(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-10
(45)【発行日】2023-03-20
(54)【発明の名称】ロボット支援による細長い医療機器の動作
(51)【国際特許分類】
A61B 34/35 20160101AFI20230313BHJP
A61B 34/37 20160101ALI20230313BHJP
【FI】
A61B34/35
A61B34/37
(21)【出願番号】P 2021514510
(86)(22)【出願日】2019-09-18
(86)【国際出願番号】 US2019051800
(87)【国際公開番号】W WO2020061240
(87)【国際公開日】2020-03-26
【審査請求日】2021-11-16
(32)【優先日】2018-09-19
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-02-11
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】510292504
【氏名又は名称】コリンダス、インコーポレイテッド
(74)【代理人】
【識別番号】110003317
【氏名又は名称】弁理士法人山口・竹本知的財産事務所
(74)【代理人】
【識別番号】100075166
【氏名又は名称】山口 巖
(74)【代理人】
【識別番号】100133167
【氏名又は名称】山本 浩
(74)【代理人】
【識別番号】100169627
【氏名又は名称】竹本 美奈
(72)【発明者】
【氏名】ステパナウスカス,ジャレド
(72)【発明者】
【氏名】ブラッカー,スティーブン ジェイ.
(72)【発明者】
【氏名】ドレイク,ケイトリン
(72)【発明者】
【氏名】バーグマン,ペル
(72)【発明者】
【氏名】リ,サンジュン
(72)【発明者】
【氏名】コッテンステッテ,ニコラス
【審査官】山口 賢一
(56)【参考文献】
【文献】米国特許出願公開第2014/0309658(US,A1)
【文献】米国特許出願公開第2014/0243742(US,A1)
【文献】米国特許出願公開第2014/0276233(US,A1)
【文献】米国特許出願公開第2002/0177789(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 34/35
A61B 34/37
A61B 34/30
(57)【特許請求の範囲】
【請求項1】
脈管系を通し移動させる第1の細長い医療機器及び第2の細長い医療機器を有する装置と、該装置に接続されたコントローラとを備えたシステムであって、
前記コントローラは、
移動させる前記第1の細長い医療機器の線状変位の量及び方向を特定し、
前記第1の細長い医療機器の該特定された線状変位に応じて、前記第2の細長い医療機器を線状変位させ、この第2の細長い医療機器の線状変位が、前記第1の細長い医療機器の前記線状変位と実質的に等しい量で、前記第1の細長い医療機器の前記線状変位の方向と反対の方向である、ように構成され、
前記コントローラはさらに、
前記第2の細長い医療機器の前記線状変位の量を測定し、該測定した量が所望の量と異なる場合に、(a)前記第1の細長い医療機器又は(b)前記第2の細長い医療機器のいずれかの前記線状変位の少なくとも1つのパラメータを変更するように構成される、システム。
【請求項2】
前記少なくとも1つのパラメータの変更は、前記第2の細長い医療機器の前記線状変位の量を制限することを含む、請求項1に記載のシステム。
【請求項3】
前記コントローラは、前記第2の細長い医療機器
を線状変位させる駆動力の喪失が特定されると、前記少なくとも1つのパラメータを変更する、請求項2に記載のシステム。
【請求項4】
前記少なくとも1つのパラメータは、前記第1の細長い医療機器の前記線状変位の量又は速度を含む、請求項1に記載のシステム。
【請求項5】
前記第1の細長い医療機器がカテーテルであり、前記第2の細長い医療機器がガイドワイヤである、請求項1~4のいずれか1項に記載のシステム。
【請求項6】
前記コントローラは、前記第1の細長い医療機器の前記線状変位
に対し、前記第2の細長い医療機器
を実質的に同時に線状変位させる、請求項1~5のいずれか1項に記載のシステム。
【請求項7】
前記コントローラは、
指令した動作とは異なる前記第2の細長い医療機器の予期せぬ動作を識別し、
前記コントローラは、前記第2の細長い医療機器の前記予期せぬ動作を識別したときに、前記第1の細長い医療機器又は前記第2の細長い医療機器の前記少なくとも1つのパラメータの変更を中止する、請求項1~6のいずれか1項に記載のシステム。
【請求項8】
前記コントローラは、センサからの入力による前記第2の細長い医療機器の動作の検出に基づいて、前記第2の細長い医療機器の有無を検出する、請求項1~7のいずれか1項に記載のシステム。
【請求項9】
前記コントローラは、前記第2の細長い医療機器の不在を検出したときに、前記第1の細長い医療機器又は前記第2の細長い医療機器の前記少なくとも1つのパラメータの変更を中止する、請求項8に記載のシステム。
【請求項10】
前記コントローラは、前記第2の細長い医療機器の前記線状変位が前記第1の細長い医療機器の前記特定された線状変位の第1の閾値内にあるとき、前記第2の細長い医療機器
を線状変位させる駆動を終了する、請求項1~9のいずれか1項に記載のシステム。
【請求項11】
前記コントローラは、前記第2の細長い医療機器の前記線状変位が前記第1の細長い医療機器の前記特定された線状変位の第2の閾値より大きいときに、前記第2の細長い医療機器
を線状変位させる駆動を再開し、前記第2の閾値が前記第1の閾値より大きい、請求項10に記載のシステム。
【請求項12】
脈管系を通し移動させる1つ以上の別の細長い医療機器をさらに含み、該別の細長い医療機器の挙動が前記第2の細長い医療機器と同様に拘束される、請求項1~11のいずれか1項に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願の相互参照]
本願は、2018年9月19日出願の米国仮出願No.62/733,429「ROBOTIC ASSISTED MOVEMENTS OF PERCUTANEOUS DEVICES」と、2019年2月11日出願の米国仮出願No.62/803,899「PROXIMAL DEVICE FIXATION WITH SINGLE FAULT」の優先権及び利益を主張するものであり、これら出願の全ては本明細書に援用される。
【0002】
[技術分野]
本発明は、概して言うとカテーテル処置システムの分野に関し、具体的には、ガイドワイヤ及び/又はカテーテルのような細長い医療機器を自動的に動作させるロボットシステム及び方法に関する。
【背景技術】
【0003】
カテーテル(及び他の細長い医療機器)は、神経介入手術、経皮冠動脈インターベンション(PCI)及び末梢血管インターベンション(PVI)としても知られる神経血管インターベンション(NVI)を含む、様々な血管系の疾患に対する診断及び治療のために、多くの低侵襲医療処置に使用可能である。これらの処置は、通常、血管系を通してガイドワイヤをナビゲートし、そしてガイドワイヤを介してワーキングカテーテルを前進させ、治療を行うことを含む。カテーテル処置は、基準経皮的技法を用い、シース又はガイドカテーテルで、動脈や静脈などの適切な血管に経路を得ることから始まる。次いで、シース又はガイドカテーテルは、診断ガイドワイヤを通して、NVIでは内頸動脈、PCIでは冠動脈口、PVIでは浅大腿動脈など、主要な位置まで進められる。続いて、血管系に適したガイドワイヤを、シース又はガイドカテーテルを通して、血管系内の標的位置までナビゲートする。曲がりくねった解剖学的構造のような特定の状況では、ガイドワイヤを通してサポートカテーテル又はマイクロカテーテルを挿入し、ガイドワイヤのナビゲーションを補助する。医者(オペレータ)は、撮像システム(例えば、透視鏡)を使用して造影剤注入を伴う影像を取得し、ロードマップとして使用する固定フレームを選択してガイドワイヤ又はカテーテルを病変部などの標的位置へナビゲートすることができる。医者がガイドワイヤ又はカテーテル機器を配送する間にコントラスト強調画像も得られるので、医者は、機器が標的位置へ正しい経路に沿って移動していることを確認することができる。透視法を用いて解剖学的構造を観察しながら、医者は、ガイドワイヤ又はカテーテルの近位端を操作して、遠位先端を適切な血管に向け、側枝に前進しないようにする。
【0004】
例えばNVI、PCI、PVIなどのカテーテル処置を行う際に、医者を補助するために使用することのできるロボットカテーテル処置システムが開発されている。神経血管インターベンション(NVI)カテーテル処置の例に、動脈瘤のコイル塞栓術、動静脈奇形の液体塞栓術、及び急性虚血性脳卒中の状況における大血管閉塞の機械的血栓除去術が含まれる。NVIにおいて、医者は、ロボットシステムを用い、神経血管ガイドワイヤとマイクロカテーテルを操作して病変部への接触を得て、正常血流を回復させる治療を行う。到達経路はシース又はガイドカテーテルによってつくられるが、より末端の区域についてや、マイクロカテーテル及びガイドワイヤの適切な支持を提供するために、中間カテーテルを必要とすることもある。ガイドワイヤの遠位先端部は、病変の種類と治療に応じて、病変部の中か又は病変部の先へナビゲートされる。動脈瘤の治療では、マイクロカテーテルを病変部内に進め、ガイドワイヤを取り出し、マイクロカテーテルを通して数個のコイルを動脈瘤内に展開して動脈瘤の塞栓に使用する。動静脈奇形の治療では、液体塞栓がマイクロカテーテルを利用して奇形に注射される。血管閉塞を治療する機械的血栓除去術は、吸引又はステント回収器の使用のいずれかを通して実施される。吸引は、マイクロカテーテルを通して直接行うか、又は、より大きな口径の吸引カテーテルを用いて行う。吸引カテーテルが病変部に達すると、負圧をかけてカテーテルを通し血栓を除去する。あるいは、血栓は、マイクロカテーテルを通してステント回収器を配置することによって除去することができる。ステント回収器に血栓を取り込み、該ステント回収器及びマイクロカテーテルをガイドカテーテル内に引き込むことによって血栓が回収される。
【0005】
PCIの場合、医者はロボットシステムを使用し、心臓ガイドワイヤを操作して病変部接触を得て、治療を行い正常な血流を回復させる。到達経路は、ガイドカテーテルを冠動脈口に配置することでつくられる。ガイドワイヤの遠位先端部は、病変部の先へナビゲートされ、複雑な解剖学的構造の場合はマイクロカテーテルがガイドワイヤを適切に支持するために使用される。血流は、ステント又はバルーンを病変部に送達して展開させることによって回復される。病変部は、病変部の事前拡張のためにバルーンを送達するか、あるいは、例えばレーザ又は回転式アテレクトミーカテーテルとガイドワイヤを通したバルーンを用いてアテレクトミーを行うことによる、ステント装着前の準備を要する場合がある。画像診断及び生理学的測定を、撮像カテーテル又はFFR測定を用いることにより、適切な治療法を決定するために実施してもよい。
【0006】
PVIの場合、医者はロボットシステムを用いて、治療を行いNVIと同様の技術で血流を回復させる。ガイドワイヤの遠位先端部を病変部の先へナビゲートし、マイクロカテーテルを用いて複雑な解剖学的構造に対するガイドワイヤの適切な支持を提供することができる。血流は、ステント又はバルーンを病変部に送達して展開することによって回復させる。PCIと同様に、病変部の準備、画像診断もまた使用することができる。
【発明の概要】
【0007】
一態様に係るシステムは、第1の細長い医療機器と第2の細長い医療機器とを有する装置と、該装置に接続されたコントローラとを備える。そのコントローラは、第1の細長い医療機器の線状変位の量及び方向を特定し、この第1の細長い医療機器の特定された変位に応じて、第2の細長い医療機器を線状変位させるように、構成される。このときの第2の細長い医療機器の線状変位は、第1の細長い医療機器の線状変位と実質的に等しい量であり且つ第1の細長い医療機器の変位の方向とは反対の方向である。コントローラは、(a)第1の細長い医療機器又は(b)第2の細長い医療機器のいずれかの線状変位の少なくとも1つのパラメータを変更するようにさらに構成される。
【0008】
一例において、その少なくとも1つのパラメータの変更は、第2の細長い医療機器の変位の量を制限することを含む。コントローラは、第2の細長い医療機器を線状変位させる駆動力の喪失が特定されると、少なくとも1つのパラメータを変更する。
【0009】
一例において、少なくとも1つのパラメータは、第1の細長い医療機器の変位の量又は速度を含む。一態様において、第1の細長い医療機器はカテーテルであり、第2の細長い医療機器はガイドワイヤである。
【0010】
一例において、第1の細長い医療機器の線状運動と第2の細長い医療機器の線状運動とは実質的に同時に起こる。
【0011】
一例において、コントローラは、第2の細長い医療機器の予期せぬ動作を識別し、この場合にコントローラは、第2の細長い医療機器の予期せぬ動作を識別したときに、第1の細長い医療機器又は第2の細長い医療機器の少なくとも1つのパラメータの変更を中止する。
【0012】
一例において、コントローラは、センサからの入力による第2の細長い医療機器の動作の検出に基づいて、第2の細長い医療機器の有無を検出する。コントローラは、第2の細長い医療機器の不在を検出したときに、第1の細長い医療機器又は第2の細長い医療機器の少なくとも1つのパラメータの変更を中止する。
【0013】
一例において、コントローラは、第2の細長い医療機器の線状変位が第1の細長い医療機器の特定された変位の第1の閾値を越えなければ、第2の細長い医療機器の線状変位を終了させる。コントローラは、第2の細長い医療機器の線状変位が第1の細長い医療機器の特定された変位の第2の閾値を越えるときに、第2の細長い医療機器の線状変位を再開する。第2の閾値は第1の閾値よりも大きい。
【0014】
一例において、システムは、さらに、第2の細長い医療機器と同様に挙動が制限される1つ以上の別の細長い医療機器を含む。
【0015】
一態様に係るシステムは、少なくとも1つの細長い医療機器を有する細長い医療機器装置と、該細長い医療機器装置に接続されたコントロールステーションとを備える。コントロールステーションは、ユーザコマンドに応答して細長い医療機器の近位部分の所定の動作パターンを実行するコントロールモジュールを含む。所定の動作パターンは、細長い医療機器の縦軸を中心とする細長い医療機器の振動である。補助コマンドが振動の振幅を変更する。
【0016】
一例において、補助コマンドは、振幅を減少又は増加させることで振動の振幅を変更する。
【0017】
一例において、補助コマンドは、振幅を偏らせることで振動の振幅を変更する。偏りの生成は、振動の中心位置を動かすことを含む。
【0018】
一例において、補助コマンドは、コントロールモジュール又はオペレータ入力デバイスのいずれかから受信される。
【0019】
一例において、細長い医療機器の振動は、血管を通って前進するときに第1の振幅を有し、障害物を通り過ぎるときに第2の振幅を有する。
【0020】
一例において、所定の動作パターンは、細長い医療機器の線状動作時にのみ起動される。コントロールモジュールは、線状動作が止められるとき又は反転されるとき又は押される(小突かれる)ときに、細長い医療機器の振動を中止する。
【0021】
一例において、振動の少なくとも1つのパラメータが設定可能であり、該パラメータは、周波数、振幅、又は回転速度である。
【0022】
一態様に係るシステムは、少なくとも1つの細長い医療機器を有する細長い医療機器装置とコントロールステーションとを備える。コントロールステーションは、細長い医療機器の線状変位に関するユーザーコマンドに応答して細長い医療機器の近位部分の動作パターンを実行するためのコントロールモジュールを含む。動作パターンは、細長い医療機器の縦軸を中心とした細長い医療機器の一方向への継続回転を伴う線状変位である。動作パターンは、前進線状変位で起動され、後進線状変位で中止される。
【0023】
一例において、補助コマンドで動作パターンの回転速度を変更することができる。
【0024】
一態様に係るシステムは、少なくとも1つの細長い医療機器を有する細長い医療機器装置とコントロールステーションとを備える。コントロールステーションは、ユーザコマンドに応答して細長い医療機器の近位部分の所定の動作パターンを実行するコントロールモジュールを含む。所定の動作パターンは、細長い医療機器の線状振動であり、この線状振動は、細長い医療機器の交互前進後進(往復)線状移動を含む。動作パターンは、前進線状変位で起動され、後進線状変位で中止される。
【0025】
一態様に係るシステムは、第1の細長い医療機器及び第2の細長い医療機器を有する装置と、該装置に接続されたコントローラとを備える。そのコントローラは、第1の細長い医療機器の動作に関するコマンドを受信し、第1の細長い医療機器を作動させ、第1の細長い医療機器の動作を検出し、検出された細長い医療機器の線状変位に応じて、第2の細長い医療機器の動作を第1の細長い医療機器の動作に同期させるように、構成される。
【0026】
一例において、第1の細長い医療機器の動作及び第2の細長い医療機器の同期動作は、結果として前進線状変位を伴う小刻みの交互前進後進線状動作を含む。
【図面の簡単な説明】
【0027】
本発明は、類似部分に参照番号を付してある次の図面と併せた以下の詳細な説明からより完全に理解される。
【
図1】一実施形態に係るカテーテル式処置システムを例示する斜視図。
【
図2】一実施形態に係るカテーテル式処置システムを例示する概略ブロック図。
【
図3】一実施形態に係るカテーテル式処置システムのロボット駆動装置の斜視図。
【
図4B】カテーテル式処置システムにおける細長い医療機器(EMD)のロボット動作に関し、ここではウィグル(小刻み動作)と呼ぶ例示モードを説明する図。
【
図5】カテーテル式処置システムにおけるEMDのロボット動作に関し、ここではドリル(穿孔動作)と呼ぶ例示モードを説明する図。
【
図6】カテーテル式処置システムにおけるEMDのロボット動作に関し、ここではジャックハンマー(削岩動作)と呼ぶ例示モードの各位相を説明する図。
【
図7】カテーテル式処置システムにおけるEMDのロボット動作に関し、ここではアクティブデバイス固定(ADF)と呼ぶ例示モードを説明する図。
【
図8】
図7の例示モードに関連する閉ループ操作の方法を説明するフローチャート。
【
図9】カテーテル式処置システムにおける2つ以上のEMDの同期ロボット動作に関する例示モードを説明する図。
【
図12】
図5の例示モードに関連する状態マシンコマンド図。
【
図13】
図6の例示モードに関連する状態マシンコマンド図。
【
図14】
図6の例示モードに関連する状態マシンコマンド図。
【
図16D】アクティブデバイス固定に関するアルゴリズム図の一例。
【
図17】グラフィカルユーザインタフェースを例示する図。
【発明を実施するための形態】
【0028】
図1は、一実施形態に係るカテーテル式処置システムを例示する斜視図である。
図1に示すカテーテル式処置システム10は、カテーテル式医療処置、例えば、STEMIなどの経皮冠動脈インターベンション(PCI)、神経血管インターベンション(NVI)(急性脳主幹動脈閉塞(ELVO)の処置などの)、重症虚血肢(CLI)などの末梢血管インターベンション(PVI)といった経皮インターベンション処置、を実施するために使用される。カテーテル式医療処置には診断カテーテル処置が含まれ、この処置では、1つ以上のカテーテル(又は他の細長い医療機器(EMD))が患者の疾患の診断を補助するために使用される。例えば、カテーテル式診断処置の一実施形態においては、造影剤がカテーテルを通して1つ以上の動脈に注入され、患者の血管系の画像が撮像される。カテーテル式医療処置には、カテーテル式治療処置(血管形成術、ステント配置、末梢血管疾患治療、血塊除去、動静脈奇形治療、動脈瘤治療など)も含まれ、この処置では、カテーテル(又は他の細長い医療機器)が疾患を治療するために使用される。治療処置は、例えば、血管内超音波法(IVUS)、光干渉断層撮影法(OCT)、冠血流予備量比法(FFR)など、付属機器54(
図2に示す)を用いて強化され得る。ただし、所定の経皮インターベンション機器又は部品(各種のガイドワイヤ、各種のカテーテルなど)を、実施すべき処置の種類に従って選択可能であることは、当業者には当然理解される。カテーテル式処置システム10は、処置に使用される所定の経皮インターベンション機器を収容するために若干の調節をして、あらゆる数のカテーテル式医療処置を実施することができる。
【0029】
カテーテル式処置システム10は、とりわけ、ベッドサイドユニット20及びコントロールステーション26を含む。カテーテル式処置システム10の主要なビルディングブロックの全体像を
図2に示し、以下に詳述する。ベッドサイドユニット20は、患者に隣接して置かれるロボット駆動装置24及び位置決めシステム22(ロボットアーム、多関節アーム、ホルダなど)を有する。ベッドサイドユニット20は、コントロール部及びディスプレイ部46(
図2に示す)も有する。コントロール部及びディスプレイ部は、例えば、ロボット駆動装置24のハウジングに設置することができる。患者12はテーブル18上に支えられる。通例、ロボット駆動装置24は、(
図2に示す)適切な経皮インターベンション機器又は他の付属品48(例えば、ガイドワイヤ、種々のカテーテル、バルーンカテーテル、ステント配置システム、ステント回収器、塞栓コイル、液体塞栓、吸引ポンプ、造影剤、医薬など)を備え、コントロールステーション26にあるコントロール部など種々のコントロール部を操作することによって、ユーザがロボットシステムによりカテーテル式医療処置を実行できるようにする。ベッドサイドユニット20、特にロボット駆動装置24は、ここに説明する機能をベッドサイドユニット20に提供するためにあらゆる数の及び/又は組み合せのコンポーネントを含み得る。ロボット駆動装置24は、レール60(
図3に示す)に取り付けられた複数の機器モジュール32を含む。機器モジュール32の各々は、カテーテルやガイドワイヤなどの細長い医療機器を駆動するために使用される。例えば、ロボット駆動装置24は、患者12の動脈内に配置された診断カテーテルに及びガイドカテーテルにガイドワイヤを自動的に送り込むために使用される。EMDなどの1つ以上の機器は、例えば導入器及び導入器シースを用いて、挿入位置16で患者の体内(例えば血管)に入っていく。
【0030】
ベッドサイドユニット20は、コントロールステーション26と通信しており、コントロールステーション26のユーザ入力によって生成される信号がベッドサイドユニット20へ送信され、ベッドサイドユニット20の様々な機能が制御される。
図2を参照して後述するように、コントロールステーション26は、コントロールコンピューティングシステム34(
図2に示す)を含むか、又は、コントロールコンピューティングシステム34を介してベッドサイドユニット20と接続される。ベッドサイドユニット20はまた、フィードバック信号(装填、速度、動作条件、警告信号、エラーコードなど)をコントロールステーション26かコントロールコンピューティングシステム34(
図2に示す)、又はその両方に提供する。コントロールコンピューティングシステムとカテーテル式処置システム10の種々のコンポーネントとの間の通信は、コンポーネント間の通信を可能にする無線接続、有線接続、又は他のあらゆる手段であり得る通信リンクを介して提供される。コントロールステーション26又は他の類似のコントロールシステムは、ローカルサイト(例えば
図2に示すローカルコントロールステーション38)又はリモートサイト(例えば
図2に示すリモートコントロールステーション及びコンピューティングシステム42)のいずれかに配置される。カテーテル式処置システム10は、ローカルサイトのコントロールステーションによって、リモートサイトのコントロールステーションによって、又は同時にローカルコントロールステーションとリモートコントロールステーションの両方によって、操作される。ローカルサイトでは、オペレータとコントロールステーション26が、患者12及びベッドサイドユニット20と同じ部屋か隣接する部屋にある。ここで使用されているのは、ローカルサイトが、ベッドサイドシステム20及び患者12(被験者)の場所であり、リモートサイトが、オペレータ(例えば医者)及びベッドサイドシステム20を遠隔制御するために使用されるコントロールステーション26の場所である。リモートサイトのコントロールステーション26(及びコントロールコンピューティングシステム)とローカルサイトのベッドサイドユニット20及び/又はコントロールコンピューティングシステムとは、通信システム及びサービス36(
図2に示す)を使用して、例えばインターネットを通じて、通信する。一つの実施形態において、リモートサイトとローカル(患者)サイトとは、例えば、同じビル内の複数の部屋、同じ都市内の複数の建物、複数の都市内の複数の建物、又は、リモートサイトがローカルサイトのベッドサイドユニット20又は患者12と物理的接触をもたない別の場所、といったように、互いに離れている。
【0031】
コントロールステーション26は、通例として、カテーテル式処置システム10の各種コンポーネント又はシステムを作動させるためのユーザ入力を受信するように構成された1つ以上の入力モジュール28を含む。図示の実施形態でコントロールステーション26は、ユーザがベッドサイドユニット20を制御してカテーテル式医療処置を実施することを可能にする。例えば、入力モジュール28は、ベッドサイドユニット20に、ロボット駆動装置24に接続された種々の経皮インターベンション機器(例えば細長い医療機器)を使用して種々のタスクを実行させるように構成される(例えば、ガイドワイヤを前進、後退又は回転させる、カテーテルを前進、後退又は回転させる、カテーテルに位置したバルーンを膨張又は収縮させる、ステントを位置決めする及び/又は展開する、ステント回収器を位置決めする及び/又は展開する、コイルを位置決めする及び/又は展開する、カテーテルに造影剤を注入する、カテーテルに液体塞栓を注入する、カテーテルに医薬又は塩水を注入する、カテーテルで吸引する、カテーテル式医療処置の一部として実行され得る他のあらゆる機能を実行する、など)。ロボット駆動装置24は、経皮インターベンション機器を含むベッドサイドユニット20のコンポーネントの動作(例えば、軸方向及び回転方向の動作)を生じさせるための様々な駆動機構を含む。
【0032】
一実施形態において、入力モジュール28は、タッチスクリーン、1つ以上のジョイスティック、スクロールホイール、及び/又はボタンを含む。入力モジュール28に加えて、コントロールステーション26は、音声コマンドなどのためのフットスイッチやマイクロホンなどの別のユーザコントロール部44(
図2に示す)も使用することができる。入力モジュール28は、ガイドワイヤ及び1つ以上のカテーテル又はマイクロカテーテルなどの、種々のコンポーネント及び経皮インターベンション機器を前進、後進、又は回転させるように構成される。ボタン類は、例えば、非常停止ボタン、倍率ボタン、機器選択ボタン、及び自動動作ボタンを含む。非常停止ボタンが押されるとリレーがトリガされて、ベッドサイドユニット20への電力供給が遮断される。速度制御モードにあるとき、倍率ボタンは、入力モジュール28の操作に応じて、関連するコンポーネントの移動に関する速度を増減させるように作用する。位置制御モードにあるときは、倍率ボタンは、入力距離と出力指令距離との間のマッピングを変更する。機器選択ボタンは、ロボット駆動装置24に装填された経皮インターベンション機器のどれを入力モジュール28によって制御するか、ユーザが選択することを可能にする。自動動作ボタンは、ユーザからの直接のコマンドなしでカテーテル式処置システム10が経皮インターベンション機器に行うアルゴリズム動作を可能とするために使用される。一つの実施形態において、入力モジュール28は、タッチスクリーンに表示される1つ以上のコントロール部又はアイコン(図示せず)を含み、これらの起動が、カテーテル式処置システム10のコンポーネントを作動させる。入力モジュール28はまた、バルーンを膨張又は収縮させ及び/又はステントを展開するように構成されるバルーン又はステントコントロール部を含む。モジュールの各々は、専用のコントロール部がある特定のコンポーネントを制御するのに適した1つ以上のボタン、スクロールホイール、ジョイスティック、タッチスクリーンなどを含む。さらに、タッチスクリーンは、入力モジュール28の各コンポーネントに関連する又はカテーテル式処置システム10の各コンポーネントに関連する、1つ以上のアイコン(図示せず)を表示することができる。
【0033】
コントロールステーション26は、ディスプレイ部30を含む。別の実施形態でコントロールステーション26は、2つ以上のディスプレイ部30を含む。ディスプレイ部30は、コントロールステーション26にいるユーザに情報又は患者固有データを表示するように構成される。ディスプレイ部30は、例えば、画像データ(X線画像、MRI画像、CT画像、超音波画像など)、血流力学(血行動態)データ(血圧、心拍数など)、患者記録情報(医療履歴、年齢、体重など)、病変又は治療評価データ(IVUS、OCT、FFRなど)を表示するように構成される。また、ディスプレイ部30は、処置固有の情報(処置チェックリスト、勧告、処置にかかる時間、カテーテル位置又はガイドワイヤ位置、送り込む医薬又は造影剤の容量など)を表示するようにも構成され得る。さらに、ディスプレイ部30は、コントロールコンピューティングシステム34(
図2に示す)と連携する機能を提供するために情報を表示するようにも構成される。ディスプレイ部30は、システムのユーザ入力機能の一部を提供するために、タッチスクリーン機能を含む。
【0034】
カテーテル式処置システム10は、撮像システム14も含む。撮像システム14は、カテーテル式医療処置と連携した使用される医療撮像システム(非デジタルX線、デジタルX線、CT、MRI、超音波など)である。一つの実施形態において、撮像システム14は、コントロールステーション26と通信するデジタルX線撮像装置である。一つの実施形態において、撮像システム14はCアーム(
図1に示すような)を含み、このCアームにより撮像システム14は、患者12に対して様々な角度位置(例えば、矢状面(sagittal)視、尾側(caudal)視、前後(anterior-posterior)視など)で画像を得るために、患者12の周囲を部分的に又は全体的に回転できる。
【0035】
撮像システム14は、所定の処置で患者12の適切な部位のX線画像を撮るように構成され得る。例えば、撮像システム14は、神経血管状態を診断するために頭部の1つ以上のX線画像を撮るように構成される。撮像システム14はまた、カテーテル式医療処置で1つ以上のX線画像を撮り(例えばリアルタイム画像)、ガイドワイヤ、ガイドカテーテル、マイクロカテーテル、ステント回収器、コイル、ステント、バルーンなどを処置中に適切に位置決めできるようにコントロールステーション26のユーザを補助するように構成される。1つ以上の画像がディスプレイ部30に表示される。具体的には、ユーザが、例えば、ガイドカテーテル又はガイドワイヤを適切な位置に正確に移動させられるように、ディスプレイ部30に画像が表示される。
【0036】
図2を参照すると、一実施形態に係るカテーテル式処置システム10のブロック図が示されている。カテーテル式処置システム10は、コントロールコンピューティングシステム34を含む。コントロールコンピューティングシステム34は、物理的には、例えば、コントロールステーション26(
図1に示す)の一部であり得る。コントロールコンピューティングシステム34は、通常、ここに説明する種々の機能をもつカテーテル式処置システム10を提供するのに適した電子制御ユニットである。一例としてコントロールコンピューティングシステム34は、組み込みシステム、専用回路、ここに説明する機能をプログラムした汎用システムなどである。コントロールコンピューティングシステム34は、ベッドサイドユニット20、通信システム及びサービス36(インターネット、ファイアウォール、クラウドサービス、セッションマネージャ、病院ネットワークなど)、ローカルコントロールステーション38、別の通信システム40(テレプレゼンスシステムなど)、リモートコントロールステーション及びコンピューティングシステム42、及び患者センサ56(心電図(ECG)装置、脳電図(EEG)装置、血圧モニタ、温度モニタ、心拍数モニタ、呼吸モニタなど)と、通信する。また、コントロールコンピューティングシステム34は、撮像システム14、患者テーブル18、別の医療システム50、造影剤注入システム52、及び付属機器54(IVTJS、OCT、FFRなど)と、通信する。ベッドサイドユニット20は、ロボット駆動装置24、位置決めシステム22(ロボットアーム、多関節アーム、ホルダなど)を含み、別のコントロール部及びディスプレイ部46も含み得る。上述のように、コントロール部及びディスプレイ部46はロボット駆動装置24のハウジングに配置することができる。インターベンション機器及び付属品48(ガイドワイヤ、カテーテルなど)はベッドサイドユニット20と接続する。一実施形態において、インターベンション機器及び付属品48は、付属機器54、すなわちIVTJSシステム、OCTシステム、FFRシステムなど、と接続する特殊装置(IVTJSカテーテル、OCTカテーテル、FFFRワイヤ、造影剤用診断カテーテルなど)を含む。
【0037】
一実施形態において、コントロールコンピューティングシステム34は、カテーテル式処置システム10を使用して医療処置を実行することができるように、入力モジュール28(ローカルコントロールステーション38又はリモートコントロールステーション42などのコントロールステーション26(
図1に示す)など)とのユーザ相互作用に基づいて及び/又はコントロールコンピューティングシステム34の利用可能な情報に基づいて、制御信号を生成するように構成される。ローカルコントロールステーション38は、1つ以上のディスプレイ部30、1つ以上の入力モジュール28、及び別のユーザコントロール部44を含む。リモートコントロールステーション及びコンピューティングシステム42は、ローカルコントロールステーション38と同様のコンポーネントを含む。リモート42とローカル38のコントロールステーションは、必要な機能に応じ異なるものとして専用にあつらえることもできる。別のユーザコントロール部44は、1つ以上の足入力機器を含み得る。足入力機器は、ユーザが撮像システム14の機能を選択できるように構成される。その機能は、X線のオン/オフ、種々の保存画像のスクロールなどである。別の実施形態において、足入力機器は、入力モジュール28に含まれるスクロールホイールにどの装置をマッピングするかユーザが選択できるように構成される。別の通信システム40(音声会議、映像会議、テレプレゼンスなど)を採用して、オペレータが患者、血管造影スタッフ又はベッドサイド近くの機器と相互作用するときの補助をすることができる。
【0038】
カテーテル式処置システム10は、明確には示していないあらゆる他のシステム及び/又は機器を含むように接続又は構成され得る。例えば、カテーテル式処置システム10は、画像処理エンジン、データストレージ及びアーカイブシステム、自動バルーン及び/又はステント膨張システム、医薬注入システム、医薬追跡及び/又はログシステム、ユーザログ、暗号化システム、カテーテル式処置システム10への接触又はその使用を制限するシステムなどを含んでいてもよい。
【0039】
説明したとおり、コントロールコンピューティングシステム34は、ロボット駆動装置24、位置決めシステム22、及び別のコントロール部及びディスプレイ部44を含んだベッドサイドユニット20と通信し、経皮インターベンション機器(ガイドワイヤ、カテーテルなど)を駆動するために使用されるモータ及び駆動機構の動作を制御するためにベッドサイドユニット20へ制御信号を提供する。各種の駆動機構は、ロボット駆動装置24(
図1及び
図2に示す)の一部として設けられる。
図3は、一実施形態に係るカテーテル処置システムのロボット駆動装置の斜視図である。
図3において、ロボット駆動装置24は、リニアレール60に連結された複数の機器モジュール32を含む。各機器モジュール32は、レール60に摺動可能に取り付けられたステージ62を介してレール60に連結されている。機器モジュール32は、オフセットブラケット78などのコネクタを用いてステージ62へ接続される。違う実施形態では、デバイスモジュール32はステージ62に直接取り付けられる。各ステージ62は、レール60に沿って直線的に移動するように独立して作動させることができる。したがって、各ステージ62(及びステージ62に連結された対応する機器モジュール32)は、互いに対し及びレール60に対し、個々に動作する。各ステージ62を作動させるために駆動機構が使用される。
図3に示す実施形態において、駆動機構は、ステージ62のそれぞれに連結された独立ステージ変位モータ64と、例えば送りネジのステージ駆動機構76とを含む。
図3において、ステージ62及び機器モジュール32は直列駆動構成である。
【0040】
各機器モジュール32は、駆動モジュール68と、駆動モジュール68に搭載され連結されたカセット66とを含む。
図3では、各カセット66が、垂直の方に駆動モジュール68へ搭載されて示されている。他の実施形態において、カセット66は、他の取り付け方で駆動モジュール68に搭載される。カセット66は無菌であり、細長い医療機器(図示せず)を収容して支持するように構成されている。さらに、駆動モジュール68に連結されたカセット66は、例えば回転のような少なくとも1つの追加自由度を細長い医療機器に提供するメカニズムを含む。駆動モジュール68は、その追加自由度を提供するカセット66のメカニズムに電力インターフェースを提供するために、少なくとも1つの連結器を含む。各カセット66は、細長い医療機器の座屈を防止する機器支持体79も収容する。ロボット駆動装置24は、デバイス支持体79、遠位拘束アーム70、及び支持アーム77に接続された機器支持接続部72を含む。加えて、導入器インターフェース支持体(リディレクタ)74を、機器支持接続部72及び細長い医療機器(例えば導入器シース)に接続してもよい。ロボット駆動装置24のこの構造は、単一のレールにアクチュエータを合体させることにより、ロボット駆動装置24の大きさ及び重量を減少させるという利点を有する。
【0041】
カテーテル式医療処置には、心臓、脳又は末梢血管系で実施される診断用カテーテル処置が含まれ、この処置においては、患者の疾患の診断を補助するために1つ以上のカテーテルが使用される。例えば、一つの例では、造影剤がカテーテルを通して1つ以上の冠動脈に注入され、患者の心臓の画像が取得される。カテーテルを利用した医療処置には、心臓、脳又は抹消血管系で行われるカテーテルを利用した治療処置(血管形成術、ステント配置、抹消血管病変治療、血塊除去、動静脈奇形治療、動脈瘤治療など)が含まれる。所定の経皮インターベンション機器又はコンポーネント(各種ガイドワイヤ、各種カテーテルなど)が、実施されるべき処置の種類に従って選択され得ることは、当業者には当然理解される。
【0042】
ここで使用される場合、方向の遠位は患者に向かう方向であり、方向の近位は患者から離れる方向である。例えば、ガイドカテーテルなどの細長い医療機器(EMD)の遠位端は患者に挿入される端部を指し、EMDの近位端は上述したベッドサイドユニット20に連結される端部を指す。単語の上及び上側は、重力方向から離れるおおよその方向を指し、単語の下及び下側は、おおよそ重力の方向を指す。単語の前は、ユーザに面する、多関節アームから離れているロボット機構の側面を指す。単語の後は、多関節アームに近い方のロボット機構の側面を指す。単語の内向きは、機構の内側部分を指す。単語の外向きは、機構の外側部分を指す。
【0043】
処置の実施にあたり、ガイドカテーテル、ガイドワイヤ及び/又はワーキングカテーテルなどの細長い医療機器が患者に挿入される。インターベンション処置の一例では、ガイドカテーテルが、導入器を通して患者の大腿動脈に挿入され、そして、患者の心臓の冠動脈口に近接して位置決めされる。ガイドカテーテルは、機器モジュール32内でその縦軸に沿った線状位置を維持する。経皮冠動脈インターベンション(PCI)のような医療処置では、ガイドワイヤ及びバルーンステントカテーテルなどの他の細長い医療機器を患者へ入れるために、ガイドカテーテルが使用され、例えば探査診断を行うか、又は患者の血管系内の狭窄を処置する。ガイドカテーテルの遠位端は、患者の心臓の心門内に配置される。ロボット駆動装置24は、ガイドワイヤ及び/又はバルーンステントカテーテルなどのワーキングカテーテルを患者の内と外において駆動する。ガイドワイヤ及びワーキングカテーテルは、ロボット機構の遠位端と患者との間のガイドカテーテル内で駆動される。
【0044】
ここで細長い医療機器(EMD)とも呼ぶ経皮機器の線状動作は、EMDの縦軸に沿った動作である。EMDの縦軸は、EMDの近位端からEMDの遠位端まで延伸する経路として定義される。EMDがより剛性である場合、EMDの全体は、EMDの近位端、EMDの遠位端、及びこれらの間のEMDの全体が直線上にあるように、置かれる。この場合、EMDの縦軸は直線によって定義され得る。しかしながら、EMDが可撓性であってロボット駆動機構内か非線状の血管系経路のいずれかを通って動く場合、EMDのある部分は、EMDの近位端及びEMDの遠位端によって画定される直線には沿っていないことになる。しかし、ロボット駆動装置又は血管系の非直線部分を移動しているEMDの中央部分は、それでもEMDの縦軸にあるといえる。すなわち線状運動は、EMDの縦軸に沿ったEMDの動作である。近位端から離れる、患者内の方向へのEMDの動作は、前進又は前方の線状運動であり、遠位端から離れる、患者外へのEMDの動作は、後進又は後方の線状運動である。
【0045】
EMDの回転動作は、縦軸を中心としたEMDの回転として定義される。EMDの時計回りの回転動作は、駆動機構の位置におけるEMDの縦軸を中心としたEMDの時計回りの回転である。
【0046】
一例において、第1のユーザコントローラ又はユーザ入力が、EMDを動作させるための命令を提供する。一実施形態において、第1の又は主要なユーザコントローラは、多数の動作の大きさの命令を提供するジョイスティックである。一実施形態において、中央のニュートラル位置から前方又は後方へ旋回軸により移動可能であることにより、EMDを前方又は後方の位置へそれぞれ移動させる命令が提供される。一実施形態において、線状不感帯が、前進又は後進コマンドが提供されないジョイスティックの位置として定義される。一つ例では、ジョイスティックを3°前後に動かしても、EMDの動作は一切ない。一実施形態において、縦軸を中心とするジョイスティックの回転が、EMDへ回転命令を提供する。ジョイスティックの時計回りの回転がEMDの時計回りの回転をもたらし、ジョイスティックの反時計回りの回転がEMDの反時計回りの回転をもたらす。ただし、EMDの回転を提供する命令は、一実施形態では、いずれの方向にも3°の回転不感帯を越えてジョイスティックが回転させられた場合にのみ発生する。回転不感帯は3°未満であってもよいのはもちろんである。一実施形態では回転不感帯が2°であり、別の実施形態では回転不感帯が3°を上回る。
【0047】
オペレータは、複数の別々の血管系処置に関し、ここに説明されるロボットシステムを利用してEMDを駆動する。血管系処置には、中でも特に、病変部交差、血管ナビゲーション、病変部測定、病変評価、病変部前処置、自己拡張ステント展開、ガイドカテーテル操作時の機器安定化などが含まれる。
【0048】
種々のユーザ入力機器が、オペレータによるシステム10の1つ、複数、又は全てのEMDの動作制御を可能にする。例えば、オペレータは、ガイドカテーテル、マイクロカテーテル、ガイドワイヤ、又は他のEMDの動作を、個々に又は一緒に制御することができる。例示のカテーテル式処置システムを使用する処置の有効性を促進するために、ここに説明する種々の例は、処置中の補助のためにロボット動作の1つ以上のモードをオペラータが選択することを可能にする。当該ロボット動作のモードは、別途のオペレータ入力がロボット駆動装置にあってもなくても、所定の反復動作を含む動作パターンを実行させることができる。ここで使用する「パターン」はシーケンスのことであり、例えば動作のシーケンスやコマンドのシーケンスを指す。動作は、いくつかの例において、所定のデフォルト値で有効にすることができ、デフォルト値は、さらなるオペレータ入力で変更することができる。種々の動作が
図4~
図9を参照して以下に説明される。特定の処置に使用されるEMDのいずれか又は全てに適用される動作がある一方、所定のタイプのEMDのみに有用である動作もある。
【0049】
以下に説明する図面において、様々な動作パターンが、EMDの遠位端、又は患者に挿入されるEMDの端部、で説明されている。様々な例において、所望の動作パターンは、アクチュエータ(例えば駆動モータ又は駆動タイヤ)を通してEMDの近位部分で実行される。換言すれば、駆動モータが作動すると、EMDの近位部分における所望の動作がEMDの遠位端に伝わる。遠位端における正確な動作は、例えば、EMDの従順性、血管壁に対する摩擦、血管系の蛇行、又は病変部に直面する抵抗などの様々な要因によって、近位部分における動作と一致したり一致しなかったりする。不整合を補償すると共に近位部分で動作を入力又は調節して、遠位端における所望の動作をより正確に達成することが可能なロボット動作もある。例えば、遠位端における所望の動作の量は、近位端において行われる動作に適用する係数によって調整(拡大/縮小)できる。この係数は、処置、機器特性、特定の血管系又は他のパラメータに従うリアルタイム撮像、実験、又は履歴データに基づいて判断できる。係数又は調整は、オペレータ又はコントロールコンピューティングシステムによって適用される。
【0050】
図4A及び
図4Bを参照すると、EMDシステムにおけるロボット動作のモードが例示されている。
図4A及び
図4Bは、
図1~
図3を参照して上述した例示システムにおいて使用されるEMDの装置100を例示する。この実施形態に係るEMDの装置100は、第1のEMD110と第2のEMD120とを含む。
図4A及び
図4Bは、EMD110,120の遠位部分を示す。2つのEMDは同軸に配置され、第1のEMD110の中に第2のEMD120が配置されている。こ例で第1のEMD110は、第2のEMD120を収容すると共に第2のEMD120が第1のEMD110の中で相対的に動作(例えば回転及び/又は変位)することを可能にする、内腔を有する。当業者であれば勿論、2個より多いEMDが提供されて同軸上に配置され、1つより多いEMDが他のEMDの内腔に収容される例もあることを理解できる。
【0051】
オペレータによってモードが選択されると、ロボット駆動装置24は、1つ以上のEMD110,120を所定の動作パターンに入らせる。
図4A及び
図4Bに示す例では、1つのEMD(例えばガイドワイヤ)が所定の動作パターンに入る。別の例では、複数のEMDが別々の時間(例えば一度に1つのEMD)で動作パターンに入る。
図4A及び
図4Bに示されるロボット動作のモードは、ここではウィグルモードと呼ぶ。ウィグルモードは、縦軸を中心としたEMDの振動回転を特徴とする。一例において、ウィグルモードが起動されると、EMD(
図4A及び
図4Bに示されている例では第2のEMD120)は、縦軸125を中心とする回転振動に入る。別の例では、EMD120は、ユーザがEMD120に前進線状変位で進行するように指令したときにのみ回転振動する。この例においてガイドワイヤとして描かれているEMD120は、
図4Aの断面
図A-Aに示されているように、時計回りと反時計回りに交互に回転する。EMDの振動は、振幅及び/又は周波数などの各種パラメータによって特徴付けられる。
図4Aに図示されるように、振幅は、
図4Aにおいて基準平面130によって表される中心位置に対する回転の範囲140によって示される。種々の例において、オペレータは、振幅、回転速度、周波数又はサイクル時間などの振動パラメータを設定することができる。
【0052】
所望の結果を達成するために又は所定の目的のために、振動の各種パラメータを予め決めたパターンに設定することができる。例えば、振動の振幅は、約60°~約180°、好ましくは約90°~約150°、より好ましくは約125°に設定される。サイクル時間(例えば、1つの振動を完了するまでの時間)又は振動周波数は、所望の結果を達成するために予め決めたパターンに同様に設定される。一例において、EMDの振動は、1秒間に900度の回転速度で行われる。
【0053】
上述のように、種々のロボット動作が種々のEMDに対して実施される。上述のウィグルモードは、例えば、ナビゲーション又は血管を通し前進させるために、ガイドワイヤに関し実施することができる。ウィグルモードは、病変部のような障害物を乗り越える目的でガイドワイヤに関し複数のパラメータで実行することができる。この例において振動の振幅は、より大きなレベルに設定される。例えば、病変部交差の目的のための振動の振幅は、約180°~約900°、好ましくは約360°~約720°に設定することができる。これらのパラメータを伴うモードは「スピン」モードと呼ぶことができ、オペレータが選択することができる。
【0054】
図4A及び
図4Bに示すように、補助コマンドを使用して、EMDの振動の所定の特性を変更することができる。
図4A及び
図4Bに示す例では、補助コマンドは、ジョイスティック150などのユーザ入力機器から受信される。
図4Aは、ジョイスティック150からの回転入力がない状態での振動の中心位置を表す平面130に対する振動を図示した。
図4Aのジョイスティックは、
図4A中にジョイスティック上の矢印及びEMD120の傍の矢印170で示されているように、EMD120の前進線状変位を生じさせる前進入力で示されている。振動は、ジョイスティック150からのコマンドを通して変更することができる。
【0055】
これに関連して、ジョイスティック150からの入力は、振動の中心位置を斜めにしたり、向きを変えたりすることができる。例えば、
図4Bに示すように、振動の中心位置は、ジョイスティックを回転させることによって動かすことができる。ジョイスティックを時計回りに回転させると、
図4Bに例示されているように、中心位置130を新しい中心位置130’へ時計回りに動かせる。
【0056】
上述のように、振動の他のパラメータ、例えば振幅、周波数、回転速度又はサイクル時間は、オペレータによって変更することができる。例えば、振動の振幅は、ジョイスティック又はグラフィカルユーザインタフェースなどの別の入力機器を使用してユーザ入力により変更することができる。ジョイスティックの場合、振幅は、ジョイスティックを時計回りに回転させることによって増加させたり、ジョイスティックを反時計回りに回転させることによって減少させたりすることができる。この例において、振幅が予め決めたモードで125°に設定されている場合、ジョイスティックを時計回りに回転させることにより、振幅を例えば150°などのより高い値まで増加させることができる。同様に、ジョイスティックを反時計回りに回転させると、振幅が90°などの低い値まで減少する。
【0057】
図4A及び
図4Bは、ジョイスティック150などのオペレータ入力機器から受信される補助コマンドを示している。他の例で補助コマンドは、
図2を参照して上述したコントロールコンピューティングシステム34などのコントローラ又はコントロールモジュールから受信される。コントロールモジュールは、別のユーザ入力に応答して、又は、検出されたパラメータ、例えば、EMDの動作又はEMDの遠位部分の動作に対する抵抗、に応答して、補助コマンドを生成することができる。
【0058】
上述のように、ウィグルモードの所定の動作パターンは、ナビゲーションを目的として実行される場合がある。この例において、所定の動作は、EMD(例えばガイドワイヤ)の前進線状動作を伴う。すなわち、モードが有効の間、EMDが前進線状動作しているときにのみ振動が起動される。一例において、前進線状動作が予め決めた時間(例えば1秒)停止したときは、回転振動は中止される。前進線状動作でない間は回転振動は起動されない。すなわち、線状動作が反転されたり、押されたりすると、回転振動は中止され得る。これに関して、「押す」とは、オペレータからの入力に応じて実行されるEMDの別個の(ばらばらの)動作(回転又は線状)を指す。
【0059】
図5を参照すると、EMDシステムにおけるロボット動作に関する別のモードが例示されている。
図5は、
図4A及び
図4Bを参照して上述したEMDの装置100の例を示す。この実施形態に係るEMDの装置100は、断面
図A-Aに例示されているように、同軸に配置された第1のEMD110及び第2のEMD120を含む。
【0060】
図5は、ここでドリルモードと呼ぶモードに関連する所定の動作パターンを示す図である。ドリルモードがオペレータによって選択されると、ロボット駆動装置24は、1つ以上のEMD110,120を、矢印170によって示されるEMDの前進線状動作と組み合わせて、矢印160によって示されるように、その縦軸125を中心とした少なくとも1つのEMDの継続した一方向の回転を特徴とする所定の動作パターンに入れる。この例において、EMD(例えば第2のEMD120又はガイドワイヤ)は一方向にスピンする。回転方向は、時計回り又は反時計回りとすることができる。EMD120の一方向回転160は、回転速度によって特徴付けることができる。回転速度は、予め決めた動作パターンの一部として設定することができる。例えば、回転速度は、毎秒約1回転~約10回転、好ましくは毎秒約2.5回転に設定する。一例において、オペレータは、別の値を入力することによって回転速度を設定することができる。
【0061】
上述のように、種々のロボット動作が種々のEMDに対して実施される。
図5に示すドリルモードは、病変部などの障害物を乗り越えるためにガイドワイヤに関して実行することができる。
【0062】
図4A及び
図4Bを参照して上述したウィグルモードと同様に、
図5のドリルモードが有効になっている状態で、前進線状動作が所定時間停止したときは、継続的一方向の回転は中止される。すなわち、ドリルモードの起動中に、EMDが前進線状動作していない間は回転が止められる。線状動作が反転したり揺さぶられたりする場合には、一方向回転の同様の中止が実行される。一例において、ドリルモード時の回転速度を増減させるために補助入力を使用することができる。例えば、オペレータは、回転速度を増加させるためにジョイスティックを前方に動かし、回転速度を減少させるために後方に動かす。
【0063】
図6を参照すると、EMDシステムにおけるロボット動作に関する別のモードの様々なフェーズが例示されている。
図6は、
図4A、
図4B及び
図5を参照して上述したEMDの装置100の例を示している。一実施形態に係るEMDの装置100は、同軸に配置された第1のEMD110及び第2のEMD120を含む。
【0064】
図6は、ここでジャックハンマーモードと呼ぶモードに関連する所定の動作パターンを示す。ジャックハンマーモードがオペレータによって選択されると、ロボット駆動装置24は、1つ以上のEMD110,120を、EMD110,120の線状振動によって特徴付けられる予め決めた動作パターンに入れる。
図6に示す例は、第2のEMD120(例えばガイドワイヤ)が線状発振しているように示されている。ジャックハンマーモードは、ガイドワイヤが病変部などの障害物を乗り越えることを促進すべく、オペレータによって使用される。
【0065】
図6に図示されるように、線状振動は、細長い医療機器の交互前進後進線状動作を含む。
図6は、EMD120の位置(a)から位置(b)への前進線状動作、これに続くEMD120の位置(b)から位置(c)への後進線状動作を示す。この動作パターンは、EMD120の位置(c)から位置(d)への動作と共に、サイクルを繰り返して継続する。
【0066】
図6に示されるジャックハンマーモードは、細長い医療機器の交互前進後進線状動作を実行し、結果としてEMD120が前進線状動作する。そして、例えば、EMD120が病変部を通り過ぎる又は乗り越えることを可能にする。この例において、交互にくる前進線状動作は、交互にくる後進線状動作に比べて少なくともわずかに大きい。したがって、
図6に示すように、振動サイクルの開始時に、EMD120は位置(a)にあり、振動サイクルの完了時(及び次の振動サイクルの開始時)に、EMD120は位置(c)にあり、これは位置(a)より前方である。すなわち、累積する前進線状動作が、EMD120が例えば病変部を通り過ぎる又は乗り越えることを可能にする。
【0067】
上述し、
図6の例に示すように、ジャックハンマーモードは、第2のEMD120、すなわちガイドワイヤで使用される。他の例では、同様の動作パターンが、マイクロカテーテル(又は第1のEMD110)などの他のEMDで使用される。
【0068】
図4A、
図4B、及び
図5を参照して上述したウィグルモード及びドリルモードと同様に、
図6のジャックハンマーモードが有効である状態で、前進線状動作の入力が止められると、ジャックハンマーモードを特徴付ける交互前進後進線状動作は中止される。一例において、ジャックハンマーモードは、前進線状動作の入力が所定時間止められたときに中止される。すなわち、ジャックハンマーモードが起動されているときに、EMDが前進線状動作しない間は、線状振動は中止される。線状振動が反転されたり揺さぶられたりする場合は、同様の中止を実行することができる。
【0069】
図7を参照すると、EMDシステムにおけるロボット動作の別のモードが例示されている。
図7に示されるモードは、アクティブデバイス固定(ADF)と呼ぶ。ADFは、EMD720の機器モジュールが別のEMD710の機器モジュール740に結合されるロボットシステム700などの装置において少なくとも2つのEMDが処置に使用されるシステムで起動される。
図7の例では、ロボットシステム700を使用し、患者702の血管系704にEMDを挿入することによって、患者702に処置を実施する。
【0070】
図7のロボットシステム700は、マイクロカテーテル710などの第1のEMDと、ガイドワイヤ720である第2のEMDとを含む。ガイドカテーテル730などの第3のEMDが設置されており、これを通してマイクロカテーテル710及びガイドワイヤ720を変位させられる。マイクロカテーテル710は機器モジュール740の相応の線状変位を通して線状変位し、機器モジュール740は、機器支持体又は支持トラック750を含み、これを通ってEMD710,720が次の機器モジュールへ同軸で供給される。
【0071】
図7に示される装置において、機器モジュールが線状に変位し、マイクロカテーテル710の線状変位を駆動する。機器モジュール740の変位は、ガイドワイヤ720の線状変位も駆動する。ガイドカテーテル730は、別の対応するデバイスモジュール(
図7には示されていない)によって線状変位させることができる。マイクロカテーテル710、ガイドワイヤ720、及びガイドカテーテル730は、同軸編成である。すなわち、
図7に図示されるように、患者702内で、3つのEMD710,720,730は頸動脈などの通路を通し同軸に配置される。
【0072】
オペレータは、患者702内で他のEMDを静止したままにしておいて1つのEMDを再配置したい場合がある。例えば、オペレータは、ガイドワイヤ720の位置を維持しながら、マイクロカテーテル710を
図7Bに示される位置へ線状変位させたいと思うことがある。
図7は、EMD710,720,730の遠位部分の位置を示す。当業者であれば、上述のように、制御されるのはEMDの近位端であることを当然理解できる。
【0073】
ADFモードを有効にすると、オペレータは、
図7Bに例示されているように、機器モジュール740を距離Δdだけ前方へ変位させることによって、マイクロカテーテル710を線状変位させることができる。一例において、エンコーダによる動作の測定が、量と方向の判定を行うために使用される。ADFモードは、ガイドワイヤ720の反対方向への相応の動作を生じさせ、その結果、
図7に図示されるように、ガイドワイヤ720の近位端の位置が患者702に対して実質的に静止したままになる。
【0074】
機器モジュール740に対するガイドワイヤ720の動作は、駆動タイヤ742を使用することで実行され、ガイドワイヤ720の線状動作は、補助エンコーダタイヤ744に接続された対応するエンコーダを用いて測定することができる。
図7Bに示すように、駆動タイヤ742は、機器モジュール740に対するガイドワイヤ720の後方への変位を生じさせる。一方、マイクロカテーテルが引っ込められる(後進)場合、駆動タイヤ742は、機器モジュール740に対するガイドワイヤ720の前方への変位を生じさせる。ガイドワイヤ720の動作による補助エンコーダタイヤ744の回転は、
図2を参照して上述したコントロールコンピューティングシステム34のような中央制御装置に提供される。
【0075】
第1のEMD710の特定された変位に応じ、ADFモードが有効の状態で、コントロールコンピューティングシステム34は、マイクロカテーテル710の線状変位(
図7の例ではΔd)と実質的に等しい量で且つ機器モジュール740に対するマイクロカテーテル710の変位の方向とは反対の方向に、ガイドワイヤ720の線状変位を生じさせる。
【0076】
図8を参照すると、閉ループオペレーションを使用したADFモードの実行の方法800がフローチャートで示されている。
図8の例によれば、プロセスは、オペレータによる指令に従う第1のEMD(例えばマイクロカテーテル710)の動作で始まる(ブロック802)。このコマンドに応答して、マイクロカテーテル710が機器モジュール740によって駆動される(ブロック804)。マイクロカテーテル710の動作は、例えば、マイクロカテーテル710の位置を追跡するエンコーダからの指示値に基づいて、検出(又は特定)される(ブロック806)。
【0077】
マイクロカテーテル710の動作の特定に基づいて、反対方向への第2のEMD(例えばガイドワイヤ720)の相応の動作が指令される(ブロック808)。第2のEMD720の指令された動作は、例えば駆動タイヤ742によるガイドワイヤ720の駆動により行われる(ブロック810)。ガイドワイヤ720の移動は、例えば、補助エンコーダタイヤ744又はシステム700内に設けられた他のセンサに結合されたエンコーダによって検出される(ブロック812)。
【0078】
図8の例では、閉ループオペレーションにおいてセーフガードを提供するために、各種のセーフ機能が提供されている。セーフガードは、センサ(例えばエンコーダ)又は駆動タイヤ742の故障又は欠陥に起因する過補正又は誤補正を防止する。
【0079】
これに関し、ブロック814において、コントロールコンピューティングシステムは、ガイドワイヤ720の所望の動作(例えば、マイクロカテーテル710の動作に応じた動作)が完了したか否かを判断し、これは、予定した目標位置に到達したガイドワイヤ720により示される。この例において、コントロールコンピューティングシステムは、関連するエンコーダ742によって測定される動作量を使用する。関連するエンコーダによって測定される動作量がガイドワイヤ720の所望の動作量と実質的に等しくなれば、ブロック814で動作が完了したとみなされ、プロセスはブロック816に移る。ブロック816では、マイクロカテーテル710の測定された動作(ブロック802)と、エンコーダによるガイドワイヤ720の測定された動作との間の差が、誤差として計算される。誤差が閾値(例えば0.5mm)を下回る場合、プロセスは完了したとみなされ、第1のEMD710の新たな指令された動作のためにブロック802へ戻る。一例において、ブロック816で特定された誤差が以前の誤差に加えられ、閾値と比較された誤差は累積閾値である。
【0080】
ブロック818においてガイドワイヤ720の位置が第1の誤差閾値内であれば、ガイドワイヤ720の補償動作が完了していると判断することができる。第1の閾値は、マイクロカテーテル710の位置変化とガイドワイヤ720の等しく反対の位置変化との間の差である。例えば、互いの動作の差が0.5mm以内であれば、その動作は完了とみなすことができる。この第1の閾値がなければ、ガイドワイヤ720は位置誤差を修正するために動作を続け、振動し得る。オペレータは、患者の解剖学的構造にEMDを位置決めする際にこの振動を好ましくないと思う。場合によって、ガイドワイヤ720の補償動作は、位置誤差が第1の閾値よりも大きい第2の閾値を上回る場合に再実行することができる。例えば、位置誤差が、1.0mmの第2の閾値を上回らない限り、補償動作は再実行されない。別の例では、補償動作は、(例えば、ジョイスティックを作動させるユーザからの)さらなるコマンド入力によって再実行されてもよい。
【0081】
ブロック814に戻ると、ガイドワイヤ720の動作が、マイクロカテーテル710の動作に応じて指令された動作を完了していない場合、プロセスは、検出されたガイドワイヤ720の動作が、指令されたガイドワイヤ720のタイヤによる動作の量と不一致かどうかを判断する。これは、駆動タイヤの指令された動作の量が、検出されたエンコーダタイヤの動作と一致しない場合に発生する。この場合、ADFモードは、不一致がセンサ(エンコーダタイヤ)の故障に起因するのであれば、ガイドワイヤ720の過剰な変位を防止するために、駆動タイヤによる駆動の量を制限する。
【0082】
他の例では、エンコーダ744からの入力は、駆動タイヤ742とガイドワイヤ720との間のスリップ(つまり駆動力の喪失)の結果としてガイドワイヤ720の動作がマイクロカテーテル710の動作に追いつかないことを示し得る。ガイドワイヤ720の動作がマイクロカテーテル710の動作に追いつかなくなると、ガイドワイヤの近位位置が維持されるように、マイクロカテーテル710の動作を遅くしたり、停止させてもよい。
【0083】
図7及び
図8の例において、第1のEMD710及び第2のEMD720の線状運動は、実質的に同時に行われる。ただし当業者であれば、プロセッサのタイミング又は測定の周波数が動作のタイミングの最小限のオフセットをもたらし得ることを当然理解できる。
【0084】
一例において、エンコーダからのデータは、EMD710,720の予期せぬ動作を示し得る。動作は、例えば、所定の速度又は閾値を超える場合、又は、指令された動作に対応しない場合、意図されていないものと判断される。この場合の動作は予期せぬものと認識することができ、EMD710,720の基準位置は、いずれかのEMDの指令された変位の速度又は量に何ら変更を加えることなく調整することができる。
【0085】
補助エンコーダタイヤ744に接続されたエンコーダからのデータを使用して、第2のEMD720の有無を検出することができる。例えば、ガイドワイヤ720の動作が駆動タイヤ742の動作を通じて指令されると、補助エンコーダタイヤ744からの信号を使用してガイドワイヤの有無が示される。補助エンコーダタイヤ744が、指令された動作に対応するガイドワイヤ720の所定の閾値(例えば0.1mm)を超える動作を示す場合、ガイドワイヤ720の存在を確認することができる。一方、駆動タイヤ742の指令された動作に応じる動作が補助エンコーダタイヤ744により検出されない場合、ガイドワイヤ720の不在を検出又は特定することができる。別の例において、第2のEMD720は、その存在が最初に検出されるまで、コントロールコンピューティングシステムによって存在しないと仮定することができる。
【0086】
当業者であれば、EMDの数が2個より多くてもよいことを当然理解する。例えば、上述の例では、(ガイドワイヤ720に加えて)1つ以上の別のEMDを、マイクロカテーテルの動作に応じて変位させることができる。例えば、マイクロカテーテルの動作に応じて変位させるEMDは、ガイドワイヤ、バルーン又はステントカテーテル、及び使用可能な別のEMDを含む。一例において、1つ以上の別のEMDが含まれ、各々の挙動が第2のEMDと同様に制約される。例えば、ガイドカテーテルを動作させる場合、複数のEMDがガイドカテーテルの動作と等しく反対方向に動作する。1つのシステムにおいて、ガイドカテーテル及びガイドワイヤ及び第3のEMDは、3つの機器のすべてを一緒に動作させる共通基盤に配置される。ガイドワイヤ及び第3のEMDの患者に対する位置を維持するために、ガイドワイヤ及び第3のEMDは、ガイドカテーテルの動作と等しく反対の、基盤の動作に対し反対方向に動作する。複数のEMD装置が存在する場合、ガイドカテーテルに対して反対方向に維持されていない機器は、ガイドカテーテルの動作を拘束するEMDである。他の方法では、ガイドカテーテルは、他のEMDのほとんどを遅らせるEMDによって制約(減速又は停止)される。他のEMDは、ガイドカテーテルの動作を追跡し続ける。その結果、すべてのEMDは、ガイドカテーテルにより動く距離と実質的に等しく反対の距離を動くことになる。
【0087】
図9を参照すると、EMDシステムにおけるロボット動作のための別のモードが例示されている。少なくとも2つのEMDが個別の駆動モジュールによって駆動される場合の2つ以上のEMDの動作を同期させるために、
図7及び
図8を参照して上述した閉ループオペレーションを使用することができる。
図9に示す例において、EMD110,120は、
図6を参照して上述したジャックハンマーモードで同期して動作する。
【0088】
図9に図示されているように、ジャックハンマーモードに関連した線状振動は、2つのEMD110,120の交互前進後進線状動作を含む。
図9は、EMD110,120の位置(a)から位置(b)への前進線状動作を各々Δd1の量で示し、これに続くEMD110,120の位置(b)から位置(c)への後進線状動作を各々Δd2の量で示す。上述したように、前進線状動作(Δd1)の量は、後進線状動作(Δd2)の量よりも大きい。動作パターンは、それぞれΔd1だけの位置(c)から位置(d)へのEMD110,120の動作から始まってサイクルを繰り返して継続する。
【0089】
第1のEMD110及び第2のEMD120の動作の同期は、エンコーダなどのセンサからの入力を使用して一方のEMDの動作を検出又は特定し、該センサからの情報を使用して他方のEMDを駆動する閉ループシステムにより達成される。例えば、コマンドが第1のEMD110の駆動を生じさせる。コマンドは、コントローラ又はオペレータ入力から受信される。
図7を参照して上述した補助エンコーダタイヤ744などのエンコーダタイヤを、第1のEMD110の動作を測定するために使用することができる。第1のEMD110の測定された動作に応じて、コントローラは、第2のEMD120を第1のEMD110と同じ量と同じ方向で変位するように駆動する。
【0090】
図10を参照すると、
図4A及び
図4Bを参照して上述したスピンモードと呼ぶウィグルモードの一例に対応する状態マシン図が示されている。
図10の例は、主ユーザ入力及びガイドワイヤ機器の線状駆動装置及び回転駆動装置にコマンドがどのように提供されるかを示している。スピンモードが選択されると、ガイドワイヤが前進駆動されている間に回転駆動機構がガイドワイヤの回転振動を提供する。
図10を参照すると、選択例としてスピンモードが選択された場合、4つの別々のコマンド状態が存在する。第一に、主ユーザ入力からの指令がないNo GWL COMMAND(GWL:ガイドワイヤ線状)の状態で、コントローラは、回転又は線状動作をガイドワイヤに提供する回転駆動機構又は線状駆動機構に、自動命令を与えない。この状態にいて、オペレータは、ユーザ入力の回転動作によりガイドワイヤ(GW)に回転動作を与えることができる。第二に、オペレータが主ユーザインタフェースを介しコマンドを与えてガイドワイヤを線状前進方向へ動作させるときのGW FORWARD MOTOR COMMANDの状態で、回転駆動装置が自動的にガイドワイヤに回転振動動作を提供する。また、GW FORWARD MOTOR COMMANDの状態では、主ユーザ入力に対する回転入力はいずれも無視されることになり、回転駆動装置からガイドワイヤへ別の回転運動が付与されることはない。主ユーザインターフェースがジョイスティックであるこのGW FORWARD MOTOR COMMANDの状態において、オペレータがジョイスティックを回転させると、これは回転駆動機構に時計回り(CW)及び反時計回り(CCW)の回転命令を提供することになるが、このジョイスティックの回転が、ガイドワイヤの自動振動の他にガイドワイヤを回転させるコントローラから回転駆動機構への命令をもたらすことはない。ユーザが主ユーザ入力を介して線状後進コマンドをGW後進モータに与える、第三のコマンド状態において、ガイドワイヤ回転駆動装置は、ユーザがガイドワイヤを回転させる命令をさらに与えない限り、ガイドワイヤにいかなる回転動作も与えない。主ユーザ入力がジョイスティックの後方へのジョイスティック動作である場合、ガイドワイヤを患者方向の逆方向又は引き抜く方向に動作させるように線状駆動装置に命令を与えるが、このときに、ガイドワイヤに回転振動動作を与える回転駆動装置への指令は提供されない。しかしながら、この第三の状態において、ジョイスティックのCW又はCCW動作のいずれかの回転により、コントローラは、回転駆動装置にCW又はCCW方向のいずれかにガイドワイヤを回転させる命令を与える。この第三の状態において別の見方で説明すると、主入力の後進動作は、基本作動状態と同じ挙動をする。オペレータが主ユーザ入力メカニズムを通して線状前進命令を提供すると、振動サイクル中の位置が保存され、線状前進方向の主ユーザ入力のオペレータ操作が再度続くと、停止したところからサイクルを再開する。一実施形態において、サイクル内の位置が保存されず、オペレータが停止させ、主ユーザ入力を介して線状前進運動を開始するたびに新たに開始する。
【0091】
一例では、各種の状態において上述したように発生する自動回転振動は、各サイクルで、まず360°CW回転で900°/秒及び360°CCW回転で900°/秒を含み、その後、サイクルは、電気機械式回転駆動機構の物理的制限によって要求されるもの以外の方向変化間の休止なく、繰り返される。もちろん、他の速度及び回転量も考えられる。一例では、速度は900°/秒より小さいか900 deg/secより大きいかの間である。
【0092】
第四のGW FORWARD MOTOR COMMAND(DISCRETE)の状態では、ここでは個別(分離)前進動作のジョグボタンを選択することによって別々の動作モードが選択されているが、回転駆動機構に回転動作指示が提供されない。ユーザが第2のユーザインターフェースを介してスピン動作アルゴリズムを非選択にすると、主ユーザ入力の操作は、自動交互回転動作のない基本的標準命令に戻る。
【0093】
主ユーザ入力がジョイスティックであって、コントローラ及びスピン動作技術が第2のユーザ入力で選択される場合、回転駆動機構は、主コントローラを使用してEMDの前進動作中に継続するGWの回転振動を提供する。しかし、GWが前進している間にオペレータが主ユーザ入力(ジョイスティックなど)の回転を意図する場合、システムは回転振動以外の別の回転を提供しない。一実施形態において、振動速度は、軸方向動作の移動の単位あたりの回転度であり、又は、振動速度と線状速度との間の他の何らかの非線形関係である。
【0094】
一例において、主ユーザ入力の線状不感帯には、振動回転動作があてられていない。すなわち、線状不感帯が主ユーザ入力の2°~3°の動きである場合、主ユーザ入力が線状不感帯を越えて動かされるまで自動回転振動は発生しない。一例において、線状不感帯の他の線状動作命令のない主ユーザ入力の回転により、回転駆動装置はガイドワイヤに回転動作をもたらす。
【0095】
図11を参照すると、
図4A及び
図4Bを参照して上述したウィグルモードの別の例に対応した状態マシン図が提供される。
図11に示されている例は、回転振動中の主ユーザ入力による回転入力が他よりも一方向へ大きな回転動作をもたらすことを除いて、特定されている4つの状態についての
図10の例と同じ機能を有している。一例として、主ユーザ入力はジョイスティックであり、ユーザが次の両方を提供している。ジョイスティックをユーザから概ね離れる方向に動かして線状駆動機構に線状前進命令を提供し、同時にジョイスティックを時計方向に回転させることで回転駆動機構が、交互に、ガイドワイヤをCW方向及びCCW方向に回転させ、各サイクル中、CW回転度はCCW回転度よりも大きい。ジョイスティックのニュートラル位置からより離してオペレータがジョイスティックを回転させると、CWとCCWの回転の比率が大きくなる。同様に、オペレータがジョイスティックを前方にも動かしながらジョイスティックをCCW回転させると、回転駆動装置は、上述のようにガイドワイヤを正味のCCW方向に回転させる。
【0096】
図12を参照すると、
図5を参照して上述したドリルモードの一例に対応して、状態マシン図が提供される。ドリルモードが選択されると、4つの別々のコマンド状態がある。第一に、主ユーザインタフェースからのガイドワイヤ線状コマンドがないNo GWL COMMAND(GWL:ガイドワイヤ線状)の状態において、ジョイスティックなどの主ユーザインタフェースのCW及びCCW操作又は動作により、通常のCW及びCCW回転コマンドを提供することができる。すなわち、ガイドワイヤのCW又はCCW回転に関する主ユーザインタフェースからの命令は、コントローラを介して、CW又はCCW方向にガイドワイヤを回転させる回転駆動機構に命令を与える。第二に、GW FORWARD MOTOR COMMANDの状態において、オペレータが主ユーザインタフェースにより、ガイドワイヤを線状前進方向に動作させる指令を与えると、回転駆動装置は自動的にCW回転運動をガイドワイヤに与える。また、GW FORWARD MOTOR COMMANDの状態において、主ユーザ入力に対する回転入力はいずれも無視されることになり、回転駆動装置からガイドワイヤに別の回転動作は付与されないことになる。主ユーザインタフェースがジョイスティックであって、オペレータがジョイスティックを回転させようと意図した場合、これは、第二のGW FORWARD MOTOR COMMANDの状態において回転駆動機構にCW及びCCW回転指令を与えることになるが、当該ジョイスティックの回転により、ガイドワイヤの自動CW回転に加えてガイドワイヤを回転させる指令がコントローラから回転駆動機構に与えられることはない。ユーザが主ユーザ入力を介して線状後進動作指令を与える第三のGW REVERSE MOTOR COMMANDの状態において、ガイドワイヤ回転駆動装置がガイドワイヤに自動回転動作を与えることはない。しかしながら、この状態において、ユーザが、主ユーザ入力の操作によってガイドワイヤを回転させる命令も与える場合、GWは、基本の通常作動状態におけるように回転される。主ユーザ入力がジョイスティックの後方へのジョイスティック動作である場合、ガイドワイヤに回転運動作を付与する命令を回転駆動装置に与えずに、ガイドワイヤを患者方向の反対又は引き抜く方向にガイドワイヤを動作させる命令を線状駆動装置に与える。しかしながら、この第三の状態において、ジョイスティックのCW又はCCW動作のいずれかの回転は、コントローラが、ガイドワイヤをCW又はCCW方向に回転させるように回転駆動装置に命令を与える結果となる。この第三の状態において別の言い方をすると、主入力の後進動作は基本作動状態と同じ挙動を生む。
【0097】
一例において、各種の状態において上述したように発生する自動回転動作は、900 °/秒CW回転である。もちろん、他の速度及び回転速度も考えられる。一実施形態において速度は900°/秒よりも大きく、一実施形態において速度は900°/秒よりも小さいが、ゼロ°/秒よりは大きい。
【0098】
別々の(分離した)前進のジョグボタンを選択することによって個別の動作モードが選択されている第四のGW FORWARD MOTOR COMMAND (DISCRETE)の状態において、回転駆動機構に回転動作命令は提供されない。ユーザがドリルモードを非選択にすると、主ユーザ入力の操作は、自動回転動作のない基本の標準命令に戻る。
【0099】
一実施形態において、回転の速度は、軸方向動作の移動の単位あたりの回転度であるか、回転速度と線状速度との間の他の何らかの非線形関係である。
【0100】
一例において、ドリルモードである間、主ユーザ入力の線状不感帯でCW回転動作は提供されない。つまり、線状不感帯が主ユーザ入力の2°~3°の動作である場合、主ユーザ入力が線状不感帯を超えて移動するまで、自動CW回転は発生しない。一実施形態において、線状不感帯を除いて、線状動作命令のない主ユーザ入力の回転により、回転駆動装置はガイドワイヤに回転動作をもたらすことになる。
【0101】
図13を参照すると、
図6を参照して上述したジャックハンマーモードの例に対応する状態マシン図が図示されている。
図13の例では、ジャックハンマーモードがガイドワイヤに適用される。ガイドワイヤ(GW)のジャックハンマーモードを選択した場合、GWの動作に影響を与える状態が多数ある。NO GWL COMMANDの状態(ガイドワイヤ線状動作コマンドなし)において、ユーザ入力は通常の回転作動を提供する。これは、オペレータがユーザ入力の操作によりGWをCW又はCCWで回転させるものである。GW FORWARD MOTOR COMMAND (JOYSTICK)の状態において、GW線状駆動機構は、前進動作を後進動作よりも大きくして、GWを前進後進方向のサイクルで自動的に動作させる。この状態において、オペレータは、ユーザインタフェースの操作により(ユーザインタフェースがジョイスティックである場合のCW又はCCW方向のジョイスティック回転により)、GWにCW又はCCW方向を与えることもできる。GW REVERSE MOTOR COMMANDの状態において、この状態ではオペレータがユーザインタフェースを操作してGWを引き抜くか又はGWに後進動作を与えるが、GWの自動の周期的線状動作(前進及び後進)はないことになる。揺さぶり又は個別動作ボタン又は入力に基づくGW FORWARD MOTOR COMMANDの状態において、GW線状駆動機構はGWに自動の周期的線状動作を与えない。一実施形態において、自動の周期的動作は、12mm/秒で1.5mm前進及び12mm/秒で1mm後進であり、前進と後進動作間の休止は、方向を切り替えるためにGW線状駆動機構に必要な滞留期間である。一実施形態において、滞留期間はオペレータが認識することができない。もちろん、他の距離及び速度も考えられ、0mmより大きく且つそれぞれ1.5mm及び1mmより小さい又はそれぞれ1.5mm及び1mm以上とすることができる。同様に、速度は、ゼロより大きくて12mm/秒より小さくてもよく、又は12mm/秒以上であってもよい。ジャックハンマー動作技術は、本明細書に援用される米国特許9,220,568に記載されている。一実施形態において、後進動作が前進動作よりも大きい。
【0102】
図14を参照すると、
図6を参照して上述したジャックハンマーモードの別の例に対応する状態マシン図が図示されている。
図14の例では、ジャックハンマーモードはバルーン又はステントカテーテルに適用され、ここでは点打とも呼ぶ。
図14の例示モードが選択されると、バルーンカテーテル又はステントカテーテル(ここでは個々でもまとめてでも「BSC」と呼ぶ)の動作に影響を及ぼす多くの状態が存在する。BSCには、他の細長い医療機器も含まれ得る。
図14に示されているモードは、
図13のモードに類似しているが、BSCの回転駆動装置がないので、回転の態様は関係ない。
【0103】
図15を参照すると、
図7及び
図8を参照して上述したADFモードの一例に対応する状態マシン図が示されている。ADFモードの一例では、1つ又は2つの線状駆動機構の協調制御が提供される。これら線状駆動機構は、同様の基盤にあり、基盤が線状方向に動作するときにGCと一緒に線状動作する。ADFモードにより、ガイドワイヤ及び/又はBSCの線状駆動機構が、地面又は患者に対してGCを移動させながら、地面又は患者に対してGW及びBSCの固定位置を維持する。一実施形態において、ADF動作アルゴリズムが選択され有効にされると、システムは、一定距離の前進及び後進でガイドワイヤとカテーテルを自動的に移動させることによって、ガイドワイヤとカテーテルが装填されているかどうかを検出し、ガイドワイヤとカテーテルがそれぞれの線状駆動機構に装填されているかどうかを位置センサを介してチェックする。一実施形態において、この前進及び後進動作は摂動と呼ばれ、ガイドワイヤを0.1mm前進させ、次いで同じ距離を後進させる。ただし、1mmや0.01mmなど0.1mmより大きい又は小さい他の距離も考えられる。距離は、処置リスクプロファイルへの影響を最小限に抑えるのと同時にセンサによって検出もされるように選択される。一実施形態において、機器検出システムは、光学センサ、機械センサ、及び磁気センサのような能動機器検出器である。第一のGW AND BSC NOT LOADEDの状態において、この状態は、ガイドカテーテルの縦軸に沿ってガイドカテーテルを前進又は後進動作させるためにユーザ入力を介してオペレータから与えられる命令がない、GC線状コマンドが与えられていない状態であるが、GW及びBSC線状駆動機構は、GW及びBSCをそれぞれ、ガイドカテーテルの動作に対して等しく反対方向に移動させる。一例として、ガイドカテーテルを前方へ1cm動作させると、ガイドワイヤ及びBSC駆動機構はガイドワイヤとBSCを後方へ1cm動作させる。これは、GW及びBSCがそれぞれの線状駆動機構内で検出されない場合でも実行される。この機器検出機能により、2つ以上の固定機器の場合のそのうちの1つのみが装填されている場合に、ADFをうまく使用することができる。全ての固定された機器駆動モジュールに対して閉ループ制御が常に有効であった場合、機器が装填されていないとき、システムは、装填されていない機器を固定することができないために、全ての機器の全ての動作を防ぐ可能性がある。加えて、機器検出機能は、センサがガイドワイヤ及びBSCの存在を検出しなかった場合、フェイルセーフ機構も提供する。このモードの一実施形態において、GW及びBSC牽引通知は抑制される。牽引通知は、センサがコントローラにより意図された速度で動作するGW及びBSCを検出しない場合に、警告を提供する。
【0104】
ユーザが、主ユーザ入力又は特定のガイドカテーテルユーザ入力のいずれかを通して、基盤全体、したがってBSCの線状駆動機構及びガイドワイヤの線状駆動機構を動作させることによってガイドカテーテルを線状動作させる入力を提供すると、ガイドワイヤの線状駆動機構及び及びBSCの線状駆動機構に、ガイドカテーテルの動作と等しい距離だけ反対方向にガイドワイヤ及びカテーテルを線状動作させるためのコマンドが自動的に与えられる。一実施形態において、ガイドカテーテルの第1の方向の動作は、ガイドワイヤ及びBSCの第1の方向とは反対の方向への動作と同時に行われる。一実施形態において、ガイドカテーテルの動作命令をユーザ入力が提供するときのガイドワイヤ及びBSCに反対方向の動作を提供するコマンドは、ガイドカテーテルのユーザ入力が不感帯を越えた場合にのみ発生する。
【0105】
ガイドワイヤが装填されているとして検出され、BSCが装填されていないとして検出される、GW LOADEDの状態において、ガイドカテーテルを線状動作させるコマンドがなければ、ガイドワイヤもBSCも動作しない。しかし、GCユーザ入力が動作又は起動されてガイドカテーテルを線状動作させる場合、ガイドワイヤ線状駆動機構にコマンドが自動的に与えられ、固定の位置を維持するガイドワイヤ線状駆動機構による動作の必要量がガイドカテーテル線状駆動機構に与えられる動作の量と異なる場合であっても、ガイドワイヤの位置を固定位置に維持するのに等しい量、逆方向に動作する。このようにして、閉ループ制御が提供される。これとは対照的に、このコマンド状態では、BSCの線状駆動機構は、ガイドカテーテルの線状駆動装置によって提供される動作と等しい量で反対方向に動作する。
【0106】
GW AND BSC LOADEDの状態において、ガイドワイヤ線状駆動機構及びBSC線状駆動機構の両方が、ガイドワイヤ及びBSCをそれぞれ、ガイドカテーテルの動作の反対方向に動作させ、GW及びBSCが患者及び/又は地面に対して固定位置に留まるように、動作量が設定される。このように、GW及びBSCの両方に対して閉ループ制御が提供される。
【0107】
一実施形態において、GW及びBSCを動作させる閉ループシステムで、タイヤに連結されたエンコーダなどのセンサを使用して、GW及びBSCの位置がGCの動作と等しく反対方向で適切に動作したか否かを判断する。エンコーダが、GW及び/又はBSCがGCの位置変化と適切に等しくて反対方向に満たない位置にあるというフィードバックを提供した場合、GW及びBSCが適切な等しく反対方向の相対位置に戻るまで、GCの動作を減速するためにGC線状駆動機構へコマンドが自動的に送られる。一例として、ガイドカテーテルユーザ入力がガイドカテーテルに対し前進10単位の動作を命令し、エンコーダが、GWが反対方向に動作したが8単位の距離しか動作していないことを示している場合、GW及び/又はBSCがGCの等しく反対方向の距離を同期して動作するまで、GC線状駆動機構は自動的に減速される。GW及び/又はBSCが同期状態になると、GC線状駆動装置は、当初に意図されたその動作速度まで加速されて戻る。一実施形態において、GW及び/又はBSCにおいて滑りが検出されると、GW及び/又はBSC駆動機構は、GW及び/又はBSCがGCと同期状態になるまで、GW及びBSC線状動作の速度を増加させる。一実施形態において、GCは減速され、必要に応じてGW及び/又はBSCは同時に加速される。同期状態は、GCの移動中、GW及びBSCが地面及び/又は患者に対して固定された位置に留まるものである。
【0108】
一実施形態において、GW及び/又はBSCの動作は、固定された等しく反対方向の量ではなく、GCの速度とは異なる速度である。
【0109】
一実施形態において、補助エンコーダが、ADF動作技術においてGW及び/又はBSC機器を固定するための閉ループ制御システムを提供するために使用される。
【0110】
一実施形態において、ADF動作技術は、GW及び/又はBSCの空間的固定が制御則に従って不可能である場合、GCの動作を停止する。
【0111】
一実施形態において、補助エンコーダは、補助エンコーダの動作を検出することによって機器がGW線状駆動装置及び/又はBSC線状駆動装置に装填されているかどうかを検出する。動作が検出されない場合は、機器が装填されていないとみなされる。この実施形態では、線状駆動機構に装填された機器があるか否かについての判断は行われず、機器又は機器の動作に関する最初のコマンドによってのみチェックされる。装填として検出される機器がない場合、補助エンコーダ故障の単純欠陥から保護する固定のために開ループ制御が使用される。
【0112】
一実施形態において、ユーザは、GW及び/又はBSCに関してユーザ入力を手動で操作することによって、ADF動作技術で手動調節を提供することができる。GW及び/又はBSCを線状動作させるユーザによる命令は、自動動作を補完する。一実施形態において、ADF動作技術でGW及びBSCを線状動作させるためのオペレータ命令は、ユーザが独立したGW又はBSC線状動作命令を提供するのをやめるまで、ADF動作技術を一時的に中止する。
【0113】
図16A~
図16Dを参照すると、一実施形態において、アクティブデバイス固定(ADF)動作は、地面又は患者に対する機器位置、機器慣性位置を固定することからなる。各機器の慣性位置は、GCが変位するのと同じ方向に変位すると仮定される。したがって、機器の位置を維持するために、ADFが有効になるとその位置はGCの方向と反対の方向に動作する必要がある。 GCの位置xGC(t)(x_GC_tと表記)は、コマンド速度vGC(t)(v_GC_t と表記)の積分である。この関係はGCインテグレータモデルで捉えられる。
【0114】
GWの位置xGW(t)(x_GW_tと表記)は、調整(拡大/縮小)されたGWコマンド速度vGW(t)(v_GW_tと表記)の積分であり、実数kGW(k_GWと表記)で調整される。
【0115】
したがって、0<kGW<1であるこの物理モデルですべりを捉えることができる。kGWがゼロの場合に完全なGWスリップが発生する。結果としてGWの慣性位置xGWt(x_GWi(t)と表記する)は、xCM/(t)とGC位置xGC(t)の和である。同様に、BSCの物理モデルは以下の通りである。
【0116】
BSCへのコマンド速度vBSCはv_BSC(t)と表記され、対応する位置xBSCはx_BSC(t)と表記される。結果としてBSCの慣性位置xBSa(x_BSCi(t)と表記する)は、xBSc(J)とGC位置xGC(t)の和である。
【0117】
ADF動作技術の一実施形態では、GW及びBSCの慣性位置を固定するように作用し、ユーザがジョイスティック(JS)コマンドでGC運動から独立してGW及びBSCを動作させることを可能にし、GWのスリップが過剰であって補正運動がキャッチアップする必要がある場合にGCの前進(FWD)及び後進(REV)運動を減少させる。
【0118】
一実施形態において、GW及びBSCの慣性位置は、GCの負のコマンド速度でそれぞれに沿ってGW及びBSCに供給すること、そして、GW及びBSCの速度を、GCの位置(dx_GC_t)の負の変化を含むそれらの対応するフィードバック項(e_BSC_t、e_GW_t)に比例して調節することによる。ここで、e_BSC_tは(r_BSC_t-x_BSC_t)に等しく、そのr_BSC_tは、制限されたBSCジョイスティック速度とADFフィードバック項dx_GC(t)との和の積分である。dx_GC(t)は初期GC位置x_GC(0)マイナス現在のGC位置x_GC(t)に等しい。
***ここで、e_GW_tは(r_GW_t-x_GW_t)に等しく、r_GW_tは、制限されたGWジョイスティック速度とADFフィードバック項dx_GC(t)との和の積分である。
【0119】
ADF技術の一実施形態において、ユーザは、GW及びBSCそれぞれの速度コマンドの積分である基準項を含めることによって、GC運動から独立してGW及びBSCを動作させることができる。GCの前進及び後進運動は、GW及びBSC機器のスリップ(関数y=fcn(e_GW_t、e_BSC_t))に起因してフィードバックエラーが増えると減少する。
【0120】
図16を参照すると、GW及びBSCコントロール部の.9及び.95の項は、1つのシミュレーションにおけるGW及びBSCのスリップを表す。別の言い方をすると、.9はGWの10パーセントスリップを表し、.95はBSCの5パーセントスリップを表す。.9と.95は、それぞれGWとBSCのスリップを検出するエンコーダからコントロールシステムに供給される。GW及びBSCの実際のスリップ率は、ADF技術の作動中にエンコーダ又は他のセンサを使用して特定される。
【0121】
アクティブデバイス固定は、GW及びBSCが機械クランプ機器を使用して地面及び/又は患者に対して固定される別の実施形態において達成され得る。クランプ機器は、GC動作中に機器を選択的に固定する。一実施形態において、GW及びBSCは、GCの動作中に相対位置を維持するように動作するロボットアームのような動的機器で、地面に対して固定される。一実施形態において、GW又はBSCの動作がセンサ及び/又は撮像システムによるなどで検出される場合、GCの動作は自動的に止められる。
【0122】
図16を参照すると、max{0,1-|e_device|_inf/e_max}と表されるシステムは、GW又はBSCのフィードバックエラー時に、以下のようにコマンド速度をGCに制限する:
ここで、e
deviceはGW又はBSCどちらかの誤差の上限である。機器のスリップによりGCの運動が有界であることを保証するために、最終的なGC速度は下げられる。vGC-SET(t)はユーザGCジョイスティック(ユーザ入力)速度設定ポイントを表す。e
maxはGCとGW又はBSCのポジション間の最大許容トラッキングエラーである。
【0123】
例示の方法300及び400のステップのコンピュータ実行可能命令は、コンピュータ可読媒体の形態において格納される。コンピュータ可読媒体は、コンピュータ可読命令、データ構造、プログラムモジュール又は他のデータなどの情報のストレージとしてあらゆる方法又は技術で実施される、揮発性及び不揮発性、リムーバブル及び非リムーバブルの媒体を含む。コンピュータ可読媒体は、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、電気的消去可能プログラマブルROM(EEPROM)、フラッシュメモリ、又は他のメモリ技術、コンパクトディスクROM(CD-ROM)、デジタル多用途ディスク(DVD)、又は他の光学ストレージ、磁気カセット、磁気テープ、磁気ディスクストレージ、又は他の磁気ストレージデバイス、又は、所望の命令を記憶するために使用することができ、且つインターネット又は他のコンピュータネットワーク形式のアクセスを含む、システム10(
図1に示す)によってアクセスすることができるあらゆる他の媒体を含むが、これらに限定されない。
【0124】
図17を参照すると、GWに関して一定速度プルバック動作技術が選択されている。一実施形態において、一定速度の値が多数の選択肢から選択されるか、或いはキーボードなどのユーザ機器を介して特定の速度が入力される。このような主ユーザインターフェースのオペレータによる後進方向の動作において、GWは一定速度で引き抜かれる。一実施形態において、定速動作技術は後進方向にのみ作用し、すなわち、後進方向は、後進方向における主ユーザインターフェースの動作位置の範囲にかかわらず、一定速度である。主ユーザインターフェースの前進方向への動作は、主インターフェースの動作の範囲に比例するか、あるいはこれに従う。
【0125】
一実施形態において、一定速度動作技術は、前進方向のGWの一定速度も可能にする。一実施形態において、ターボ入力ボタンが、一定速度をより速い速度まで増加させることを可能にする。一実施形態において、増加した一定速度は、ユーザがターボボタンを保持している間のみとなる。一実施形態において、一定速度の増加は、ターボボタンが押されると有効となって維持され、ターボボタンがオフされるまで有効に維持されることになる。一実施形態において、増加した一定速度は、所定の時間及び/又はGWの線状移動の所定の距離において、効果を維持する。
【0126】
図示されていないが、押し込み性オーバーライド入力は、機器前進動作中に初期押し込み力制限に達した場合にのみ、増加した押し込み力を可能にする。このモードでは、モータ電流が、行き詰まる(所定の制限を超える)まで前進運動のトルクを増加させる。一実施形態において、当該力は処置全体に対して増加するか、又は初期力制限に達した後の限られた時間の間で力の増加が可能である。一実施形態において、ユーザは、押し込み性オーバライド機能を選択しないことによって、より低い所定の、又は選択された力の限界に戻すことができる。
【0127】
一実施形態において、技術(ADF、ウィグル、ジャックハンマー)は、カテーテル式処置システムにおける各EMDに対して独立して選択することができる。例えば、ガイドカテーテルにはADFを、ガイドワイヤにはウィグルを、BSCには点打を選択することができる。一実施形態において、複数の技術を同時に使用することができる。一実施形態において、特定の技術が選択されると、他の互換性のない技術は全て選択のためにもはや利用できなくなる。一実施形態において、選択に利用可能な可動技術は、画像及び/又は血流力学データなどの他の患者データに基づくが、これに限定されない。一実施形態において、画像データの処理に基づく選択に際して、特定の技術が自動的に強調表示されて推奨される。
【0128】
ここに記載した説明は、最良の形態を含めて発明を開示するために、及び、当業者が発明をなし使用することを可能にするために、例を用いている。本発明の範囲は、特許請求の範囲によって規定され、当業者の想到可能な他の例を含む。このような他の例は、特許請求の範囲の文字通りの記載と異ならない構造的要素を有している場合、又は、特許請求の範囲の文字通りの記載とは異なる構造的要素を有している場合、又は特許請求の範囲の文字通りの記載とあまり違わない等価の構造的要素を有している場合でも、特許請求の範囲に含まれるとして意図されている。あらゆるプロセス又は方法のステップの順序及び並びは、代替の実施形態に従って変更され又は再配列され得る。
【0129】
本発明の思想から逸脱することなく、本発明に多くの他の変更及び修正を加えることができる。これら及び他の変更の範囲は特許請求の範囲から明らかになる。