IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エヌテエヌ−エスエヌエール ルルモンの特許一覧

特許7242352回転部材の少なくとも1つの回転パラメータを決定するためのシステム
<>
  • 特許-回転部材の少なくとも1つの回転パラメータを決定するためのシステム 図1
  • 特許-回転部材の少なくとも1つの回転パラメータを決定するためのシステム 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-10
(45)【発行日】2023-03-20
(54)【発明の名称】回転部材の少なくとも1つの回転パラメータを決定するためのシステム
(51)【国際特許分類】
   G01D 5/245 20060101AFI20230313BHJP
【FI】
G01D5/245 110L
G01D5/245 M
【請求項の数】 10
【外国語出願】
(21)【出願番号】P 2019044542
(22)【出願日】2019-03-12
(65)【公開番号】P2019191155
(43)【公開日】2019-10-31
【審査請求日】2022-03-08
(31)【優先権主張番号】1852092
(32)【優先日】2018-03-12
(33)【優先権主張国・地域又は機関】FR
(73)【特許権者】
【識別番号】507018894
【氏名又は名称】エヌテエヌ-エスエヌエール ルルモン
(74)【代理人】
【識別番号】110000338
【氏名又は名称】弁理士法人 HARAKENZO WORLD PATENT & TRADEMARK
(72)【発明者】
【氏名】ドュレ クリストフ
【審査官】吉田 久
(56)【参考文献】
【文献】特開平11-248486(JP,A)
【文献】特開2009-168679(JP,A)
【文献】特開2004-184319(JP,A)
【文献】特開平2-145917(JP,A)
【文献】欧州特許出願公開第3163256(EP,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01D 5/12-5/252
G01B 7/00-7/34
G01R 33/00-33/18
(57)【特許請求の範囲】
【請求項1】
回転部材の少なくとも1つの回転パラメータを決定するための決定システムであって、
エンコーダ(1)と、
回転センサと、を備えており、
前記エンコーダは、前記回転部材と連結して動作できるよう、回転部材と接続されて回転するように構成されており、
前記エンコーダは、前記エンコーダの回転を示す周期的な磁気信号を出射可能な磁気トラック(2)が形成されたボディを有しており、
前記トラックは、i個の移行部(3)によって分離された、交互に入れ換わるN極およびS極の磁極を有しており、
前記移行部のそれぞれは、回転軸に対する極座標において、下記の式、
【数1】

によって定義されるアルキメデススパイラルに沿って延在しており、
Nppは、前記磁気トラック(2)の極対数であり、
Lpは、前記エンコーダの半径に応じた前記極のそれぞれの極幅であり、
0から2×Npp-1までのiにおいて、第1スパイラルに対する第iスパイラルの回転角θiは、
【数2】

に等しく、
前記回転センサは、複数の磁気感知素子(4a,4b)を用いて、前記エンコーダによって出射された周期的な磁界を検出可能であり、
前記感知素子(4a,4b)は、前記エンコーダ(1)の回転を示す信号をそれぞれ送出するために、前記磁気トラック(2)に沿って角度分布しており、
前記センサは、2つの感知素子(4a,4b)によって送出された前記信号(V1,V2)を減算するためのデバイスをさらに備えており、
前記2つの感知素子(4a,4b)の間に形成される角度γは、
(i)0.55π<γ×Npp<0.83π,modulo 2π
または、
(ii)1.17π<γ×Npp<1.45π,modulo 2π
を満たす、決定システム。
【請求項2】
前記角度γは、
γ×Nppが、
(i)2π/3 modulo 2π
または、
(ii)4π/3 modulo 2π
に実質的に等しくなる角度である、請求項1に記載の決定システム。
【請求項3】
前記センサは、
自身の間に角度γを形成する2つの感知素子(4a,4b)の、2つのグループと、
前記グループのそれぞれの前記感知素子(4a,4b)の前記信号を減算するためのデバイスと、を備えており、
前記グループによって送出される前記信号(SIN,COS)が直交するように設定された角度αだけ、前記グループが角度オフセットされている、請求項1または2に記載の決定システム。
【請求項4】
前記感知素子(4a,4b)の2つのグループ間に形成される前記角度αは、
【数3】

に等しい、請求項3に記載の決定システム。
【請求項5】
前記感知素子(4a,4b)は、前記磁気トラック(2)の半径Rに沿って角度分布している、請求項1から4のいずれか1項に記載の決定システム。
【請求項6】
前記感知素子(4a,4b)は、前記磁気トラック(2)のメジアン半径Rに沿って角度分布している、請求項5に記載の決定システム。
【請求項7】
前記エンコーダ(1)は、6×Lp未満の高さを有している、請求項1から6のいずれか1項に記載の決定システム。
【請求項8】
前記感知素子(4a,4b)は、
【数4】

のオーダの距離の読取エアギャップ距離だけ、前記磁気トラック(2)から離間して配置されている、請求項1から7のいずれか1項に記載の決定システム。
【請求項9】
前記エンコーダ(1)の極対数Nppは、6未満である、請求項1から8のいずれか1項に記載の決定システム。
【請求項10】
前記エンコーダ(1)の極幅Lpは、2~6mmである、請求項1から9のいずれか1項に記載の決定システム。
【発明の詳細な説明】
【発明の詳細な説明】
【0001】
本発明は、回転部材の少なくとも1つの回転パラメータを決定するためのシステムに関する。前記システムは、周期的な磁気信号を発するエンコーダと、当該磁界を検出可能な回転センサとを備える。
【0002】
多くの用途において、回転部材の少なくとも1つの回転パラメータ(例:回転部材の位置、速度、加速度または移動方向)を、リアルタイムかつ最適な品質で識別することが望ましい。
【0003】
これを行うために、文献WO2006/064169は、可動部材にリジッドに(強固に)取り付けられるように構成(意図)されたエンコーダの使用を提案している。当該エンコーダ上には、複数の感知素子を含むセンサの読取距離(リーディング距離)において、擬似正弦波磁界を出力(出射,放出)できる磁気トラックが形成されている。
【0004】
有利には、例えば文献WO2004/083881に記載されているように、各々の感知素子は、検出された磁界に応じて抵抗が変化するトンネル磁気抵抗(tunnel magneto resistance,TMR)物質ベースの少なくとも1つのパターンを含みうる。
【0005】
検出された磁界の発生に応じた可動部材の移動パラメータを決定するために、文献WO2006/064169は、各感知素子の抵抗を示す(表す)信号の組み合わせを提供する。これにより、直交しており、かつ、同じ振幅を有している2つの信号を送出できる。当該2つの信号は、前記パラメータを計算するために使用されうる。さらに、この手法(解決策)は、コモンモードノイズに影響されない直交した2つの信号を得るために、4つの信号を2つずつ減算する方法を提供している。
【0006】
特に、エンコーダは、交互的な(交互に入れ換わる)一連のN(North)極およびS(South)極を備える。当該交互的な一連のN極およびS極は、所定の極対数(ポールペア数,磁極ペア数)Nppに対して、下記の式、
【0007】
【数1】
【0008】
で示される、読取半径Rに沿った一定の極幅(ポール幅,磁極幅)Lpを規定する。前記感知素子は、直交した信号を送出できるように、距離
【0009】
【数2】
【0010】
だけ離間して、等間隔に分布している。
【0011】
用途によっては、エンコーダは、小さい極対数(典型的には6未満)を有さなければならない。その結果、エンコーダの極幅Lpが広くなり、特に数10ミリメートルのオーダとなる。
【0012】
しかし、こうした広いポールは、小さい読取エアギャップでは正弦波性が悪い磁気信号を送出する。それゆえ、感知素子を磁気トラックから離間させる必要がある。このことは、前記信号の振幅増加に相反するため、感知素子による良好な検出がなされない。
【0013】
さらに、磁気信号の正弦波性および振幅を維持するために、広いポールでは、エンコーダのより大きい厚さが必要とされる。このことは、低減された寸法においてエンコーダを統合(一体化)するには好ましくない。また、このことは、より大きい厚さを磁気的に飽和させなければならないため、磁化方法を複雑にする。
【0014】
さらに、特に文献DE10309027において、N極とS極との間の磁気的な移行部(磁気移行部)がアルキメデススパイラル(螺旋)に沿って延在するエンコーダが知られている。前記スパイラルの各々は、
【0015】
【数3】
【0016】
という段階的(漸次的)な回転角によって、前記エンコーダ上に分布している。
【0017】
このタイプのエンコーダの利点は、前記エンコーダの半径に沿った各ポールの極幅Lpが、極対数Nppとは無関係になることである。このため、少ないポール数を、検出されるべき磁気信号の正弦波性および振幅に関連する感知素子の適切な配置(位置決め)と調和させることができる。
【0018】
しかしながら、従来技術は、このようなエンコーダの半径に沿って感知素子を配置することを提案している。このことは、いくつかの問題を提起する。
【0019】
特に、正弦波性と振幅との間の妥協点を満たすために、感知素子は、
【0020】
【数4】
【0021】
のオーダのエアギャップ(空隙)距離だけ、磁気トラックから離間して配置される。このため、特に、固定センサと回転エンコーダとの間の機械的相互作用のリスクを避けるために、ポール幅Lpは、通常、2~6mmでなければならない。
【0022】
しかし、エンコーダによって送出される磁界のエッジ効果を防ぐために、感知素子は、当該感知素子の配置に必要な半径方向のスペースに加えて、当該半径方向の各側に少なくとも1対の磁極(1つの磁極対)、すなわち各側に2つのLpを有する磁気トラックに関連して配置されなければならない。
【0023】
その結果、エンコーダはかなりの高さ、特に6.Lpを越える高さを有しなければならない。このような高さは、一部の一体化では適用できない。
【0024】
さらに、1対の磁極上のスパイラルエンコーダによって生成された磁界は、(i)定義上では完全な正弦波である基本波と、(ii)複数の奇数次高調波(典型的には基本波の5%を表す3次高調波を含む)と、の組み合わせである。センサの位置および読取エアギャップに応じて、この3次高調波の比率ははるかに大きくなり得る。
【0025】
回転パラメータを正確に決定するために、少なくとも3次高調波がフィルタリングされた信号を測定することが望ましい。しかし、高調波によって生じた誤差に対して任意の固定的な補償(補正)を行うことは困難である。当該誤差は、特に測定条件(エアギャップ、センサの位置)に依存するためである。さらに、大量かつ低コストの用途においては、キャリブレーションを予期することも困難である。
【0026】
本発明の目的は、特に、決定精度が改善された、回転部材の少なくとも1つの回転パラメータを決定するためのシステムを提案することによって、従来技術の問題を解決することである。さらに、本発明に係るシステムは、磁気信号を送出するエンコーダ(特に、少ない極対数を有する磁気エンコーダ)に対して、特段のスペースの制約を生じさせることなく、検出された磁気信号の周期性と振幅との間の妥協点を提供できる。
【0027】
この目的のために、本発明は、回転部材の少なくとも1つの回転パラメータを決定するためのシステムを提案する。当該システムは、回転部材の少なくとも1つの回転パラメータを決定するための決定システムであって、エンコーダと、回転センサと、を備えている。前記エンコーダは、前記回転部材と連結して動作できるよう、回転部材と接続されて回転するように構成されている。前記エンコーダは、ボディを有している。前記ボディには、前記エンコーダの回転を示す周期的な磁気信号を出射可能な磁気トラックが形成されている。前記トラックは、i個の移行部によって分離された、交互に入れ換わるN極およびS極の磁極を有している。前記移行部のそれぞれは、回転軸に対する極座標において、下記の式、
【0028】
【数5】
【0029】
によって定義されるアルキメデススパイラルに沿って延在している。Nppは、前記磁気トラックの極対数である。Lpは、前記エンコーダの半径に応じた前記極のそれぞれの極幅である。0から2.Npp-1までのiにおいて、第1スパイラルに対する第iスパイラルの回転角θiは、
【0030】
【数6】
【0031】
に等しい。前記回転センサは、複数の磁気感知素子を用いて、前記エンコーダによって出射された周期的な磁界を検出可能である。前記感知素子は、前記エンコーダの回転を示す信号をそれぞれ送出するために、前記磁気トラックに沿って角度分布している。前記センサは、2つの感知素子によって送出された前記信号を減算するためのデバイスをさらに備えている。前記2つの感知素子(4a,4b)の間に形成される角度γは、
(i)0.55π<γ.Npp<0.83π,modulo 2π
または、
(ii)1.17π<γ.Npp<1.45π,modulo 2π
を満たす。
【0032】
本発明の他の特徴および利点は、添付の図1を参照してなされる以下の説明において明らかになるであろう。図1は、本発明に係る決定システムを図式的に示す。図1は、特に、エンコーダに対する感知素子の配置を示す。図2は、感知素子間の角度に応じた3次高調波のフィルタリングを示す曲線である。
【0033】
これらの図に関連して、固定構造(固定された構造体)に対する回転部材の少なくとも1つの回転パラメータを決定するためのシステムを説明する。特に、回転部材のパラメータは、当該回転部材の位置、速度、加速度または移動方向の内から選択されうる。
【0034】
特定の用途では、システムは、ブラシレス直流電動機(電動モータ)の制御に関連して使用されてよい。この場合、特に、固定子(ステータ)に対する回転子(ロータ)の一対のモータの極上の絶対的な角度位置を識別することが可能となる。
【0035】
決定システムは、エンコーダ1を備える。当該エンコーダは、回転部材と連結して動作できるように、当該回転部材にリジッドに取り付けられるように構成されている。前記エンコーダは、ボディ(本体部)を備える。当該ボディは、特に環状であるが、円盤状であってもよい。当該ボディには、磁気トラック2が形成されている。当該磁気トラックは、前記エンコーダの回転を示す周期的な磁気信号を出射(放出)することが可能である。特に、出射される磁気信号は、正弦波または擬似正弦波であってよい。すなわち、当該磁気信号は、正弦波によって適切に(正確に)近似可能な少なくとも1つの部分を有している。
【0036】
トラック2は、i個の移行部(遷移部,トランジション)3によって分離(区分)された、交互的な(交互に入れ換わる)N極およびS極を有する。前記移行部の各々は、回転軸に対する極座標(ρ,θ)において、下記の式、
【0037】
【数7】
【0038】
によって定義されるアルキメデススパイラルに沿って延在している。Nppは、磁気トラック2の極対数を示す。Lpは、エンコーダ1の半径に応じた極のそれぞれの極幅を示す。第1スパイラルに対する第iスパイラル(i番目のスパイラル)の回転角θiは、0から2.Npp-1までのiにおいて、
【0039】
【数8】
【0040】
に等しい。
【0041】
その結果、磁気トラック2は、λ=2.Lpに等しい空間周期を有する擬似正弦波磁気信号を送出する。さらに、アルキメデススパイラル形状によれば、特に、磁気トラック2の極対数Nppおよび極幅Lpを、磁気トラック2の半径Rとは無関係に選択することが可能となる。
【0042】
一実施形態によれば、エンコーダ1は、多極磁気トラック2が製造されているのと同じマグネット(磁石)によって形成されている。特に、当該マグネットは、フェライト粒子またはNdFeB等の希土類を含む磁性粒子が分散された、プラスチックまたはエラストマー材料によって製造された環状マトリクスによって形成されてよい。
【0043】
決定システムは、回転センサを備える。当該回転センサは、固定構造にリジッドに取り付けられるように構成されている。前記センサは、エンコーダ1によって出射された周期的な磁界を検出できる。これを行うために、センサは、複数の磁気感知素子4a、4bを備える。当該磁気感知素子はそれぞれ、エンコーダ1の回転を示す信号を送出することを目的として、磁気トラック2によって送出される磁界の読取エアギャップに配置されている。
【0044】
感知素子4a、4bの各々は、特に、複数の磁気感知センサの内から選択されてよい。例えば、ホール効果、トンネル磁気抵抗(TMR)、異方性磁気抵抗(anistropic magneto resistance,AMR)、または巨大磁気抵抗(giant magneto resistance,GMR)に基づくセンサは、(エンコーダ1に対して法線方向(垂直)または接線方向の)磁界、または、(法線方向成分および接線方向成分によって生じる)回転磁界の成分を測定することができる。
【0045】
特に、例えば文献WO2004/083881に記載されているように、各パターンは、基準(レファレンス)磁気層と、絶縁分離層と、検出されるべき磁界に対して感度を有する磁気層と、のスタック(積層構造)を有することにより、トンネル接合(ジャンクション)を形成する。当該スタックの抵抗は、磁気層の相対的な磁化方向の関数である。
【0046】
有利には、各感知素子4a、4bは、磁界に応じて抵抗が変化する磁気抵抗材料をベースとする少なくとも1つのパターンを含んでいてよい。感知素子4a、4bは、単一のパターンまたは直列に接続されたパターンのグループを含んでいてよい。
【0047】
あるいは、例えば、ホール効果素子を利用して、エンコーダ1によって送出される磁界の法線方向成分のみを測定してもよい。法線方向の磁界は、接線方向の磁界よりも高い正弦波性を有する。このため、法線方向の磁界のみを使用することが好ましい。
【0048】
図1に関して、センサは、2つの感知素子4a、4bの2つのグループを含む。感知素子4a、4bは、当該感知素子4a、4b間に角度γを成す(形成する)。前記グループは、角度αだけ、角度オフセット(角度的にオフセット)されている。回転部材の回転パラメータを決定することを可能とするために、感知素子4a、4bのグループによって送出されるSIN(正弦)信号およびCOS(余弦)信号は、直交している必要がある。すなわち、SIN信号およびCOS信号は、90°分のNpp(90°/Npp)だけ位相がずれていなければならない。
【0049】
特に、センサまたは関連するコンピュータにおいて、このような直交位相の信号を使用することによって、例えば、「ルックアップテーブル」(Look-up Table,LUT)を補助的に用いたアークタンジェント関数の直接演算、またはCORDICタイプの方法により、エンコーダ1の角度位置を決定できることが知られている。
【0050】
図示の実施形態では、感知素子4a、4bは、磁気トラック2に沿って角度分布(角度的に分布)している。感知素子4a、4bの2つのグループ間で形成される角度αは、
【0051】
【数9】
【0052】
に等しい。
【0053】
その結果、感知素子4a、4bの円周方向の分布は、エンコーダ1によって送出される磁界のエッジ効果を克服できる。このため、制限された高さh(特に、6.Lp未満)を有するエンコーダ1を使用することができる。特に、感知素子4a、4bは、エンコーダ1の端面(エッジ)から可能な限り遠ざけられるように、磁気トラック2の半径Rに沿って、特に、図中のメジアン半径(中央半径,中心半径)に沿って、角度分布させられていてよい。
【0054】
さらに、感知素子4a、4bを、
【0055】
【数10】
【0056】
のオーダの読取エアギャップ距離だけ、磁気トラック2から離間させて配置することによって、検出される信号の正弦波性と振幅との間の良好な妥協点が得られる。特に、エンコーダ1の極対数Nppが6未満であっても、極幅Lpが2~6mmであり得るので、この最適な配置が可能となる。
【0057】
従って、感知素子4a、4bの円周方向の配置は、特に以下の利点を有する。
【0058】
-2つの素子4a、4b間の距離は、安価であり、かつ、高い線形性を有するディスクリートコンポーネント(個別の部品)(1Dのホールセンサ)を使用するために十分に大きい;
-素子4a、4bの円周方向の位置決め許容差(位置トレランス)は、センサの精度に大きな影響を与えない(これらの素子が離間している距離は大きいため);
-2つの素子4a、4bは、エンコーダ1の中央半径Rに沿って配置されているので、これらの素子はエッジ効果によってあまり悪影響を受けない(not disturbed much);
-感知素子4a、4bの配置は、磁極幅Lpに依存しない;
-読取半径Rは、磁気信号の品質にごくわずかしか影響を与えない。
【0059】
各グループの感知素子4a、4bから送出されるSIN信号、COS信号を出力するために、センサは、前記グループの2つの感知素子4a、4bによって送出された信号V1、V2を減算するためのデバイスを備える。
【0060】
その結果、φ2-φ1がγに等しくなるように、感知素子4a、4bをそれぞれφ1およびφ2の磁気角で配置することにより、送出される信号V1、V2を、下記の式、
【0061】
【数11】
【0062】
の通り記載することができる。ωは、回転速度である。Hiは、i=1に対応する基本波の振幅、および、i=3、5等に対応するi次高調波の振幅である。
【0063】
すなわち、角度γだけ離間した2つの感知素子4a、4bによって送出される信号V1およびV2の減算は、下記の式、
【0064】
【数12】
【0065】
の通り記載される。
【0066】
図2は、角度γに応じた3次高調波のフィルタリングを示す。3次高調波のフィルタが、基本波の振幅に対してフィルタリングを行うことなく、3次高調波から少なくとも3dBを除去する役割を果たす場合を考える。そうすると、下記の式、
【0067】
【数13】
【0068】
が必要となる。
【0069】
従って、3次高調波のフィルタリングでは、角度γは、
(i)0.55π<γ.Npp<0.83π,modulo 2π
または、
(ii)1.17π<γ.Npp<1.45π,modulo 2π
を満たす。
【0070】
回転パラメータを決定するために、処理されるSIN信号およびCOS信号における3次高調波を除去すること、または当該3次高調波を少なくとも減衰させることは、前記決定の精度向上に有益であるだけではなく、以下をもたらす信号処理アルゴリズムに関しても有益である。
【0071】
-SINチャネルおよびCOSチャネルのオフセットの除去;
-SINチャネルおよびCOSチャネルの振幅の均等化;
-SINチャネルとCOSチャネルとの間の位相補正。
【0072】
最適には、フィルタリングにおいて、角度γは、
γ.Nppが、
(i)2π/3 modulo 2π
または、
(ii)4π/3 modulo 2π
に実質的に等しくなる角度である。この場合、3次高調波は、下記の式、
【0073】
【数14】
【0074】
の通りキャンセル(相殺)されるためである。
【0075】
しかし、この角度γは、感知素子4a、4bのグループによって送出されるSIN信号およびCOS信号に、√3のゲイン(利得)を生じさせる。このため、フィルタリングとゲインとのペアを最適化するために、前記角度を上述の範囲で変化させる場合もある。
【0076】
図1に関連して、4つの磁極対を有する電動モータの制御に特に適したシステムが以下に説明される。前記システムは、1対のモータ磁極の絶対的な位置(すなわち、機械角90°)を提供する。
【0077】
これを行うために、エンコーダ1は、4つの磁極対を備える(Npp=4)。感知素子4a、4bのグループは、直交した位相のSIN信号およびCOS信号を各磁極対に送出する。これにより、モータを制御するためのセンサまたはコンピュータが、90°の角度セクタ(部分)における絶対的な角度位置を決定することが可能となる。
【0078】
図1に関して、センサは、2つの感知素子4a、4bを有している。感知素子4a、4bは、当該感知素子4a、4b間に、
【0079】
【数15】
【0080】
の角度γを形成する。感知素子4a、4bのグループ間の角度αは、
【0081】
【数16】
【0082】
である。
【0083】
【数17】
【0084】
のオーダの読取エアギャップ距離における、信号の良好な正弦波性のために、システムは、モータを制御するためのコンピュータに、ロータの1対のモータ磁極上の絶対的な角度位置を、正確に送出できる。このことは、特に、以下のことを可能にする。
【0085】
-特に始動時における、より良好な性能(例:設定速度または設定位置に到達するまでの時間);
-安定状態においてトルク痙動(ジャーキング)が生じない「より滑らかな(スムーズな)」動作;
-より低い消費エネルギー;
-より低い動作温度;
-より大きい最大トルク。
【図面の簡単な説明】
【0086】
図1】本発明に係る決定システムを図式的に示す。
図2】感知素子間の角度に応じた3次高調波のフィルタリングを示す曲線である。
図1
図2