(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-10
(45)【発行日】2023-03-20
(54)【発明の名称】位相差層付偏光板、および、それを用いた画像表示装置
(51)【国際特許分類】
G02B 5/30 20060101AFI20230313BHJP
H10K 50/00 20230101ALI20230313BHJP
H10K 59/80 20230101ALI20230313BHJP
H05B 33/02 20060101ALI20230313BHJP
H10K 50/86 20230101ALI20230313BHJP
【FI】
G02B5/30
H05B33/14 A
H10K59/80
H05B33/02
H10K50/86
(21)【出願番号】P 2021550335
(86)(22)【出願日】2020-06-25
(86)【国際出願番号】 JP2020025043
(87)【国際公開番号】W WO2021065107
(87)【国際公開日】2021-04-08
【審査請求日】2021-10-21
(31)【優先権主張番号】P 2019178696
(32)【優先日】2019-09-30
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003964
【氏名又は名称】日東電工株式会社
(74)【代理人】
【識別番号】100122471
【氏名又は名称】籾井 孝文
(74)【代理人】
【識別番号】100193172
【氏名又は名称】上川 智子
(72)【発明者】
【氏名】▲高▼永 幸佑
(72)【発明者】
【氏名】上条 卓史
(72)【発明者】
【氏名】川緑 一葵
【審査官】渡邊 吉喜
(56)【参考文献】
【文献】特開2016-071348(JP,A)
【文献】特開2008-070571(JP,A)
【文献】国際公開第2019/182146(WO,A1)
【文献】特開2010-039299(JP,A)
【文献】特開2017-182021(JP,A)
【文献】特開2017-182022(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 5/30
H10K 50/00
H10K 59/00
H05B 33/02
(57)【特許請求の範囲】
【請求項1】
偏光子と、該偏光子の一方の側に配置された保護層とを含む偏光板と、位相差層とを有し、
該偏光子がポリビニルアルコール系樹脂フィルムで構成され、かつ、ポリビニルアルコールの配向関数が0.30以下であり、
該位相差層が液晶化合物の配向固化層であり、
該保護層の厚みが10μm以下である、位相差層付偏光板。
【請求項2】
偏光子と、該偏光子の一方の側に配置された保護層とを含む偏光板と、位相差層とを有し、
該偏光子の突き刺し強度が30gf/μm以上であり、
該位相差層が液晶化合物の配向固化層であり、
該保護層の厚みが10μm以下である、位相差層付偏光板。
【請求項3】
総厚みが30μm以下である、請求項1または2に記載の位相差層付偏光板。
【請求項4】
前記偏光子の厚みが10μm以下である、請求項1から3のいずれかに記載の位相差層付偏光板。
【請求項5】
前記偏光子の単体透過率が40.0%以上であり、かつ、偏光度が99.0%以上である、請求項1から4のいずれかに記載の位相差層付偏光板。
【請求項6】
前記保護層が熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物、エポキシ樹脂の光カチオン硬化物およびエポキシ樹脂の有機溶媒溶液の塗布膜の固化物からなる群より選択される少なくとも1種で構成されている、請求項1から5のいずれかに記載の位相差層付偏光板。
【請求項7】
前記熱可塑性アクリル系樹脂が、ラクトン環単位、無水グルタル酸単位、グルタルイミド単位、無水マレイン酸単位およびマレイミド単位からなる群から選択される少なくとも1つの繰り返し単位を有する、請求項6に記載の位相差層付偏光板。
【請求項8】
前記保護層が芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂の光カチオン硬化物である、請求項6に記載の位相差層付偏光板。
【請求項9】
請求項1から8のいずれかに記載の位相差層付偏光板を含む、画像表示装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、位相差層付偏光板、および、それを用いた画像表示装置に関する。
【背景技術】
【0002】
近年、液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置には、代表的には偏光板および位相差板が用いられている。実用的には、偏光板と位相差板とを一体化した位相差層付偏光板が広く用いられている(例えば、特許文献1)。最近、画像表示装置の薄型化への要望が高まるのに伴い、位相差層付偏光板についても薄型化の要望が高まっている。また、近年、湾曲した画像表示装置および/または屈曲もしくは折り曲げ可能な画像表示装置に対する要望が高まっている。そのため、偏光板および位相差層付偏光板についても、さらなる薄型化およびさらなる柔軟化が求められている。
【0003】
偏光板を薄型化する方法として、保護層の厚みを薄くすること、および、偏光子の片側のみに保護層を積層することが提案されている。しかしながら、これらの方法では偏光子を十分に保護することができず、耐久性に改善の余地がある。さらに、加熱処理によりクラックが生じやすくなるという問題がある。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、加熱時のクラック発生が抑制された位相差層付偏光板を提供することにある。
【課題を解決するための手段】
【0006】
本発明の実施形態による位相差層付偏光板は、偏光子と、該偏光子の一方の側に配置された保護層とを含む偏光板と、位相差層とを有する。この偏光子は、ポリビニルアルコール系樹脂フィルムで構成され、かつ、ポリビニルアルコールの配向関数が0.30以下であり、この位相差層は液晶化合物の配向固化層であり、この保護層の厚みは10μm以下である。
本発明の別の実施形態による位相差層付偏光板は、偏光子と、該偏光子の一方の側に配置された保護層とを含む偏光板と、位相差層とを有する。この偏光子は、突き刺し強度が30gf/μm以上であり、この位相差層は液晶化合物の配向固化層であり、この保護層の厚みは10μm以下である。
1つの実施形態において、上記位相差層付偏光板の総厚みは30μm以下である。
1つの実施形態において、上記偏光子の厚みは10μm以下である。
1つの実施形態において、上記偏光子の単体透過率は40.0%以上であり、かつ、偏光度が99.0%以上である。
1つの実施形態において、上記保護層は熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物、エポキシ樹脂の光カチオン硬化物およびエポキシ樹脂の有機溶媒溶液の塗布膜の固化物からなる群より選択される少なくとも1種で構成されている。
1つの実施形態において、上記熱可塑性アクリル系樹脂は、ラクトン環単位、無水グルタル酸単位、グルタルイミド単位、無水マレイン酸単位およびマレイミド単位からなる群から選択される少なくとも1つの繰り返し単位を有する。
1つの実施形態において、上記保護層は芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂の光カチオン硬化物である。
本発明の別の局面においては、画像表示装置が提供される。この画像表示装置は、上記位相差層付偏光板を含む。
【発明の効果】
【0007】
本発明の実施形態によれば、ポリビニルアルコール(PVA)の配向関数が0.30以下である偏光子と、厚み10μm以下の保護層と、液晶配向化合物の配向固化層の位相差層とを有する位相差層付偏光板が提供される。また、本発明の別の実施形態によれば、突き刺し強度が30gf/μm以上である偏光子と、厚み10μm以下の保護層と、液晶配向化合物の配向固化層の位相差層とを有する位相差層付偏光板が提供される。このような位相差層付偏光板とすることにより、位相差層付偏光板を薄型化し、かつ、加熱時のクラック発生が抑制され得る。さらに、折り曲げ時のクラック発生をも抑制し得る。
【図面の簡単な説明】
【0008】
【
図1】本発明の1つの実施形態による位相差層付偏光板の概略断面図である。
【
図2】本発明の別の実施形態による位相差層付偏光板の概略断面図である。
【
図3】本発明のさらに別の実施形態による位相差層付偏光板の概略断面図である。
【
図4】本発明の位相差層付偏光板に用いられる偏光子の製造方法における加熱ロールを用いた乾燥収縮処理の一例を示す概略図である。
【0009】
以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。
【0010】
(用語および記号の定義)
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
【0011】
A.位相差層付偏光板の全体構成
図1は、本発明の1つの実施形態による位相差層付偏光板の概略断面図である。本実施形態の位相差層付偏光板100は、偏光板10と位相差層20とを有する。偏光板10は、偏光子11と、偏光子11の一方の側に配置された第1の保護層12と、偏光子11のもう一方の側に配置された第2の保護層13とを含む。目的に応じて、第1の保護層12および第2の保護層13の一方は省略されてもよい。例えば、位相差層20が偏光子11の保護層としても機能し得る場合には、第2の保護層13は省略されてもよい。位相差層20は任意の適切な粘着剤層または接着剤層(図示せず)を介して、偏光子11または第2の保護層13に積層される。本発明の実施形態においては、偏光子11はポリビニルアルコール系樹脂フィルムで構成され、かつ、ポリビニルアルコールの配向関数が0.30以下である。本発明の別の実施形態においては、偏光子11は突き刺し強度が30gf/μm以上である。また、保護層の厚みは10μm以下である。偏光板100が第1の保護層12および第2の保護層13を備える場合、少なくとも一方の保護層の厚みが10μm以下であればよく、好ましくは第1の保護層12および第2の保護層13の両方の厚みが10μm以下である。1つの実施形態においては、偏光板100は視認側の保護層(例えば、第1の保護層12)の偏光子11と接していない側にハードコード層が形成され得る。この実施形態においては、保護層の厚みとハードコート層の厚みとの合計が10μm以下となることが好ましい。
【0012】
図2は、本発明の別の実施形態による位相差層付偏光板の概略断面図である。
図2に示すように、別の実施形態による位相差層付偏光板101においては、別の位相差層50ならびに/あるいは導電層または導電層付等方性基材60が設けられてもよい。別の位相差層50ならびに導電層または導電層付等方性基材60は、代表的には、位相差層20の外側(偏光板10と反対側)に設けられる。別の位相差層は、代表的には、屈折率特性がnz>nx=nyの関係を示す。別の位相差層50ならびに導電層または導電層付等方性基材60は、代表的には、位相差層20側からこの順に設けられる。別の位相差層50ならびに導電層または導電層付等方性基材60は、代表的には、必要に応じて設けられる任意の層であり、いずれか一方または両方が省略されてもよい。なお、便宜上、位相差層20を第1の位相差層と称し、別の位相差層50を第2の位相差層と称する場合がある。なお、導電層または導電層付等方性基材が設けられる場合、位相差層付偏光板は、画像表示セル(例えば、有機ELセル)と偏光板との間にタッチセンサが組み込まれた、いわゆるインナータッチパネル型入力表示装置に適用され得る。
【0013】
図3は、本発明のさらに別の実施形態による位相差層付偏光板の概略断面図である。本発明の実施形態においては、第1の位相差層20は液晶化合物の配向固化層である。第1の位相差層20は
図1および
図2に示すような配向固化層の単一層であってもよく、
図3に示すような第1の配向固化層21と第2の配向固化層22との積層構造を有していてもよい。
【0014】
上記の実施形態は適宜組み合わせてもよく、上記の実施形態における構成要素に当業界で自明の改変を加えてもよい。例えば、
図3の位相差層付偏光板102に第2の位相差層50ならびに/あるいは導電層または導電層付等方性基材60がさらに設けられてもよい。また例えば、第2の位相差層50の外側に導電層付等方性基材60を設ける構成を、光学的に等価な構成(例えば、第2の位相差層と導電層との積層体)に置き換えてもよい。
【0015】
本発明の実施形態による位相差層付偏光板は、その他の位相差層をさらに含んでいてもよい。その他の位相差層の光学的特性(例えば、屈折率特性、面内位相差、Nz係数、光弾性係数)、厚み、配置位置等は、目的に応じて適切に設定され得る。
【0016】
本発明の実施形態による位相差層付偏光板は、枚葉状であってもよく長尺状であってもよい。本明細書において「長尺状」とは、幅に対して長さが十分に長い細長形状を意味し、例えば、幅に対して長さが10倍以上、好ましくは20倍以上の細長形状を含む。長尺状の位相差層付偏光板は、ロール状に巻回可能である。
【0017】
実用的には、位相差層の偏光板と反対側には粘着剤層(図示せず)が設けられ、位相差層付偏光板は画像表示セルに貼り付け可能とされている。さらに、粘着剤層の表面には、位相差層付偏光板が使用に供されるまで、剥離フィルムが仮着されていることが好ましい。剥離フィルムを仮着することにより、粘着剤層を保護するとともに、ロール形成が可能となる。
【0018】
位相差層付偏光板の総厚みは、好ましくは30μm以下であり、より好ましくは25μm以下であり、さらに好ましくは20μm以下である。総厚みは、例えば10μm以上であり得る。本発明の実施形態によれば、このようにきわめて薄い位相差層付偏光板を実現することができる。さらに、加熱時のクラック発生をも抑制され得る。このような位相差層付偏光板は、きわめて優れた可撓性および折り曲げ耐久性を有し得る。このような位相差層付偏光板は、湾曲した画像表示装置および/または屈曲もしくは折り曲げ可能な画像表示装置に特に好適に適用され得る。なお、位相差層付偏光板の総厚みとは、偏光板をパネルやガラスなどの外部被着体と密着させるための粘着剤層を除き、位相差層付偏光板を構成するすべての層の厚みの合計をいう(すなわち、位相差層付偏光板の総厚みは、位相差層付偏光板を画像表示セル等の隣接部材に貼り付けるための粘着剤層およびその表面に仮着され得る剥離フィルムの厚みを含まない)。
【0019】
本発明の実施形態による位相差層付偏光板の単位重量は、例えば6.5mg/cm2以下であり、好ましくは2.0mg/cm2~6.0mg/cm2であり、より好ましくは3.0mg/cm2~5.5mg/cm2、さらに好ましくは3.5mg/cm2~5.0mg/cm2である。表示パネルが薄型である場合、位相差層付偏光板の重量によってパネルが微少に変形し、表示不良が生じるおそれがある。6.5mg/cm2以下の単位重量を有する位相差層付偏光板によれば、このようなパネルの変形を防止することができる。また、上記単位重量を有する位相差層付偏光板は、薄型化した場合であっても取扱性が良好であり、かつ、きわめて優れた可撓性および折り曲げ耐久性を発揮し得る。
【0020】
以下、位相差層付偏光板の構成要素について、より詳細に説明する。
【0021】
B.偏光板
B-1.偏光子
本発明の実施形態による偏光子は、ポリビニルアルコール(PVA)系樹脂フィルムで構成され、配向関数が0.30以下である。このような構成であれば、加熱時のクラックの発生、特に偏光子の吸収軸方向に沿ったクラックの発生を抑制することができる。また、加熱時以外においても偏光子が吸収軸方向に沿って裂ける(破れる)ことを顕著に抑制することができる。その結果、屈曲性に非常に優れた偏光子(結果として、偏光板)が得られ得る。このような偏光子(結果として、偏光板)は、好ましくは湾曲した画像表示装置、より好ましくは折り曲げ可能な画像表示装置、さらに好ましくは折り畳み可能な画像表示装置に適用され得る。配向関数は、好ましくは0.28以下であり、より好ましくは0.26以下であり、さらに好ましくは0.25以下である。配向関数は、例えば、0.05以上であり得る。配向関数が小さすぎると、許容可能な単体透過率および/または偏光度が得られない場合がある。
【0022】
配向関数(f)は、例えば、フーリエ変換赤外分光光度計(FT-IR)を用い、偏光を測定光として、全反射減衰分光(ATR:attenuated total reflection)測定により求められる。具体的には、測定光の偏光方向に対し、偏光子の延伸方向を平行および垂直にした状態で測定を実施し、得られた吸光度スペクトルの2941cm-1の強度を用いて、下記式に従って算出される。ここで、強度Iは、3330cm-1を参照ピークとして、2941cm-1/3330cm-1の値である。なお、f=1のとき完全配向、f=0のときランダムとなる。また、2941cm-1のピークは、偏光子中のPVAの主鎖(-CH2-)の振動に起因する吸収であると考えられている。
f=(3<cos2θ>-1)/2
=(1-D)/[c(2D+1)]
=-2×(1-D)/(2D+1)
ただし、
c=(3cos2β-1)/2で、2941cm-1の振動の場合は、β=90°である。
θ:延伸方向に対する分子鎖の角度
β:分子鎖軸に対する遷移双極子モーメントの角度
D=(I⊥)/(I//)(この場合、PVA分子が配向するほどDが大きくなる)
I⊥:測定光の偏光方向と偏光子の延伸方向が垂直の場合の吸収強度
I//:測定光の偏光方向と偏光子の延伸方向が平行の場合の吸収強度
【0023】
偏光子の厚みは、好ましくは10μm以下であり、より好ましくは8μm以下であり、さらに好ましくは7μm以下である。偏光子の厚みは、例えば1μm以上であり得る。偏光子の厚みは、1つの実施形態においては2μm~6μm、別の実施形態においては2μm~4μm、さらに別の実施形態においては2μm~3μm、さらに別の実施形態においては5.5μm~7.5μm、さらに別の実施形態においては6μm~7.2μmであってもよい。偏光子の厚みをこのように非常に薄くすることにより、熱収縮を非常に小さくすることができる。このような構成が、吸収軸方向の破断の抑制にも寄与し得ると推察される。
【0024】
偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは40.0%以上であり、より好ましくは41.0%以上である。単体透過率は、例えば49.0%以下であり得る。偏光子の単体透過率は、1つの実施形態においては40.0%~45.0%である。偏光子の偏光度は、好ましくは99.0%以上であり、より好ましくは99.4%以上である。偏光度は、例えば99.999%以下であり得る。偏光子の偏光度は、1つの実施形態においては99.0%~99.99%である。本発明によれば、上記のように配向関数が非常に小さいにもかかわらず、このような実用上許容可能な単体透過率および偏光度を実現することができる。これは、後述する製造方法に起因するものと推察される。なお、単体透過率は、代表的には、紫外可視分光光度計を用いて測定し、視感度補正を行なったY値である。偏光度は、代表的には、紫外可視分光光度計を用いて測定して視感度補正を行なった平行透過率Tpおよび直交透過率Tcに基づいて、下記式により求められる。
偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
【0025】
本発明の実施形態において、偏光子の突き刺し強度は、30gf/μm以上であり、好ましくは35gf/μm以上であり、より好ましくは40gf/μm以上であり、さらに好ましくは45gf/μm以上であり、特に好ましくは50gf/μm以上である。突き刺し強度は、例えば80gf/μm以下であり得る。偏光子の突き刺し強度をこのような範囲とすることにより、偏光子が吸収軸方向に沿って裂けることを顕著に抑制することができる。その結果、屈曲性に非常に優れた偏光子(結果として、偏光板)が得られ得る。突き刺し強度は、所定の強さで偏光子を突き刺した時の偏光子の割れ耐性を示す。突き刺し強度は、例えば、圧縮試験機に所定のニードルを装着し、当該ニードルを所定速度で偏光子に突き刺したときに偏光子が割れる強度(破断強度)として表され得る。なお、単位から明らかなとおり、突き刺し強度は、偏光子の単位厚み(1μm)あたりの突き刺し強度を意味する。
【0026】
偏光子は、上記のとおり、PVA系樹脂フィルムで構成される。好ましくは、PVA系樹脂フィルム(実質的には、偏光子)を構成するPVA系樹脂は、アセトアセチル変性されたPVA系樹脂を含む。このような構成であれば、所望の突き刺し強度を有する偏光子が得られ得る。アセトアセチル変性されたPVA系樹脂の配合量は、PVA系樹脂全体を100重量%としたときに、好ましくは5重量%~20重量%であり、より好ましくは8重量%~12重量%である。配合量がこのような範囲であれば、突き刺し強度をより好適な範囲とすることができる。
【0027】
偏光子は、代表的には、二層以上の積層体を用いて作製され得る。積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、好ましくは、樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、好ましくは、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含む。本発明の実施形態においては、延伸の総倍率は例えば、3.0倍~4.5倍であり、通常に比べて顕著に小さい。このような延伸の総倍率であっても、ハロゲン化物の添加および乾燥収縮処理との組み合わせにより、許容可能な光学特性を有する偏光子を得ることができる。さらに、本発明の実施形態においては、空中補助延伸の延伸倍率がホウ酸水中延伸の延伸倍率よりも大きいことが好ましい。このような構成とすることにより、延伸の総倍率が小さくても許容可能な光学特性を有する偏光子を得ることができる。加えて、積層体は、好ましくは長手方向に搬送しながら加熱することにより幅方向に1%~10%収縮させる乾燥収縮処理に供される。1つの実施形態においては、偏光子の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVAを塗布する場合でも、PVAの結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVAの配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVAの配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる偏光子の光学特性を向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。偏光子の製造方法の詳細については、B-2項で後述する。
【0028】
B-2.偏光子の製造方法
本発明の1つの実施形態による偏光子の製造方法は、長尺状の熱可塑性樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂(PVA系樹脂)とを含むポリビニルアルコール系樹脂層(PVA系樹脂層)を形成して積層体とすること、および、積層体に、空中補助延伸処理と、染色処理と、水中延伸処理と、長手方向に搬送しながら加熱することにより幅方向に1%~10%収縮させる乾燥収縮処理と、をこの順に施すことを含む。PVA系樹脂層におけるハロゲン化物の含有量は、好ましくはPVA系樹脂100重量部に対して5重量部~20重量部である。乾燥収縮処理は、加熱ロールを用いて処理することが好ましく、加熱ロールの温度は、好ましくは60℃~120℃である。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは1%~10%である。このような製造方法によれば、上記B-1項で説明した偏光子を得ることができる。特に、ハロゲン化物を含むPVA系樹脂層を含む積層体を作製し、上記積層体の延伸を空中補助延伸及び水中延伸を含む多段階延伸とし、延伸後の積層体を加熱ロールで加熱することにより、優れた光学特性(代表的には、単体透過率および単位吸光度)を有する偏光子を得ることができる。
【0029】
B-2-1.積層体の作製
熱可塑性樹脂基材とPVA系樹脂層との積層体を作製する方法としては、任意の適切な方法が採用され得る。好ましくは、熱可塑性樹脂基材の表面に、ハロゲン化物とPVA系樹脂とを含む塗布液を塗布し、乾燥することにより、熱可塑性樹脂基材上にPVA系樹脂層を形成する。上記のとおり、PVA系樹脂層におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。
【0030】
塗布液の塗布方法としては、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等が挙げられる。上記塗布液の塗布・乾燥温度は、好ましくは50℃以上である。
【0031】
PVA系樹脂層の厚みは、好ましくは2μm~30μm、さらに好ましくは2μm~20μmである。延伸前のPVA系樹脂層の厚みをこのように非常に薄くし、かつ、後述するように総延伸倍率を小さくすることにより、配向関数が非常に小さいにもかかわらず許容可能な単体透過率および偏光度を有する偏光子を得ることができる。
【0032】
PVA系樹脂層を形成する前に、熱可塑性樹脂基材に表面処理(例えば、コロナ処理等)を施してもよいし、熱可塑性樹脂基材上に易接着層を形成してもよい。このような処理を行うことにより、熱可塑性樹脂基材とPVA系樹脂層との密着性を向上させることができる。
【0033】
B-2-1-1.熱可塑性樹脂基材
熱可塑性樹脂基材としては、任意の適切な熱可塑性樹脂フィルムが採用され得る。熱可塑性樹脂基材の詳細については、例えば特開2012-73580号公報および特許第6470455号に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。
【0034】
B-2-1-2.塗布液
塗布液は、上記のとおり、ハロゲン化物とPVA系樹脂とを含む。上記塗布液は、代表的には、上記ハロゲン化物および上記PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。溶液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、熱可塑性樹脂基材に密着した均一な塗布膜を形成することができる。塗布液におけるハロゲン化物の含有量は、好ましくはPVA系樹脂100重量部に対して5重量部~20重量部である。
【0035】
塗布液に、添加剤を配合してもよい。添加剤としては、例えば、可塑剤、界面活性剤等が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。これらは、得られるPVA系樹脂層の均一性や染色性、延伸性をより一層向上させる目的で使用され得る。
【0036】
上記PVA系樹脂としては、任意の適切な樹脂が採用され得る。例えば、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%、さらに好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光子が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。上記のとおり、PVA系樹脂は、好ましくはアセトアセチル変性されたPVA系樹脂を含む。
【0037】
PVA系樹脂の平均重合度は、目的に応じて適切に選択し得る。平均重合度は、通常1000~10000であり、好ましくは1200~4500、さらに好ましくは1500~4300である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。
【0038】
上記ハロゲン化物としては、任意の適切なハロゲン化物が採用され得る。例えば、ヨウ化物および塩化ナトリウムが挙げられる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化ナトリウム、およびヨウ化リチウムが挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。
【0039】
塗布液におけるハロゲン化物の量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部であり、より好ましくは、PVA系樹脂100重量部に対して10重量部~15重量部である。PVA系樹脂100重量部に対するハロゲン化物の量が20重量部を超えると、ハロゲン化物がブリードアウトし、最終的に得られる偏光子が白濁する場合がある。
【0040】
一般に、PVA系樹脂層が延伸されることによって、PVA系樹脂中のポリビニルアルコール分子の配向性が高くなるが、延伸後のPVA系樹脂層を、水を含む液体に浸漬すると、ポリビニルアルコール分子の配向が乱れ、配向性が低下する場合がある。特に、熱可塑性樹脂とPVA系樹脂層との積層体をホウ酸水中延伸する場合において、熱可塑性樹脂の延伸を安定させるために比較的高い温度で上記積層体をホウ酸水中で延伸する場合、上記配向度低下の傾向が顕著である。例えば、PVAフィルム単体のホウ酸水中での延伸が60℃で行われることが一般的であるのに対し、A-PET(熱可塑性樹脂基材)とPVA系樹脂層との積層体の延伸は70℃前後の温度という高い温度で行われ、この場合、延伸初期のPVAの配向性が水中延伸により上がる前の段階で低下し得る。これに対して、ハロゲン化物を含むPVA系樹脂層と熱可塑性樹脂基材との積層体を作製し、積層体をホウ酸水中で延伸する前に空気中で高温延伸(補助延伸)することにより、補助延伸後の積層体のPVA系樹脂層中のPVA系樹脂の結晶化が促進され得る。その結果、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる偏光子の光学特性を向上し得る。
【0041】
B-2-2.空中補助延伸処理
特に、高い光学特性を得るためには、乾式延伸(補助延伸)とホウ酸水中延伸を組み合わせる、2段延伸の方法が選択される。2段延伸のように、補助延伸を導入することにより、熱可塑性樹脂基材の結晶化を抑制しながら延伸することができる。さらには、熱可塑性樹脂基材上にPVA系樹脂を塗布する場合、熱可塑性樹脂基材のガラス転移温度の影響を抑制するために、通常の金属ドラム上にPVA系樹脂を塗布する場合と比べて塗布温度を低くする必要があり、その結果、PVA系樹脂の結晶化が相対的に低くなり、十分な光学特性が得られない、という問題が生じ得る。これに対して、補助延伸を導入することにより、熱可塑性樹脂上にPVA系樹脂を塗布する場合でも、PVA系樹脂の結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVA系樹脂の配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVA系樹脂の配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。
【0042】
空中補助延伸の延伸方法は、固定端延伸(たとえば、テンター延伸機を用いて延伸する方法)でもよく、自由端延伸(たとえば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。高い光学特性を得るためには、自由端延伸が積極的に採用され得る。1つの実施形態においては、空中延伸処理は、上記積層体をその長手方向に搬送しながら、加熱ロール間の周速差により延伸する加熱ロール延伸工程を含む。空中延伸処理は、代表的には、ゾーン延伸工程と加熱ロール延伸工程とを含む。なお、ゾーン延伸工程と加熱ロール延伸工程の順序は限定されず、ゾーン延伸工程が先に行われてもよく、加熱ロール延伸工程が先に行われてもよい。ゾーン延伸工程は省略されてもよい。1つの実施形態においては、ゾーン延伸工程および加熱ロール延伸工程がこの順に行われる。また、別の実施形態では、テンター延伸機において、フィルム端部を把持し、テンター間の距離を流れ方向に広げることで延伸される(テンター間の距離の広がりが延伸倍率となる)。この時、幅方向(流れ方向に対して、垂直方向)のテンターの距離は、任意に近づくように設定される。好ましくは、流れ方向の延伸倍率に対して、自由端延伸により近くなるように設定されうる。自由端延伸の場合、幅方向の収縮率=(1/延伸倍率)1/2で計算される。
【0043】
空中補助延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、延伸倍率は、各段階の延伸倍率の積である。空中補助延伸における延伸方向は、好ましくは、水中延伸の延伸方向と略同一である。
【0044】
空中補助延伸における延伸倍率は、好ましくは1.0倍~4.0倍であり、より好ましくは1.5倍~3.5倍であり、さらに好ましくは2.0倍~3.0倍である。空中補助延伸の延伸倍率がこのような範囲であれば、水中延伸と組み合わせた場合に延伸の総倍率を所望の範囲に設定することができ、所望の配向関数を実現することができる。その結果、吸収軸方向に沿った破断が抑制された偏光子を得ることができる。さらに、上記のとおり、空中補助延伸の延伸倍率はホウ酸水中延伸の延伸倍率よりも大きいことが好ましい。このような構成とすることにより、延伸の総倍率が小さくても許容可能な光学特性を有する偏光子を得ることができる。
【0045】
空中補助延伸の延伸温度は、熱可塑性樹脂基材の形成材料、延伸方式等に応じて、任意の適切な値に設定することができる。延伸温度は、好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)以上であり、さらに好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)+10℃以上、特に好ましくはTg+15℃以上である。一方、延伸温度の上限は、好ましくは170℃である。このような温度で延伸することで、PVA系樹脂の結晶化が急速に進むのを抑制して、当該結晶化による不具合(例えば、延伸によるPVA系樹脂層の配向を妨げる)を抑制することができる。
【0046】
B-2-3.不溶化処理、染色処理および架橋処理
必要に応じて、空中補助延伸処理の後、水中延伸処理や染色処理の前に、不溶化処理を施す。上記不溶化処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬することにより行う。上記染色処理は、代表的には、PVA系樹脂層を二色性物質(代表的には、ヨウ素)で染色することにより行う。必要に応じて、染色処理の後、水中延伸処理の前に、架橋処理を施す。上記架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。不溶化処理、染色処理および架橋処理の詳細については、例えば特開2012-73580号公報(上記)に記載されている。
【0047】
B-2-4.水中延伸処理
水中延伸処理は、積層体を延伸浴に浸漬させて行う。水中延伸処理によれば、上記熱可塑性樹脂基材やPVA系樹脂層のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂層を、その結晶化を抑えながら延伸することができる。その結果、優れた光学特性を有する偏光子を製造することができる。
【0048】
積層体の延伸方法は、任意の適切な方法を採用することができる。具体的には、固定端延伸でもよいし、自由端延伸(例えば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。好ましくは、自由端延伸が選択される。積層体の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、延伸の総倍率は、各段階の延伸倍率の積である。
【0049】
水中延伸は、好ましくは、ホウ酸水溶液中に積層体を浸漬させて行う(ホウ酸水中延伸)。延伸浴としてホウ酸水溶液を用いることで、PVA系樹脂層に、延伸時にかかる張力に耐える剛性と、水に溶解しない耐水性とを付与することができる。具体的には、ホウ酸は、水溶液中でテトラヒドロキシホウ酸アニオンを生成してPVA系樹脂と水素結合により架橋し得る。その結果、PVA系樹脂層に剛性と耐水性とを付与して、良好に延伸することができ、優れた光学特性を有する偏光子を製造することができる。
【0050】
上記ホウ酸水溶液は、好ましくは、溶媒である水にホウ酸および/またはホウ酸塩を溶解させることにより得られる。ホウ酸濃度は、水100重量部に対して、好ましくは1重量部~10重量部であり、より好ましくは2.5重量部~6重量部であり、特に好ましくは3重量部~5重量部である。ホウ酸濃度を1重量部以上とすることにより、PVA系樹脂層の溶解を効果的に抑制することができ、より高特性の偏光子を製造することができる。なお、ホウ酸またはホウ酸塩以外に、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等を溶媒に溶解して得られた水溶液も用いることができる。
【0051】
好ましくは、上記延伸浴(ホウ酸水溶液)にヨウ化物を配合する。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の具体例は、上述のとおりである。ヨウ化物の濃度は、水100重量部に対して、好ましくは0.05重量部~15重量部、より好ましくは0.5重量部~8重量部である。
【0052】
延伸温度(延伸浴の液温)は、好ましくは40℃~85℃、より好ましくは60℃~75℃である。このような温度であれば、PVA系樹脂層の溶解を抑制しながら高倍率に延伸することができる。具体的には、上述のように、熱可塑性樹脂基材のガラス転移温度(Tg)は、PVA系樹脂層の形成との関係で、好ましくは60℃以上である。この場合、延伸温度が40℃を下回ると、水による熱可塑性樹脂基材の可塑化を考慮しても、良好に延伸できないおそれがある。一方、延伸浴の温度が高温になるほど、PVA系樹脂層の溶解性が高くなって、優れた光学特性が得られないおそれがある。積層体の延伸浴への浸漬時間は、好ましくは15秒~5分である。
【0053】
水中延伸による延伸倍率は、好ましくは1.0倍~3.0倍であり、より好ましくは1.0倍~2.0倍であり、さらに好ましくは1.0倍~1.5倍である。水中延伸における延伸倍率がこのような範囲であれば、延伸の総倍率を所望の範囲に設定することができ、所望の配向関数を実現することができる。その結果、吸収軸方向に沿った破断が抑制された偏光子を得ることができる。延伸の総倍率(空中補助延伸と水中延伸とを組み合わせた場合の延伸倍率の合計)は、上記のとおり、積層体の元長に対して、例えば3.0倍~4.5倍であり、好ましくは3.0倍~4.0倍であり、より好ましくは3.0倍~3.5倍である。塗布液へのハロゲン化物の添加、空中補助延伸および水中延伸の延伸倍率の調整、および乾燥収縮処理を適切に組み合わせることにより、このような延伸の総倍率であっても許容可能な光学特性を有する偏光子を得ることができる。
【0054】
B-2-5.乾燥収縮処理
上記乾燥収縮処理は、ゾーン全体を加熱して行うゾーン加熱により行っても良いし、搬送ロールを加熱する(いわゆる加熱ロールを用いる)ことにより行う(加熱ロール乾燥方式)こともできる。好ましくは、その両方を用いる。加熱ロールを用いて乾燥させることにより、効率的に積層体の加熱カールを抑制して、外観に優れた偏光子を製造することができる。具体的には、加熱ロールに積層体を沿わせた状態で乾燥することにより、上記熱可塑性樹脂基材の結晶化を効率的に促進させて結晶化度を増加させることができ、比較的低い乾燥温度であっても、熱可塑性樹脂基材の結晶化度を良好に増加させることができる。その結果、熱可塑性樹脂基材は、その剛性が増加して、乾燥によるPVA系樹脂層の収縮に耐え得る状態となり、カールが抑制される。また、加熱ロールを用いることにより、積層体を平らな状態に維持しながら乾燥できるので、カールだけでなくシワの発生も抑制することができる。この時、積層体は、乾燥収縮処理により幅方向に収縮させることにより、光学特性を向上させることができる。PVAおよびPVA/ヨウ素錯体の配向性を効果的に高めることができるからである。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは1%~10%であり、より好ましくは2%~8%であり、特に好ましくは4%~6%である。
【0055】
図4は、乾燥収縮処理の一例を示す概略図である。乾燥収縮処理では、所定の温度に加熱された搬送ロールR1~R6と、ガイドロールG1~G4とにより、積層体200を搬送しながら乾燥させる。図示例では、PVA樹脂層の面と熱可塑性樹脂基材の面を交互に連続加熱するように搬送ロールR1~R6が配置されているが、例えば、積層体200の一方の面(たとえば熱可塑性樹脂基材面)のみを連続的に加熱するように搬送ロールR1~R6を配置してもよい。
【0056】
搬送ロールの加熱温度(加熱ロールの温度)、加熱ロールの数、加熱ロールとの接触時間等を調整することにより、乾燥条件を制御することができる。加熱ロールの温度は、好ましくは60℃~120℃であり、さらに好ましくは65℃~100℃であり、特に好ましくは70℃~80℃である。熱可塑性樹脂の結晶化度を良好に増加させて、カールを良好に抑制することができるとともに、耐久性に極めて優れた光学積層体を製造することができる。なお、加熱ロールの温度は、接触式温度計により測定することができる。図示例では、6個の搬送ロールが設けられているが、搬送ロールは複数個であれば特に制限はない。搬送ロールは、通常2個~40個、好ましくは4個~30個設けられる。積層体と加熱ロールとの接触時間(総接触時間)は、好ましくは1秒~300秒であり、より好ましくは1~20秒であり、さらに好ましくは1~10秒である。
【0057】
加熱ロールは、加熱炉(例えば、オーブン)内に設けてもよいし、通常の製造ライン(室温環境下)に設けてもよい。好ましくは、送風手段を備える加熱炉内に設けられる。加熱ロールによる乾燥と熱風乾燥とを併用することにより、加熱ロール間での急峻な温度変化を抑制することができ、幅方向の収縮を容易に制御することができる。熱風乾燥の温度は、好ましくは30℃~100℃である。また、熱風乾燥時間は、好ましくは1秒~300秒である。熱風の風速は、好ましくは10m/s~30m/s程度である。なお、当該風速は加熱炉内における風速であり、ミニベーン型デジタル風速計により測定することができる。
【0058】
B-2-6.その他の処理
好ましくは、水中延伸処理の後、乾燥収縮処理の前に、洗浄処理を施す。上記洗浄処理は、代表的には、ヨウ化カリウム水溶液にPVA系樹脂層を浸漬させることにより行う。
【0059】
B-3.保護層
本発明の実施形態においては、保護層の厚みは10μm以下である。保護層の厚みが10μm以下であることにより、偏光板の薄型化にも寄与し得る。上記位相差層付偏光板は保護層の厚みが10μm以下であっても、加熱時のクラック発生が防止され得る。保護層の厚みは、好ましくは7μm以下であり、より好ましくは5μm以下であり、さらに好ましくは3μm以下である。保護層の厚みは、例えば1μm以上である。
【0060】
保護層は任意の適切な材料で形成され得る。トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂;(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂;シロキサン系ポリマー等のガラス質系ポリマーが挙げられる。
【0061】
保護層はフィルムであってもよく、塗布膜の固化物であってもよく、硬化物(例えば、光カチオン硬化物)であってもよい。1つの実施形態において、保護層は、熱可塑性アクリル系樹脂(以下、単にアクリル系樹脂と称する)の有機溶媒溶液の塗布膜の固化物、エポキシ樹脂の光カチオン硬化物およびエポキシ樹脂の有機溶媒溶液の塗布膜の固化物からなる群より選択される少なくとも1種で構成されている。以下、具体的に説明する。
【0062】
B-3-1.熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物
1つの実施形態においては、保護層は熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成されている。
【0063】
B-3-1-1.アクリル系樹脂
アクリル系樹脂は、ガラス転移温度(Tg)が好ましくは100℃以上である。その結果、保護層のTgが100℃以上となる。アクリル系樹脂のTgが100℃以上であれば、このような樹脂から得られた保護層を含む偏光板は、耐久性に優れたものとなり得る。アクリル系樹脂のTgは、好ましくは110℃以上、より好ましくは115℃以上、さらに好ましくは120℃以上、特に好ましくは125℃以上である。一方、アクリル系樹脂のTgは、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下、特に好ましくは160℃以下である。アクリル系樹脂のTgがこのような範囲であれば、成形性に優れ得る。
【0064】
アクリル系樹脂としては、上記のようなTgを有する限りにおいて任意の適切なアクリル系樹脂が採用され得る。アクリル系樹脂は、代表的には、モノマー単位(繰り返し単位)として、アルキル(メタ)アクリレートを主成分として含有する。本明細書において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。アクリル系樹脂の主骨格を構成するアルキル(メタ)アクリレートとしては、直鎖状または分岐鎖状のアルキル基の炭素数1~18のものを例示できる。これらは単独であるいは組み合わせて使用することができる。さらに、アクリル系樹脂には、任意の適切な共重合モノマーを共重合により導入してもよい。アルキル(メタ)アクリレート由来の繰り返し単位は、代表的には、下記一般式(1)で表される:
【0065】
【0066】
一般式(1)において、R4は、水素原子またはメチル基を示し、R5は、水素原子、あるいは、置換されていてもよい炭素数1~6の脂肪族または脂環式炭化水素基を示す。置換基としては、例えば、ハロゲン、水酸基が挙げられる。アルキル(メタ)アクリレートの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニルオキシエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6-ペンタヒドロキシヘキシル、(メタ)アクリル酸2,3,4,5-テトラヒドロキシペンチル、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、2-(ヒドロキシエチル)アクリル酸メチルが挙げられる。一般式(1)において、R5は、好ましくは、水素原子またはメチル基である。したがって、特に好ましいアルキル(メタ)アクリレートは、アクリル酸メチルまたはメタクリル酸メチルである。
【0067】
アクリル系樹脂は、単一のアルキル(メタ)アクリレート単位のみを含んでいてもよいし、上記一般式(1)におけるR4およびR5が異なる複数のアルキル(メタ)アクリレート単位を含んでいてもよい。
【0068】
アクリル系樹脂におけるアルキル(メタ)アクリレート単位の含有割合は、好ましくは50モル%~98モル%、より好ましくは55モル%~98モル%、さらに好ましくは60モル%~98モル%、特に好ましくは65モル%~98モル%、最も好ましくは70モル%~97モル%である。含有割合が50モル%より少ないと、アルキル(メタ)アクリレート単位に由来して発現される効果(例えば、高い耐熱性、高い透明性)が十分に発揮されないおそれがある。上記含有割合が98モル%よりも多いと、樹脂が脆くて割れやすくなり、高い機械的強度が十分に発揮できず、生産性に劣るおそれがある。
【0069】
アクリル系樹脂は、好ましくは、環構造を含む繰り返し単位を有する。環構造を含む繰り返し単位としては、ラクトン環単位、無水グルタル酸単位、グルタルイミド単位、無水マレイン酸単位、マレイミド(N-置換マレイミド)単位が挙げられる。環構造を含む繰り返し単位は、1種類のみがアクリル系樹脂の繰り返し単位に含まれていてもよく、2種類以上が含まれていてもよい。
【0070】
ラクトン環単位は、好ましくは、下記一般式(2)で表される:
【0071】
【化2】
一般式(2)において、R
1、R
2およびR
3は、それぞれ独立して、水素原子または炭素数1~20の有機残基を表す。なお、有機残基は酸素原子を含んでいてもよい。アクリル系樹脂には、単一のラクトン環単位のみが含まれていてもよく、上記一般式(2)におけるR
1、R
2およびR
3が異なる複数のラクトン環単位が含まれていてもよい。ラクトン環単位を有するアクリル系樹脂は、例えば特開2008-181078号公報に記載されており、当該公報の記載は本明細書に参考として援用される。
【0072】
グルタルイミド単位は、好ましくは、下記一般式(3)で表される:
【0073】
【0074】
一般式(3)において、R11およびR12は、それぞれ独立して、水素または炭素数1~8のアルキル基を示し、R13は、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または炭素数6~10のアリール基を示す。一般式(3)において、好ましくは、R11およびR12は、それぞれ独立して水素またはメチル基であり、R13は水素、メチル基、ブチル基またはシクロヘキシル基である。より好ましくは、R11はメチル基であり、R12は水素であり、R13はメチル基である。アクリル系樹脂には、単一のグルタルイミド単位のみが含まれていてもよく、上記一般式(3)におけるR11、R12およびR13が異なる複数のグルタルイミド単位が含まれていてもよい。グルタルイミド単位を有するアクリル系樹脂は、例えば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報に記載されており、当該公報の記載は本明細書に参考として援用される。なお、無水グルタル酸単位については、上記一般式(3)におけるR13で置換された窒素原子が酸素原子となること以外は、グルタルイミド単位に関する上記の説明が適用される。
【0075】
無水マレイン酸単位およびマレイミド(N-置換マレイミド)単位については、名称から構造が特定されるので、具体的な説明は省略する。
【0076】
アクリル系樹脂における環構造を含む繰り返し単位の含有割合は、好ましくは1モル%~50モル%、より好ましくは10モル%~40モル%、さらに好ましくは20モル%~30モル%である。含有割合が少なすぎると、Tgが100℃未満となる場合があり、得られる保護層の耐熱性、耐溶剤性および表面硬度が不十分となる場合がある。含有割合が多すぎると、成形性および透明性が不十分となる場合がある。
【0077】
アクリル系樹脂は、アルキル(メタ)アクリレート単位および環構造を含む繰り返し単位以外の繰り返し単位を含んでいてもよい。そのような繰り返し単位としては、上記の単位を構成する単量体と共重合可能なビニル系単量体由来の繰り返し単位(他のビニル系単量体単位)が挙げられる。他のビニル系単量体としては、例えば、アクリル酸、メタクリル酸、クロトン酸、2-(ヒドロキシメチル)アクリル酸、2-(ヒドロキシエチル)アクリル酸、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、アリルグリシジルエーテル、無水マレイン酸、無水イタコン酸、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸シクロヘキシルアミノエチル、N-ビニルジエチルアミン、N-アセチルビニルアミン、アリルアミン、メタアリルアミン、N-メチルアリルアミン、2-イソプロペニル-オキサゾリン、2-ビニル-オキサゾリン、2-アクロイル-オキサゾリン、N-フェニルマレイミド、メタクリル酸フェニルアミノエチル、スチレン、α-メチルスチレン、p-グリシジルスチレン、p-アミノスチレン、2-スチリル-オキサゾリンなどが挙げられる。これらは、単独で用いてもよく併用してもよい。他のビニル系単量体単位の種類、数、組み合わせ、含有割合等は、目的に応じて適切に設定され得る。
【0078】
アクリル系樹脂の重量平均分子量は、好ましくは1000~2000000、より好ましくは5000~1000000、さらに好ましくは10000~500000、特に好ましくは50000~500000、最も好ましくは60000~150000である。重量平均分子量は、例えば、ゲル浸透クロマトグラフ(GPCシステム,東ソー製)を用いて、ポリスチレン換算により求めることができる。なお、溶剤としてはテトラヒドロフランが用いられ得る。
【0079】
アクリル系樹脂は、上記の単量体単位を適切に組み合わせて用いて、任意の適切な重合方法により重合され得る。
【0080】
本発明の実施形態においては、アクリル系樹脂と他の樹脂とを併用してもよい。すなわち、アクリル系樹脂を構成するモノマー成分と他の樹脂を構成するモノマー成分とを共重合し、当該共重合体を後述する保護層の成形に供してもよく;アクリル系樹脂と他の樹脂とのブレンドを保護層の成形に供してもよい。他の樹脂としては、例えば、スチレン系樹脂、ポリエチレン、ポリプロピレン、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミドなどの熱可塑性樹脂が挙げられる。併用する樹脂の種類および配合量は、目的および得られるフィルムに所望される特性等に応じて適切に設定され得る。例えば、スチレン系樹脂(好ましくは、アクリロニトリル-スチレン共重合体)は、位相差制御剤として併用され得る。
【0081】
アクリル系樹脂と他の樹脂とを併用する場合、アクリル系樹脂と他の樹脂とのブレンドにおけるアクリル系樹脂の含有量は、好ましくは50重量%~100重量%、より好ましくは60重量%~100重量%、さらに好ましくは70重量%~100重量%、特に好ましくは80重量%~100重量%である。含有量が50重量%未満である場合には、アクリル系樹脂が本来有する高い耐熱性、高い透明性が十分に反映できないおそれがある。
【0082】
B-3-2.エポキシ樹脂の光カチオン硬化物
1つの実施形態においては、保護層は、エポキシ樹脂の光カチオン硬化物で構成される。このような保護層を用いることにより、優れた耐久性と優れた屈曲性とを両立した偏光板および位相差層付偏光板を提供することができる。上記のとおり、保護層が光カチオン硬化物であるため、保護層形成用組成物は光カチオン重合開始剤を含む。光カチオン重合開始剤は、光酸発生剤の機能を持つ感光剤であり、代表的にはカチオン部とアニオン部とからなるイオン性のオニウム塩が挙げられる。このオニウム塩において、カチオン部は光を吸収し、アニオン部は酸の発生源となる。この光カチオン重合開始剤から発生した酸によりエポキシ基の開環重合が進行する。得られる光カチオン硬化物である保護層はガラス転移温度が高く、ヨウ素吸着量が低減され得る。そのため、優れた耐久性と優れた屈曲性とを両立し得る偏光板を提供することができる。
【0083】
B-3-2-1.エポキシ樹脂
エポキシ樹脂としては、任意の適切なエポキシ樹脂を用いることができる。本発明の実施形態においては、好ましくは芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂を用いることができる。芳香族骨格としては、例えば、ベンゼン環、ナフタレン環、フルオレン環等が挙げられる。エポキシ樹脂は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。好ましくは芳香族骨格としてビフェニル骨格を有するエポキシ樹脂が用いられる。ビフェニル骨格を有するエポキシ樹脂を用いることにより、より優れた耐久性とより優れた屈曲性とを両立する偏光板が提供され得る。以下、代表例として、ビフェニル骨格を有するエポキシ樹脂について詳細に説明する。
【0084】
1つの実施形態において、ビフェニル骨格を有するエポキシ樹脂は、以下の構造を含むエポキシ樹脂である。ビフェニル骨格を有するエポキシ樹脂は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
【化4】
(式中、R
14~R
21は、それぞれ独立して、水素原子、炭素数1~12の直鎖状もしくは分岐状の置換または非置換の炭化水素基、または、ハロゲン元素を表す)。
【0085】
R14~R21は、それぞれ独立して、水素原子、炭素数1~12の直鎖状もしくは分岐状の置換または非置換の炭化水素基、または、ハロゲン元素を表す。炭素数1~12の直鎖状または分岐状の置換または非置換の炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基、n-ヘプチル基、シクロヘプチル基、メチルシクロヘキシル基、n-オクチル基、シクロオクチル基、n-ノニル基、3,3,5-トリメチルシクロヘキシル基、n-デシル基、シクロデシル基、n-ウンデシル基、n-ドデシル基、シクロドデシル基、フェニル基、ベンジル基、メチルベンジル基、ジメチルベンジル基、トリメチルベンジル基、ナフチルメチル基、フェネチル基、2-フェニルイソプロピル基等が挙げられる。炭素数1~12の直鎖状もしくは分岐状の置換または非置換の炭化水素基としては、好ましくはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等の炭素数1~4のアルキル基が挙げられる。ハロゲン元素としては、好ましくはフッ素および臭素が挙げられる。
【0086】
1つの実施形態においては、ビフェニル骨格を有するエポキシ樹脂は下記式で表されるエポキシ樹脂である。
【化5】
(式中、R
14~R
21は上記の通りであり、nは0~6の整数を表す)。
【0087】
1つの実施形態において、ビフェニル骨格を有するエポキシ樹脂はビフェニル骨格のみを有するエポキシ樹脂である。ビフェニル骨格のみを有するエポキシ樹脂を用いることにより、得られる保護層の耐久性がさらに向上し得る。
【0088】
1つの実施形態においては、ビフェニル骨格を有するエポキシ樹脂はビフェニル骨格以外の化学構造を含んでいてもよい。ビフェニル骨格以外の化学構造としては、例えば、ビスフェノール骨格、脂環式構造、芳香族環構造等が挙げられる。この実施形態においては、ビフェニル骨格以外の化学構造の割合(モル比)はビフェニル骨格よりも少ないことが好ましい。
【0089】
ビフェニル骨格を有するエポキシ樹脂としては市販品を用いてもよい。市販品としては、例えば、三菱ケミカル社製、商品名:jER YX4000、jER YX4000H、jER YL6121、jER YL664、jER YL6677、jER YL6810、jER YL7399等が挙げられる。
【0090】
ビフェニル骨格を有するエポキシ樹脂は、好ましくはガラス転移温度(Tg)が90℃以上である。その結果、保護層のTgが90℃以上となる。ビフェニル骨格を有するエポキシ樹脂のTgが90℃以上であれば、得られる保護層を含む偏光板は、耐久性に優れたものとなりやすい。ビフェニル骨格を有するエポキシ樹脂のTgは、好ましくは100℃以上、より好ましくは110℃以上、さらに好ましくは120℃以上、特に好ましくは125℃以上である。一方、ビフェニル骨格を有するエポキシ樹脂のTgは、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下、特に好ましくは160℃以下である。ビフェニル骨格を有するエポキシ樹脂のTgがこのような範囲であれば、成形性に優れ得る。
【0091】
ビフェニル骨格を有するエポキシ樹脂のエポキシ当量は、好ましくは100g/当量以上であり、より好ましくは150g/当量以上、さらに好ましくは200g/当量以上である。また、ビフェニル骨格を有するエポキシ樹脂のエポキシ当量は、好ましくは3000g/当量以下であり、より好ましくは2500g/当量以下、さらに好ましくは2000g/当量以下である。ビフェニル骨格を有するエポキシ樹脂のエポキシ当量が上記範囲であることにより、より安定した保護層(残存モノマーが少なく、十分に硬化した保護層)が得られる。なお、本明細書において「エポキシ当量」とは、「1当量のエポキシ基を含むエポキシ樹脂の質量」をいい、JIS K7236に準じて測定することができる。
【0092】
本発明の実施形態においては、芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂と他の樹脂とを併用してもよい。すなわち、芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂と他の樹脂とのブレンドを保護層の成形に供してもよい。他の樹脂としては、例えば、スチレン系樹脂、ポリエチレン、ポリプロピレン、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミド等の熱可塑性樹脂、アクリル系樹脂およびオキセタン系樹脂等が挙げられる。好ましくは、アクリル系樹脂およびオキセタン系樹脂が用いられる。併用する樹脂の種類および配合量は、目的および得られるフィルムに所望される特性等に応じて適切に設定され得る。例えば、スチレン系樹脂は、位相差制御剤として併用され得る。
【0093】
アクリル系樹脂としては、任意の適切なアクリル系樹脂を用いることができる。例えば、(メタ)アクリル系化合物としては、例えば、分子内に一個の(メタ)アクリロイル基を有する(メタ)アクリル系化合物(以下、「単官能(メタ)アクリル系化合物」ともいう)、分子内に二個以上の(メタ)アクリロイル基を有する(メタ)アクリル系化合物(以下、「多官能(メタ)アクリル系化合物」ともいう)が挙げられる。これらの(メタ)アクリル系化合物は、単独で用いてもよく、2種類以上組み合わせて用いてもよい。これらのアクリル系樹脂については、例えば特開2019-168500号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。
【0094】
オキセタン樹脂としては、分子内にオキセタニル基を1個以上有する任意の適切な化合物が用いられる。例えば、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-(シクロヘキシルオキシメチル)オキセタン、3-エチル-3-(オキシラニルメトキシ)オキセタン、(メタ)アクリル酸(3-エチルオキセタン-3-イル)メチル等の分子内にオキセタニル基を1個有するオキセタン化合物;3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル等の分子内にオキセタニル基を2個以上有するオキセタン化合物;等が挙げられる。これらオキセタン樹脂は1種のみを用いてもよく、2種以上を組み合わせてもよい。
【0095】
オキセタン樹脂としては、好ましくは3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-(オキシラニルメトキシ)オキセタン、(メタ)アクリル酸(3-エチルオキセタン-3-イル)メチル、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン等が用いられる。これらのオキセタン樹脂は、容易に入手可能であり、希釈性(低粘度)、相溶性に優れ得る。
【0096】
1つの実施形態においては、相溶性や接着性の点から、好ましくは分子量500以下であり、室温(25℃)で液状のオキセタン樹脂が用いられる。1つの実施形態においては、好ましくは分子内に2個以上のオキセタニル基を含有するオキセタン化合物、分子内に1個のオキセタニル基と1個の(メタ)アクリロイル基または1個のエポキシ基を含有するオキセタン化合物が用いられ、より好ましくは3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、3-エチル-3-(オキシラニルメトキシ)オキセタン、(メタ)アクリル酸(3-エチルオキセタン-3-イル)メチルが用いられる。これらのオキセタン樹脂を用いることにより、保護層の硬化性および耐久性が向上し得る。
【0097】
オキセタン樹脂としては、市販品を用いてもよい。具体的には、アロンオキセタンOXT-101、アロンオキセタンOXT-121、アロンオキセタンOXT-212、アロンオキセタンOXT-221(いずれも東亞合成社製)を用いることができる。好ましくはアロンオキセタンOXT-101およびアロンオキセタンOXT-221を用いることができる。
【0098】
芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂と他の樹脂とを併用する場合、芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂と他の樹脂とのブレンドにおける芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂の含有量は、好ましくは50重量%~100重量%、より好ましくは60重量%~100重量%、さらに好ましくは70重量%~100重量%、特に好ましくは80重量%~100重量%である。含有量が50重量%未満である場合には、保護層の耐熱性および偏光子との十分な密着性とが得られないおそれがある。
【0099】
ビフェニル骨格を有するエポキシ樹脂とオキセタン樹脂とを併用する場合、ビフェニル骨格を有するエポキシ系樹脂とオキセタン樹脂の合計量100重量部に対して、オキセタン樹脂の含有量は好ましくは1重量部~50重量部、より好ましくは5重量部~45重量部、さらに好ましくは10重量部~40重量部である。上記範囲とすることにより、硬化性が向上し、保護層と偏光子との密着性も向上し得る。
【0100】
B-3-2-2.光カチオン重合開始剤
光カチオン重合開始剤は、光酸発生剤の機能を持つ感光剤であり、代表的にはカチオン部とアニオン部とからなるイオン性のオニウム塩が挙げられる。このオニウム塩において、カチオン部は光を吸収し、アニオン部は酸の発生源となる。この光カチオン重合開始剤から発生した酸によりエポキシ基の開環重合が進行する。光カチオン重合開始剤としては、紫外線等の光照射により芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂を硬化させることができる任意の適切な化合物を用いることができる。光カチオン重合開始剤は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
【0101】
光カチオン重合開始剤としては、例えば、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、p-(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロアンチモネート、p-(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロホスフェート、4-クロルフェニルジフェニルスルホニウムヘキサフルオロホスフェート、4-クロルフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、ビス[4-(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロホスフェート、ビス[4-(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、(2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-Fe-ヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート等が挙げられる。好ましくは、トリフェニルスルホニウム塩系ヘキサフルオロアンチモネートタイプの光カチオン重合開始剤、ジフェニルヨードニウム塩系ヘキサフルオロアンチモネートタイプの光カチオン重合開始剤が用いられる。
【0102】
光カチオン重合開始剤としては市販品を用いてもよい。市販品としては、トリフェニルスルホニウム塩系ヘキサフルオロアンチモネートタイプのSP-170(ADEKA社製)、CPI-101A(サンアプロ社製)、WPAG-1056(和光純薬工業社製)、ジフェニルヨードニウム塩系ヘキサフルオロアンチモネートタイプのWPI-116(和光純薬工業社製)等が挙げられる。
【0103】
光カチオン重合開始剤の含有量は、芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂100重量部に対して、好ましくは0.1重量部~3重量部であり、より好ましくは0.25重量部~2重量部である。光カチオン重合開始剤の含有量が0.1重量部未満の場合、光(紫外線)を照射しても十分に硬化しない場合がある。
【0104】
B-3-3.エポキシ樹脂の有機溶媒溶液の塗布膜の固化物
1つの実施形態においては、保護層はエポキシ樹脂の有機溶媒溶液の塗布膜の固化物で構成される。
【0105】
B-3-3-1.エポキシ樹脂
この実施形態において、エポキシ樹脂は、好ましくはガラス転移温度(Tg)が90℃以上である。その結果、保護層のTgが90℃以上となる。エポキシ樹脂のTgが90℃以上であれば、このような樹脂から得られた保護層を含む偏光板は、耐久性に優れたものとなりやすい。エポキシ樹脂のTgは、好ましくは100℃以上、より好ましくは110℃以上、さらに好ましくは120℃以上、特に好ましくは125℃以上である。一方、エポキシ樹脂のTgは、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下、特に好ましくは160℃以下である。エポキシ樹脂のTgがこのような範囲であれば、成形性に優れ得る。
【0106】
エポキシ樹脂としては、上記のようなTgを有する限りにおいて任意の適切なエポキシ樹脂が採用され得る。エポキシ樹脂は、代表的には、分子構造内にエポキシ基を有する樹脂をいう。エポキシ樹脂としては、好ましくは分子構造内に芳香族環を有するエポキシ樹脂が用いられる。芳香族環を有するエポキシ樹脂を用いることにより、より高いTgを有するエポキシ樹脂が得られ得る。分子構造内に芳香族環を有するエポキシ樹脂における芳香族環としては、例えば、ベンゼン環、ナフタレン環、フルオレン環等が挙げられる。エポキシ樹脂は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。2種以上のエポキシ樹脂を用いる場合、芳香族環を含むエポキシ樹脂と、芳香族環を含まないエポキシ樹脂を組み合わせて用いてもよい。
【0107】
分子構造内に芳香族環を有するエポキシ樹脂としては、具体的には、ビスフェノールAジグリシジルエーテル型エポキシ樹脂、ビスフェノールFジグリシジルエーテル型エポキシ樹脂、ビスフェノールSジグリシジルエーテル型エポキシ樹脂、レゾルシンジグリシジルエーテル型エポキシ樹脂、ヒドロキノンジグリシジルエーテル型エポキシ樹脂、テレフタル酸ジグリシジルエステル型エポキシ樹脂、ビスフェノキシエタノールフルオレンジグリシジルエーテル型エポキシ樹脂、ビスフェノールフルオレンジグリシジルエーテル型エポキシ樹脂、ビスクレゾールフルオレンジグリシジルエーテル型エポキシ樹脂等の2つのエポキシ基を有するエポキシ樹脂;ノボラック型エポキシ樹脂、N,N,O-トリグリシジル-P-又は-m-アミノフェノール型エポキシ樹脂、N,N,O-トリグリシジル-4-アミノ-m-又は-5-アミノ-o-クレゾール型エポキシ樹脂、1,1,1-(トリグリシジルオキシフェニル)メタン型エポキシ樹脂等の3つのエポキシ基を有するエポキシ樹脂;グリシジルアミン型エポキシ樹脂(例えば、ジアミノジフェニルメタン型、ジアミノジフェニルスルホン型、メタキシレンジアミン型)等の4つのエポキシ基を有するエポキシ樹脂等が挙げられる。また、ヘキサヒドロ無水フタル酸型エポキシ樹脂、テトラヒドロ無水フタル酸型エポキシ樹脂、ダイマー酸型エポキシ樹脂、p-オキシ安息香酸型等のグリシジルエステル型エポキシ樹脂を用いてもよい。
【0108】
エポキシ樹脂の重量平均分子量は、好ましくは1000~2000000、より好ましくは5000~1000000、さらに好ましくは10000~500000、特に好ましくは50000~500000、最も好ましくは60000~150000である。重量平均分子量は、例えば、ゲル浸透クロマトグラフ(GPCシステム,東ソー製)を用いて、ポリスチレン換算により求めることができる。なお、溶剤としてはテトラヒドロフランが用いられ得る。
【0109】
エポキシ樹脂のエポキシ当量は、好ましくは1000g/当量以上であり、より好ましくは3000g/当量以上、さらに好ましくは5000g/当量以上である。また、エポキシ樹脂のエポキシ当量は、好ましくは30000g/当量以下であり、より好ましくは25000当量以下、さらに好ましくは20000g/当量以下である。エポキシ当量が上記範囲であることにより、より安定した保護層が得られる。なお、本明細書において「エポキシ当量」とは、「1当量のエポキシ基を含むエポキシ樹脂の質量」をいい、JIS K7236に準じて測定することができる。
【0110】
本発明の実施形態においては、エポキシ樹脂と他の樹脂とを併用してもよい。すなわち、エポキシ樹脂と他の樹脂とのブレンドを保護層の成形に供してもよい。他の樹脂としては、例えば、スチレン系樹脂、ポリエチレン、ポリプロピレン、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミド等の熱可塑性樹脂が挙げられる。併用する樹脂の種類および配合量は、目的および得られるフィルムに所望される特性等に応じて適切に設定され得る。例えば、スチレン系樹脂は、位相差制御剤として併用され得る。
【0111】
エポキシ樹脂と他の樹脂とを併用する場合、エポキシ樹脂と他の樹脂とのブレンドにおけるエポキシ樹脂の含有量は、好ましくは50重量%~100重量%、より好ましくは60重量%~100重量%、さらに好ましくは70重量%~100重量%、特に好ましくは80重量%~100重量%である。含有量が50重量%未満である場合には、保護層の耐熱性および偏光子との十分な密着性とが得られないおそれがある。
【0112】
B-3-4.保護層の構成および特性
1つの実施形態において、保護層は、上記のとおり、熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物、エポキシ樹脂の光カチオン硬化物およびエポキシ樹脂の有機溶媒溶液の塗布膜の固化物からなる群より選択される少なくとも1種で構成されている。このような保護層であれば、押出成形フィルムに比べて厚みを格段に薄くすることができる。保護層の厚みは、上記のとおり10μm以下である。また、理論的には明らかではないが、このような保護層は、他の熱硬化性樹脂または活性エネルギー線硬化性樹脂(例えば、紫外線硬化性樹脂)の硬化物に比べてフィルム成形時の収縮が小さい、および、残存モノマー等が含まれないのでフィルム自体の劣化が抑制され、かつ、残存モノマー等に起因する偏光板(偏光子)に対する悪影響を抑制することができるという利点を有する。さらに、水溶液または水分散体のような水系の塗布膜の固化物に比べて吸湿性および透湿性が小さいので加湿耐久性に優れるという利点を有する。その結果、加熱加湿環境下においても光学特性を維持し得る、耐久性に優れた偏光板を実現することができる。
【0113】
保護層のTgは、アクリル系樹脂およびエポキシ樹脂についてそれぞれ説明したとおりである。
【0114】
保護層は、好ましくは、実質的に光学的に等方性を有する。本明細書において「実質的に光学的に等方性を有する」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-20nm~+10nmであることをいう。面内位相差Re(550)は、より好ましくは0nm~5nmであり、さらに好ましくは0nm~3nmであり、特に好ましくは0nm~2nmである。厚み方向の位相差Rth(550)は、より好ましくは-5nm~+5nmであり、さらに好ましくは-3nm~+3nmであり、特に好ましくは-2nm~+2nmである。保護層のRe(550)およびRth(550)がこのような範囲であれば、当該保護層を含む偏光板を画像表示装置に適用した場合に表示特性に対する悪影響を防止することができる。なお、Re(550)は、23℃における波長550nmの光で測定したフィルムの面内位相差である。Re(550)は、式:Re(550)=(nx-ny)×dによって求められる。Rth(550)は、23℃における波長550nmの光で測定したフィルムの厚み方向の位相差である。Rth(550)は、式:Rth(550)=(nx-nz)×dによって求められる。ここで、nxは面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、nyは面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、nzは厚み方向の屈折率であり、dはフィルムの厚み(nm)である。
【0115】
保護層の厚み3μmにおける380nmでの光線透過率は、高ければ高いほど好ましい。具体的には、光線透過率は、好ましくは85%以上、より好ましくは88%以上、さらに好ましくは90%以上である。光線透過率がこのような範囲であれば、所望の透明性を確保することができる。光線透過率は、例えば、ASTM-D-1003に準じた方法で測定され得る。
【0116】
保護層のヘイズは、低ければ低いほど好ましい。具体的には、ヘイズは、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1.5%以下、特に好ましくは1%以下である。ヘイズが5%以下であると、フィルムに良好なクリヤー感を与えることができる。さらに、画像表示装置の視認側偏光板に使用する場合でも、表示内容が良好に視認できる。
【0117】
保護層の厚み3μmにおけるYIは、好ましくは1.27以下、より好ましくは1.25以下、さらに好ましくは1.23以下、特に好ましくは1.20以下である。YIが1.3を超えると、光学的透明性が不十分となる場合がある。なお、YIは、例えば、高速積分球式分光透過率測定機(商品名DOT-3C:村上色彩技術研究所製)を用いた測定で得られる色の三刺激値(X、Y、Z)より、次式によって求めることができる。
YI=[(1.28X-1.06Z)/Y]×100
【0118】
保護層の厚み3μmにおけるb値(ハンターの表色系に準じた色相の尺度)は、好ましくは1.5未満、より好ましくは1.0以下である。b値が1.5以上である場合、所望でない色味が出る場合がある。なお、b値は、例えば、保護層を構成するフィルムのサンプルを3cm角に裁断し、高速積分球式分光透過率測定機(商品名DOT-3C:村上色彩技術研究所製)を用いて色相を測定し、当該色相をハンターの表色系に準じて評価することにより得られ得る。
【0119】
保護層(例えば、塗布膜の固化物または光カチオン硬化物)は、目的に応じて任意の適切な添加剤を含んでいてもよい。添加剤の具体例としては、紫外線吸収剤;レベリング剤;ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤等の帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーまたは無機フィラー;樹脂改質剤;有機充填剤や無機充填剤;可塑剤;滑剤;帯電防止剤;難燃剤;などが挙げられる。添加剤はアクリル系樹脂の重合時に添加されてもよく、フィルム形成時に溶液に添加されてもよい。添加剤の種類、数、組み合わせ、添加量等は、目的に応じて適切に設定され得る。
【0120】
保護層の偏光子側には、易接着層が形成されていてもよい。易接着層は、例えば、水系ポリウレタンとオキサゾリン系架橋剤とを含む。このような易接着層を形成することにより、保護層と偏光子との密着性を高めることができる。また、保護層には、ハードコート層が形成されていてもよい。なお、ハードコート層が形成される場合、保護層(例えば、塗布膜の固化物)の厚みとハードコート層の厚みとの合計が10μm以下となるようハードコート層が形成され得る。ハードコート層は、保護層が視認側偏光板の視認側の保護層として用いられる場合に形成され得る。易接着層およびハードコート層の両方が形成される場合、代表的には、これらはそれぞれ保護層の異なる側に形成され得る。
【0121】
C.第1の位相差層
第1の位相差層20は、上記のとおり、液晶化合物の配向固化層である。液晶化合物を用いることにより、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための位相差層の厚みを格段に小さくすることができる。その結果、位相差層付偏光板のさらなる薄型化および軽量化を実現することができる。本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。本実施形態においては、代表的には、棒状の液晶化合物が第1の位相差層の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。
【0122】
液晶化合物としては、例えば、液晶相がネマチック相である液晶化合物(ネマチック液晶)が挙げられる。このような液晶化合物として、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶化合物の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。
【0123】
液晶化合物が液晶モノマーである場合、当該液晶モノマーは、重合性モノマーおよび架橋性モノマーであることが好ましい。液晶モノマーを重合または架橋(すなわち、硬化)させることにより、液晶モノマーの配向状態を固定できるからである。液晶モノマーを配向させた後に、例えば、液晶モノマー同士を重合または架橋させれば、それによって上記配向状態を固定することができる。ここで、重合によりポリマーが形成され、架橋により3次元網目構造が形成されることとなるが、これらは非液晶性である。したがって、形成された第1の位相差層は、例えば、液晶性化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果、第1の位相差層は、温度変化に影響されない、極めて安定性に優れた位相差層となる。
【0124】
液晶モノマーが液晶性を示す温度範囲は、その種類に応じて異なる。具体的には、当該温度範囲は、好ましくは40℃~120℃であり、より好ましくは50℃~100℃であり、さらに好ましくは60℃~90℃である。
【0125】
上記液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合性メソゲン化合物等が使用できる。このような重合性メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242、Merck社の商品名E7、Wacker-Chem社の商品名LC-Sillicon-CC3767が挙げられる。液晶モノマーとしては、例えばネマチック性液晶モノマーが好ましい。
【0126】
液晶化合物の配向固化層は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。1つの実施形態においては、基材は任意の適切な樹脂フィルムであり、当該基材上に形成された配向固化層は、偏光板10の表面に転写され得る。別の実施形態においては、基材は第2の保護層13であり得る。この場合には転写工程が省略され、配向固化層(第1の位相差層)の形成から連続してロールトゥロールにより積層が行われ得るので、生産性がさらに向上する。
【0127】
上記配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。
【0128】
液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。
【0129】
配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性モノマーまたは架橋性モノマーである場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。
【0130】
液晶化合物の具体例および配向固化層の形成方法の詳細は、特開2006-163343号公報に記載されている。当該公報の記載は本明細書に参考として援用される。
【0131】
配向固化層の別の例としては、ディスコティック液晶化合物が、垂直配向、ハイブリッド配向及び傾斜配向のいずれかの状態で配向している形態が挙げられる。ディスコティック液晶化合物は、代表的には、ディスコティック液晶化合物の円盤面が第1の位相差層のフィルム面に対して実質的に垂直に配向している。ディスコティック液晶化合物が実質的に垂直とは、フィルム面とディスコティック液晶化合物の円盤面とのなす角度の平均値が好ましくは70°~90°であり、より好ましくは80°~90°であり、さらに好ましくは85°~90°であることを意味する。ディスコティック液晶化合物とは、一般的には、ベンゼン、1,3,5-トリアジン、カリックスアレーンなどのような環状母核を分子の中心に配し、直鎖のアルキル基、アルコキシ基、置換ベンゾイルオキシ基等がその側鎖として放射状に置換された円盤状の分子構造を有する液晶化合物をいう。ディスコティック液晶の代表例としては、C.Destradeらの研究報告、Mol.Cryst.Liq.Cryst.71巻、111頁(1981年)に記載されている、ベンゼン誘導体、トリフェニレン誘導体、トルキセン誘導体、フタロシアニン誘導体や、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されているシクロヘキサン誘導体、および、J.M.Lehnらの研究報告、J.Chem.Soc.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系のマクロサイクルが挙げられる。ディスコティック液晶化合物のさらなる具体例としては、例えば、特開2006-133652号公報、特開2007-108732号公報、特開2010-244038号公報に記載の化合物が挙げられる。上記文献および公報の記載は、本明細書に参考として援用される。
【0132】
1つの実施形態においては、第1の位相差層20は、
図1および
図2に示すように液晶化合物の配向固化層の単一層である。第1の位相差層20が液晶化合物の配向固化層の単一層で構成される場合、その厚みは、好ましくは0.5μm~7μmであり、より好ましくは1μm~5μmである。液晶化合物を用いることにより、樹脂フィルムよりも格段に薄い厚みで樹脂フィルムと同等の面内位相差を実現することができる。
【0133】
第1の位相差層は、代表的には、屈折率特性がnx>ny=nzの関係を示す。第1の位相差層は、代表的には偏光板に反射防止特性を付与するために設けられ、第1の位相差層が配向固化層の単一層である場合にはλ/4板として機能し得る。この場合、第1の位相差層の面内位相差Re(550)は、好ましくは100nm~190nm、より好ましくは110nm~170nm、さらに好ましくは130nm~160nmである。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny>nzまたはny<nzとなる場合があり得る。
【0134】
第1の位相差層のNz係数は、好ましくは0.9~1.5であり、より好ましくは0.9~1.3である。このような関係を満たすことにより、得られる位相差層付偏光板を画像表示装置に用いた場合に、非常に優れた反射色相を達成し得る。
【0135】
第1の位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。1つの実施形態においては、第1の位相差層は、逆分散波長特性を示す。この場合、位相差層のRe(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。このような構成であれば、非常に優れた反射防止特性を実現することができる。
【0136】
第1の位相差層20の遅相軸と偏光子11の吸収軸とのなす角度θは、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。角度θがこのような範囲であれば、上記のように第1の位相差層をλ/4板とすることにより、非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する位相差層付偏光板が得られ得る。
【0137】
別の実施形態においては、第1の位相差層20は、
図3に示すように第1の配向固化層21と第2の配向固化層22との積層構造を有し得る。この場合、第1の配向固化層21および第2の配向固化層22のいずれか一方がλ/4板として機能し、他方がλ/2板として機能し得る。したがって、第1の配向固化層21および第2の配向固化層22の厚みは、λ/4板またはλ/2板の所望の面内位相差が得られるよう調整され得る。例えば、第1の配向固化層21がλ/2板として機能し、第2の配向固化層22がλ/4板として機能する場合、第1の配向固化層21の厚みは例えば2.0μm~3.0μmであり、第2の配向固化層22の厚みは例えば1.0μm~2.0μmである。この場合、第1の配向固化層の面内位相差Re(550)は、好ましくは200nm~300nmであり、より好ましくは230nm~290nmであり、さらに好ましくは250nm~280nmである。第2の配向固化層の面内位相差Re(550)は、単一層の配向固化層に関して上記で説明したとおりである。第1の配向固化層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは10°~20°であり、より好ましくは12°~18°であり、さらに好ましくは約15°である。第2の配向固化層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは70°~80°であり、より好ましくは72°~78°であり、さらに好ましくは約75°である。このような構成であれば、理想的な逆波長分散特性に近い特性を得ることが可能であり、結果として、非常に優れた反射防止特性を実現することができる。第1の配向固化層および第2の配向固化層を構成する液晶化合物、第1の配向固化層および第2の配向固化層の形成方法、光学特性等については、単一層の配向固化層に関して上記で説明したとおりである。
【0138】
D.第2の位相差層
第2の位相差層は、上記のとおり、屈折率特性がnz>nx=nyの関係を示す、いわゆるポジティブCプレートであり得る。第2の位相差層としてポジティブCプレートを用いることにより、斜め方向の反射を良好に防止することができ、反射防止機能の広視野角化が可能となる。この場合、第2の位相差層の厚み方向の位相差Rth(550)は、好ましくは-50nm~-300nm、より好ましくは-70nm~-250nm、さらに好ましくは-90nm~-200nm、特に好ましくは-100nm~-180nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。すなわち、第2の位相差層の面内位相差Re(550)は10nm未満であり得る。
【0139】
nz>nx=nyの屈折率特性を有する第2の位相差層は、任意の適切な材料で形成され得る。第2の位相差層は、好ましくは、ホメオトロピック配向に固定された液晶材料を含むフィルムからなる。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該位相差層の形成方法の具体例としては、特開2002-333642号公報の[0020]~[0028]に記載の液晶化合物および当該位相差層の形成方法が挙げられる。この場合、第2の位相差層の厚みは、好ましくは0.5μm~10μmであり、より好ましくは0.5μm~8μmであり、さらに好ましくは0.5μm~5μmである。
【0140】
E.導電層または導電層付等方性基材
導電層は、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、任意の適切な基材上に、金属酸化物膜を成膜して形成され得る。金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物が挙げられる。なかでも好ましくは、インジウム-スズ複合酸化物(ITO)である。
【0141】
導電層が金属酸化物を含む場合、該導電層の厚みは、好ましくは50nm以下であり、より好ましくは35nm以下である。導電層の厚みは、好ましくは10nm以上である。
【0142】
導電層は、上記基材から第1の位相差層(または、存在する場合には第2の位相差層)に転写されて導電層単独で位相差層付偏光板の構成層とされてもよく、基材との積層体(導電層付基材)として第1の位相差層(または、存在する場合には第2の位相差層)に積層されてもよい。好ましくは、上記基材は光学的に等方性であり、したがって、導電層は導電層付等方性基材として位相差層付偏光板に用いられ得る。
【0143】
光学的に等方性の基材(等方性基材)としては、任意の適切な等方性基材を採用し得る。等方性基材を構成する材料としては、例えば、ノルボルネン系樹脂やオレフィン系樹脂などの共役系を有さない樹脂を主骨格としている材料、ラクトン環やグルタルイミド環などの環状構造をアクリル系樹脂の主鎖中に有する材料などが挙げられる。このような材料を用いると、等方性基材を形成した際に、分子鎖の配向に伴う位相差の発現を小さく抑えることができる。等方性基材の厚みは、好ましくは50μm以下であり、より好ましくは35μm以下である。等方性基材の厚みは、例えば20μm以上である。
【0144】
上記導電層および/または上記導電層付等方性基材の導電層は、必要に応じてパターン化され得る。パターン化によって、導通部と絶縁部とが形成され得る。結果として、電極が形成され得る。電極は、タッチパネルへの接触を感知するタッチセンサ電極として機能し得る。パターニング方法としては、任意の適切な方法を採用し得る。パターニング方法の具体例としては、ウエットエッチング法、スクリーン印刷法が挙げられる。
【0145】
F.画像表示装置
上記A項からE項に記載の位相差層付偏光板は、画像表示装置に適用され得る。したがって、本発明は、そのような位相差層付偏光板を用いた画像表示装置を包含する。画像表示装置の代表例としては、液晶表示装置、エレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)が挙げられる。本発明の実施形態による画像表示装置は、その視認側に上記A項からE項に記載の位相差層付偏光板を備える。位相差層付偏光板は、位相差層が画像表示セル(例えば、液晶セル、有機ELセル、無機ELセル)側となるように(偏光子が視認側となるように)積層されている。1つの実施形態においては、画像表示装置は、湾曲した形状(実質的には、湾曲した表示画面)を有し、および/または、屈曲もしくは折り曲げ可能である。このような画像表示装置においては、本発明の位相差層付偏光板の効果が顕著となる。
【実施例】
【0146】
以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
【0147】
[実施例1]
1.偏光子の作製
熱可塑性樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理(処理条件:55W・min/m2)を施した。
ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加し、PVA水溶液(塗布液)を調製した。
樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み12μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が41.8%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温62℃のホウ酸水溶液(ホウ酸濃度4.0重量%、ヨウ化カリウム5.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が3.0倍となるように一軸延伸を行った(水中延伸処理:水中延伸処理における延伸倍率は1.25倍)。
その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は2%であった。
このようにして、樹脂基材上に厚み6.9μmの偏光子を形成した。
【0148】
2.偏光板の作製
水系ポリウレタン樹脂(第一工業製薬社製、商品名:スーパーフレックス210-R)を、純水およびイソプロピルアルコールの混合溶媒に溶解させ、得られた溶解液を上記で得られた樹脂基材上に形成された偏光子の表面に塗布した。次いで、60℃で乾燥させて溶媒を除去し、厚み0.15μmの易接着層を形成した。メチルメタクリレート単位を有するアクリル系樹脂(楠本化成社製、商品名:B728)20部をメチルエチルケトン80部に溶解し、アクリル系樹脂溶液(20%)を得た。このアクリル系樹脂溶液を、易接着層にワイヤーバーを用いて塗布し、塗布膜を60℃で5分間乾燥して、塗布膜の固化物として構成されるアクリル系樹脂層を形成した。アクリル系樹脂層の厚みは2μmであり、Tgは111℃であった。次いで、ジメチロール-トリシクロデカンジアクリレート(共栄社化学製、商品名:ライトアクリレートDCP-A)70重量部、イソボルニルアクリレート(共栄社化学製、商品名:ライトアクリレートIB-XA)20重量部、1,9-ノナンジオールジアクリレート(共栄社化学製、商品名:ライトアクリレート1.9NA-A)10重量部、および、光重合開始剤(BASF社製、商品名:イルガキュア907)3重量部を、溶媒中で混合し、塗工液を得た。得られた塗工液を、硬化後に3μmになるように上記保護層上に塗布した。次いで、溶媒を乾燥させ、高圧水銀ランプを用いて積算光量300mJ/cm2となるよう紫外線を窒素雰囲気下にて照射して、ハードコート層を形成した。ハードコート層の厚みは3μmであった。次いで、後の位相差層との貼り合わせ作業を安定して行うため、粘着剤層付ポリエチレンテレフタレート(PET)フィルムの粘着剤層を保護層に貼り合わせ、補強した。その後、樹脂基材を剥離して、粘着剤層付PETフィルム/保護層(ハードコート層/アクリル系樹脂層(塗布膜の固化物))/易接着層/偏光子の構成を有する偏光板を得た。
【0149】
3.位相差層を構成する第1の配向固化層および第2の配向固化層の作製
ネマチック液晶相を示す重合性液晶(BASF社製:商品名「Paliocolor LC242」、下記式で表される)10gと、当該重合性液晶化合物に対する光重合開始剤(BASF社製:商品名「イルガキュア907」)3gとを、トルエン40gに溶解して、液晶組成物(塗工液)を調製した。
【化6】
PETフィルム(厚み38μm)表面を、ラビング布を用いてラビングし、配向処理を施した。配向処理の方向は、偏光板に貼り合わせる際に偏光子の吸収軸の方向に対して視認側から見て15°方向となるようにした。この配向処理表面に、上記液晶塗工液をバーコーターにより塗工し、90℃で2分間加熱乾燥することによって液晶化合物を配向させた。このようにして形成された液晶層に、メタルハライドランプを用いて100mJ/cm
2の光を照射し、当該液晶層を硬化させることによって、PETフィルム上に液晶配向固化層Aを形成した。液晶配向固化層Aの厚みは2.5μm、面内位相差Re(550)は270nmであった。さらに、液晶配向固化層Aは、nx>ny=nzの屈折率分布を有していた。
塗工厚みを変更したこと、および、配向処理方向を偏光子の吸収軸の方向に対して視認側から見て75°方向となるようにしたこと以外は上記と同様にして、PETフィルム上に液晶配向固化層Bを形成した。液晶配向固化層Bの厚みは1.3μm、面内位相差Re(550)は140nmであった。さらに、液晶配向固化層Bは、nx>ny=nzの屈折率分布を有していた。
【0150】
4.位相差層付偏光板の作製
上記2.で得られた偏光板の偏光子表面に、上記3.で得られた液晶配向固化層Aおよび液晶配向固化層Bをこの順に転写した。このとき、偏光子の吸収軸と配向固化層Aの遅相軸とのなす角度が15°、偏光子の吸収軸と配向固化層Bの遅相軸とのなす角度が75°になるようにして転写(貼り合わせ)を行った。なお、それぞれの転写(貼り合わせ)は、上記2.で用いた紫外線硬化型接着剤(厚み1.0μm)を介して行った。次いで、粘着剤層付PETフィルムを剥離した。このようにして、保護層(ハードコート層/アクリル系樹脂層(塗布膜の固化物))/易接着層/偏光子/接着層/位相差層(第1の配向固化層/接着層/第2の配向固化層)の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは18μmであった。
【0151】
[実施例2]
水中延伸処理の延伸倍率を1.46倍として総延伸倍率を3.5倍としたこと以外は実施例1と同様にして、厚み6.4μmの偏光子を得た。得られた偏光子を用いた以外は実施例1と同様にして、位相差層付偏光板2を得た。得られた位相差層付偏光板の総厚みは17μmであった。
【0152】
[実施例3]
水中延伸処理の延伸倍率を1.67倍として総延伸倍率を4.0倍としたこと以外は実施例1と同様にして、厚み6.0μmの偏光子を得た。得られた偏光子を用いた以外は実施例1と同様にして、位相差層付偏光板3を得た。得られた位相差層付偏光板の総厚みは17μmであった。
【0153】
[実施例4]
水中延伸処理の延伸倍率を1.88倍として総延伸倍率を4.5倍としたこと以外は実施例1と同様にして、厚み5.6μmの偏光子を得た。得られた偏光子を用いた以外は実施例1と同様にして、位相差層付偏光板4を得た。得られた位相差層付偏光板の総厚みは16μmであった。
【0154】
[実施例5]
メチルメタクリレート単位を有するアクリル系樹脂(楠本化成社製、商品名:B728)に代えて、ラクトン環単位を有するポリメチルメタクリレートであるアクリル系樹脂(ラクトン環単位30モル%)を用いたこと以外は実施例2と同様にして、位相差層付偏光板5を得た。得られた位相差層付偏光板の総厚みは17μmであった。
【0155】
[実施例6]
メチルメタクリレート単位を有するアクリル系樹脂(楠本化成社製、商品名:B728)に代えて、グルタルイミド環単位を有するポリメチルメタクリレートであるアクリル系樹脂(グルタルイミド環単位4モル%)を用いたこと以外は実施例5と同様にして、位相差層付偏光板6を得た。得られた位相差層付偏光板の総厚みは17μmであった。
【0156】
[実施例7]
アクリル系樹脂溶液に代えて、エポキシ樹脂(三菱ケミカル株式会社製、商品名:jER(登録商標) YX6954BH30、重量平均分子量:36000、エポキシ当量:13000)20部をメチルエチルケトン80部に溶解した、エポキシ樹脂溶液(20%)を用いて、塗布膜の固化物として構成される保護層を形成したこと、ハードコート層を形成しなかったこと、および、偏光子に易接着層を形成しなかったこと以外は実施例5と同様にして位相差層付偏光板を作製した。具体的には、このエポキシ樹脂溶液を偏光子に直接ワイヤーバーを用いて塗布し、塗布膜を60℃で3分間乾燥して、保護層を形成した。保護層の厚みは3μmであり、Tgは130℃であった。このようにして、保護層を形成したこと、および、以外は実施例5と同様にして、位相差層付偏光板7を得た。得られた位相差層付偏光板の総厚みは15μmであった。
【0157】
[実施例8]
以下のようにして保護層を形成したこと、偏光子に易接着層を形成しなかったこと、および、ハードコート層を形成しなかったこと以外は実施例2と同様にして位相差層付偏光板8を得た。得られた位相差層付偏光板の総厚みは15μmであった。
ビフェニル骨格を有するエポキシ樹脂(三菱ケミカル社製、商品名:jER(登録商標) YX4000)15部をメチルエチルケトン83.8部に溶解し、エポキシ樹脂溶液を得た。得られたエポキシ樹脂溶液に、光カチオン重合開始剤(サンアプロ社製、商品名:CPI(登録商標)-100P)1.2部を添加し、保護層形成組成物を得た。得られた保護層形成組成物を、偏光子に直接ワイヤーバーを用いて塗布し、塗布膜を60℃で3分間乾燥した。次いで、高圧水銀ランプを用いて積算光量が600mJ/cm2となるよう紫外線を照射し、保護層を形成した。保護層の厚みは3μmであった。
【0158】
[実施例9]
ビフェニル骨格を有するエポキシ樹脂に代えて、ビスフェノール型エポキシ樹脂(三菱ケミカル社製、商品名:jER(登録商標) 828)を用いたこと以外は実施例8と同様にして、位相差層付偏光板9を得た。得られた位相差層付偏光板の総厚みは15μmであった。
【0159】
[実施例10]
ビフェニル骨格を有するエポキシ樹脂に代えて水添ビスフェノール型エポキシ樹脂(三菱ケミカル社製、商品名:jER(登録商標) YX8000)を用いたこと以外は実施例8と同様にして、位相差層付偏光板10を得た。得られた位相差層付偏光板の総厚みは15μmであった。
【0160】
[実施例11]
水添ビスフェノール型エポキシ樹脂(三菱ケミカル社製、商品名:jER(登録商標) YX8000)15部とオキセタン樹脂(東亞合成社製、商品名:アロンオキセタン(登録商標) OXT-221)10重量部と、をメチルエチルケトン73部に溶解し、エポキシ樹脂溶液を得た。得られたエポキシ樹脂溶液に、光カチオン重合開始剤(サンアプロ社製、商品名:CPI(登録商標)-100P)2部を添加し、保護層形成組成物を得た。得られた保護層形成組成物を用いた以外は実施例8と同様にして位相差層付偏光板11を得た。得られた位相差層付偏光板の総厚みは15μmであった。
【0161】
[実施例12]
保護層の厚みを8μmとした以外は実施例11と同様にして位相差層付偏光板12を得た。
【0162】
[実施例13]
保護層の厚みを10μmとした以外は実施例11と同様にして位相差層付偏光板13を得た。
【0163】
[実施例14]
紫外線硬化型エポキシ系樹脂(ダイセル社製、製品名「セロキサイド2021P」)を用いたこと以外は実施例8と同様にして保護層(硬化物)を形成した。具体的には、当該エポキシ系樹脂95重量%および光重合開始剤(CPI-100P、サンアプロ社製)5重量%を配合した組成物を易接着層上に塗布し、空気雰囲気下で高圧水銀ランプを用いて積算光量500mJ/cm2で紫外線を照射し、硬化層(保護層)を形成した。この保護層を用いたこと以外は実施例2と同様にして位相差層付偏光板を作製した。偏光板の厚みは15μmであった。
【0164】
(比較例1)
偏光子の作製において、水中延伸処理の延伸倍率を2.3倍として総延伸倍率を5.5倍としたこと、および、延伸浴の液温を70℃としたこと以外は実施例1と同様にして、厚み5.1μmの偏光子を得た。得られた偏光子の表面に厚み40μmのアクリル系樹脂フィルムを、紫外線硬化型接着剤を介して積層して保護層とした以外は実施例1と同様にして位相差層付偏光板C1を得た。得られた位相差層付偏光板の総厚みは52μmであった。
【0165】
(比較例2)
保護層として、厚さ20μmのアクリル系フィルムを用いた以外は、比較例1と同様にして位相差層付偏光板C2を得た。得られた位相差層付偏光板の総厚みは32μmであった。
【0166】
(比較例3)
比較例1で得られた偏光子を用いた以外は実施例1と同様にして、位相差層付偏光板C3を得た。得られた位相差層付偏光板の総厚みは16μmであった。
【0167】
(比較例4)
偏光子の作製において、水中延伸処理の延伸浴の液温を64℃としたこと以外は比較例1と同様にして、厚み5.1μmの偏光子を得た。得られた偏光子を用いた以外は比較例3と同様にして位相差層付偏光板C4を得た。得られた位相差層付偏光板の総厚みは16μmであった。
【0168】
(比較例5)
実施例7と同様にして保護層を形成したこと以外は比較例3と同様にして、位相差層付偏光板C5を得た。得られた位相差層付偏光板の総厚みは14μmであった。
【0169】
(比較例6)
実施例8と同様にして保護層を形成したこと以外は比較例3と同様にして、位相差層付偏光板C6を得た。得られた位相差層付偏光板の総厚みは14μmであった。
【0170】
[評価]
実施例および比較例で得られた位相差層付偏光板を用いて以下の評価を行った。結果を表1に示す。
(1)厚み
偏光子の厚みは、干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用いて測定した。厚み算出に用いた計算波長範囲は400nm~500nmで、屈折率は1.53とした。また、保護層の厚みは、干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用い、計算波長範囲および屈折率は適宜選択して測定した。易接着層の厚みは、走査型電子顕微鏡(SEM)観察から求めた。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(2)配向関数
実施例および比較例に用いた偏光子について、フーリエ変換赤外分光光度計(FT-IR)(Perkin Elmer社製、商品名:「Frontier」)を用い、偏光された赤外光を測定光として、偏光子表面の全反射減衰分光(ATR:attenuated total reflection)測定を行った。偏光子を密着させる結晶子はゲルマニウムを用い、測定光の入射角は45°入射とした。配向関数の算出は以下の手順で行った。入射させる偏光された赤外光(測定光)は、ゲルマニウム結晶のサンプルを密着させる面に平行に振動する偏光(s偏光)とし、測定光の偏光方向に対し、偏光子の延伸方向を垂直(⊥)および平行(//)に配置した状態で各々の吸光度スペクトルを測定した。得られた吸光度スペクトルから、(3330cm-1強度)を参照とした(2941cm-1強度)Iを算出した。I⊥は、測定光の偏光方向に対し偏光子の延伸方向を垂直(⊥)に配置した場合に得られる吸光度スペクトルから得られる(2941cm-1強度)/(3330cm-1強度)である。また、I//は、測定光の偏光方向に対し偏光子の延伸方向を平行(//)に配置した場合に得られる吸光度スペクトルから得られる(2941cm-1強度)/(3330cm-1強度)である。ここで、(2941cm-1強度)は、吸光度スペクトルのボトムである、2770cm-1と2990cm-1をベースラインとしたときの2941cm-1の吸光度であり、(3330cm-1強度)は、2990cm-1と3650cm-1をベースラインとしたときの3330cm-1の吸光度である。得られたI⊥およびI// を用い、式1に従って配向関数fを算出した。なお、f=1のとき完全配向、f=0のときランダムとなる。また、2941cm-1のピークは、偏光子中のPVAの主鎖(-CH2-)の振動起因の吸収といわれている。また、3330cm-1のピークは、PVAの水酸基の振動起因の吸収といわれている。
(式1)f=(3<cos2θ>-1)/2
=(1-D)/[c(2D+1)]
但し
c=(3cos2β-1)/2
で、上記のように2941cm-1を用いた場合、β=90°⇒f=-2×(1-D)/(2D+1)である。
θ:延伸方向に対する分子鎖の角度
β:分子鎖軸に対する遷移双極子モーメントの角度
D=(I⊥)/(I//)
I⊥:測定光の偏光方向と偏光子の延伸方向が垂直の場合の吸収強度
I//:測定光の偏光方向と偏光子の延伸方向が平行の場合の吸収強度
(3)クラック発生率
実施例および比較例で得られた位相差層付偏光板を10mm×10mmサイズに切り出した。切り出した位相差層付偏光板を厚み20μmのアクリル系粘着剤層を介してガラス板(厚み1.1mm)に貼り付けた。ガラス板に貼り付けたサンプルを100℃のオーブン内に120時間置いた後、目視にて偏光子の吸収軸方向(MD方向)のクラック発生の有無を目視で確認した。この評価を3枚の位相差層付偏光板を用いて行い、クラックの発生した位相差層付偏光板の数を評価した。
(4)耐折り曲げ性
実施例および比較例で得られた位相差層付偏光板を50mm×100mmサイズに切り出した。このとき、偏光子の吸収軸方向が長辺方向となるように切り出した。屈曲試験機(ユアサシステム社製、製品名:DLDM111LH)を用いて、室温で、切り出した位相差層付偏光板を折り曲げ試験に供した。具体的には、位相差層付偏光板を、位相差層側が内側、保護層または保護層上に形成されたハードコート層が外側となるように、吸収軸方向に、回転数60rpmの条件で屈曲径を1mmφ(Rが0.5mm)に設定し、5万回位相差層付偏光板を折り曲げた。次いで、試験後の位相差層付偏光板のクラックの有無を目視で確認し、クラックが確認できなかったものを良好、クラックか確認されたものを不可とした。なお、折り曲げ方向が偏光子の透過軸方向である。
(5)単体透過率および偏光度
実施例および比較例に用いた偏光子/熱可塑性樹脂基材の積層体から樹脂基材を剥離除去した偏光子(偏光子単体)について、紫外可視分光光度計(日本分光社製、製品名「V-7100」)を用いて測定した単体透過率Ts、平行透過率Tp、直交透過率Tcをそれぞれ、偏光子のTs、TpおよびTcとした。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。
得られたTpおよびTcから、下記式により偏光度Pを求めた。
偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
(6)突き刺し強度
実施例および比較例に用いた偏光子/熱可塑性樹脂基材の積層体から偏光子を剥離し、ニードルを装着した圧縮試験機(カトーテック社製、製品名「NDG5」ニードル貫通力測定仕様)に載置し、室温(23℃±3℃)環境下、突き刺し速度0.33cm/秒で突き刺し、偏光子が割れたときの強度を破断強度(突き刺し強度)とした。評価値は試料片10個の破断強度を測定し、その平均値を用いた。なお、ニードルは、先端径1mmφ、0.5Rのものを用いた。測定する偏光子については、直径約11mmの円形の開口部を有する治具を偏光子の両面から挟んで固定し、開口部の中央にニードルを突き刺して試験を行った。
【0171】
【0172】
表1から明らかなように、実施例1~14の位相差層付偏光板は加熱処理に供された場合であってもクラックの発生が抑制されていた。また、折り曲げ時の耐久性にも優れるものであった。
【産業上の利用可能性】
【0173】
本発明の位相差層付偏光板は、画像表示装置に好適に用いられる。
【符号の説明】
【0174】
10 偏光板
11 偏光子
12 第1の保護層
13 第2の保護層
20 位相差層
100 位相差層付偏光板
101 位相差層付偏光板
102 位相差層付偏光板