化モデルを生成するとき、材料が分光モデルを構成したクラスに関連付けられるか否かの判定を利用することができる。例えば、制御装置は、(例えば、人的エラーの結果、不正確な試料が訓練セットに導入されることによって)訓練セットの試料が残りの訓練セットに対応する種類ではないと判定し、定量化モデルの生成時に、その試料に関連するデータを含まないように決定することができる。このようにして、制御装置により、分光法のための定量化モデルの精度を改善する。
【0012】
図1Aおよび図1Bは、本明細書に記載する例示的な実施形態100の概略図である。図1Aに示すように、例示的な実施形態100は、制御装置およびスペクトロメータを含み得る。
【0013】
図1Aに更に示すように、制御装置は、スペクトロメータに、訓練セットおよび検証セット(例えば、分類モデルを訓練し、検証するために使用される一組の既知試料)に対して一組の分光測定を実行させ得る。訓練セットおよび検証セットは、定量化モデルを訓練した成分のための閾量の試料を含むように選択され得る。成分が発生し、定量化モデルを訓練するために使用され得る材料は、対象材料と称される。この場合、訓練セットおよび検証セットは、例えば、第1の濃度の対象材料を代表する第1のグループの試料、第2の濃度の対象材料を代表する第2のグループの試料等を含むことで、定量化モデルの訓練を可能にし、未知試料における対象材料の濃度を識別することができる。
【0014】
図1Aに更に示すように、スペクトロメータは、制御装置からの命令の受信に基づいて訓練セットおよび検証セットに対して一組の分光測定を実行することができる。例えば、スペクトロメータは、訓練セットおよび検証セットの各試料に対するスペクトルを判定することにより、制御装置に、未知試料を定量化モデルのための対象材料のうちの一つとして分類するための一組のクラスを生成させることができる。
【0015】
スペクトロメータは、一組の分光測定結果を制御装置に供給することができる。制御装置は、特定の判定技術を用いて、一組の分光測定結果に基づいて定量化モデルを生成することができる。例えば、制御装置は、サポートベクトルマシン(SVM)技術(例えば、情報を判定するための機械学習技術)、例えば単一クラスSVM(SC-SVM)技術を用いて定量化モデルを生成することができる。定量化モデルは、特定のスペクトルを対象材料における特定の濃度の成分(例えば、対象材料における特定のレベルの濃度の成分)に割り当てることに関連する情報を含むことができる。このようにして、制御装置は、未知試料のスペクトルを、特定の濃度に対応する、定量化モデルの濃度の特定のクラスに割り当てることに基づいて、未知試料の成分の濃度を識別する情報を提供することができる。
【0016】
図1Bに示すように、制御装置は(例えば、ストレージや、定量化モデルを生成した別の制御装置等から)定量化モデルを受信することができる。制御装置は、スペクトロメータに、未知試料(例えば、分類または定量化を実行する未知試料)に対して一組の分光測定を実行させることができる。スペクトロメータは、制御装置からの命令の受信に基づいて一組の分光測定を実行することができる。例えば、スペクトロメータは、未知試料に対するスペクトルを判定することができる。スペクトロメータは、一組の分光測定結果を制御装置に供給することができる。制御装置は、定量化モデルに基づいて、未知試料の定量化を試みることができる(例えば、未知試料を未知試料における特定の濃度または特定量の特定の成分に関連する特定のクラスに分類する)。例えば、制御装置は、未知試料内の(例えば、錠剤の)特定の濃度のイブプロフェンや、未知試料内の特定量のグルコースの単位(例えば、砂糖ベースの製品)等の判定を試みることができる。
【0017】
図1Bに関して、制御装置は、未知試料が定量化モデルに対応するか否かの判定を試みてもよい。例えば、制御装置は、未知試料が(例えば、訓練セットおよび検証セットを使用して定量化モデルを構成した一組の濃度のうちの任意の濃度の)対象材料に属する可能性に対応する信頼メトリックを判定することができる。イブプロフェン錠剤の試料内のイブプロフェンの濃度を識別するように構成された定量化モデルに対する一例として、制御装置は、未知試料が(アセトアミノフェン錠剤、アセチルサリチル酸錠剤等の別の種類の錠剤ではなく)イブプロフェン錠剤であるか否かを判定することができる。別の例として、魚肉における塩分濃度を識別するように構成された定量化モデルにおいて、制御装置は、未知試料が(鶏肉、牛肉、豚肉等ではなく)魚肉であるか否かを判定することができる。
【0018】
この場合、確率推定値やサポートベクトルマシンの決定値出力等の信頼メトリックが閾値(例えば、本明細書に記載のように標準偏差閾値)を満足するとの制御装置による判定に基づいて、制御装置は、未知試料が(例えば、異なる材料である未知試料や、不正確に実行された未知試料の分光測定に対応し得る)非対象材料であると判定し得る。この場合、制御装置は、定量化モデルを使用した未知試料の正確な定量化が不可能であることを報告することによって、未知試料が対象材料における特定の濃度の成分に属するものとして、未知試料の識別時に誤検知する可能性を低減させることができる。
【0019】
こうして、制御装置により、未知試料を対象材料における特定の濃度の成分として識別時に誤検知して報告する可能性を減少させることによって、他の定量化モデルと比較して、未知試料に対して向上した精度で分光法を実行することが可能となる。
【0020】
上述したように、図1Aおよび図1Bは、単なる例示である。他の実施例も可能であり、図1Aおよび図1Bに関連して記載した内容とは異なってもよい。
【0021】
図2は、本明細書に記載するシステムおよび/または方法を実施し得る例示的環境200を示す。図2に示すように、環境200は、制御装置210、スペクトロメータ220、およびネットワーク230を含み得る。環境200の装置は、有線接続、無線接続、または有線および無線接続の組み合わせを介して相互接続し得る。
【0022】
制御装置210は、分光学的定量化に関連する情報を格納し、処理し、および/またはルーティングし得る一以上の装置を含む。例えば、制御装置210は、訓練セットの一組の測定値に基づいて定量化モデルを生成し、検証セットの一組の測定値に基づいて定量化モデルを検証し、および/または、その定量化モデルを利用して、未知セットの一組の測定値に基づいて分光学的定量化を実行する、サーバ、コンピュータ、ウェアラブルデバイス、クラウドコンピューティングデバイス等を含み得る。いくつかの実施形態では、制御装置210は、機械学習技術を利用して、本明細書に記載のように、未知試料の分光測定値が、定量化モデルに対する対象材料に対応しないものとして分類可能か否かを判定することができる。いくつかの実施形態では、制御装置210は、特定のスペクトロメータ220と関連し得る。いくつかの実施形態では、制御装置210は、複数のスペクトロメータ220と関連し得る。いくつかの実施形態では、制御装置210は、情報を環境200内の別の装置、例えばスペクトロメータ220から受信および/またはスペクトロメータ220へ送信し得る。
【0023】
スペクトロメータ220は、試料に分光測定を実行し得る一以上の装置を含む。例えば、スペクトロメータ220は、スペクトロスコピー(例えば、振動スペクトロスコピー、例えば近赤外(NIR)スペクトロメータ、中赤外スペクトロスコピー(mid-IR)、ラマンスペクトロスコピー等)を実行するスペクトロメータ装置を含んでよい。いくつかの実施形態では、スペクトロメータ220は、ウェアラブルデバイス、例えばウェアラブルスペクトロメータ等に組み込んでよい。いくつかの実施形態では、スペクトロメータ220は、情報を環境200内の別の装置、例えば制御装置210から受信および/または制御装置210へ送信してもよい。
【0024】
ネットワーク230は、一以上の有線および/または無線ネットワークを含んでよい。例えば、ネットワーク230は、セルラーネットワーク(例えば、ロングタームエボリューション(LTE)ネットワーク、3Gネットワーク、符号分割多元接続(CDMA)ネットワーク等)、地上波公共移動通信ネットワーク(PLMN)、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、メトロポリタンエリアネットワーク(MAN)、電話網(例えば、公衆交換電話網(PSTN))、プライベートネットワーク、アドホックネットワーク、イントラネット、インターネット、光ファイバネットワーク、クラウドコンピューティングネットワーク等および/またはこれらのまたは他のタイプのネットワークの組み合わせを含んでよい。
【0025】
図2に示す装置およびネットワークの数および配置は一例として与えられている。実際には、より多くの装置および/またはネットワークにしても、より少数の装置および/またはネットワークにしても、異なる装置および/またはネットワークにしても、図2に示す例と異なる配置の装置および/またはネットワークにしてもよい。更に、図2に示す二以上の装置を単一装置に実装しても、あるいは図2に示す単一装置を複数の分散された装置として実装してもよい。例えば、制御装置210とスペクトロメータ220は、本明細書では2つの別個の装置として記載されているが、制御装置210とスペクトロメータ220は単一装置に実装してもよい。付加的または代替的に、環境200の一組の装置(例えば、一以上の装置)は、環境200の別の組の装置により実行される旨記載されている一以上の機能を実行してもよい。
【0026】
図3は、装置300の例示的なコンポーネントの図である。装置300は、制御装置210および/またはスペクトロメータ220に相当し得る。いくつかの実施形態では、制御装置210および/またはスペクトロメータ220は、一以上の装置300および/または装置300の一以上のコンポーネントを含み得る。図3に示すように、装置300は、バス310、プロセッサ320、メモリ330、記憶コンポーネント340、入力コンポーネント350、出力コンポーネント360、および通信インタフェース370を含み得る。
【0027】
バス310は、装置300のコンポーネントの間の通信を可能にするコンポーネントを含み得る。プロセッサ320は、ハードウェア、ファームウェア、またはハードウェアとソフトウェアの組み合わせで実装される。プロセッサ320は、中央処理装置(CPU)、グラフィック処理装置(GPU)、アクセラレーテッド処理装置(APU)、マイクロプロセッサ、マイクロコントローラ、デジタルシグナルプロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)、または他のタイプの処理コンポーネントを含み得る。いくつかの実施形態では、プロセッサ320は、機能を実行するようにプログラムすることができる一以上のプロセッサを含み得る。メモリ330は、プロセッサ320で使用する情報および/または命令を記憶するランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、および/または別のタイプのダイナミックまたはスタティック記憶装置(例えば、フラッシュメモリ、磁気メモリ、および/または光メモリ)を含み得る。
【0028】
記憶コンポーネント340は、装置300の動作および使用に関する情報および/またはソフトウェアを記憶し得る。例えば、記憶コンポーネント340は、ハードディスク(例えば、磁気ディスク、光ディスク、磁気光学ディスク、および/またはソリッドステートディスク)、コンパクトディスク(CD)、ディジタルヴァーサタイルディスク(DVD)、フロッピーディスク、カートリッジ、磁気テープ、および/または別のタイプの非一時的コンピュータ可読媒体(対応するドライバと共に)を含み得る。
【0029】
入力コンポーネント350は、装置300が例えばユーザ入力(例えば、タッチスクリーンディスプレイ、キーボード、キーパッド、マウス、ボタン、スイッチ、および/またはマイクロフォン)による情報を受信可能にするコンポーネントを含み得る。付加的または代替的に、入力コンポーネント350は、情報を検出するセンサ(例えば、グローバルポジショニングシステム(GPS)コンポーネント、加速度計、ジャイロスコープ、および/またはアクチュエータ)を含んでもよい。出力コンポーネント360は、装置300からの出力情報を提供するコンポーネント(例えば、ディスプレイ、スピーカ、および/または一以上の発光ダイオード(LED))を含んでもよい。
【0030】
通信インタフェース370は、装置300が他の装置と、例えば有線接続、無線接続、または有線接続と無線接続の組み合わせを介して、通信することを可能にするトランシーバのようなコンポーネント(例えば、トランシーバおよび/または別々の受信機および送信機)を含み得る。通信インタフェース370は、装置300が別の装置からの情報を受信すること、および/または別の装置へ情報を送信することを可能にし得る。例えば、通信インタフェース370は、イーサネット(登録商標)インタフェース、光インタフェース、同軸インタフェース、赤外インタフェース、無線周波数(RF)インタフェース、ユニバーサルシリアルバス(USB)インタフェース、無線LANインタフェース、セルラーネットワークインタフェース等を含み得る。
【0031】
装置300は、本明細書に記載する一以上のプロセスを実行し得る。装置300は、メモリ330および/または記憶コンポーネント340等の非一時的コンピュータ可読媒体により記憶されたソフトウェア命令を実行するプロセッサ320に応答して、これらのプロセスを実行し得る。コンピュータ可読媒体は、本明細書では非一時的メモリ装置として定義される。メモリ装置は、単一の物理記憶装置内のメモリ空間または複数の物理記憶装置に亘って広がるメモリ空間を含む。
【0032】
ソフトウェア命令は、別のコンピュータ可読媒体または別の装置から通信インタフェース370を介してメモリ330および/または記憶コンポーネント340に読み込んでよい。メモリ330および/または記憶コンポーネント340に記憶されたソフトウェア命令は、実行時に、プロセッサ320に本明細書に記載する一以上のプロセスを実行させることができる。付加的または代替的に、本明細書に記載する一以上のプロセスを実行するためにソフトウェア命令の代わりに、またはそれと組み合わせてハードウェア回路を使用してもよい。従って、本明細書に記載する実施形態は、ハードウェア回路とソフトウェアの任意の特定の組み合わせに限定されない。
【0033】
図3に示すコンポーネントの数および配置は一例にすぎない。実際には、装置300は、追加のコンポーネント、より少数のコンポーネント、異なるコンポーネント、または図3に示す例と異なる配置のコンポーネントを含んでもよい。付加的または代替的に、装置300の一組のコンポーネント(例えば一以上のコンポーネント)は、装置300の別の組のコンポーネントにより実行される旨記載される一以上の機能を実行してもよい。
【0034】
図4は、分光学的定量化のための定量化モデルを生成する例示的プロセス400のフローチャートである。いくつかの実施形態では、図4の一以上のプロセスブロックは、制御装置210によって実行され得る。いくつかの実施形態では、図4の一以上のプロセスブロックは、制御装置210とは別の、または制御装置を含む別の装置あるいは装置群、例えばスペクトロメータ220によって実行され得る。
【0035】
図4に示すように、プロセス400は、訓練セットおよび/または検証セットに一組の分光測定を実行させるステップを含み得る(ブロック410)。例えば、制御装置210は、(例えば、プロセッサ320、通信インタフェース370等を使用して)スペクトロメータ220に、試料の訓練セットおよび/または検証セットに一組の分光測定を実行させて、訓練セットおよび/または検証セットの各試料に対するスペクトルを決定することができる。訓練セットは、成分のための定量化モデルを生成するために利用される、一組の成分の濃度を有する一以上の既知材料の一組の試料ということができる。同様に、検証セットは、定量化モデルの精度を検証するために利用される、一組の成分の濃度を有する一以上の既知材料の一組の試料ということができる。例えば、訓練セットおよび/または検証セットは、一組の異なる濃度における特定の材料の一以上のバージョン(例えば、製造差を制御するために様々な製造業者により製造される一以上のバージョン)を含み得る。
【0036】
いくつかの実施形態では、訓練セットおよび/または検証セットは、定量化モデルを使用して分光学的定量化が実行される対象材料の予想セットに基づいて選択され得る。例えば、医薬品の特定の成分の濃度を判定するために医薬品に対して分光学的定量化が実行されることが想定される場合、訓練セットおよび/または検証セットは、特定の成分の存在を検査すべき一組の医薬品において一組の異なる可能な濃度で特定の成分の一組の試料を含み得る。
【0037】
いくつかの実施形態では、訓練セットおよび/または検証セットは、各濃度の材料に対して特定量の試料を含むように選択することができる。例えば、訓練セットおよび/または検証セットは、特定の濃度の複数の試料(例えば、5試料、10試料、15試料、50試料等)を含むように選択することができる。こうして、制御装置210は、特定の種類の材料に関連する閾量のスペクトルを提供されることによって、(例えば、特定の濃度の成分を有する未知試料に基づいて)未知試料を正確に割り当てることができる定量化モデルのためのクラス(例えば、特定の濃度の成分に対応するサンプル群)の生成および/または検証が容易になる。
【0038】
いくつかの実施形態では、制御装置210は、一以上の物理的条件を考慮するために複数のスペクトロメータ220に一組の分光測定を実行させ得る。例えば、制御装置210は、第1のスペクトロメータ220および第2のスペクトロメータ220に、NIR分光法を用いて一組の振動分光測定を実行させ得る。付加的または代替的に、制御装置210は、一組の分光測定を複数回、複数の位置で、複数の異なる実験室条件下等で実行させてもよい。こうして、制御装置210は、一組の分光測定を単一のスペクトロメータ220で実行させる場合に比較して、物理的条件の結果として分光測定が不正確になる可能性を低減する。
【0039】
こうして、制御装置210は、訓練セットおよび/または検証セットに一組の分光測定を実行させる。
【0040】
図4に更に示すように、プロセス400は、一組の分光測定の結果を識別する情報を受信するステップを含み得る(ブロック420)。例えば、制御装置210は、(例えば、プロセッサ320、通信インタフェース370等を使用して)一組の分光測定の結果を識別する情報を受信することができる。いくつかの実施形態では、制御装置210は、訓練セットおよび/または検証セットの試料に対応する一組のスペクトルを識別する情報を受信することができる。例えば、制御装置210は、スペクトロメータ220が訓練セットに分光法を実行する際に観測される特定のスペクトルを識別する情報を受信することができる。いくつかの実施形態では、制御装置210は、訓練セット試料および検証セット試料のためのスペクトルを識別する情報を同時に受信することができる。いくつかの実施形態では、制御装置210は、訓練セット試料のためのスペクトルを識別する情報を受信し、定量化モデルを生成し、定量化モデルの生成後に、定量化モデルのテストを可能とするために検証セット試料のためのスペクトルを識別する情報を受信することができる。
【0041】
いくつかの実施形態では、制御装置210は、複数のスペクトロメータ220からの一組の分光測定の結果を識別する情報を受信し得る。例えば、制御装置210は、複数のスペクトロメータ220によって複数の異なる時間、異なる位置等で実行された分光測定を受信することによって物理的状態、例えば複数のスペクトロメータ220間の差、実験室条件の潜在的な差を制御し得る。
【0042】
いくつかの実施形態では、制御装置210は、定量化モデルの生成において利用する際に一以上のスペクトルを取り除くことができる。例えば、制御装置210は、分光学的定量化を実行し、スペクトルが、定量化するために定量化モデルを構成したある種の材料に対応しないと判定し、(例えば、分光法を正確に実行する上での人的エラーや、訓練セットのスペクトルを識別する情報におけるエラー等に基づいて)スペクトルに対応する試料が誤って非対象の材料であったと判定し得る。この場合、制御装置210は、訓練セットからスペクトルを除去するよう決定することができる。こうして、制御装置210により、定量化モデルが、訓練セットまたは検証セットに関する不正確または不精確な情報を使用して生成される可能性を低減させることによって、定量化モデルの精度を改善することができる。
【0043】
こうして、制御装置210は、一組の分光測定の結果を識別する情報を受信する。
【0044】
図4に更に示すように、プロセス400は、一組の分光測定の結果を識別する情報に基づいて定量化モデルを生成するステップを含み得る(ブロック430)。例えば、制御装置210は、(例えば、プロセッサ320、メモリ330、記憶コンポーネント340等を使用して)一組の分光測定の結果を識別する情報に基づいて、SVMクラシファイア技術と関連する定量化モデルを生成し得る。
【0045】
SVMは、定量化のためのパターン認識を実行し、定量化のための信頼メトリックを使用する監視学習モデルと言える。いくつかの実施形態では、制御装置210は、SVM技術を用いて定量化モデルを生成する際に、特定のタイプのカーネル関数を利用して、二以上のインプット(例えば、スペクトル)の類似性を判定し得る。例えば、制御装置210は、ラジアル基底関数(RBF)(例えば、いわゆるSVM-rbf)型のカーネル関数(スペクトルxおよびyについてk(x,y)=exp(-||x-y||^2)として示され得る)、線形関数(例えば、多段分類技術に利用される、いわゆるSVM-linearおよびいわゆるhier-SVM-linear)型のカーネル関数(k(x,y)=<x・y>として示され得る)、シグモイド関数型のカーネル関数、多項式関数型のカーネル関数、指数関数型のカーネル関数等を利用し得る。いくつかの実施形態は、制御装置210は、単一クラスSVM(SC-SVM)クラシフィア技術を使用して定量化モデルを生成することができる。例えば、制御装置210は、訓練セットにおける複数の濃度の成分に対応する複数のクラスを集約して、定量化モデルを代表する単一クラスを生成することができる。この場合、制御装置210は信頼メトリックを利用して、未知試料が、本明細書に記載のように、分析するために定量化モデルを構成した種類である可能性を判定する。
【0046】
いくつかの実施形態では、制御装置210は、SVMのための特定のタイプの信頼メトリック、例えば確率値ベースのSVM(例えば、試料が(可能な濃度の)一組のクラスの(濃度の)あるクラスのメンバーである確率の決定に基づく判定)、決定値ベースのSVM(例えば、決定関数を利用して、試料が一組のクラスのどのクラスのメンバーであるか得票で決定する判定)等を利用し得る。例えば、決定値ベースのSVMによる定量化モデルの使用中、制御装置210は、未知試料が未知試料のスペクトルのプロッティングに基づいて、成分クラス(例えば、未知試料の成分の特定の量または濃度)の境界内に位置付けられるか否かを判定し、未知試料が成分クラスの境界内に位置付けられるか否かに基づいて、試料をクラスに割り当てることができる。こうして、制御装置210は、定量化するために未知スペクトルを特定のクラスに割り当てるか否かを判定することができる。
【0047】
本明細書に記載のいくつかの実施形態は、特定の機械学習技術のセットについて記載しているが、未知スペクトルに関する情報を決定するのに、例えば材料の分類等の他の技術も可能である。
【0048】
いくつかの実施形態では、制御装置210は、定量化モデルを生成するために利用する特定のクラシファイアを一組の定量化技術から選択し得る。例えば、制御装置210は、複数のクラシファイアに対応する複数の定量化モデルを生成し、例えば各モデルのトランスフェラビリティ(例えば、第1のスペクトロメータ220で実行された分光測定に基づいて生成された定量化モデルが、第2のスペクトロメータ220で実行された分光測定に適用される際に正確である程度)、大規模解析精度(例えば、閾値を満足するある量の試料の濃度を同時に識別するために定量化モデルを使用することができる精度)等を決定することによって、複数の定量化モデルを試験することができる。この場合には、制御装置210は、SVMクラシファイア(例えば、hier-SVM-linearクラシフィア、SC-SVMクラシフィア等)を、そのクラシファイアが他のクラシファイアに比較して優れたトランスフェラビリティおよび/または大規模解析精度と関連するという決定に基づいて、選択することができる。
【0049】
いくつかの実施形態では、制御装置210は、訓練セットの試料を識別する情報に基づいて定量化モデルを生成し得る。例えば、制御装置210は、スペクトルのクラスを材料の種類または濃度で識別するために、訓練セットの試料で表される材料の種類または濃度を識別する情報を利用し得る。いくつかの実施形態では、制御装置210は、定量化モデルを生成する際に定量化モデルを訓練し得る。例えば、制御装置210は、一組の分光測定の一部分(例えば、訓練セットに関連する側定値)を用いて定量化モデルを訓練させることができる。付加的または代替的に、制御装置210は、定量化モデルの評価を実行してもよい。例えば、制御装置210は、一組の分光測定の別の部分(例えば、検証セット)を用いて定量化モデルを(例えば、予測強度について)評価することができる。
【0050】
いくつかの実施形態では、制御装置210は、多段分類技術を用いて定量化モデルを検証することができる。例えば、定量化に基づくインサイチュローカルモデリングにおいて、制御装置210は、定量化モデルが一以上のローカル定量化モデルと関連して利用される際に正確であることを判定することができる。こうして、制御装置210は、例えば、制御装置210によって、または他のスペクトロメータ220と関連する他の制御装置210等によって利用するための定量化モデルを供給する前に、定量化モデルを閾値精度で確実に生成する。
【0051】
いくつかの実施形態では、制御装置210は、定量化モデルの生成後、定量化モデルを他のスペクトロメータ220と関連する他の制御装置210に供給し得る。例えば、第1の制御装置210は定量化モデルを生成し、その定量化モデルを利用するために第2の制御装置210に供給し得る。この場合、インサイチュローカルモデリングベースの定量化において、第2の制御装置210は定量化モデル(例えば、グローバル定量化モデル)を格納し、未知セットの一以上の試料における材料の成分濃度を判定するために、一以上のインサイチュローカル定量化モデルを生成するのに定量化モデルを利用することができる。付加的または代替的に、制御装置210は、制御装置210で定量化を実行し、(例えば、インサイチュローカルモデリングベースの定量化のための)一以上のローカル定量化モデルを生成する際等に利用するために、定量化モデルを格納してもよい。このように、制御装置210は、未知試料の分光学的定量化にて利用するための定量化モデルを提供する。
【0052】
こうして、制御装置210は、一組の分光測定の結果を識別する情報に基づいて定量化モデルを生成することができる。
【0053】
図4はプロセス400の例示的ブロックを示し、いくつかの実施形態では、プロセス400は追加のブロック、より少数のブロック、異なるブロック、または図4に示す例と異なる配置のブロックを含んでもよい。付加的または代替的に、プロセス400の二以上のブロックは並列に実行してもよい。
【0054】
図5は、図4に示す例示的プロセス400に関連する例示的な実施形態500の図である。図5は、定量化モデルを生成する一例を示す。
【0055】
図5に参照番号505によって示すように、制御装置210-1は情報をスペクトロメータ220-1に送信し、スペクトロメータ220-1に一組の分光測定を訓練セットおよび検証セット510に実行するよう命令する。訓練セットおよび検証セット510は、第1セットの訓練試料(例えば、それらの測定は定量化モデルを訓練するために利用される)と、第2セットの検証試料(例えば、それらの測定は定量化モデルの精度を検証するために利用される)とを含むと仮定する。参照番号515によって示すように、スペクトロメータ220-1は、受信した命令に基づいて、一組の分光測定を実行する。参照番号520によって示すように、制御装置210-1は、訓練試料に対する第1セットのスペクトルと、検証試料に対する第2セットのスペクトルとを受信する。この場合、訓練試料および検証試料は、定量化のための対象材料のグループに複数の濃度の成分の試料を含み得る。例えば、制御装置210-1は、グローバルモデル(例えば、グローバル分類モデルまたは定量化モデル)の生成に関連するスペクトルを受信し、グローバルモデルおよび(ローカル分類モデルまたは定量化モデル等のローカルモデルを生成するために)インサイチュローカルモデリング技術を使用して肉の種類を識別し、肉の種類における特定のタンパク質の濃度を定量化することができる。この場合、制御装置210-1は、複数のローカル定量化モデル(例えば、インサイチュローカルモデリングを使用して識別された第1の種類の肉における特定のタンパク質の濃度を判定するための第1の定量化モデルや、インサイチュローカルモデリングを使用して識別された第2の種類の肉における特定のタンパク質の濃度を判定するための第2の定量化モデル等)を生成するように構成することができる。制御装置210-1は、訓練セットおよび検証セット510の各試料を識別する情報を格納すると仮定する。
【0056】
図5に関して、制御装置210-1は、分類モデルを生成するためにhier-SVM-linearクラシファイアおよび複数の定量化モデルのためのSC-SVMクラシフィアを利用するように選択していると仮定する。参照番号525で示すように、制御装置210-1は、hier-SVM-linearクラシファイアおよび第1セットのスペクトルを用いてグローバル分類モデルを訓練し、hier-SVM-linearクラシファイアおよび第2セットのスペクトルを用いてグローバル分類モデルを検証する。更に、制御装置210-1は、複数のローカル定量化モデル(例えば、グローバル分類モデルの各クラスおよび/またはグローバル分類モデルに基づいて生成されたローカル分類モデルの各クラスに対応するローカル定量化モデル)を訓練および検証する。制御装置210-1は、定量化モデルが検証閾値を満足している(例えば、検証閾値を超える正確性を有する)と判定すると仮定する。参照番号530によって示されるように、制御装置210-1は、制御装置210-2に(例えば、スペクトロメータ220-2によって実行される分光測定に定量化を実行するときに利用するために)、および制御装置210-3に(例えば、スペクトロメータ220-3によって実行される分光測定に定量化を実行するときに利用するために)、定量化モデルを提供する。
【0057】
上述したように、図5は単なる一例にすぎない。他の例も可能であり、図5に関して記載した形態とは異なるものとし得る。
【0058】
このように、制御装置210は、選択された(例えば、モデルトランスフェラビリティ、大規模定量化精度等に基づいて選択された)分類技術および一以上のスペクトロメータ220と関連する一以上の他の制御装置210で利用するための定量化モデルの分配に基づく定量化モデルの生成を容易にする。
【0059】
図6は、原料の定量化中における誤検知識別を回避するための例示的なプロセス600のフローチャートである。いくつかの実施形態では、図6の一以上のプロセスブロックは、制御装置210により実行され得る。いくつかの実施形態では、図6の一以上のプロセスブロックは、制御装置210とは別の装置または制御装置210を含む一群の装置、例えばスペクトロメータ220によって実行されてもよい。
【0060】
図6に示すように、プロセス600は、未知試料に実行された一組の分光測定の結果を識別する情報を受信するステップを含み得る(ブロック610)。例えば、制御装置210は、(例えば、プロセッサ320、通信インタフェース370等を使用して)未知試料に実行された一組のNIR分光測定の結果を識別する情報を受信することができる。いくつかの実施形態では、制御装置210は、(例えば、複数試料のうちの)未知セットへの一組の分光測定の結果を識別する情報を受信することができる。未知セットは、一組の試料(例えば、未知試料)を含むことができ、その試料のための判定(例えば分光学的定量化)を実施することができる。例えば、制御装置210は、スペクトロメータ220に、一組の未知試料への一組の分光測定を実行させることができ、また、その一組の未知試料に対応する一組のスペクトルを識別する情報を受信することができる。
【0061】
いくつかの実施形態では、制御装置210は、複数のスペクトロメータ220からの結果を識別する情報を受信することができる。例えば、制御装置210は、複数のスペクトロメータ220に、未知セット(例えば、同じセットの試料)に一組の分光測定を実行させ、未知セットの試料に対応する一組のスペクトルを識別する情報を受信することができる。付加的または代替的に、制御装置210は、複数回、複数の位置等で実行された一組の分光測定の結果を識別する情報を受信し、複数回、複数の位置等で実行された一組の分光測定に基づいて(例えば、一組の分光測定の平均化または別の技術に基づいて)特定の試料を定量化することができる。こうして、制御装置210は、一組の分光測定の結果に影響を与え得る物理的状態を考慮することができる。
【0062】
付加的または代替的に、制御装置210は第1のスペクトロメータ220に、未知セットの第1部分に一組の分光測定の第1部分を実行させ、第2のスペクトロメータ220に、未知セットの第2部分に一組の分光測定の第2部分を実行させてもよい。こうすると、制御装置210は、一組の分光測定を実行するのに要する時間量を単一のスペクトロメータ220で全ての分光測定を実行するのに要する時間量に比べて短縮することができる。
【0063】
こうして、制御装置210は、未知試料に対して実行された一組の分光測定の結果を識別する情報を受信する。
【0064】
図6に更に示すように、プロセス600は、未知試料が定量化モデルに対応するか否かを判定するステップを含み得る(ブロック620)。例えば、制御装置210は、(例えば、プロセッサ320、メモリ330、記憶コンポーネント340等を使用して)未知試料が、定量化するために定量化モデルを構成した材料であるか否か、および/または定量化するために定量化モデルを構成した成分を材料中に含むか否かの判定を試みる。
【0065】
いくつかの実施形態では、制御装置210は、SC-SVMクラシフィア技術を使用して、未知スペクトルが定量化モデルに対応するか否かを判定することができる。例えば、制御装置210は、SC-SVM技術を利用するために、構成可能なパラメータ値であるnuを判定することができる。パラメータ値は、決定境界内に含まれないと判定される訓練セット試料に対する、SC-SVM技術のための決定境界内に含まれると判定される訓練セット試料の比率に対応し得る。いくつかの実施形態では、制御装置210は、パラメータ値に基づいて決定境界を判定することができる。いくつかの実施形態では、制御装置210は、交差検証処置を使用して、複数の可能な決定境界を設定し、複数の可能な決定境界を使用した結果を(例えば、平均化によって)結合して、未知スペクトルが定量化モデルに対応するか否かを判定することができる。
【0066】
いくつかの実施形態では、パラメータ値を満足する決定境界の設定に基づいて(例えば、0.5のパラメータ値に対して、訓練セットの測定値の半分が決定境界内に位置付けられ、かつ訓練セットの測定値の半分が決定境界外に位置付けられるように決定値を設定)、制御装置210は、測定値から決定境界までの距離メトリックに対応し得る決定値を決定することができる。例えば、制御装置210は、未知試料のスペクトルについて一組の軸上の位置を決定し、その位置と決定境界の最も近い地点との間の距離を判定することができる。本明細書に記載のいくつかの実施形態は、グラフまたは一組の軸に関連して記載されているが、本明細書に記載の実施形態はグラフまたは一組の軸を使用せず、例えば未知スペクトルに関連する別の代表データを使用して判定することもできる。
【0067】
いくつかの実施形態では、制御装置210は、未知スペクトルに対する決定値を判定することができる。例えば、制御装置210は、未知スペクトルから決定境界までの距離を判定することができる。いくつかの実施形態では、制御装置210は、決定境界外に位置付けられた他の測定値に対する決定値を決定することができる。この場合、制御装置210は統計メトリックを判定して、決定境界外の他の測定値に対する決定値に関連する未知試料の決定値の標準偏差量を表すことができる。例えば、制御装置210は、対数正規分布に基づく対数正規標準偏差を判定し、標準偏差が閾値(例えば、1標準偏差、2標準偏差、3標準偏差等)を満足するか否かを判定することができる。この場合、未知試料のスペクトルの測定値が、決定境界外の他の測定値に対して決定境界からの標準偏差の閾量よりも大きいことに基づいて(例えば、決定境界から3標準偏差)、制御装置210は、未知試料が定量化モデルに対応しないと判定することができる(ブロック620-いいえ)。あるいは、測定値が、決定境界から標準偏差の閾量よりも小さいことに基づいて、制御装置210は、未知試料が定量化モデルに対応すると判定することができる(ブロック620-はい)。本明細書には、特定の統計技術および/または標準偏差の特定の閾量に関して記載されているが、他の統計技術および/または閾値を使用してもよい。
【0068】
こうして、制御装置210は、未知試料に類似する試料を使用して定量化モデルを訓練させることなく、閾量だけ定量化モデルとは異なる(例えば、閾量だけ対象材料の訓練セット試料とも異なる)未知スペクトルの識別を可能にする。更に、制御装置210は、定量化モデルを生成するために収集される試料の分量を減少させることによって、対象材料および/またはそれらの濃度とは閾量だけ異なる試料の正確な識別を確実にするために、他の試料の取得、格納、および処理に比べて、コスト、時間、および計算資源(例えば、処理資源およびメモリ資源)の利用を減少させることができる。
【0069】
こうして、制御装置210は、未知試料が定量化モデルに対応するか否かを判定する。
【0070】
図6に更に示すように、未知試料が定量化モデルに対応するとの判定に基づいて(ブロック620-はい)、プロセス600は、一組の分光測定の結果に基づいて一以上の分光学的判定を実行するステップを含み得る(ブロック630)。例えば、制御装置210は、(例えば、プロセッサ320、メモリ330、記憶コンポーネント340等を使用して)一組の分光測定の結果に基づいて一以上の分光学的判定を実行することができる。いくつかの実施形態では、制御装置210は、未知試料を(例えば、対象材料における成分の一組の濃度のうちの特定の濃度を代表する)特定のクラスに割り当てることができる。
【0071】
いくつかの実施形態では、制御装置210は、信頼メトリックに基づいて特定の試料を割り当てることができる。例えば、制御装置210は、定量化モデルに基づいて、特定のスペクトルが定量化モデルの各クラス(例えば、候補である各濃度)に関連する確率を判定することができる。この場合、制御装置210は、クラスに関連する他の確率を超えるクラスに対する特定の確率に基づいて、未知試料をクラス(特定の濃度)に割り当てることができる。こうして、制御装置210は、試料が関連する対象材料における成分の濃度を判定することによって、試料を定量化する。
【0072】
いくつかの実施形態では、インサイチュローカルモデリングを実行するために、例えば、クラスの閾量を超える定量化モデルに対して、制御装置210は、第1の判定に基づいてローカル定量化モデルを生成することができる。ローカル定量化モデルは、SVM判定技術(例えば、SVM-rbf、SVM-linear等のカーネル関数、確率値ベースのSVM、決定値ベースのSVM等)を使用して、第1の判定に関連する信頼メトリックに基づいて生成されたインサイチュ定量化モデルを言う。
【0073】
いくつかの実施形態では、制御装置210は、グローバル分類モデルを使用して第1の判定の実行に基づいてローカル定量化モデルを生成することができる。例えば、制御装置210を使用して未知試料における成分の濃度を判定し、成分の濃度を判定するために複数の未知試料が異なる定量化モデルに関連する場合、制御装置210は第1の判定を利用して、クラスのサブセットを未知試料のためのローカルクラスとして選択し、未知試料のためのローカルクラスに関連付けられたローカル定量化モデルを生成することができる。こうして、制御装置210は、階層的決定および定量化モデルを利用して、分光学的分類を改善する。この場合、制御装置210は、ローカル定量化モデルの他の測定値のサブセットに関連する未知試料に対する距離メトリックの判定に基づいて、未知試料がローカル定量化モデルに対応するか否かを判定することができる。
【0074】
一例として、植物材料中の特定の化学物質の濃度を決定するために原料識別を実行するとき、植物材料が複数の定量化モデルと関連する場合(例えば、植物が屋内または屋外で、冬または夏等に成長するものであるか否かに関する場合)、制御装置210は、特定の定量化モデルを識別するために一組の分光学的判定を実行することができる。この場合には、制御装置210は、一組の判定の実行に基づいて、植物は冬に屋内で成長するものであると決定することが可能であり、特定の化学物質の濃度を決定するために、冬に屋内で成長する植物に関する定量化モデルを選択することができる。定量化モデルの選択に基づいて、制御装置210は、未知試料が定量化モデルに対応すると判定し、定量化モデルを使用して未知試料を定量化することができる。
【0075】
いくつかの実施形態では、制御装置210は、定量化モデルを使用した未知試料の定量化を失敗し得る。例えば、一以上の決定値または他の信頼メトリックが、閾値を満足させないことに基づいて、制御装置210は、未知試料が定量化モデルを使用して正確に定量化することができないと判定し得る(ブロック630-A)。あるいは、制御装置210は、一以上の決定値または他の信頼メトリックが閾値を満足することに基づいて、未知試料の定量化を成功させ得る(ブロック630-B)。
【0076】
こうして、制御装置210は、一組の分光測定の結果に基づいて、一以上の分光学的判定を実行する。
【0077】
図6に更に示すように、未知試料が定量化モデルに対応しないとの判定に基づいて(ブロック620-いいえ)、または、一以上の分光学的判定の実行時における失敗との判定に基づいて(ブロック630-A)、プロセス600は、未知試料が定量化モデルに対応しないことを示す出力を提供するステップを含み得る(ブロック640)。例えば、制御装置210は、(例えば、プロセッサ320、メモリ330、記憶コンポーネント340、通信インタフェース370等を使用して)例えばユーザインタフェースを介して、未知試料が定量化モデルに対応しないことを示す情報を提供することができる。いくつかの実施形態では、制御装置210は、未知試料の識別に関連する情報を提供し得る。例えば、特定の植物における特定の化学物質の量の定量化に基づいて、また、未知試料が特定の植物ではないとの判定(しかしながら、代わりに、例えば人的エラーに基づいて別の植物であるとの判定)に基づいて、制御装置210は、別の植物を識別する情報を提供し得る。いくつかの実施形態では、制御装置210は、別の定量化モデルを取得し、別の定量化モデルを使用して、未知試料が定量化モデルに対応しないとの判定に基づいて、未知試料を識別することができる。
【0078】
こうして、制御装置210は、未知試料の識別時の誤検知に基づく不正確な情報を提供する可能性を低減させ、未知試料が、例えば特定の植物ではなく別の植物であったとの判定を支援する情報を提供することによって技術者によるエラー補正を可能にする。
【0079】
こうして、制御装置210は、未知試料が定量化モデルに対応しないことを示す出力を提供する。
【0080】
図6に更に示すように、一以上の分光学的判定を実行したときの分類の成功に基づいて(ブロック630-B)、プロセス600は、未知試料に関連する分類を識別する情報を提供するステップを含み得る(ブロック650)。例えば、制御装置210は、(例えば、プロセッサ320、メモリ330、記憶コンポーネント340、通信インタフェース370等を使用して)未知試料に関連する定量化を識別する情報を提供することができる。いくつかの実施形態では、制御装置210は、未知試料に対する特定のクラスを識別する情報を提供することができる。例えば、制御装置210は、未知試料と関連する特定のスペクトルが、対象材料における成分の特定の濃度に対応する特定のクラスと関連するという判定を示す情報を提供し、それによって未知試料を識別することができる。
【0081】
いくつかの実施形態では、制御装置210は、未知試料の特定のクラスへの割り当てに関連する信頼メトリックを示す情報を提供し得る。例えば、制御装置210は、未知試料が特定のクラス等と関連する確率を識別する情報を提供することができる。こうして、制御装置210は、特定のスペクトルが特定のクラスに正確に割り当てられた可能性を示す情報を提供する。
【0082】
いくつかの実施形態では、制御装置210は、一組の分類の実行に基づく定量化を提供し得る。例えば、未知試料のクラスに関連するローカル定量化モデルの識別に基づいて、制御装置210は、未知試料における物質の濃度を識別する情報を提供することができる。いくつかの実施形態では、制御装置210は、一組の定量化の実行に基づいて、定量化モデルをアップデートすることができる。例えば、制御装置210は、未知試料の定量化を対象材料における成分の特定の濃度として判定することによって、未知試料を訓練セットの試料として含む新しい定量化モデルを生成することができる。
【0083】
こうして、制御装置210は、未知試料を識別する情報を提供する。
【0084】
図6はプロセス600の例示的ブロックを示すが、いくつかの実施形態では、プロセス600は追加のブロック、より少数のブロック、異なるブロック、または図6とは異なる配置のブロックを含んでよい。付加的または代替的に、プロセス600の二以上のブロックを並行して実行してもよい。
【0085】
図7Aおよび図7Bは、図6に示す例示的プロセス600と関連する予測成功率に関する例示的な実施形態700を示す。図7Aおよび図7Bは、階層的サポートベクトルマシン(hier-SVM-linear)ベースの技術を用いた原料識別の例示的な結果を示す。
【0086】
図7Aに参照番号705で示すように、制御装置210は、スペクトロメータ220に一組の分光測定を実行させることができる。例えば、制御装置210は、スペクトロメータ220に、未知試料に対するスペクトルを取得させるよう命令して、未知試料における成分の濃度を判定することができる。参照番号710および参照番号715によって示すように、スペクトロメータ220は未知試料を受信し、未知試料に対して一組の分光測定を実行することができる。参照番号720によって示すように、制御装置210は、未知試料に対して一組の分光測定を実行する未知試料ベースのスペクトロメータ220に対するスペクトルを受信することができる。
【0087】
図7Bに示すように、制御装置210は定量化モデル725を使用して、分光学的定量化を実行することができる。定量化モデル725は、単一クラス730の決定境界が、結果的に、決定境界内に含まれない訓練セットの試料に対する、決定境界内の訓練セットの試料の閾値比になるように、パラメータ値nuに基づいて判定された単一クラス730を含む。この場合、定量化モデル725は、訓練セットの試料における成分の複数の異なる濃度に対応する複数のサブクラスに関連付けられ得る。参照番号735および740によって示されるように、未知試料のスペクトルは、閾値(例えば、3)を満足する決定境界までの試料の距離に対する標準偏差値(例えば、σ=3.2)に基づいて定量化モデルに対応しないと判定される。参照番号745によって示すように、制御装置210は、未知試料を対象材料における成分の特定の濃度として誤検知識別を提供するのではなく、クライアント装置750に、未知試料が定量化モデルに対応しないことを示す出力を提供する。
【0088】
上述したように、図7Aおよび図7Bは単なる一例にすぎない。他の例も可能であり、図7Aおよび図7Bに関して記載したものと相違させてもよい。
【0089】
このように、制御装置210は、未知試料を、識別するために定量化モデルを訓練した対象材料における成分の特定の濃度として識別する際の誤検知を回避することにより、分光法における不正確な結果を供給する可能性を低減させる。
【0090】
以上の開示は描写および記述を提供するが、網羅的であって、実施形態を開示の正確な形態に限定することを意図するものではない。以上の開示に照らせば修正および変更が可能であり、実施形態の実施から得ることができる。
【0091】
いくつかの実施形態が本明細書において閾値と関連して記載されている。本明細書において、閾値を満足するとは、閾値より大きい、閾値より多い、閾値より高い、閾値より大きいまたは等しい、閾値より小さい、閾値より少ない、閾値より低い、閾値より小さいまたは等しい、閾値に等しい等を意味する。
【0092】
本明細書に記載のシステムおよび/または方法はハードウェア、ファームウェア、またはハードウェアとソフトウェアの組み合わせの異なる形態で実装してよい。これらのシステムおよび/または方法を実施するために使用される実際の専用制御ハードウェアまたはソフトウェアコードは実施形態を限定するものではない。従って、システムおよび/または方法の動作および挙動は、本明細書においてソフトウェアコードと無関係に記載されているが、これらのシステムおよび/または方法を実施するソフトウェアおよびハードウェアは本明細書の記載に基づいて設計することができることは当たり前である。
【0093】
特徴の特定の組み合わせが請求の範囲および/または明細書に記載されているが、これらの組み合わせは可能な実施形態の開示を限定することを意図するものでない。実際、これらの特徴の多くは請求の範囲および/または明細書に明確に記載されない形で組み合わせることができる。以下に列記される各従属請求項は一つの請求項にのみ直接従属するが、可能な実施形態の開示はクレームセットの他の全ての請求項と組み合わせた各従属請求項を含む。
【0094】
本明細書で用いられる素子、動作、または命令はいずれも、そのように明記されない限り重要なものまたは必須なものと解釈すべきでない。また、本明細書で用いられる、冠詞「a」および「an」は、1つ以上の項目を含むことが意図され、「1つ以上」と交換可能に用いられ得る。更に、本明細書で用いられる、用語「組」は、1つ以上の項目(例えば、関連項目、非関連項目、関連項目および非関連項目の組み合わせ等)を含むことが意図され、「1つ以上」と交換可能に用いられ得る。1つの項目のみが意図される場合、用語「1つ」または同様の文言が用いられる。また、本明細書で用いられる、用語「有する」等は、オープンエンドな用語であることが意図される。更に、語句「に基づく」は、別段の明記がない限り、「少なくとも部分的に基づく」を意味することが意図される。
【0095】
(特許請求の範囲)
[請求項1]
一以上のメモリと、
前記一以上のメモリに通信可能に連結された一以上のプロセッサと、
を含み、
未知試料に対して実行された分光測定の結果を識別する情報を受信し、
定量化モデルの複数の第1の訓練セット試料が決定境界内にあり、かつ前記定量化モデルの複数の第2の訓練セット試料が前記決定境界外にあるように、構成可能なパラメータに基づいて前記定量化モデルのための前記決定境界を決定し、
前記決定境界に関連する、前記未知試料に対して実行された分光測定のための距離メトリックを決定し、
前記決定距離に関連する、前記定量化モデルの複数の第2の訓練セット試料のための複数の距離メトリックを決定し、
前記未知試料に対して実行された分光測定が、分光測定のための前記距離メトリックおよび前記複数の第2の訓練セット試料のための複数の距離メトリックに基づいて、前記定量化モデルに対応するか否かを判定し、
前記未知試料に対して実行された分光測定が、前記定量化モデルに対応しているか否かを示す情報を提供する、装置。
[請求項2]
前記一以上のプロセッサは、前記未知試料に対して実行された分光測定が前記定量化モデルに対応するか否かを判定するとき、
前記分光測定が前記定量化モデルに対応しないと判定し、
前記一以上のプロセッサは、前記未知試料に対して実行された分光測定が前記定量化モデルに対応するか否かを示す情報を提供するとき、
前記分光測定が前記定量化モデルに対応しないことを示す情報を提供する、請求項1に記載の装置。
[請求項3]
前記一以上のプロセッサは、前記未知試料に対して実行された分光測定が前記定量化モデルに対応するか否かを判定するとき、
前記分光測定が前記定量化モデルに対応すると判定し、
前記一以上のプロセッサは、前記未知試料に対して実行された分光測定が前記定量化モデルに対応するか否かを示す情報を提供するとき、
前記分光測定が前記定量化モデルに対応することを示す情報を提供する、請求項1に記載の装置。
[請求項4]
前記一以上のプロセッサは、前記未知試料に対して実行された分光測定が前記定量化モデルに対応するか否かを判定するとき、
前記複数の距離メトリックに対する前記距離メトリックのための統計メトリックを決定し、
前記未知試料に対して実行された分光測定が、前記統計メトリックに基づいて前記定量化モデルに対応するか否かを判定する、請求項1に記載の装置。
[請求項5]
前記統計メトリックは対数正規標準偏差であり、
前記一以上のプロセッサは、前記未知試料に対して実行された分光測定が、前記統計メトリックに基づいて前記定量化モデルに対応するか否かを判定するとき、
前記対数正規標準偏差は閾値を満足すると判定し、かつ、
前記未知試料に対して実行された分光測定が、前記対数正規標準偏差が閾値を満足するとの判定に基づいて、前記定量化モデルに対応するか否かを判定する、請求項4に記載の装置。
[請求項6]
前記定量化モデルは、単一クラスサポートベクトルマシン(SC-SVM)クラシフィアに関連付けられている、請求項1に記載の装置。
[請求項7]
前記一以上のプロセッサは、更に、
前記複数の第1の訓練セット試料および前記複数の第2の訓練セット試料に関連する複数の分光測定を受信し、
前記複数の分光測定に基づいて前記定量化モデルを決定し、
複数の検証セット試料の別の複数の分光測定に基づいて前記定量化モデルを検証し、
前記定量化モデルを格納し、
前記一以上のプロセッサは、前記決定境界を決定するとき、
ストレージから前記定量化モデルを取得し、かつ、
ストレージから前記定量化モデルを取得した後に、前記決定境界を決定する、請求項1に記載の装置。
[請求項8]
命令を格納する非一時的コンピュータ可読媒体であって、前記命令は、
一以上のプロセッサによって実行されるとき、前記一以上のプロセッサに、
特定の種類の対象材料に関連する定量化モデルを取得させ、
前記定量化モデルは、前記特定の種類の対象材料の試料における特定の成分の濃度を判定するように構成されており、
未知試料に対して実行された特定の分光測定の結果を識別する情報を受信させ、
前記定量化モデルの訓練セット試料の別の分光測定を前記定量化モデルのための単一クラスに集約させ、
前記訓練セット試料の別の分光測定を第1のグループおよび第2のグループに細分させ、
前記別の分光測定の第1のグループは決定境界内にあり、
前記別の分光測定の第2のグループは決定境界外にあり、
前記別の分光測定の第2のグループのための対応するメトリックに関連して、前記未知試料に対して実行された特定の分光測定のためのメトリックが、閾値を満足すると判定させ、
前記未知試料が前記特定の種類の対象材料ではないことを示す情報を提供させる、
一以上の命令を含む、非一時的コンピュータ可読媒体。
[請求項9]
前記未知試料は、前記特定の種類の対象材料とは異なる種類の材料である、請求項8に記載の非一時的コンピュータ可読媒体。
[請求項10]
前記未知試料は、前記特定の種類の対象材料であり、かつ、不正確に取得された測定値である、請求項8に記載の非一時的コンピュータ可読媒体。
[請求項11]
前記メトリックおよび対応するメトリックが決定値である、請求項8に記載の非一時的コンピュータ可読媒体。
[請求項12]
前記閾値は、前記対応するメトリックの平均からの前記メトリックの標準偏差の閾量である、請求項8に記載の非一時的コンピュータ可読媒体。
[請求項13]
前記メトリックおよび前記対応するメトリックは、単一クラスサポートベクトルマシン技術を使用して決定される、請求項8に記載の非一時的コンピュータ可読媒体。
[請求項14]
前記定量化モデルはローカルモデルであり、
前記一以上の命令は、前記一以上のプロセッサによって実行されるとき、更に、前記一以上のプロセッサに、
前記特定の種類の対象材料に関連するグローバルモデルを使用して、前記未知試料の特定の分光測定に関連する第1の判定を実行させ、
前記第1の判定の特定の結果に基づいて、インサイチュローカルモデリング技術を使用して前記ローカルモデルを生成させ、
前記一以上のプロセッサに前記定量化モデルを取得させる前記一以上の命令は、前記一以上のプロセッサに、
前記ローカルモデルの生成に基づいて前記定量化モデルを取得させる、
請求項8に記載の非一時的コンピュータ可読媒体。
[請求項15]
装置によって、未知試料に対して実行された近赤外(NIR)分光測定の結果を識別する情報を受信するステップと、
装置によって、定量化モデルのための決定境界を決定するステップと、
前記決定境界は、前記定量化モデルの単一クラスを、前記決定境界内の定量化モデルの複数の第1の訓練セット試料と、前記決定境界外の定量化モデルの複数の第2の訓練セット試料とに分割し、
装置によって、前記未知試料に対して実行された前記NIR分光測定のための特定の距離メトリックが、前記複数の第2の訓練セット試料のための別の距離メトリックに関連する閾値を満足すると判定するステップと、
装置によって、前記未知試料に対して実行された前記NIR分光測定のための前記特定の距離メトリックが、前記複数の第2の訓練セット試料のための別の距離メトリックに関連する前記閾値を満足するとの判定に基づいて、前記未知試料に対して実行された前記NIR分光測定が、前記定量化モデルに対応しないことを示す情報を提供するステップと、
を含む、方法。
[請求項16]
分類モデルを使用する前記NIR分光測定に基づいて、かつ、前記未知試料に対して実行された前記特定の距離メトリックが、前記複数の第2の訓練セット試料のための別の距離メトリックに関連する前記閾値を満足するとの判定に基づいて、前記未知試料の種類を判定するステップと、
前記未知試料の種類を識別する情報を提供するステップと、
を更に含む、請求項15に記載の方法。
[請求項17]
カーネル関数に基づいて前記決定境界を決定するステップを更に含む、請求項15に記載の方法。
[請求項18]
前記カーネル関数は、
ラジアル基底関数、
多項式関数、
線形関数、または
指数関数、
のうちの少なくとも1つである、請求項17に記載の方法。
[請求項19]
前記閾値は、
1標準偏差、
2標準偏差、または
3標準偏差、
のうちの少なくとも1つよりも大きい、請求項15に記載の方法。
[請求項20]
前記複数の第1の訓練セット試料および前記複数の第2の訓練セット試料は、成分の一組の濃度に関連付けられており、
前記成分の一組の濃度のうちの成分の各濃度は、前記複数の第1の訓練セット試料および前記複数の第2の訓練セット試料の訓練セット試料の閾量に関連付けられている、請求項15に記載の方法。
図1A
図1B
図2
図3
図4
図5
図6
図7A
図7B