(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-10
(45)【発行日】2023-03-20
(54)【発明の名称】埋設物管理システム
(51)【国際特許分類】
G06Q 50/06 20120101AFI20230313BHJP
G06Q 50/08 20120101ALI20230313BHJP
【FI】
G06Q50/06
G06Q50/08
(21)【出願番号】P 2019058373
(22)【出願日】2019-03-26
【審査請求日】2020-03-05
【審判番号】
【審判請求日】2022-03-14
(73)【特許権者】
【識別番号】522068452
【氏名又は名称】東邦ガスネットワーク株式会社
(74)【代理人】
【識別番号】110000291
【氏名又は名称】弁理士法人コスモス国際特許商標事務所
(72)【発明者】
【氏名】吉野 充徳
【合議体】
【審判長】渡邊 聡
【審判官】佐藤 智康
【審判官】中野 浩昌
(56)【参考文献】
【文献】特開2015-075927(JP,A)
【文献】特開2018-195032(JP,A)
【文献】特開平09-081711(JP,A)
【文献】特許第4005621(JP,B1)
【文献】特許第6473899(JP,B1)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00-99/00
(57)【特許請求の範囲】
【請求項1】
土木工事により地中に埋設される埋設物の、竣工後の敷設状態を管理する埋設物管理システムにおいて、
前記埋設物は、表面の所定の位置に、少なくとも前記埋設物の形状および大きさの情報を含む符牒を有すること、
前記埋設物の地中への配設後であって埋め込み前に、少なくとも前記符牒を含む画像を撮影する撮影装置と、
前記撮影装置と通信可能な通信部と、
前記画像に含まれる前記符牒が含む情報を保有した、前記敷設状態を表す図面を、前記通信部を介して前記撮影装置から取得した前記画像に基づき生成する図面生成部と、
を備えること、
前記符牒は、
所定の色を備える複数のセルが2次元的に配列されたものであって、前記符牒の領域の位置を検出するための切欠部を備え、色の組み合わせにより前記埋設物の前記情報を表すものであること、
前記セルは、前記切欠部の形状を基準とした分割線に区分けされた領域ごとに位置すること、
前記埋設物は、円筒形状であること、
前記符牒
が前記円筒形状にならって丸ま
ることにより、前記画像に含まれる前記符牒に欠損が生じた場合、
埋設物管理システムは、前記切欠部により前記符牒の向きを確認し、
前記符牒の横方向の長さを認識し、前記長さから前記符牒の前記欠損の大きさを算出し、算出された前記欠損の大きさに応じて前記符牒を補正することで、前記セルの配列の認識を行うこと、
を特徴とする埋設物管理システム。
【請求項2】
請求項
1に記載の埋設物管理システムにおいて、
位置情報取得部を備えること、
前記位置情報取得部は、前記撮影装置により撮影された画像に基づいて、前記画像に写る所定の基準位置に対する距離から、前記符牒の相対座標を算出する相対座標算出部からなること、
前記図面は、前記相対座標の情報を含むこと、
を特徴とする埋設物管理システム。
【請求項3】
請求項
1に記載の埋設物管理システムにおいて、
位置情報取得部を備えること、
前記位置情報取得部は、前記埋設物の地中への配設後であって埋め込み前に、GPSを利用した前記符牒の絶対座標を取得し、前記通信部を介して前記絶対座標を前記埋設物管理システムに送信する測位機器からなること、
前記図面は、前記絶対座標の情報を含むこと、
を特徴とする埋設物管理システム。
【請求項4】
請求項
1に記載の埋設物管理システムにおいて、
位置情報取得部を備えること、
前記位置情報取得部は、前記撮影装置により撮影された画像に基づいて、前記画像に写る所定の基準位置に対する距離から、前記符牒の相対座標を算出する相対座標算出部と、前記埋設物の地中への配設後であって埋め込み前に、GPSを利用した前記符牒の絶対座標を取得し、前記通信部を介して前記絶対座標を前記埋設物管理システムに送信する測位機器と、からなること、
前記図面は、前記相対座標と前記絶対座標との情報を含むこと、
を特徴とする埋設物管理システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、土木工事により地中に埋設される埋設物の、竣工後の敷設状態を管理する埋設物管理システムに関するものである。
【背景技術】
【0002】
土木工事により地中に埋設される埋設物、例えばガス管等を配管する工事が完了すると、竣工図や地理情報システムデータ等の敷設情報が作成される。竣工図とは、工事中に発生した設計変更等をもとにして、設計図を修正したもので、実際に竣工した埋設物の位置等を表した図面のことをいう。地理情報システムデータとは、竣工図をもとに敷設状態を地図上に可視化したもので、過去に行われた工事によるガス管等の敷設状態が全て記録されているものである。
竣工図や地理情報システムデータは、工事内容を記録した工事日報に記録された図面に基づいて作成される。
当該図面は、当日の工事によって敷設したガス管の敷設状態(例えばガス管の敷設した距離等)を記録するものであり、ガス管の配設後であって埋め込み前にスケール等を用いて手測定を行い、手測定結果に基づいて製図される。
しかし、手測定を行う作業は手間と時間がかかるため、現場の作業者にとって図面を作成する負担が大きい。手測定を行う手間と時間を軽減するためには、特許文献1に開示されるような、電磁波を地中に放射し、埋設物からの反射波を受信し、その反射波の強度に基づき、地中における埋設物の位置を検出することが可能な3次元ボクセルデータ表示装置を用いることが考えられる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記従来技術には次のような問題があった。
特許文献1に開示される3次元ボクセルデータ表示装置は、ガス管等の埋設物を地中に埋め込んだ後に用いるものである。土壌の性質は不均一であることが多く、電磁波の強度にばらつきが生じるため、埋設物の正確な位置が検出できないおそれがある。また、既に地中に埋め込んだ後では、検出結果が正しいかどうか確認することができない。
そこで、埋設物の埋め込み前に測定するのが望ましいと考えられる。埋め込み前に効率良く埋設物の敷設状態を記録する方法としては、レーザースキャンによってガス管の敷設状態を三次元データ化して記録することも考えられるが、装置が非常に高価である点が問題となる。すなわち、1日あたり100件程度の工事が行われることが多く、それぞれの現場で敷設状態を記録するためには、100台程度の装置を準備しなければならず、コストが膨大となり現実的でない。したがって、現状、埋設物の埋め込み前にスケール等を用いて手測定する方法をとることが一般的であり、作業者の手測定を行う手間と時間を軽減することが望まれる。
【0005】
また、工事日報には、埋設物の形状や大きさ等の情報が書き込まれるのが一般的であるため、作業者は作業中に埋設物の形状や大きさ等の情報をメモしておき、当該メモに基づいて工事日報に埋設物の情報を書き込むことが行われている。このような作業は煩雑であり、記載ミス等が起こり得るため、正確な情報の記入が保証されにくい。工事日報において記載ミスが発生すると、竣工図や地理情報システムデータの情報の信頼性が低下するという問題が発生する。
【0006】
本発明は、上記問題点を解決するためのものであり、埋設物の埋め込み前に効率よく敷設状態を記録可能なことで作業者の負担を軽減し、信頼性の高い竣工後の敷設状態を表す図面を生成可能なシステムを提供することを目的とする。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明の埋設物管理システムは、次のような構成を有している。
【0008】
(1)土木工事により地中に埋設される埋設物の、竣工後の敷設状態を管理する埋設物管理システムにおいて、前記埋設物は、表面の所定の位置に、少なくとも前記埋設物の形状および大きさの情報を含む符牒を有すること、前記埋設物の地中への配設後であって埋め込み前に、少なくとも前記符牒を含む画像を撮影する撮影装置と、前記撮影装置と通信可能な通信部と、前記画像に含まれる前記符牒が含む情報を保有した、前記敷設状態を表す図面を、前記通信部を介して前記撮影装置から取得した前記画像に基づき生成する図面生成部と、を備えること、前記符牒は、所定の色を備える複数のセルが2次元的に配列されたものであって、前記符牒の領域の位置を検出するための切欠部を備え、色の組み合わせにより前記埋設物の前記情報を表すものであること、前記セルは、前記切欠部の形状を基準とした分割線に区分けされた領域ごとに位置すること、前記埋設物は、円筒形状であること、前記符牒が前記円筒形状にならって丸まることにより、前記画像に含まれる前記符牒に欠損が生じた場合、埋設物管理システムは、前記切欠部により前記符牒の向きを確認し、前記符牒の横方向の長さを認識し、前記長さから前記符牒の前記欠損の大きさを算出し、算出された前記欠損の大きさに応じて前記符牒を補正することで、前記セルの配列の認識を行うこと、を特徴とする。
【0010】
(5)(1)に記載の埋設物管理システムにおいて、位置情報取得部を備えること、位置情報取得部は、撮影装置により撮影された画像に基づいて、画像に写る所定の基準位置に対する距離から、符牒の相対座標を算出する相対座標算出部からなること、図面は、相対座標の情報を含むこと、を特徴とする。
【0011】
(6)(1)に記載の埋設物管理システムにおいて、位置情報取得部を備えること、位置情報取得部は、埋設物の地中への配設後であって埋め込み前に、GPSを利用して符牒の絶対座標を取得し、通信部を介して絶対座標を埋設物管理システムに送信する測位機器からなること、図面は、絶対座標の情報を含むこと、を特徴とする。
【0012】
(7)(1)に記載の埋設物管理システムにおいて、位置情報取得部を備えること、位置情報取得部は、撮影装置により撮影された画像に基づいて、画像に写る所定の基準位置に対する距離から、符牒の相対座標を算出する相対座標算出部と、埋設物の地中への配設後であって埋め込み前に、GPSを利用して符牒の絶対座標を取得し、通信部を介して絶対座標を埋設物管理システムに送信する測位機器と、からなること、図面は、相対座標と絶対座標との情報を含むこと、を特徴とする。
【発明の効果】
【0013】
本発明の埋設物管理システムは、上記構成を有することにより次のような作用・効果を有する。
(1)に記載の埋設物管理システムによれば、埋設物の埋め込み前に効率よく敷設状態を記録可能なことで作業者の負担を軽減し、信頼性の高い竣工後の敷設状態を表す図面を生成可能である。
例えば、ガス管や継手等の埋設物に対し、少なくとも埋設物の形状および大きさの情報を含む符牒を貼付しておく。そして、撮影装置により、少なくとも符牒を含む画像を取得し、位置情報取得部により、符牒の位置情報を取得しておけば、図面生成部は、画像に含まれる符牒が含む情報と、位置情報取得部により取得された位置情報に基づき、敷設状態を表す図面を生成することができるため、例えば、取得された継手の符牒の位置情報に基づき継手の位置をプロットし、プロットされた点と点の間を直線で連結させ、プロットされた点上には継手を、点と点を連結する直線上にはガス管を描画することで、図面を生成することが可能である。このとき、描画されるガス管や継手は、符牒の有するガス管や継手の形状および大きさの情報に基づき特定される。
よって、埋設物の埋め込み前にスケール等を用いて手測定をする手間や時間を省くことができるため、作業者の負担を軽減し、竣工後の敷設状態を表す図面を生成可能である。
【0014】
また、埋設物に備えられた符牒に埋設物の情報が含まれ、符牒が含む情報に基づき図面を作成するため、現場作業者が埋設物の形状や大きさ等を記載ミスすることによって図面の信頼性が低下することを防止することができる。
【0015】
(1)に記載の埋設物管理システムによれば、符牒は、所定の色を備える複数のセルが2次元的に配列されたものであって、色の組み合わせにより埋設物の情報を表すものであるため、撮影装置により撮影された画像に写った符牒の色の組み合わせを検出することで、埋設物の情報(埋設物の形状や大きさ等)を読み取ることができる。また、符牒の領域の位置を検出するための切欠部を備えているため、撮影装置により撮影された画像に写った符牒が傾いていたとしても、符牒の上下左右の判別が可能であり、正確に符牒が有する埋設物の情報を読み取ることが可能である。
【0017】
(5)に記載の埋設物管理システムによれば、相対座標に基づいて敷設状態を表す図面を生成することができる。例えば、土木工事により埋設したガス管を、将来的に交換のための工事を行う場合、相対座標に基づいて生成された図面があれば、所定の基準位置からスケール等で測定することで、ガス管の位置を特定することが可能となる。
【0018】
(6)に記載の埋設物管理システムによれば、絶対座標に基づいて敷設状態を表す図面を生成することができる。例えば、土木工事により埋設したガス管を、将来的に交換のための工事を行う場合、絶対座標に基づいて生成された図面があれば、GPS機器を用いることでガス管の位置を特定することが可能となる。現在、GPS機器が高価であるため、スケール等により相対座標に基づいてガス管の位置を特定することが一般的に行われているが、将来的にGPS機器が普及することで、本発明の有用性が高まる。
【0019】
(7)に記載の埋設物管理システムによれば、相対座標や絶対座標に基づいて敷設状態を表す図面を生成することができる。例えば、土木工事により埋設したガス管を、将来的に交換のための工事を行う場合、相対座標および絶対座標に基づいて生成された図面があれば、所定の基準位置からスケール等で測定を行うか、GPS機器を用いるかすればガス管の位置を特定することが可能となる。GPS機器は高価であり、複数台準備できない場合が考えられる。そうすると、複数個所で同時に工事が行われるとした場合、GPS機器を用いることができない現場がある。そのような場合、相対座標と絶対座標の双方でガス管位置を特定できるようにしておけば、柔軟に対応することができる。
【図面の簡単な説明】
【0020】
【
図1】埋設物管理システムの構成の一例を示すブロック図である。
【
図2】撮影装置を用いてガス管を撮影する様子の一例を示す図である。
【
図3】ガス管と継手の敷設状態の一例を示す図である。
【
図4】(a)は、2次元コードの一例を示す図であり、(b)は、セルの色と色に対応する番号の一例を示す図である。
【
図5】2次元コードのセルの色の組み合わせを示す一覧表である。
【
図6】2次元コードのセルの色の組み合わせを示す一覧表である。
【
図7】2次元コードのセルの色の組み合わせを示す一覧表である。
【
図8】2次元コードのセルの色の組み合わせを示す一覧表である。
【
図9】2次元コードのセルが、画像処理の関係上一体化してしまった場合の認識方法の一例を示す図である。
【
図10】(a)は2次元コードの底辺部の一部が欠損してデジタル画像に写った場合を示す図であり、(b)は2次元コードの角部と底辺部の一部が欠損してデジタル画像に写った場合の一例を示す図であり、(c),(d),(e)は、2次元コードの横方向の端部の一部が欠損してデジタル画像に写った場合を示す図である。
【
図11】2次元コードの表す数列とガス管情報の対応表である。
【
図13】オルソ画像により、相対座標を算出する方法の一例を表す図である。
【
図15】(a)はメッシュ化のイメージ図であり、(b)はポリゴンデータのイメージ図であり、(c)はポリゴンデータにデジタル画像を貼り付けた状態のイメージ図である。
【
図31】埋設物管理システムの構成の変形例を示すブロック図である。
【
図32】埋設物管理システムの構成の変形例を示すブロック図である。
【発明を実施するための形態】
【0021】
本発明の埋設物管理システム1の第1の実施形態について、図面を参照しながら詳細に説明する。
図1は本実施形態の埋設物管理システム1の構成の一例を示すブロック図である。
撮影装置11と、測位機器12とはインターネット等の通信回線19を介して埋設物管理システム1と接続されている。
【0022】
撮影装置11は、後述する図面を作成するためのデジタル画像を取得するために、工事現場の作業者が埋設物としてのガス管20や継手21を撮影するデジタルカメラである。
図2に示すように、撮影装置11に把手11aが接続されており、工事現場の作業者は、地面30に立った状態で、土木工事により掘り起こされた設置溝30aに配設されたガス管20を上空から撮影可能である。撮影は、ガス管20や継手21の設置溝30aへの配設後であって埋め込み前に行われるものであり、一日の工事で約200枚のデジタル画像の撮影が行われる。なお、本実施形態においては、作業者自身が撮影装置11を用いて撮影することとしているが、ドローン等の遠隔操縦可能な無人航空機に撮影装置11を搭載し、上空から撮影することとしても良い。さらには、作業者が撮影装置11を手に持って撮影を行うこととしてもよい。この場合、撮影位置が把手11aやドローンを用いる場合よりも低い位置となり、撮影範囲が狭くなるため、撮影枚数は把手11aやドローンを用いる場合よりも多くなる。
【0023】
設置溝30aに配設されるガス管20や継手21の表面には、符牒としての2次元コード40が貼付されており(
図3参照)、撮影装置11は、ガス管20や継手21に含めて2次元コード40も撮影する。
2次元コード40は、ガス管20や継手21の形状や大きさ等の情報(以下、ガス管情報)を含んでおり、後述する処理部16は、デジタル画像に写った2次元コード40を認識することで、デジタル画像に写ったガス管20や継手21の形状や大きさ等の情報を判別することができる。2次元コード40の詳細については後述する。
【0024】
測位機器12は、後述する相対座標算出部161とともに、埋設物管理システム1の位置情報取得部として働く。工事現場の作業者は、測位機器12により、ガス管20や継手21の設置溝30aへの配設後であって埋め込み前に、ガス管20や継手21に貼付された2次元コード40の絶対座標を取得する。測位機器12により取得した位置情報に基づいて、後述する図面生成部162が図面を生成する。
【0025】
撮影装置11は、通信回線19を介して撮影したデジタル画像を埋設物管理システム1に送信し、測位機器12は、通信回線19を介して取得した絶対座標に関する情報を埋設物管理システム1に送信する。
【0026】
埋設物管理システム1は、通信部13と、登録部14と、データベース15と、処理部16とからなる。
【0027】
通信部13は、撮影装置11や測位機器12から送信されるデジタル画像や絶対座標に関する情報を受信する。そして、通信部13が受信した情報は、登録部14によってデータベース15に登録される。
【0028】
データベース15には登録されたデジタル画像や絶対座標に関する情報の他に、ガス管情報も登録されている。2次元コード40が有するガス管情報と照会され、対応するガス管情報がデータベースから取り出され、処理部16においてガス管情報を保有した図面が生成される。
【0029】
処理部16は、相対座標算出部161と、図面生成部162とを備える。
図面生成部162は、デジタル画像に基づいて図面を生成する。ここで、図面とは、3次元図面としての3次元点群データ,3次元メッシュデータ,3次元CAD図面と、2次元図面としてのオルソ画像,2次元CAD図面と、3次元CAD図面および2次元CAD図面の基となるベクトルデータと、を指す。
【0030】
図面生成部162は以下のように図面を生成する。
まず、デジタル画像をもとに3次元点群データを生成する。3次元点群データとは、
図14に示すような、点の集合によりガス管20や継手21の3次元画像を描画したものであり、高精度にガス管20や継手21の敷設状態を表すことができる。
【0031】
3次元点群データは、高精度に敷設状態が描画されるため、データサイズが非常に大きく、一般的な電子計算機ではスムーズに動作しない場合がある。そこで、図面生成部162は、3次元点群データに基づいて、よりデータサイズの小さい3次元メッシュデータを生成することができる。
【0032】
3次元メッシュデータとは、3次元点群データをメッシュ化し(
図15(a)参照)、ポリゴンデータ(
図15(b)参照)に変換することで、ガス管20や継手21の3次元画像を描画したものである。
よりデータサイズの小さい3次元メッシュデータが生成されることで、一般的な電子計算機でもガス管20や継手21の敷設状態をスムーズに確認できるようになる。ポリゴンデータには、デジタル画像をテクスチャとして貼り付けることができ、
図15(c)に示すように、現実に即したガス管20や継手21の敷設状態を表すことができる。
【0033】
また、図面生成部162は、3次元点群データに基づいて、オルソ画像を生成することができる。
オルソ画像とは、
図12に示すような正射投影による画像をいう。撮影装置11により撮影したデジタル画像は、中心投影であるため、撮影装置11のレンズの中心から撮影対象物であるガス管20や継手21との距離の違いにより、デジタル画像上の像に歪みが生じてしまう。そのような中心投影の画像を正射投影に変換し、歪みを補正した画像がオルソ画像である。歪みが補正されたオルソ画像が生成されることで、オルソ画像上でガス管20や継手21の位置等を正確に計測することができるようになる。
【0034】
さらに、図面生成部162は、3次元点群データ、3次元メッシュデータ、オルソ画像のいずれかに基づいて、ベクトルデータを生成することができる。
ベクトルデータとは、ガス管20や継手21を点データ、線データ、面データ、体データによって、埋設物の敷設状態を簡易的に表した図面である。
例えば、直管であるガス管20が、2本直列に接続されており、接続されたガス管20の間と、両端との3か所に継手21が敷設されているとした場合、ベクトルデータとしては、3次元点群データまたは3次元メッシュデータまたはオルソ画像に描画される3つの継手21それぞれについて点をプロットし、プロットされた3つの点が線で接続されることで、敷設状態を簡易的に描画する。このとき、継手21の位置のプロットや線の接続は、電子計算機内の自動処理として行われても良いし、電子計算機の画面上で作業者の操作により行うこととしてもよい。また、測位機器12により取得した絶対座標をデータベース15から読み出し、絶対座標に基づいて継手21をプロットすることも可能である。
ベクトルデータには、描画された線や点の属性としてガス管情報を保有させることが可能である。
【0035】
なお、ベクトルデータは、3次元CAD図面や、2次元CAD図面と同種のデータであるが、ここでは、3次元CAD図面や、2次元CAD図面は、敷設されているガス管20や継手21の外観や、周囲の状況(道路や建物等)が描画された完成された図面を指し、ベクトルデータとは分けて説明する。
例えば、図面の作成を外部会社に依頼する場合、完成された3次元CAD図面や、2次元CAD図面を作成するルール(図枠や図面内に記載する文言等)が会社によって異なることがあるため、依頼先と依頼元の間では、簡易的な図面であるベクトルデータのみで取引が行われ、完成された図面である3次元CAD図面や、2次元CAD図面は依頼元で製作される場合がある。したがって、簡易的なベクトルデータであっても、それ単体で取引される有用な図面データである。
【0036】
さらにまた、図面生成部162は、ベクトルデータを基に、3次元CAD図面や2次元CAD図面を生成することができる。
3次元CADとは、
図16に示すように、3次元関数によりガス管20や継手21の3次元画像を描画したものである。ベクトルデータに基づき、ベクトルデータ上でプロットされている点上には継手を描画し、点を接続する線上にはガス管20が描画することで3次元CAD図面を生成する。このとき、描画されるガス管20と継手21の種類は、2次元コード40により表されるガス管情報に基づいて特定される。描画された内容の編集が容易であるため、例えば、描画されたガス管20や継手21の移動、拡大、縮小、短絡、延伸等を図面上で行うことができ、図面上で将来行う改修の検討を行うことが可能である。
【0037】
3次元CAD図面には、2次元コード40が含むガス管20や継手21のガス管情報を、図面上に表されているガス管20や継手21の属性として保有させることができる。3次元CADに保有させたガス管情報を、図面の利用者が確認する方法は、以下の4つの方法が考えられる。1つ目は、電子計算機の画面上で、図面上のガス管20をクリックすると、クリックしたガス管20に対応するガス管情報が記載されたウインドウが開き、利用者が確認することができるという方法。2つ目は、マウスのポインタをガス管20に近づけると、ポインタを近づけたガス管20に対応するガス管情報が記載された小さいウインドウが、ポインタ付近に表示され、利用者が確認することができるという方法。3つ目は、図面上に表されているガス管20や継手21のそれぞれのガス管情報が、図面表示画面の空いたスペースに常時表示されていて、利用者が確認することができるという方法。4つ目は、ガス管情報の一覧表を図面とは別に出力するという方法である。
このように、ガス管情報の確認を3次元CAD図面によって容易にすることができれば、竣工後の検収業務や、精算業務の負担軽減となる。
【0038】
また、2次元図面の層と、3次元図面の層とを重ね合わせた多層的な図面も作成可能である。2次元図面の表示と3次元図面の表示とを必要に応じて切換えながら利用することができる。
【0039】
次に、2次元CAD図面とは、ガス管20や継手21の敷設状態を表す平面図、断面図、側面図などを指す。ベクトルデータに基づき、ベクトルデータ上でプロットされた点上には継手を描画し、点を接続する線上にはガス管20を描画することで2次元CAD図面を生成する。このとき、描画されるガス管20と継手21の種類は、2次元コード40により表されるガス管情報に基づいて特定される。
【0040】
そして、2次元CAD図面には、2次元コード40が含むガス管20や継手21のガス管情報を、図面上に表されているガス管20や継手21の属性として保有させることができる。2次元CAD図面に保有させたガス管情報を、図面の利用者が確認する方法は、3次元CAD図面に保有させたガス管情報を確認する4つの方法と同様の方法を用いることが考えられる。
【0041】
また、オルソ画像の層と2次元CAD図面の層とを重ね合わせた多層的な図面も作成可能である。オルソ画像の表示と2次元CAD図面の表示とを必要に応じて切換えながら利用することができる。
【0042】
また、図面生成部162は、上記に説明した3次元点群データ、3次元メッシュデータ、オルソ画像、3次元CAD図面、2次元CAD図面に、測位機器12によって取得した、絶対座標に関する情報を保有させることができる。絶対座標に関する情報を保有した図面が作成されることで、どのような埋設物がどこに埋設されているのか管理が容易となる。例えば、土木工事により埋設したガス管を、将来的に交換のための工事を行う場合、絶対座標に基づいて生成された図面があれば、GPS機器を用いることでガス管の位置を特定することが可能となる。
【0043】
さらにまた、図面生成部162は、3次元点群データ、3次元メッシュデータ、オルソ画像、3次元CAD図面、2次元CAD図面に、相対座標算出部161が各図面に基づいて算出した相対座標に関する情報を保有させることができる。上記各図面が相対座標に関する情報を保有していれば、土木工事により埋設したガス管を、将来的に交換のための工事を行う場合、相対座標に基づいて生成された図面があれば、所定の基準位置からスケール等で測定することで、ガス管の位置を特定することが可能となる。
【0044】
相対座標算出部161は、図面生成部162により生成される3次元点群データ、3次元メッシュデータ、オルソ画像、3次元CAD図面、2次元CAD図面に基づいて、基準位置に対する2次元コード40の相対座標を算出する。例えば、図面上に道路の交差点などが写っていれば、当該交差点を基準位置として、2次元コード40の相対座標を算出可能である。
【0045】
例えば、オルソ画像を用いて相対座標を算出する方法を説明すると、オルソ画像中に道路の交差点などが写っていれば、当該交差点を基準位置として、2次元コード40の相対座標を算出可能である。
オルソ画像中に基準位置となるものが写っていない場合、例えば、
図22に示すように、基準位置31(例えば交差点)が、ガス管20の埋設位置から離れているために、オルソ画像に写っていない場合には、工事現場で本来の基準位置31を基準に、中継基準点32を埋設物付近に設け、中継基準点32の、基準位置31に対する相対座標を測位しておく。その上で、撮影装置11により、中継基準点32を含めてガス管20や継手21を撮影し、オルソ画像を作成する。そして、オルソ画像上で、任意の箇所の位置を知りたい場合には、当該任意の箇所の中継基準点32に対する相対位置を計測すれば、中継基準点32の基準位置31からの相対座標は測位により取得されているため、オルソ画像中にはない基準位置31を基準とした相対座標を算出可能である。
【0046】
また、相対座標算出部161は、測位機器12により2次元コード40や交差点の絶対座標を取得しておけば、当該絶対座標を基準とした任意の位置の相対座標の算出も可能である。そのほか、例えば、図面生成部162により生成された図面中の2か所に2次元コード40が表示されている場合、一方の2次元コード40の絶対座標と、他方の2次元コード40の絶対座標とから、どちらか一方の2次元コード40を基準として、基準としなかった方の2次元コード40の相対座標を算出することもできる。
【0047】
図面生成部162が生成する3次元点群データ、3次元メッシュデータ、オルソ画像、3次元CAD図面、2次元CAD図面は竣工図として用いられる。竣工図とは、工事中に発生した設計変更等をもとにして、設計図を修正したもので、実際に竣工した埋設物の位置等を表した図面のことである。以上のように、相対座標や絶対座標といった位置情報と、ガス管情報を保有した竣工図が生成されることで、竣工後の検収業務や、精算業務の負担軽減となる。また、竣工図には、過去に行われた工事によるガス管等の敷設状態が記録されており、将来的に行われるガス管の改修工事だけでなく、下水管の工事等、地中で行う必要がある工事であり、ガス管位置に配慮しなければならない場合に活用することができる。
【0048】
さらに、図面生成部162は、3次元CAD図面や、2次元CAD図面を、地理情報システムと連携させた、地理情報システムデータを生成することが可能である。
地理情報システムデータとは、3次元CAD図面や、2次元CAD図面をもとにガス管20等の敷設状態を地図上に可視化したもので、竣工図よりも広範囲にガス管20等の敷設状態が記録されているものである。過去に行われた工事によるガス管等の敷設状態が全て記録されているものであり、将来的に行われるガス管の改修工事だけでなく、下水管の工事等、地中で行う必要がある工事であり、ガス管位置に配慮しなければならない場合に活用することができる。
【0049】
次に、2次元コード40について、詳細に説明する。
2次元コード40は、例えば
図4(a)に示すように、5つのセル401が2次元的に配列され、切欠部404を備えることで、角部402と底辺部403を有する凹字形状に形成されたものである。切欠部404を備えることで、2次元コード40の領域の位置を検出することができるため、撮影装置11によって撮影したデジタル画像に写った2次元コード40が傾いていたり、逆さまになっていたりしても、処理部16は2次元コード40の上下左右を判別することが可能となる。
【0050】
セル401は所定の色からなるものであり、本実施例においては赤、青、緑の3色のいずれかの色によってなる。なお、セル401の色は、当該3色に限定されるものではなく、その他の色を設定しても良い。
【0051】
そして、2次元コード40は、赤、青、緑の3色の組み合わせによって、ガス管20や継手21のガス管情報を表すことが可能である。
詳しく説明すると、処理部16が2次元コード40から情報を読み出す際には、
図4(a)中の矢印Yに示す順番で、各セル401の色を読み取る。なお、矢印Yに示す方向とは逆の順番で各セル401を認識することとしても良い。そして、
図4(b)に示すように、赤色に対応する番号は1、青色に対応する番号は2、緑色に対応する番号は3と予め定められており、例えば、
図4(a)に示す2次元コード40は青、赤、赤、赤、緑の順に並んでいるため、各色に対応する番号を当てはめると、21113という数列を表すこととなる。なお、
図4(a)に示される2次元コード40においては、作業者の視認性向上のため、セル401中に対応する番号を記載し、2次元コード40が表す数列も切欠部404に表示しているが、表示をせずともよい。
【0052】
図4(a)に示す2次元コード40は一例であり、2次元コード40は赤、青、緑の3色のいずれかの色によってなるセル401が5つ並ぶことで構成されているため、全部で243通りの数列の組み合わせを作ることができる。
【0053】
図4(a)に示される切欠部404において、2次元コード40が表す数列の上に記されている「5」という数字は、2次元コード40のコード番号であり、セル401の色の組み合わせ毎に1から243まで存在する。
コード番号は、
図5、
図6、
図7、
図8の表に示すような法則に従って付与される。なお、
図5に示す表の最下段の行と
図6に示す表の最上段の行とを縦に隣接させ、
図6に示す表の最下段の行と
図7に示す表の最上段の行とを縦に隣接させ、
図7に示す表の最下段の行と
図8に示す表の最上段の行とを縦に隣接させることで、
図5、
図6、
図7、
図8の表を連続的に表すべきであるが、便宜上分割している。
【0054】
図5、
図6、
図7、
図8の表に示される2次元コード40は、表の横方向にコード番号が1ずつ増えていき、縦方向は9ずつ増えていくようになっている。
表の横方向は、底辺部403を構成するセル401の色は変わらずに、角部402を構成する左右のセル401の色が「赤赤」、「赤青」、「赤緑」、「青青」、「青緑」、「青赤」、「緑緑」、「緑赤」、「緑青」の順に展開されている。
表の縦方向は、角部402を構成するセル401の色は変わらずに、底辺部403を構成するセル401の色や色の位置が変化していく。
縦項目の「青×1」、「青×2」、「青×3」は底辺部403を構成する青色のセル401の個数を表すものであり、
図6における「緑×1」、「緑×2」、「緑×3」も同様に緑色のセル401の個数を表すものである。
そして、
図7における「2色」とは、赤色のセル401の他に青色と緑色の2色のセル401を有することを意味する。赤色を色数に含めていないのは、コード番号1の底辺部403が赤色のみで構成されていることを基準としているためである。
さらに、
図8における「青×2+2色」とは、青色のセル401の個数が2個であり、青色と緑色の2色からなることを意味する。「緑×2+2色」も同様に、緑色のセル401の個数が2個であり、青色と緑色の2色からなることを意味する。
図5、
図6、
図7、
図8のように法則性をもってセル401を配列すれば、現場の作業者にとっても視認性がよくなることが期待される。
【0055】
セル401を配列させる法則は
図5、
図6、
図7、
図8に示す例には限らない。例えば、2次元コード40が表す数列「11111」をコード番号1、「11112」をコード番号2、「11113」をコード番号3、「11121」をコード番号4、「11122」をコード番号5というように、2次元コード40が表す数列が3進法で増加していくのに従い、コード番号を増加させていくという方法もある。
【0056】
そして、数列毎にガス管情報を定めておけば、処理部16は、2次元コード40を認識することで、データベース15に保存されたガス管情報のうちから、対応するガス管情報を取り出すことが可能となる。
【0057】
データベース15に保存されたガス管情報は、例えば、
図11に示す表のように、2次元コード40が表す数列に対応した状態となっている。
本実施例においては、ガス管情報は、ガス管20や継手21の「型番」、「種類」、「名称」、「材質」、「サイズ」、「延長」、「金額」により構成されている。
【0058】
「型番」は、ガス管20や継手21を判別するための個別の番号である。ここでは数列により表しているが、英字のみや英数字による文字列などで表してもよい。
【0059】
「種類」は、埋設物がガス管20と継手21のどちらであるかを表すものである。ここでは単に「管」や「継手」と表しているが、記号や英字によって表してもよい。
【0060】
「名称」はガス管20や継手21の種別を表すもので、ここでは「PE直管」や「溶接鋼直管」などと表しているが、記号や英字によって表してもよい。
【0061】
「材質」は、ガス管20と継手21を構成する材質を表すものである。ここでは、「ポリエチレン」や「鋼」と表しているが、記号や英字により表しても良い。
【0062】
「サイズ」は、ガス管20と継手21は口径を表している。ここでは、75A、200A等の呼び径で表しているが、実際の寸法値を表しても良い。
【0063】
「延長」は、ガス管20や継手21の長さを表す。ここでは、5m、5.5m等の記載をしているが、単位をmmとしても良い。
【0064】
「金額」は、ガス管20と継手21の価格を表している。単位は円であり、ここでは、「2000」、「50000」等で表しているが、千円単位等で表しても良い。
【0065】
なお、上記ガス管情報は一例であり、
図11に示す項目に限定されない。例えば、ガス管20や継手21の種類によって、埋設にどの程度の工賃がかかるのかは経験上把握されているため、工賃に関する情報を含めることも可能である。図面生成部162によって生成される図面に保有されるガス管情報として、工賃に関する情報が含められれば、工事費の算出も容易となる。ここでいう工事費は、経験上把握されている工賃に基づいて算出されるものであるため、概算の工事費と言える。正確な工事費は、ガス管20や継手21の敷設にあたり、どの程度の深さまで地面30を掘り起こしたかに左右される。そのため、設置溝30aの深さの情報を有する3次元点群データ、3次元メッシュデータ、3次元CAD図面、2次元CAD図面に基づき、正確な工事費は算出される。
【0066】
次に処理部16が2次元コード40を認識する手順について説明する。
通常は、まず、撮影装置11が撮影したデジタル画像に写った2次元コード40の凹字形状を認識し、2次元コード40の向きを確認する。これにより、角部402と底辺部403の位置を割り出す。そして、矢印Yに示す順番で、各セル401の色を読み取り、各色に対応する番号から2次元コード40が表す数列を導き出す。
【0067】
しかし、画像処理の関係上、
図9(a)に示すようにセル401間の隙間が埋まってしまい、各セル401が一体化してしまう場合がある。
そのような場合には、まず、2次元コード40の凹字形状を認識し、2次元コード40の向きを確認する。そして、切欠部404を基準に、5つのセル401に分割する。例えば、
図9(b)に示すように、切欠部404を基準に設けられる分割線405によって、5つのセルに分割される。
5つのセル401に分割することで、5つのセルがそれぞれ何色かを認識することが可能となり、各色に対応する番号から2次元コード40が表す数列を導き出すことができるようになる。
【0068】
また、ガス管20や継手21は円筒形状であるため、ガス管20や継手21に貼付された2次元コード40は、円筒形状にならって丸まってしまう。すると、
図10(a)-(e)に示すように、撮影装置11で撮影した際に、2次元コード40の全体が写らずに一部が欠損してしまうおそれがある(以下、欠損した部分を欠損部406という)。そのような場合には、以下のように2次元コード40の認識を行う。
【0069】
まず、
図10(a),(b)に示すように、角部402や、底辺部403の一部に欠損部406が生じてしまった場合を説明する。
はじめに、凹字形状を認識し、2次元コード40の向きを確認する。これにより、角部402と底辺部403の位置を割り出す。
そして、2次元コード40が何色から構成されているかを認識する。
図10(a),(b)に示す例では、青色と赤色の2色で構成されていると認識する。
次に、角部402の色を認識する。
図10(a),(b)に示す例では、左右ともに青色であると認識する。
その後、底辺部403を構成する色を認識する。
図10(a),(b)に示す例では、底辺部403が青色と赤色によって構成されていると認識する。
底辺部403を構成する色を認識した後は、底辺部403を構成する色の図中横方向の長さを認識する。
図10(a),(b)に示す例では、青色が1セル分の長さ、赤色が2セル分の長さである。これにより底辺部403の一部が欠損していても、底辺部403を構成する3つのセル401が何色の順で並んでいるのかを認識可能である。
以上により、
図10(a),(b)に示す2次元コード40が、
図4(a)中の矢印Yの順番でいえば、青、青、赤、赤、青で構成されていることが認識可能となり、各色に対応する番号から2次元コード40が表す数列を導き出すことができる。
【0070】
次に、
図10(c),(d),(e)に示すように、2次元コード40の図中横方向の端部に欠損部406が生じてしまった場合について説明する。
まず、凹字形状を認識し、2次元コード40の向きを確認する。これにより、角部402と底辺部403の位置を割り出す。
そして、2次元コード40が何色から構成されているかを認識する。
図10(c),(d),(e)に示す例では、2次元コード40が青色と赤色の2色で構成されていると認識する。
次に、角部402の色を認識する。
図10(c),(d),(e)に示す例では、左右ともに青色であると認識する。
その後、底辺部403を構成する色を認識する。
図10(c),(d),(e)に示す例では、青色と赤色によって構成されていると認識する。
【0071】
底辺部403を構成する色を認識した後は、底辺部403を構成する色の図中横方向の長さを認識する。
図10(c)に示す例では、青色が欠損により0.5セル分の長さとなっており、赤色が2セル分の長さである。
図10(d)に示す例では、青色が1セル分の長さ、赤色が欠損により1.5セル分の長さとなっている。
図10(e)に示す例では、欠損により青色が0.5セル分の長さ、赤色が1.5セル分の長さである。
次に、角部402の図中横方向の長さを認識する。
図10(c)に示す例では、左側の青色が欠損により0.5セル分の長さとなっており、右側の青色が1セル分の長さである。
図10(d)に示す例では、左側の青色が1セル分の長さ、右側の青色が欠損により0.5セル分の長さとなっている。
図10(e)に示す例では、左右ともに欠損により青色が0.5セル分の長さである。
【0072】
底辺部403の図中横方向の長さと、角部402の図中横方向の長さとを認識することで、2次元コード40の左右がどの程度欠損しているのかが判別可能となるため、欠損長さを算出する。
図10(c)に示す例では、角部402と底辺部403ともに左側が0.5セル分欠損しているため、2次元コード40全体として左側が0.5セル分欠損していると算出される。同様にして、
図10(d)に示す例では、2次元コード40の右側が0.5セル分欠損していると算出され、
図10(e)に示す例では、2次元コード40の左右が0.5セル分欠損していると算出される。
【0073】
算出した欠損長さに基づき、底辺部403の横方向の長さを補正し、底辺部403を構成する色がそれぞれ何個のセルであるのか認識する。
図10(c)に示す例では、底辺部403左側の0.5セル分の欠損を補正する。
図10(d)に示す例では、底辺部403右側の0.5セル分の欠損を補正する。
図10(e)に示す例では、底辺部403左右の0.5セル分の欠損を補正する。この補正により、
図10(c),(d),(e)に示される2次元コード40の底辺部403が、青色1セル、赤色2セルで構成されていると認識することができるようになる。なお、角部402については、左右それぞれが何色であるか認識できれば足りるため、補正を行う必要はない。
以上により、
図10(c),(d),(e)に示す2次元コード40が、
図4(a)中の矢印Yの順番でいえば、青、青、赤、赤、青で構成されていることが認識可能となる。
以上、説明した通り、2次元コード40によれば、一部欠損した状態であっても、2次元コード40が表す内容を認識することが可能である。
【0074】
また、セル401の配列パターンは、2次元コード40の凹字状に限らない。
図17に示すように、6つのセル401を2次元的に配列し、切欠部404を備えることで、略凹字状に2次元コード41を形成することも可能である。切欠部404を備えることで、処理部16は2次元コード41の上下左右を判別することが可能となる。そして、矢印Yに示す順番で、各セル401の色を読み取り、各色に対応する番号から2次元コード41が表す数列を導き出すことができる。
なお、2次元コード41によれば、赤、青、緑の3色のいずれかの色によってなるセル401が6つ並ぶことで構成されるものであるため、全部で729通りの数列の組み合わせを作ることができる。
【0075】
略凹字状の変形例としては、その他にも
図18、
図19、
図20、
図21に示す2次元コード42,43,44,45のようなセル401の配列パターンが考えられる。それぞれ、切欠部404により、処理部16は2次元コード42,43,44,45の上下左右を判別することが可能である。そして、矢印Yに示す順番で、各セル401の色を読み取り、各色に対応する番号から2次元コード42,43,44,45が表す数列を導き出すことができる。
なお、2次元コード42によれば、赤、青、緑の3色のいずれかの色によってなるセル401が6つ並ぶことで構成されるものであるため、全部で729通りの数列の組み合わせを作ることができる。
2次元コード43,44によれば、赤、青、緑の3色のいずれかの色によってなるセル401が7つ並ぶことで構成されるものであるため、全部で2187通りの数列の組み合わせを作ることができる。
2次元コード45によれば、赤、青、緑の3色のいずれかの色によってなるセル401が8つ並ぶことで構成されるものであるため、全部で6561通りの数列の組み合わせを作ることができる。
【0076】
また、略凹字状の他、
図22に示すように、3つのセル401を2次元的に配列し、切欠部404を備えることで、L字状に2次元コード46を形成することも可能である。切欠部404を備えることで、処理部16は2次元コード46の上下左右を判別することが可能となる。そして、矢印Yに示す順番で、各セル401の色を読み取り、各色に対応する番号から2次元コード46が表す数列を導き出す。
なお、2次元コード46によれば、赤、青、緑の3色のいずれかの色によってなるセル401が3つ並ぶことで構成されるものであるため、全部で27通りの数列の組み合わせを作ることができる。
【0077】
L字状の変形例としては、その他にも
図23、
図24、
図25、
図26に示す2次元コード47,48,49,50のようなセル401の配列パターンが考えられる。それぞれ、切欠部404により、処理部16は2次元コード47,48,49,50の上下左右を判別することが可能である。そして、矢印Yに示す順番で、各セル401の色を読み取り、各色に対応する番号から2次元コード47,48,49,50が表す数列を導き出すことができる。
なお、2次元コード47によれば、赤、青、緑の3色のいずれかの色によってなるセル401が4つ並ぶことで構成されるものであるため、全部で81通りの数列の組み合わせを作ることができる。
2次元コード48によれば、赤、青、緑の3色のいずれかの色によってなるセル401が6つ並ぶことで構成されるものであるため、全部で729通りの数列の組み合わせを作ることができる。
2次元コード49,50によれば、赤、青、緑の3色のいずれかの色によってなるセル401が7つ並ぶことで構成されるものであるため、全部で2187通りの数列の組み合わせを作ることができる。
【0078】
その他の変形例として、
図27、
図28、
図29、
図30に示す2次元コード51,52,53,54のようにセル401を配列することが考えられる。
2次元コード51は、7つのセル401が、略四角形状に配列されたものであり、角部分に配置された切欠部404により、処理部16は2次元コード51の上下左右を判別することが可能となる。そして、矢印Yに示す順番で、各セル401の色を読み取り、各色に対応する番号から2次元コード51が表す数列を導き出す。
【0079】
2次元コード52は、7つのセル401が略鉤状に配列されたものである。切欠部404により、処理部16は2次元コード52の上下左右を判別することが可能となる。そして、矢印Yに示す順番で、各セル401の色を読み取り、各色に対応する番号から2次元コード52が表す数列を導き出す。
【0080】
2次元コード53は、6つのセル401を2次元的に配列し、略V字状に形成したものである。切欠部404により、処理部16は2次元コード53の上下左右を判別することが可能となる。そして、セル401内に表示されている数字の順に各セル401の色を読み取り、各色に対応する番号から2次元コード53が表す数列を導き出す。なお、セル401内に表示する数字は、説明の便宜上示したもので、セル401内に表示されている必要はない。
【0081】
2次元コード54は、7つのセル401を2次元的に配列し、略V字状に形成したものである。切欠部404により、処理部16は2次元コード54の上下左右を判別することが可能となる。そして、セル401内に表示されている数字の順に各セル401の色を読み取り、各色に対応する番号から2次元コード54が表す数列を導き出す。なお、セル401内に表示する数字は、説明の便宜上示したもので、セル401内に表示されている必要はない。
【0082】
なお、2次元コード41,42,43,44,45,46,47,48,49,50,51,52,53,54を構成するセル401の色は、赤、青、緑の3色に限定されるものではなく、その他の色を設定しても良い。
【0083】
次に、本実施形態の埋設物管理システム1の動作について説明する。
撮影装置11により設置溝30aに配設されたガス管20や継手21を、埋め込み前に撮影し、デジタル画像を取得する。そして、取得されたデジタル画像は、通信回線19を介して埋設物管理システム1に送信される。
そして、測位機器12により、設置溝30aに配設されたガス管20や継手21に貼付された2次元コード40の絶対座標を、埋め込み前に取得する。取得された絶対座標に関する情報は、通信回線19を介して埋設物管理システム1に送信される。以上は、工事現場において作業者が行う。
【0084】
送信されたデジタル画像と絶対座標に関する情報は、通信部13により受信する。そして、受信されたデジタル画像と絶対座標に関する情報は、登録部14がデータベース15に登録する処理を行う。
【0085】
そして、処理部16はデータベース15から デジタル画像を読み出し、図面生成部162は、デジタル画像に基づいて、まずは3次元点群データを生成する。そして、3次元点群データに基づき、3次元メッシュデータ、オルソ画像が生成可能であり、3次元点群データ,3次元メッシュデータ,オルソ画像のいずれかに基づき、ベクトルデータを生成することが可能である。ベクトルデータを生成する際には、データベース15から2次元コード40が表す数列に対応するガス管情報を読み出し、ガス管情報をベクトルデータに保有させる。また、ベクトルデータに基づき3次元CAD図面または2次元CAD図面を生成することが可能であり、さらに、3次元CAD図面または2次元CAD図面に基づいて地理情報システムデータを生成することが可能である。
図面生成部162は、各図面を生成する際には、データベース15から絶対座標に関する情報を読み出し、図面に保有させる。また、相対座標算出部161が、図面生成部162が生成した図面に基づいて2次元コード40の相対座標を算出し、当該相対座標に関する情報を、図面生成部162が図面に保有させる。
【0086】
埋設物管理システム1の使用者は、3次元点群データ,3次元メッシュデータ,オルソ画像,ベクトルデータ,3次元CAD図面,2次元CAD図面の各図面のうち、必要なものを任意に選択して生成することが可能であるし、2次元CAD図面を作成した後に3次元CAD図面を作成するなど、追加的な図面の生成も可能である。
【0087】
図面生成が完了すると、生成された図面はデータベース15に保存される。また、保存された図面は、竣工後の検収業務や精算業務に用いるなど、必要に応じて読みだして活用することが可能である。さらには、将来的に行われるガス管20や継手21の改修工事にも活用可能な他、下水管の工事等、地中で行う必要がある工事であり、ガス管位置に配慮しなければならない場合などにも活用可能である。
【0088】
以上説明したように、第1の実施形態の埋設物管理システム1によれば、
(1)土木工事により地中に埋設される埋設物の、竣工後の敷設状態を管理する埋設物管理システム1において、ガス管20や継手21は、表面の所定の位置に、少なくともガス管20や継手21の形状および大きさの情報を含む2次元コード40を有すること、ガス管20や継手21の地中への配設後であって埋め込み前に、少なくとも2次元コード40を含むデジタル画像を撮影する撮影装置11と、2次元コード40の位置情報を取得する位置情報取得部(測位機器12,相対座標算出部161)と、デジタル画像に含まれる2次元コード40が含む情報と、位置情報取得部(測位機器12,相対座標算出部161)により取得された位置情報とを保有した、敷設状態を表す図面を生成する図面生成部162と、を備えること、を特徴とするので、埋設物の埋め込み前に効率よく敷設状態を記録可能なことで作業者の負担を軽減し、信頼性の高い竣工後の敷設状態を表す図面を生成可能である。
【0089】
例えば、ガス管20や継手21に対し、埋設物の形状および大きさ等のガス管情報を含む2次元コード40を貼付しておく。そして、撮影装置11により、少なくとも2次元コード40を含むデジタル画像を取得し、位置情報取得部(測位機器12,相対座標算出部161)により、2次元コード40の位置情報を取得しておけば、図面生成部162は、デジタル画像に含まれる2次元コード40が含む情報と、位置情報取得部(測位機器12,相対座標算出部161)により取得された位置情報に基づき、敷設状態を表す図面を生成することができるため、例えば、取得された継手21の2次元コード40の位置情報に基づき継手21の位置をプロットし、プロットされた点と点の間を直線で連結させ、プロットされた点上には継手21を、点と点を連結する直線上にはガス管20を描画することで、図面を生成することが可能である。このとき、描画されるガス管20や継手21は、2次元コード40の有するガス管や継手のガス管情報に基づき特定される。
よって、ガス管20や継手21の埋め込み前にスケール等を用いて手測定をする手間や時間を省くことができるため、作業者の負担を軽減し、竣工後の敷設状態を表す図面を生成可能である。
【0090】
(2)(1)に記載の埋設物管理システム1において、2次元コード40は、所定の色を備える複数のセル401が2次元的に配列されたものであって、符牒の領域の位置を検出するための切欠部404を備え、色の組み合わせにより埋設物の情報を表すものであること、を特徴とするので、撮影装置11により撮影されたデジタル画像に写った2次元コード40の色の組み合わせを検出することで、ガス管20や継手21のガス管情報を読み取ることができる。また、2次元コード40の領域の位置を検出するための切欠部404を備えているため、撮影装置11により撮影された画像に写った2次元コード40が傾いていたとしても、2次元コード40の上下左右の判別が可能であり、正確に2次元コード40が有するガス管情報を読み取ることが可能である。
【0091】
(3)(1)または(2)に記載の埋設物管理システム1において、図面には、少なくとも竣工図が含まれること、を特徴とするので、作業者の負担を軽減し、信頼性の高い竣工図を生成可能である。
(4)(1)乃至(3)のいずれか1つに記載の埋設物管理システム1において、図面には、少なくとも地理情報システムデータが含まれること、を特徴とするので、作業者の負担を軽減し、信頼性の高い地理情報システムデータを生成可能である。
【0092】
(7)(1)乃至(4)のいずれか1つに記載の埋設物管理システム1において、位置情報取得部は、撮影装置により撮影された画像に基づいて、所定の基準位置に対する2次元コード40の相対座標を算出する相対座標算出部161と、ガス管20や継手21の地中への配設後であって埋め込み前に、符牒の絶対座標を取得する測位機器12と、からなること、位置情報には、相対座標と、絶対座標と、が含まれること、を特徴とするので、相対座標や絶対座標に基づいて敷設状態を表す図面を生成することができる。例えば、土木工事により埋設したガス管を、将来的に交換のための工事を行う場合、相対座標および絶対座標に基づいて生成された図面があれば、所定の基準位置からスケール等で測定を行うか、GPS機器を用いるかすればガス管の位置を特定することが可能となる。GPS機器は高価であり、複数台準備できない場合が考えられる。そうすると、複数個所で同時に工事が行われるとした場合、GPS機器を用いることができない現場がある。そのような場合、相対座標と絶対座標の双方でガス管位置を特定できるようにしておけば、柔軟に対応することができる。
【0093】
次に第2の実施形態に係る埋設物管理システム2ついて説明する。
第1の実施形態に係る埋設物管理システム1と異なる点は、
図31に示すように、測位機器12を有しておらず、位置情報取得部としては、相対座標算出部161のみにより構成されている点である。
図面生成部162は、相対座標と2次元コード40により表されるガス管情報に基づき、図面を生成する。
また、図面に保有される情報は、相対座標とガス管情報であり、絶対座標に関する情報は含まれない。
その他は、第1の実施形態に係る埋設物管理システム1と同様である。
【0094】
以上、第2の実施形態の埋設物管理システム1によれば、
(5)(1)乃至(4)のいずれか1つに記載の埋設物管理システム2において、位置情報取得部は、撮影装置11により撮影された画像に基づいて、所定の基準位置に対する2次元コード40の相対座標を算出する相対座標算出部161からなること、位置情報には、少なくとも相対座標が含まれること、を特徴とするので、相対座標に基づいて敷設状態を表す図面を生成することができる。例えば、土木工事により埋設したガス管20を、将来的に交換のための工事を行う場合、相対座標に基づいて生成された図面があれば、所定の基準位置からスケール等で測定することで、ガス管20の位置を特定することが可能となる。
【0095】
次に第3の実施形態に係る埋設物管理システム3について説明する。
第1の実施形態に係る埋設物管理システム1と異なる点は、
図32に示すように、処理部16が相対座標算出部161を有しておらず、位置情報取得部としては、測位機器12のみにより構成されている点である。
図面生成部162は、絶対座標と2次元コード40により表されるガス管情報に基づき、図面を生成する。
相対座標を算出しないため、図面生成の過程において、オルソ画像は生成されない。
また、図面に保有される情報は、絶対座標とガス管情報であり、相対座標に関する情報は含まれない。
その他は、第1の実施形態に係る埋設物管理システム1と同様である。
【0096】
以上、第3の実施形態の埋設物管理システム1によれば、
(6)(1)乃至(4)のいずれか1つに記載の埋設物管理システム3において、位置情報取得部は、埋設物の地中への配設後であって埋め込み前に、2次元コード40の絶対座標を取得する測位機器12からなること、位置情報には、少なくとも絶対座標が含まれること、を特徴とするので、絶対座標に基づいて敷設状態を表す図面を生成することができる。例えば、土木工事により埋設したガス管20を、将来的に交換のための工事を行う場合、絶対座標に基づいて生成された図面があれば、GPS機器を用いることでガス管20の位置を特定することが可能となる。現在、GPS機器が高価であるため、スケール等により相対座標に基づいてガス管の位置を特定することが一般的に行われているが、将来的にGPS機器が普及することで、本発明の有用性が高まる。
【0097】
なお、上記第1から第3の実施形態は単なる例示にすぎず、本発明を何ら限定するものではない。したがって本発明は当然に、その要旨を逸脱しない範囲内で様々な改良、変形が可能である。
例えば、上記第1から第3の実施例においては、撮影装置11で取得したデジタル画像や、測位機器12で取得した絶対座標を、インターネット等の通信回線19を介して通信部13が受信することとしているが、有線接続や、メモリーカード等の記憶媒体を用いて、埋設物管理システム1に、撮影装置11で取得したデジタル画像や、測位機器12で取得した絶対座標を入力するものとしても良い。
また、上記第1から第3の実施例においては、相対座標算出部161を、処理部16の一部としているが、例えば、工事現場で作業者が用いるノート型の電子計算機やスマートフォンなどに備えられるものとしても良い。
【符号の説明】
【0098】
1 埋設物管理システム
11 撮影装置
12 測位機器
20 ガス管
21 継手
40 2次元コード
161 相対座標算出部
162 図面生成部