IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 花王株式会社の特許一覧

<>
  • 特許-ダイズの収量予測方法 図1
  • 特許-ダイズの収量予測方法 図2
  • 特許-ダイズの収量予測方法 図3
  • 特許-ダイズの収量予測方法 図4
  • 特許-ダイズの収量予測方法 図5
  • 特許-ダイズの収量予測方法 図6
  • 特許-ダイズの収量予測方法 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-13
(45)【発行日】2023-03-22
(54)【発明の名称】ダイズの収量予測方法
(51)【国際特許分類】
   A01G 7/00 20060101AFI20230314BHJP
【FI】
A01G7/00 603
【請求項の数】 10
(21)【出願番号】P 2019078180
(22)【出願日】2019-04-16
(65)【公開番号】P2020174553
(43)【公開日】2020-10-29
【審査請求日】2022-03-18
(73)【特許権者】
【識別番号】000000918
【氏名又は名称】花王株式会社
(74)【代理人】
【識別番号】110000084
【氏名又は名称】弁理士法人アルガ特許事務所
(72)【発明者】
【氏名】末次 舞
(72)【発明者】
【氏名】出口 潤
(72)【発明者】
【氏名】藤松 輝久
(72)【発明者】
【氏名】遠藤 圭二
【審査官】吉原 健太
(56)【参考文献】
【文献】米国特許出願公開第2016/0081285(US,A1)
【文献】中国特許出願公開第109444314(CN,A)
【文献】中国特許出願公開第101891796(CN,A)
【文献】特開平10-067770(JP,A)
【文献】米国特許第05516528(US,A)
【文献】中国特許出願公開第103323557(CN,A)
【文献】米国特許出願公開第2010/0093537(US,A1)
【文献】米国特許出願公開第2012/0119080(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A01G 7/00 - 7/06
G01N 27/62 - 27/70
G06Q 50/02
(57)【特許請求の範囲】
【請求項1】
ダイズから採取された葉サンプルから1以上の成分の分析データを取得し、当該データとダイズ収量との相関性を利用してダイズの収量を予測する、ダイズの収量予測方法であって、成分が2-ヒドロキシピリジン、グリシン、L-ピログルタミン酸及びスクロースから選ばれる1種以上である、方法。
【請求項2】
葉サンプルが、初生葉展開期から子実肥大期のダイズから採取される、請求項1記載の方法。
【請求項3】
葉サンプルが、初生葉展開期から開花期までのダイズから採取される、請求項1又は2に記載の方法。
【請求項4】
分析データが、質量分析データである請求項1~のいずれか1項に記載の方法。
【請求項5】
ダイズから採取された葉サンプルから1以上の成分の分析データを取得し、当該データとダイズ収量との相関性を利用してダイズの収量を予測する、ダイズの収量予測方法であって、成分が2-ヒドロキシピリジン、コリン、クエン酸、グリセリン酸、グリシン、L-ピログルタミン酸、マロン酸、スクロース及びトレイトールから選ばれる1種以上であり、葉サンプルから取得された成分の分析データを、前記9成分から選択される分析データのうち、任意の7個のデータを用いて構築された収量予測モデルと照合する工程を含む、方法。
【請求項6】
葉サンプルが、初生葉展開期から子実肥大期のダイズから採取される、請求項5記載の方法。
【請求項7】
葉サンプルが、初生葉展開期から開花期までのダイズから採取される、請求項5又は6に記載の方法。
【請求項8】
分析データが、質量分析データである請求項5~7のいずれか1項に記載の方法。
【請求項9】
収量予測モデルが、OPLS法を用いて構築されたモデルである請求項5~8のいずれか1項に記載の方法。
【請求項10】
収量予測モデルが、回帰分析手法を用いて構築されたモデルである請求項5~8のいずれか1項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明はダイズの収量を早期に予測する方法に関する。
【背景技術】
【0002】
ダイズは、重要な穀物であり、日本を始め世界中で広く食されている。また他の代表的な穀物である米、麦、トウモロコシと異なり、タンパク質及び脂質の割合が高く栄養価も豊富である。そのため飼料や油脂原料としても重要であり、収量を増加させる技術の開発が行われている。
ダイズの生育期間は、品種や栽培条件によって若干異なるが、通常、播種から収穫まで4-5か月という長期間を要する。よって、ダイズの収量を増加させる技術の開発において、収量評価を行うには栽培に多くの時間を必要とする。さらに、日本のような季節・気候条件では、収穫まで4-5か月を要するダイズの栽培は年に1回が一般的である。屋外栽培での収量評価が年に1度しかできず収量増加技術の開発の障害となっていることから、早期に収量を予測する方法が求められてきた。また、実際の生産場面において、早期に収量を予測することができれば、生産者は安定した収量確保のために費用コストのかかる追加技術を投入すべきかどうかの判断を容易に下すことができる。
【0003】
これまでにも生育中の植物体の発育状態と収量との相関性を利用した早期に収量性を評価する方法が種々検討されている。例えば、非特許文献1ではダイズの播種後40日程度に測定した主茎長と収量との相関(r=0.51)を利用する方法、非特許文献2では、播種後60-70日程度に測定した地上部の乾燥重量と収量との相関(r=0.66)を利用する方法が開示されている。また、非特許文献3及び4では、画像診断技術を用いて、圃場においてNDVI(正規化植生指標)やLAI(葉面積指数)及び群落分光反射率を測定し、生育や収量性を評価する試みが開示されている。
【0004】
しかしながら、非特許文献1の方法は、比較的早期に収量を予測できる可能性がある一方で相関性が十分でなく、また非特許文献2の方法では相関性は向上するものの予測時期が栽培開始から2か月以上であり生育期間の半分が経過すること、及び地上部乾燥重を測定するため侵襲的であり、個体毎の予測因子と収量とを対応させたい場合の評価には向いていない。非特許文献3及び4の方法は非破壊で簡易的な測定であるといえるが、予測時期が開花期、すなわち播種後50日前後以降になること、また精度の面でも十分とは言えない。
【0005】
このほかイネにおいて、播種後15日程度の地上部から抽出される代謝物をGC-MSにより網羅的に測定し、それらのデータを用いてハイブリッドライス収量予測モデルを作成したことが報告されているが(非特許文献5)、この報告では、通常の予測モデル構築の際に行われるクロスバリデーションというモデルの予測性評価が行われておらず、検証が十分とは云えない。また、侵襲的であり、個体毎の予測因子と収量とを対応させたい場合の評価には向いていない。
【先行技術文献】
【非特許文献】
【0006】
【文献】藤田与一ら、平成21年度「関東東海北陸農業」研究成果情報、「重粘度地帯におけるダイズ「エンレイ」の多収事例に基づく収量構成要素と生育指標」、http://www.naro.affrc.go.jp/org/narc/seika/kanto21/12/21_12_04.html
【文献】井上健一、高橋正樹、第229回日本作物学会講演会要旨集、2010、p50、「物質生産と窒素の蓄積から見たダイズの多収生育相」
【文献】長南友也ら、第245回日本作物学会講演会要旨集、2018、p83、「ダイズの簡易的な開花前生育診断技術」
【文献】渡邊智也ら、第245回日本作物学会講演会要旨集、2018、p84、「非破壊計測と畳み込みニューラルネットワークを利用したダイズの収量評価」
【文献】Dan,Z.et al., Scientific Reports,2016,6,21732
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、ダイズの収量を早期に精度よく予測する方法を提供することに関する。
【課題を解決するための手段】
【0008】
本発明者らは、ダイズの収量性評価について種々検討した結果、葉中に含まれる代謝物にはその存在量が収量と相関する成分があること、そして、播種後1か月程度という早期に展開葉を1枚採取し、葉中に含まれる成分を分析し、解析することで最終的な収量を個体レベルで評価できることを見出した。
【0009】
すなわち、本発明は、ダイズから採取された葉サンプルから1以上の成分の分析データを取得し、当該データとダイズ収量との相関性を利用してダイズの収量を予測する、ダイズの収量予測方法であって、成分が2-ヒドロキシピリジン、コリン、クエン酸、グリセリン酸、グリシン、L-ピログルタミン酸、マロン酸、スクロース及びトレイトールから選ばれる1種以上である、方法を提供する。
【発明の効果】
【0010】
本発明の方法によれば、ダイズの収量を早期に予測できる。これにより、例えば、収量確保のための追加技術投入の判断が容易となるほか、収量増加技術の開発の大幅な効率化を図ることができる。
【図面の簡単な説明】
【0011】
図1】全125データを用いて構築されたOPLSモデルによる収量の予測値と実測値との関係を示す図。
図2図1のモデルにおけるVIP値1位以下、2位以下、3位以下、4位以下、5位以下及び6位以下のすべての成分データを用いてOPLS法により構築した各々のモデルのR(図中ではR2Yと表示)値及びQ(図中ではQ2と表示)値を示す図。
図3図1のモデルにおけるVIP値1位及び2位、VIP値1位~3位及びVIP値1位~4位の成分データを用いてOPLS法により構築した各々のモデルのR(図中ではR2Yと表示)値及びQ(図中ではQ2と表示)値を示す図。
図4図1のモデルにおけるVIP値上位1位~4位、2位~5位、3位~6位、4位~7位、5位~8位及び6位~9位の成分データを用いてOPLS法により構築した各々のモデルのR(図中ではR2Yと表示)値及びQ(図中ではQ2と表示)値を示す図。
図5図1のモデルにおけるVIP値上位1位~5位、2位~6位、3位~7位、4位~8位及び5位~9位の成分データを用いてOPLS法により構築した各々モデルのR(図中ではR2Yと表示)値及びQ(図中ではQ2と表示)値を示す図。
図6図1のモデルにおけるVIP値上位1位~6位、2位~7位、3位~8位及び4位~9位の成分データを用いてOPLS法により構築した各々のモデルのR(図中ではR2Yと表示)値及びQ(図中ではQ2と表示)値を示す図。
図7図1のモデルにおけるVIP値上位1位~7位、2位~8位及び3位~9位の成分データを用いてOPLS法により構築した各々のモデルのR(図中ではR2Yと表示)値及びQ(図中ではQ2と表示)値を示す図。
【発明を実施するための形態】
【0012】
本発明において、ダイズとは、マメ科の一年草である大豆(学名 Glycine max)を意味する。その品種はフクユタカ、エンレイ、里のほほえみ、湯上がり娘、リュウホウ、スズユタカ等、多岐にわたるが、本発明においてはそれに限定されるものではない。
【0013】
ダイズの出芽から落葉までの生育ステージは、VC:初生葉展開期(播種後7日前後)、R1-2:開花期(播種後50日前後)、R3-4:着莢期(播種後70日前後)、R5-6:子実肥大期(播種後90日前後)に分けられる(Fehr, W.R., Caviness, C.E., 1977. Stages of soybean development. Cooperative Extension Service, Agriculture and Home Economics Experiment Station, Iowa State University, Ames, Iowa)。本発明において、サンプルとして使用されるダイズの葉の採取時期は、葉が採取可能な初生葉展開期(VC)から子実肥大期(R5-6)までの間に行われればよく、好ましくは初生葉展開期~R3-4期、より好ましくは播種後14日~R3-4期、より好ましくは播種後21日~R1-2期、さらに好ましくは播種後28日~R1-2期のダイズが挙げられる。尚、上記各生育ステージにおける前後の日数幅は10日間以内が好適である。
或いは、ダイズの葉の採取時期は、播種後7日以上、好ましくは14日目以上、より好ましくは21日目以上、さらに好ましくは28日以上で、且つ好ましくは播種後50日より前、より好ましくは播種後40日より前、さらに好ましくは35日目より前であり得る。また、播種後7~50日目、好ましくは14~40日目、より好ましくは28~35日目であり得る。例えば、播種後30日±3~5日目のダイズから葉を採取するのが好適である。
【0014】
葉の採取部位は、特に限定されないが、例えば、最上位に展開する本葉の1または2葉齢古い本葉を構成する複葉3枚の内、中央の複葉を採取することが挙げられる。
【0015】
本発明において、取得される成分の分析データ(「成分データ」とも称する)としては、本発明で規定する成分を同定することができるものであれば特に限定されず、高速液体クロマトグラフィー(HPLC)、ガスクロマトグラフィー(GC)、イオンクロマトグラフィー、質量分析(MS)、近赤外分光分析(NIR)、フーリエ変換赤外分光分析(FT-IR)、核磁気共鳴分析(NMR)、フーリエ変換核磁気共鳴分析(FT-NMR)、誘導結合プラズマ質量分析計(ICP-MS)、ガスクロマトグラフや液体クロマトグラフと質量分析とを組合せたGC-MS、LC-MS等の機器分析手段を用いて分析・測定されたデータが挙げられるが、好ましくは質量分析データであり、より好ましくはGC-MSによる質量分析データである。
質量分析データとしては、精密質量(「m/z値」)、イオン強度、保持時間等が挙げられるが、好ましくは精密質量の情報である。なお、精密質量とは、小数点以下4桁以上の精度にて測定された質量をさす。
【0016】
葉サンプルを、上記機器分析手段に適用するためには、分析手段に応じて適宜前処理されるが、通常、採取した葉はアルミホイルで包み直ちに液体窒素中で凍結して代謝反応を停止させ、凍結乾燥にかけて乾燥した後、抽出操作に供される。
抽出は、凍結乾燥した葉サンプルを、ビーズ粉砕機等を用いて粉砕した後、抽出溶媒を添加して撹拌することにより行われる。ここで用いられる抽出溶媒としては、メタノール、エタノール、ブタノール、アセトニトリル、クロロホルム、酢酸エチル、ヘキサン、アセトン、イソプロパノール、水等及びそれらを混合したものが挙げられる。分析手段としてGC-MSを用いる場合には、メタノール/水/クロロホルムの混合溶媒等が好適に使用される。
【0017】
本発明において、分析される葉中の成分としては、2-ヒドロキシピリジン(2-hydroxypyridine)、コリン(choline)、クエン酸(citric acid)、グリセリン酸(glyceric acid)、グリシン(glycine)、L-ピログルタミン酸(L-pyroglutamic acid)、マロン酸(malonic acid)、スクロース(sucrose)及びトレイトール(threitol)から選ばれる1種以上である。
当該9成分はダイズの代謝物質から選択抽出されたものであり、その選択方法は詳細には実施例に示すとおりであるが、概略すると、1)2015年~2017年にかけて、土壌、品種、肥料を変えたダイズ125株を栽培し、2)それぞれ播種後1ヶ月前後に葉を1枚採取し、3)メタノール/水/クロロホルムの混合溶媒(5:2:2, v/v/v)を用いて成分抽出を行い誘導体化を行った後、4)GC/MS分析を行い、得られた各成分由来ピーク情報(保持時間、質量情報)を既存のGC/MS質量スペクトルライブラリと照合することによりピークを同定し、5)分析データと対応する収量データとの相関解析を行い、収量と相関すると判定した成分を取得する、というものである。
【0018】
取得した125個の葉中9成分の分析データと対応する収量データとの相関解析の結果(各成分の分析データのピーク面積と収量との単相関係数r及び無相関の検定によりp値を算出)は後記表3に示すとおりであり、このうち、2-ヒドロキシピリジン、グリシン、L-ピログルタミン酸及びスクロースの4種は相関係数の絶対値|r|が0.51を超えている。したがって、本発明における分析対象成分としては、2-ヒドロキシピリジン、グリシン、L-ピログルタミン酸及びスクロースから選ばれる1種以上を含むのがより好ましい。
【0019】
したがって、ダイズの収量の予測手段は、予測したいサンプルについて、上記9成分、好ましくは2-ヒドロキシピリジン、グリシン、L-ピログルタミン酸及びスクロースから選ばれる1種以上の分析データを取得し、既知の収量とピーク面積との相関関係から収量値を推定することができる。
【0020】
また、上記9成分の分析データから複数を使用し、多変量解析手法を用いて構築された収量予測モデルと照合することにより、収量を予測することができる。
すなわち、播種から所定期間経過後のダイズの葉を採取し、分析サンプルを得、該分析サンプルを機器分析に供して機器分析データ得、該機器分析データを、収量予測モデルと照合することにより、当該ダイズの収量を予測することができる。
【0021】
収量予測モデルは、説明変数に例えば各成分の分析データのピーク面積値を、また目的変数に収量値を用いた回帰分析を行うことにより構築できる。回帰分析法としては、例えば主成分回帰分析、PLS(Partial least squares projection to latent structures)回帰分析、OPLS(Orthogonal projections to latent structures)回帰分析、一般化線形回帰分析の他、バギング、サポートベクターマシン、ランダムフォレスト、ニューラルネットワーク回帰分析等の機械学習・回帰分析手法等の多変量回帰分析手法が挙げられる。このうち、PLS法、PLS法の改良版であるOPLS法、或いは機械学習・回帰分析手法を用いるのが好ましい。OPLS法は、PLS法に比べ予測性は同じだが、解釈のための視覚化がより容易になる点が今回のような目的においては優れている。PLS法及びOPLS法は、共に高次元のデータから情報を集約し少数の潜在変数に置き換え、その潜在変数を用いて目的変数を表現する方法である。潜在変数の数を適切に選ぶことが重要であり、潜在変数の数を決めるのによく利用されるのがクロスバリデーション(交差検証)である。すなわち、モデル構築用データをいくつかのグループに分割し、あるグループをモデル検証に、その他のグループをモデル構築に用いて予測誤差を見積り、この作業を、グループを入れ替えながら繰り返して、予測誤差の合計が最小となる潜在変数の数が選ばれる。
【0022】
予測モデルの評価は、主に2つの指標で判断される。1つは予測精度を表すR、もう1つは予測性を表すQである。Rは予測モデル構築に使用したデータの実測値とモデルで計算した予測値との相関係数の2乗であり、1に近いほど予測精度が高いことを示している。一方、Qは、上記クロスバリデーションの結果であり、実測値と、繰り返し実施したモデル検証の結果である予測値との相関係数の2乗を表している。本発明のダイズ収量予測モデルにおいては、Q>0.50をモデル評価の基準とするのが好ましい。なお、常にR>Qとなるため、Q>0.50は同時にR>0.50を満たすこととなる。
以下に、上記9成分の質量分析データのピーク面積値と、子実収量を用いた種々のダイズ収量予測モデルを作成しその精度を検証した結果を示す。
【0023】
(1)全ての成分情報を用いた収量予測モデルの構築
1データ当り9個の成分の分析データのピーク面積値と収量値を持つ全125個のデータマトリックスからOPLSモデル(図1)を構築した。なお、構築の際は、各成分の分析データのピーク面積値及び収量データはオートスケーリングにより平均0、分散1に変換した。R=0.56、Q=0.55であり、高い予測性能を持つモデルといえる。なお、L-ピログルタミン酸の分析データのみで構築したモデルはR=32、Q=0.29であるため、複数の成分データを用いることでより高い精度のモデルを構築することができる。
上記モデルではVIP(Variable Importance in the Projection, 投影における変数重要性)値とよばれる各成分に与えられるモデル性能への寄与度が算出される。
VIP値は、下記式1により求められる。
【0024】
【数1】
【0025】
VIP値はその値が大きいほどモデルへの寄与度が大きく、相関係数の絶対値とも相関する。VIP値のリストを後記表4に示す。
【0026】
(2-1)VIP値が下位の成分由来ピークを用いたモデル
VIP値1位以下の成分の分析データすべて、VIP値2位以下の成分の分析データすべて、又はVIP値3位以下の成分の分析データすべて、を用いて構築されたOPLSモデルはQ>0.50を満たし、収量予測モデルとして好ましい(図2)。VIP値4位以下及び5位以下の成分の分析データすべてを用いて構築されたOPLSモデルは何れもQ>0.50を満たさなかった。
【0027】
(2-2)VIP値上位の成分の分析データを複数個用いたモデル
9個の成分の分析データから選ばれる任意の4個以上のデータを用いて構築されたモデルのうち、Q>0.50を満たすモデルは収量予測モデルとして好ましい。具体的には、以下の1)~4)に示すモデルが挙げられる。
1)VIP値上位から順に連続する4個の成分の分析データを用いたモデル
VIP値6位以上の成分についてVIP値上位から順に連続する4個の成分の分析データを用いて構築されたOPLSモデルはQ>0.50を満たし、収量予測モデルとして好ましい。また、VIP値3位~6位の成分の分析データを用いて構築されたOPLSモデルQ>0.50を満たしたことから、VIP値6位以上であれば、任意の4個の成分の分析データを用いることで、Q>0.50を満たす予測モデルが得られると考えられる。
例えば、VIP値上位1位~4位、2位~5位、3位~6位の成分の分析データを用いて構築されたOPLSモデルが挙げられる(図4)。
【0028】
2)VIP値上位から順に連続する5個の成分の分析データを用いたモデル
VIP値7位以上の成分についてVIP値上位から順に連続する5個の成分の分析データを用いて構築されたOPLSモデルはQ>0.50を満たし、収量予測モデルとして好ましい。また、VIP値3位~7位の成分の分析データを用いて構築されたOPLSモデルQ>0.50を満たしたことから、VIP値7位以上であれば、任意の5個の成分の分析データを用いることで、Q>0.50を満たす予測モデルが得られると考えられる。
例えば、VIP値上位1位~5位、2位~6位、3位~7位の成分の分析データを用いて構築されたOPLSモデルが挙げられる(図5)。
【0029】
3)VIP値上位から順に連続する6個の成分の分析データを用いたモデル
VIP値8位以上の成分についてVIP値上位から順に連続する6個の成分の分析データを用いて構築されたOPLSモデルはQ>0.50を満たし、収量予測モデルとして好ましい。また、VIP値3位~8位の成分の分析データを用いて構築されたOPLSモデルQ>0.50を満たしたことから、VIP値8位以上であれば、任意の6個の成分の分析データを用いることで、Q>0.50を満たす予測モデルが得られると考えられる。
例えば、VIP値上位1位~6位、2位~7位、3位~8位の成分の分析データを用いて構築されたOPLSモデルが挙げられる(図6図2)。
【0030】
4)VIP値上位から順に連続する7個の成分の分析データを用いたモデル
VIP値上位から順に連続する7個の成分の分析データを用いて構築されたOPLSモデルはQ>0.50を満たし、収量予測モデルとして好ましい。また、VIP値3位~9位の成分の分析データを用いて構築されたOPLSモデルQ>0.50を満たしたことから、9個の成分の内、任意の7個の成分の分析データを用いることで、Q>0.50を満たす予測モデルが得られると考えられる。
例えば、VIP値上位1位~7位、2位~8位又は3位~9位の成分の分析データを用いて構築されたOPLSモデルが挙げられる(図7)。
【0031】
本発明の態様及び好ましい実施態様を以下に示す。
<1>ダイズから採取された葉サンプルから1以上の成分の分析データを取得し、当該データとダイズ収量との相関性を利用してダイズの収量を予測する、ダイズの収量予測方法であって、成分が2-ヒドロキシピリジン、コリン、クエン酸、グリセリン酸、グリシン、L-ピログルタミン酸、マロン酸、スクロース及びトレイトールから選ばれる1種以上である、方法。
<2>成分が、2-ヒドロキシピリジン、グリシン、L-ピログルタミン酸及びスクロースから選ばれる1種以上である、<1>記載の方法。
<3>葉サンプルが、初生葉展開期から子実肥大期のダイズから採取される、<1>又は<2>記載の方法。
<4>葉サンプルが、初生葉展開期から開花期までのダイズから採取される、<1>~<3>のいずれかに記載の方法。
<5>分析データが、質量分析データである<1>~<4>のいずれかに記載の方法。
<6>葉サンプルから取得された成分の分析データを、前記9成分から選択される分析データを用いて構築された収量予測モデルと照合する工程を含む、<1>~<5>のいずれかに記載の方法。
<7>収量予測モデルが、前記9成分中の分析データうち、VIP値が6位以上の成分について任意の4個のデータを用いる、<6>に記載の方法。
<8>収量予測モデルが、前記9成分の分析データうちVIP値が7位以上の成分について任意の5個のデータを用いる、<6>に記載の方法。
<9>収量予測モデルが、前記9成分の分析データうちVIP値が8位以上の成分について任意の6個のデータを用いる、<6>に記載の方法。
<10>収量予測モデルが、前記9成分の分析データうち、任意の7個のデータを用いる、<6>に記載の方法。
<11>収量予測モデルが、前記9成分の分析データうち、VIP値1位以下の成分のデータすべて、VIP値2位以下の成分のデータすべて、又はVIP値3位以下の成分のデータすべてを用いる、<6>に記載の方法。
【0032】
<12>収量予測モデルが、前記9成分の分析データうち、VIP値上位1位~4位、2位~5位又は3位~6位の成分の分析データを用いる、<6>に記載の方法。
<13>収量予測モデルが、前記9成分の分析データうち、VIP値上位1位~5位、2位~6位又は3位~7位の成分の分析データを用いる、<6>に記載の方法。
<14>収量予測モデルが、前記9成分の分析データうち、VIP値上位1位~6位、2位~7位又は3位~8位の成分の分析データを用いる、<6>に記載の方法。
<15>収量予測モデルが、前記9成分の分析データうち、VIP値上位1位~7位、2位~8位又は3位~9位の成分の分析データを用いる、<6>に記載の方法。
<16>収量予測モデルが、OPLS法を用いて構築されたモデルである<6>~<15>のいずれかに記載の方法。
<17>収量予測モデルが、回帰分析手法を用いて構築されたモデルである<6>~<15>のいずれかに記載の方法。
<18>質量分析データが小数点以下4桁以上の精度である、<5>~<15>のいずれかに記載の方法。
【実施例
【0033】
1.各栽培試験
2015年から2017年に実施した屋外ポット栽培試験データについて詳述する。試験は全部で5試験実施した。
1)2015年ポット試験(1):
栃木県内にてポット栽培を実施した。土壌は国内の圃場土を用い、窒素:リン酸:カリウム=3:6:6(Kg/10a)となるように施肥を行い、土壌を耕耘機で耕耘した。土壌はこの耕耘後の土壌を用いた。ポットには1/2000aワグネルポットを用い、上記土壌を1ポットあたり約8L詰め、15ポットを準備した。2015年6月25日に3粒播きで各ポット内2カ所に播種した(1ポットあたり6粒使用)。なお、品種は、「里のほほえみ」を用いた。初生葉展開期に1ヵ所につき1本に間引きし、各ポット2株立てとした。収穫は11月9日に実施した(播種後137日)。なお、収量予測用には5ポット10株を用いた。
【0034】
2)2015年ポット試験(2):
和歌山県内にてポット栽培を実施した。土壌は国内の圃場土を用い、窒素:リン酸:カリウム=1:6:6、3:6:6及び10:6:6(Kg/10a)となるように施肥を行い、耕耘後の土壌を用いた(窒素量のみ異なる3種の施肥条件を設定した)。ポットには1/2000aワグネルポットを用い、上記土壌を1ポットあたり約8L詰め、各施肥条件でそれぞれ15ポット計45ポットを準備した。2015年7月1日に3粒播きで各ポット内2カ所に播種した(各ポット6粒使用)。なお、品種は、「フクユタカ」を用いた。初生葉展開期に1ヵ所につき1本に間引きし、各ポット2株立てとした。収穫は、11月11日に実施した(播種後133日)。なお、収量予測用には各5ポット10株を用いる計画だったが、1株が欠株したため、計29株を用いた。
【0035】
3)2016年ポット試験:
栃木県内にてポット栽培を実施した。土壌は国内圃場土壌を用い、試験を実施した。ポットには1/2000ワグネルポットを用い、上記土壌を1ポットあたり約8L詰め、75ポットを準備した。数日間静置後、2015年同様に播種をおこなった。播種は、2016年7月1日におこない、11月15日に収穫をおこなった。なお、品種は「里のほほえみ」を用いた。また、収量予測用には23ポット、46株を用いた。
【0036】
4)2017年ポット試験:
栃木県内にてポット栽培を実施した。土壌は、国内圃場土を用い、そこへ肥料として苦土石灰(協和)を125g/m及びリン酸入り油かす(大栄物産)を100g/m添加した土壌(1×)及び肥料を添加した土壌と未添加土壌を半量ずつ混和した土壌(0.5×)の2種類を用いた。また品種は、「里のほほえみ」、「フクユタカ」、「エンレイ」及び「湯上がり娘」の4品種を用いた。ポットには1/2000aワグネルポットを用い、上記土壌を1ポットあたり約8L詰め、各土壌で5ポットずつ、4品種で計40ポットを準備した。数日間静置後、品種ごとに4粒播きで各ポット内2カ所に播種した(各ポット8粒使用)。初生葉展開期に1ヵ所につき1本に間引きし、各ポット2株立てとした。播種は、2017年7月4日におこない、収穫は10月以降、成熟期に達し収穫適期と判断した株から順次収穫をおこなった。
【0037】
2.葉のサンプリング
葉のサンプリングは、それぞれの栽培試験において播種後28~32日となる日の日中に実施した(おおむね10時―15時)。この際のダイズ生育ステージは年度、栽培条件、品種により若干異なるが概ね葉齢5-7程度であった。ここでいう葉齢は、初生葉を1とした際に最上位に展開した本葉が下から数えて何枚目かを数えた際の値とした。葉のサンプリングは、最上位に展開する本葉の1または2葉齢古い本葉を構成する複葉3枚の内、中央の複葉を採取した。しかしながら、中央の複葉が虫害等著しく損傷を受けている場合は、別の複葉を採取した。採取した葉はアルミホイルで包み直ちに液体窒素中で凍結し、代謝反応を停止させた。凍結サンプルは凍結状態を維持したまま実験室へ持ち帰り、凍結乾燥にかけて乾燥させた。この乾燥したサンプルを後述の抽出操作に供試した。なお、2015年及び2016年のポット栽培試験では1個体ごとに採取し、収量データは対応する個体のものを用いた。一方、2017年ポット栽培試験では1ポット毎、すなわち2個体毎にまとめてサンプリングを実施し、収量データは2個体の平均値を用いた。
また、葉をサンプリングした際の播種からの日数は以下のとおりである。
*2015年ポット試験(1):2015年7月25日(播種後30日)
*2015年ポット試験(2):2015年7月29日(播種後28日)
*2016年ポット試験:2016年8月2日(播種後32日)
*2017年ポット試験:2017年8月3日(播種後30日)
【0038】
3.最終的な子実収量の測定
栽培試験後の各個体から全子実を回収し、80℃にて2-3日間乾燥させた。収量データはこの乾燥重量(gDW/個体)を用いた。2で既述したように2017年の試験における2個体(1ポット毎)の平均データは1つとしてカウントし、2015-17年のポット試験データは計125個となった。収量データは表2a~2cに示すように最小で0.9gDW/個体、最大で42.5gDW/個体であった。
【0039】
【表2a】
【0040】
【表2b】
【0041】
【表2c】
【0042】
4.採取した葉の成分の抽出
凍結乾燥した葉サンプルは、スパーテルを用いて手作業にて可能な限り粉砕をおこなった。粉砕後、2mLのチューブ(セーフロックチューブ,エッペンドルフ)に10mgを秤量し、直径5mmのジルコニア製ボール1つをチューブに加えて、ビーズ粉砕機(MM400,Retsch)にて25Hzで1分間さらに粉砕をおこなった。ここへ、メタノール(HPLCグレード,関東化学)、純水(milliQ, メルクミリポア)、クロロホルム(特級、関東化学)の混合溶媒(5:2:2, v/v/v)を1mL加え、37℃で30分間抽出をおこなった。抽出後、2000×g程度の卓上遠心機(チビタン)にて5分間遠心分離をおこない、固形物と分離した。遠心分離後、上清600μLを1.5mLチューブに分注し、そこへ純水300μLを添加した。ボルテックスを用いて混合した後、再度5分間遠心分離をおこなった。遠心後の上清400μLを新たに1.5mLチューブに分注した。データのクオリティチェック及び保持時間の補正に用いたQCサンプルは遠心分離後の各サンプルから400μLとは別に200μLずつ集約し、それより400μLを別途1.5mLチューブに分注した。各サンプルに残存するメタノールをスピードバック(SC-210A,ThermoScientific)で10分間、濃縮をおこなった。濃縮後、残存した水分を液体窒素にて凍結し、一晩凍結乾燥をおこなった。
【0043】
5.誘導体化
4で得られた抽出物に、5μLのミリスチン酸-d27(Cambridge Isotope Laboratories)のピリジン溶液(50μg/mL)を内部標準(後述のライブラリ照合用)として添加した。さらに別の内部標準(サンプル間のピーク強度補正)としてリビトール(東京化成工業)のピリジン溶液(50μg/mL)を5μL加えた。さらに、100μLのメトキシアミン塩酸塩のピリジン溶液(20mg/mL)を添加し、37℃で90分間インキュベーションをおこなった(第1の誘導体化「メトキシム化」)。インキュベート後、卓上遠心機で不溶物と分離後、上清50μLをバイアルビンに分注した。次にGCシステムのオートサンプラー(Agilent 7693)に搭載の自動分注器を用いて、第2の誘導体化をおこなった。メトキシム化後のピリジン溶液が入ったバイアルに50μLのN-メチル-N-(トリメチルシリル)トリフルオロアセタミド(MSTFA: ThermoScientific)を分析前に自動で添加するようにプログラムを組み、加温部分にて37℃で30分間インキュベート後(第2の誘導体化「シリル化」)、そのままGC-MS分析をおこなった。なお、溶媒に用いたピリジンは脱水ピリジン(関東化学)を用いた。
【0044】
6.GC-MS分析
5で得られた1μLの分析サンプルを、スプリットモードでGC-MSに注入した(10:1,v/v)。GC-MS装置は、Agilent 7890B GCシステム(Agilent)、シングル四重極分析計Agilent 5977B GC/MSD(Agilent)ならびにAgilent 7693Aオートサンプラ(Agilent)を連結したものを用いた。このシステムに0.25μmの膜厚をもち30mの分析カラムに10mのガードカラムが組み込まれた40m×0.25mm I.Dのヒューズドシリカキャピラリーカラム(ZORBAX DB5-MS+10m Duragard Capillary Column, 122-5532G, Agilent)を装着して用いた。注入温度は、250℃とし、カラムを通るヘリウムガスの流速は0.7mL/minに設定した。カラム温度は、1分間60℃で等温に保ち、次いで10℃/分で325℃まで上昇させ、そして10分間等温に保った。搬送ライン及びイオンソース温度は、それぞれ300℃及び230℃とした。イオンを(70.0kV)電子衝撃(EI)によって生成した上で、m/z50-600の質量範囲にわたって1秒当たり2.7回のスキャンを行ってデータを記録した。加速電圧は、5.9分の溶媒遅延後に作動させた。
なお、QCサンプルはサンプルの分析サンプルの5-6分析毎に1つ入れた。
【0045】
7.データ行列の作成
GC-MSで取得したデータは、netCDFファイル形式に変換し、ピーク検出及びアラインメントソフトウェアであるMetAlign(Wageningen Univ.)でデータ行列を作製した。サンプル間の各ピークの保持時間及びピーク強度の補正には、別途、内部標準として添加したリビトールを指標におこなった。
最終的にデータ行列はcsv形式で作成した。そこへ各ダイズサンプルの収量値を統合し、データ解析に用いた。
【0046】
8.ピーク同定
GC-MS分析によって得られた分析データは、内部標準物質として添加したミリスチン酸d27の保持時間を基準としてAgilent社製のFiehnメタボロミクスRTLライブラリ(以下、Fiehnライブラリ)を用いてピーク同定をおこなった。ピーク同定の基準はFiehnライブラリによるスペクトル一致率が70%以上の候補代謝物から保持時間の誤差が0.05分以内であることとした。
【0047】
9.収量と相関する成分候補の探索
2016年データを用いて収量と相関する成分候補の探索を行った。表2に示す20サンプルを用いて、葉中成分由来のピーク及び各サンプルに対応する収量データのマトリックスデータを用いて解析をおこなった。同一と考えられる成分由来ピークを保持時間により整理・重複を除外したのち、各成分由来ピークデータと収量との相関解析をおこなった。
【0048】
【表2】
【0049】
各ピークデータと収量との相関解析では、単相関係数r及び無相関の検定によりp値を算出した。また各成分由来ピーク情報(保持時間、質量情報)からFiehnライブラリと照合することで、収量と相関すると同定した成分の候補として9種の成分、すなわち、2-ヒドロキシピリジン、コリン、クエン酸、グリセリン酸、グリシン、L-ピログルタミン酸、マロン酸、スクロース及びトレイトールを選抜した。選抜した9種の成分を用いて、残りのサンプルも含め、2015-2017年の全サンプル125サンプルの分析を行った。
【0050】
まず、全分析データを用いて、各成分相対量と収量との相関解析を行った。
既存技術では、ダイズの生育過程における指標を用いて、収量との相関性を解析した研究が報告されている。例えば、非特許文献(「重粘度地帯におけるダイズ「エンレイ」の多収事例に基づく収量構成要素と生育指標」新潟農総研)では、播種後40日における主茎長が収量と相関し、その相関係数rが0.51であることが示されており、また非特許文献6(「土壌理化学性の改善による麦跡作付地帯での大豆多収栽培体系の確立」福井県農試、福井県大)では播種後50-60日における根粒活性が収量と相関し、その相関係数が0.63であることが示されており、さらに別の既報(「物質生産と窒素の蓄積から見たダイズの多収生育相」福井県農試)では播種後60-70日における地上部乾物重が収量と相関し、その相関係数が0.66であることが示されている。これらの知見は、上述した播種後日数で特定の指標を評価することで一定の収量予測が可能であることを示している。しかしながら、本技術における播種後30日程度という予測時期はいずれの従来技術よりも早いことから、少なくとも相関係数の絶対値が0.51より大きい成分由来ピークは従来技術よりも優れた収量予測指標であると言える。
解析の結果、9種の成分の収量との相関は表3に示すようになり、相関係数の絶対値が0.51を超えるものとして、2-ヒドロキシピリジン、グリシン、L-ピログルタミン酸及びスクロースの4種が見いだされた。
【0051】
【表3】
【0052】
10.モデル構築・評価
2つ以上の複数の成分の分析データを用いた収量予測モデルの構築には多変量解析手法を用い、解析ツールとしてSIMCA ver.14(Umetrics)を用いた。予測モデルは、説明変数に各成分の分析データのピーク面積値を、また目的変数に収量値を用いた回帰分析をおこなった。回帰分析はPLS法の改良版であるOPLS法でおこなった。
【0053】
予測モデルの評価方法は、主に2つの指標で判断される。1つは予測精度を表すR、もう1つは予測性を表すQである。Rは予測モデル構築に使用したデータの実測値とモデルで計算した予測値との相関係数の2乗であり、1に近いほど予測精度が高いことを示している。一方、Qは、上記クロスバリデーションの結果であり、実測値と繰り返し実施したモデル検証の結果である予測値との相関係数の2乗を表している。予測の観点から、少なくともQ>0.50であれば、そのモデルは良好な予測性を持つとされていることから(Triba, M. N. et al., Mol. BioSyst. 2015, 11, 13-19.)、Q>0.50をモデル評価の基準とした。なお、常にR>Qとなるため、Q>0.50は同時にR>0.50を満たすこととなる。
【0054】
10-1.全データを用いたモデルの構築・評価
1データ当り9成分の相対量と収量値を持ち、全125個のデータマトリックスから、収量を予測するOPLSモデルを構築した。構築の際、各成分由来ピーク及び収量データはオートスケーリングにより平均0、分散1に変換した。モデル構築の結果、予測精度を示すR=0.56、予測性を示すQ=0.55であった。結果を図1に示す。モデルの予測性能の基準として設定したQ>0.50を満たしていた。この予測モデルにより、栽培1カ月程度の葉に含まれる成分組成を用いることで、一定の予測性能を持つモデルが構築でき、早期収量予測が可能であることが示された。
【0055】
10-2.VIP値の算出
10-1で構築したモデルではVIP(Variable Importance in the Projection, 投影における変数重要性)値とよばれる各成分由来ピークに与えられるモデル性能への寄与度が与えられる。VIP値はその値が大きいほどモデルへの寄与度が大きく、相関係数の絶対値とも相関する。VIP値のリストを表4に示す。
【0056】
【表4】
【0057】
10-3.VIP値を指標としたモデル構築(2個以上の成分ピーク情報を用いたモデル)
10-1で構築したモデルへの各成分由来ピークの寄与度であるVIP値のランキング(10-2)を基に複数の成分でモデルを構築した。特に限定されるわけではないが、モデル性能の基準を便宜上Q>0.50とした。
【0058】
10-3-1.VIP値が下位の成分由来ピークを用いたモデル
VIP値1位以下、2位以下、3位以下、4位以下、5位以下及び6位以下のすべての成分データを用いてそれぞれOPLSモデルの構築をおこなった。その結果、Q>0.50を満たすのはVIP値1位以下すべて~3位以下すべての成分データを用いたモデルであり、VIP値4位以下の成分データすべてを用いてもQ>0.50とはならないことがわかった(図2)。
【0059】
10-3-2.VIP値上位の成分データを複数個用いたモデル
VIP値上位から順に複数個の成分データ、すなわち、VIP値1位及び2位、VIP値1位~3位及びVIP値1位~4位の成分データを用いてOPLSモデルの構築をおこなった。その結果、上位3成分ではQ>0.50を満たさず、上位4位まで使用することでQ>0.50を満たすことがわかった。このことからモデル構築の場合は、少なくとも、9個の中から4つ以上の成分データを用いる必要があることが示唆された(図3)。
すなわち、9個の成分データから選ばれる任意の4個以上の成分データを用いて構築したモデルのうち、Q>0.50を満たすモデルは予測性があると判断される。具体的には、以下のモデルが挙げられる。
【0060】
1)VIP値上位から順に連続する4個の成分データを用いたモデル
VIP値上位1位~4位、2位~5位、3位~6位、4位~7位、5位~8位及び6位~9位の成分データを用いて、それぞれOPLSモデルの構築をおこなった。その結果、VIP値4位~7位の成分データを用いた際のモデルで初めてQ>0.50を満たさなかった。それ以降Qは低下する傾向であった。このことから、VIP値6位以上であればその中から任意の4個の成分データを用いることでQの基準を概ね満たすが、VIP値4位以下から選ばれる任意の成分データ4個のみでは基準を満たさないことが示唆された(図4)。
【0061】
2)VIP値上位から順に連続する5個の成分データを用いたモデル
VIP値上位1位~5位、2位~6位、3位~7位、4位~8位及び5位~9位の成分データを用いて、それぞれOPLSモデルの構築をおこなった。その結果、VIP値4位~8位の成分データを用いた際のモデルで初めてQ>0.50を満たさなかった。それ以降Qは低下する傾向であった。このことから、VIP値7位以上であればその中から任意の5個の成分データを用いることでQの基準を概ね満たすが、VIP値4位以下から選ばれる任意の成分データ5個のみでは基準を満たさないことが示唆された(図5)。
【0062】
3)VIP値上位から順に連続する6個の成分データを用いたモデル
VIP値上位1位~6位、2位~7位、3位~8位及び4位~9位の成分データを用いて、それぞれOPLSモデルの構築をおこなった。その結果、VIP値4位~9位の成分データを用いた際のモデルで初めてQ>0.50を満たさなかった。このことから、VIP値8位以上であればその中から任意の6個の成分データを用いることでQの基準を概ね満たすが、VIP値4位以下から選ばれる任意の成分データ6個のみ、すなわち4位以下すべてでは基準を満たさないことが分かった(図6図2)。
【0063】
4)VIP値上位から順に連続する7個の成分データを用いたモデル
VIP値上位1位~7位、2位~8位及び3位~9位の成分データを用いて、それぞれOPLSモデルの構築をおこなった。その結果、すべてのモデルでQ>0.50を満たした。このことから、9個の成分データのうち任意の7個以上の成分データを用いることでQの基準を概ね満たすことが分かった(図7)。
図1
図2
図3
図4
図5
図6
図7