(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-13
(45)【発行日】2023-03-22
(54)【発明の名称】燃料電池発電モジュール
(51)【国際特許分類】
H01M 8/04 20160101AFI20230314BHJP
H01M 8/10 20160101ALI20230314BHJP
H01M 8/2483 20160101ALI20230314BHJP
【FI】
H01M8/04 Z
H01M8/10 101
H01M8/04 J
H01M8/2483
(21)【出願番号】P 2020166663
(22)【出願日】2020-10-01
【審査請求日】2021-11-08
(73)【特許権者】
【識別番号】519322392
【氏名又は名称】森村SOFCテクノロジー株式会社
(74)【代理人】
【識別番号】110001911
【氏名又は名称】弁理士法人アルファ国際特許事務所
(72)【発明者】
【氏名】坪井 文雄
(72)【発明者】
【氏名】松尾 卓哉
【審査官】笹岡 友陽
(56)【参考文献】
【文献】特開2017-050192(JP,A)
【文献】特開2011-014296(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/04
H01M 8/10
H01M 8/2483
(57)【特許請求の範囲】
【請求項1】
第1の方向に並べて配置された複数の発電単位から構成される発電ブロックを有する燃料電池スタックであって、各前記発電単位は、電解質層と、前記電解質層を挟んで前記第1の方向に互いに対向する空気極および燃料極とを含む単セルと、前記空気極と前記燃料極との少なくとも一方である特定電極に面するガス室と、を備え、前記発電ブロックは、前記ガス室に供給または前記ガス室から排出されるガスが通るマニホールドを有し、かつ、前記燃料電池スタックの複数の表面のうちの少なくとも1つである特定表面に開口し、かつ、前記マニホールドに連通する開口部を有する燃料電池スタックと、
熱源部と、
前記開口部と前記熱源部とに連通する接続流路と、
を備える燃料電池発電モジュールにおいて、
前記特定表面と直交する方向視において、前記接続流路は、前記開口部に重なる部分を除く部分である非重複部分を有し、
前記非重複部分は、前記燃料電池スタック
の前記複数の表面のうち前記特定表面とは異なる他の表面によって支持されている、
ことを特徴とする燃料電池発電モジュール。
【請求項2】
請求項1に記載の燃料電池発電モジュールにおいて、
前記非重複部分と前記燃料電池スタックとに接続され、かつ、前記接続流路を支持する支持部材、を備える、
ことを特徴とする燃料電池発電モジュール。
【請求項3】
請求項1または請求項2に記載の燃料電池発電モジュールにおいて、
前記燃料電池スタックは、前記発電ブロックを挟んで前記第1の方向に互いに対向し、かつ、前記発電単位から絶縁された一対のエンド部材、を備え、
前記非重複部分は、前記一対のエンド部材のうちの少なくとも一方によって支持されている、
ことを特徴とする燃料電池発電モジュール。
【請求項4】
請求項1から請求項3までのいずれか一項に記載の燃料電池発電モジュールにおいて、
前記燃料電池スタックは、各前記発電単位が、固体酸化物形燃料電池の発電単位である、固体酸化物形燃料電池スタックである、
ことを特徴とする燃料電池発電モジュール。
【請求項5】
請求項1から請求項4までのいずれか一項に記載の燃料電池発電モジュールにおいて、
前記熱源部は、原燃料ガスを改質して、水素を含む燃料ガスを生成する改質器と、前記燃料電池スタックにおいて発電に使用されずに残った残余燃料ガスを燃焼させる燃焼器とを有する、
ことを特徴とする燃料電池発電モジュール。
【請求項6】
請求項1から請求項5までのいずれか一項に記載の燃料電池発電モジュールにおいて、
前記熱源部は、発電に使用する酸化剤ガスを加熱するための熱交換器を有する、
ことを特徴とする燃料電池発電モジュール。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書によって開示される技術は、燃料電池発電モジュールに関する。
【背景技術】
【0002】
水素と酸素との電気化学反応を利用して発電を行う燃料電池の種類の1つとして、固体酸化物形の燃料電池(以下、「SOFC」という)が知られている。SOFCの構成単位である燃料電池発電単位(以下、単に「発電単位」という)は、固体酸化物を含む電解質層と、電解質層を挟んで所定の方向(以下、「第1の方向」という)に互いに対向する空気極および燃料極とを含む燃料電池単セル(以下、単に「単セル」という)と、空気極および燃料極にそれぞれ面する空気室および燃料室と、を有している。一般に、SOFCは、上記第1の方向に並べて配置された複数の発電単位から構成される発電ブロックを備える燃料電池スタックの形態で利用される。
【0003】
このような燃料電池スタックにおいて、発電ブロックには、各種のマニホールド(ガス流路)が形成されている。具体的には、燃料電池スタックには、各空気室へ酸化剤ガスを供給するための酸化剤ガス導入マニホールド、各空気室から排出された酸化剤オフガスを外部に排出するための酸化剤ガス排出マニホールド、各燃料室へ燃料ガスを供給するための燃料ガス導入マニホールド、および、各燃料室から排出された燃料オフガスを外部に排出するための燃料ガス排出マニホールドが形成されている。各マニホールドは、燃料電池スタックの第1の方向における表面のうちの一方に開口する開口部に連通している。
【0004】
また、燃料電池スタックの近傍に、熱源を備える熱源部が設置されることがある。熱源部は、例えば、燃料電池スタックから排出された排ガスを燃焼させる燃焼室や、原燃料ガスを改質して燃料電池スタックに供給する燃料ガスを生成する改質室を備えている。なお、本明細書では、燃料電池スタックと熱源部とを備える構成を、燃料電池発電モジュールという。
【0005】
一般に、燃料電池発電モジュールは、上記開口部と上記熱源部とに連通する接続流路を更に備えている(例えば、特許文献1)。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記従来技術では、熱源部は、接続流路を介して燃料電池スタックに接続されているため、熱源部および接続流路に起因する荷重は、燃料電池スタックと接続流路との接続部分に集中する傾向がある。これにより、接続流路における接続部分の劣化や、接続流路や熱源部の燃料電池スタックからの脱離等のおそれがある。このため、燃料電池発電モジュールでは、当該接続部分にかかる上記荷重を低減させることが求められている。
【0008】
なお、このような課題は、SOFCに限らず、他のタイプの燃料電池にも共通の課題である。
【0009】
本明細書では、上述した課題を解決することが可能な技術を開示する。
【課題を解決するための手段】
【0010】
本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。
【0011】
(1)本明細書に開示される燃料電池発電モジュールは、第1の方向に並べて配置された複数の発電単位から構成される発電ブロックを有する燃料電池スタックであって、各前記発電単位は、電解質層と、前記電解質層を挟んで前記第1の方向に互いに対向する空気極および燃料極とを含む単セルと、前記空気極と前記燃料極との少なくとも一方である特定電極に面するガス室と、を備え、前記発電ブロックは、前記ガス室に供給または前記ガス室から排出されるガスが通るマニホールドを有し、かつ、前記燃料電池スタックの複数の表面のうちの少なくとも1つである特定表面に開口し、かつ、前記マニホールドに連通する開口部を有する燃料電池スタックと、熱源部と、前記開口部と前記熱源部とに連通する接続流路と、を備える燃料電池発電モジュールにおいて、前記特定表面と直交する方向視において、前記接続流路は、前記開口部に重なる部分を除く部分である非重複部分を有し、前記非重複部分は、前記燃料電池スタックによって支持されている。本燃料電池発電モジュールでは、上記接続流路における非重複部分は、燃料電池スタックによって支持されている。このため、上記接続流路における燃料電池スタックとの接続部分にかかる荷重(具体的には、熱源部および接続流路に起因する荷重)を、上記非重複部分における燃料電池スタックに支持されている部分(以下、「被支持部分」ともいう)へと分散することができる。従って、本燃料電池発電モジュールによれば、上記接続流路における接続部分にかかる上記荷重を低減させることができる。
【0012】
(2)上記燃料電池発電モジュールにおいて、前記非重複部分と前記燃料電池スタックとに接続され、かつ、前記接続流路を支持する支持部材、を備える構成としてもよい。本構成の燃料電池発電モジュールによれば、上記非重複部分は、支持部材を介して燃料電池スタックに支持されている。このように、支持部材を介することにより、上記非重複部分における燃料電池スタックへの支持をより確実にすることができる。また、本構成によれば、接続流路を直接的に燃料電池スタックに支持させることを要さないため、接続流路の設計の自由度を向上させることができる。
【0013】
(3)上記燃料電池発電モジュールにおいて、前記燃料電池スタックは、前記発電ブロックを挟んで前記第1の方向に互いに対向し、かつ、前記発電単位から絶縁された一対のエンド部材、を備え、前記非重複部分は、前記一対のエンド部材のうちの少なくとも一方によって支持されている構成としてもよい。本構成の燃料電池発電モジュールによれば、上記非重複部分は、上記一対のエンド部材のうちの少なくとも一方によって支持されている。このように、上記非重複部分を、燃料電池スタックを構成する部材のうちのエンド部材によって支持することにより、発電ブロックによって支持する構成と比較して、発電ブロックへの上記荷重による影響を低減することができる。
【0014】
(4)上記燃料電池発電モジュールにおいて、前記燃料電池スタックは、各前記発電単位が、固体酸化物形燃料電池の発電単位である、固体酸化物形燃料電池スタックである構成としてもよい。固体酸化物形燃料電池スタックは、固体高分子型燃料電池スタック等の他のタイプの燃料電池スタックと比較して、より高温で作動させるため、接続流路も高温環境で使用される。そのため、低温での使用時と比較して、接続流路の剛性が低下した状態で使用される。これにより、接続流路における接続部分の劣化や、接続流路や熱源部の燃料電池スタックからの脱離等のおそれが特に懸念される。本構成の燃料電池発電モジュールによれば、接続流路における非重複部分が、燃料電池スタックによって支持されているため、接続流路における接続部分の劣化や、接続流路や熱源部の燃料電池スタックからの脱離等を低減することができる。
【0015】
(5)上記燃料電池発電モジュールにおいて、前記熱源部は、原燃料ガスを改質して、水素を含む燃料ガスを生成する改質器と、前記燃料電池スタックにおいて発電に使用されずに残った残余燃料ガスを燃焼させる燃焼器とを有する構成としてもよい。本構成の燃料電池発電モジュールによれば、熱源部が、改質器と燃焼器とを有する構成においても、上記接続流路における接続部分にかかる上記荷重を低減させることができる。
【0016】
(6)上記燃料電池発電モジュールにおいて、前記熱源部は、発電に使用する酸化剤ガスを加熱するための熱交換器を有する構成としてもよい。本構成の燃料電池発電モジュールによれば、熱源部が、熱交換器を有する構成においても、上記接続流路における接続部分にかかる上記荷重を低減させることができる。
【0017】
なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、燃料電池スタックと熱源と接続流路とを備える燃料電池発電モジュールおよびその製造方法等の形態で実現することが可能である。
【図面の簡単な説明】
【0018】
【
図1】本実施形態における発電モジュール1の外観構成を示す説明図
【
図3】本実施形態における燃料電池スタック100の外観構成を示す斜視図
【
図4】
図2のIV-IVの位置における燃料電池スタック100のXZ断面構成を示す説明図
【
図5】
図2のV-Vの位置における燃料電池スタック100のXZ断面構成を示す説明図
【
図6】
図4に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図
【
図7】
図5に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図
【
図8】
図3のVIII-VIIIの位置における互いに隣接する2つの発電単位102のYZ断面構成を示す説明図
【
図9】第2実施形態における発電モジュール1Aの外観構成を示す説明図
【
図10】第3実施形態における発電モジュール1Bの外観構成を示す斜視図
【発明を実施するための形態】
【0019】
A.第1実施形態:
A-1.燃料電池発電モジュール1の構成:
図1は、本実施形態における燃料電池発電モジュール(以下、単に「発電モジュール」という)1の外観構成を示す説明図であり、
図2は、発電モジュール1の概略構成を示す説明図である。なお、
図2では、便宜的に、燃料ガス(原燃料ガスRFG、燃料ガスFGおよび燃料オフガスFOGを含む)の流れを一点鎖線で示し、酸化剤ガス(酸化剤ガスOGおよび酸化剤オフガスOOGを含む)の流れを実線で示し、排ガスEGの流れを破線で示している。燃料オフガスFOGは、特許請求の範囲における残余燃料ガスに相当する。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、特に断らない限り、便宜的に、X軸正方向を上方向と呼び、X軸負方向を下方向と呼ぶものとする。なお、発電モジュール1および燃料電池スタック100は、実際にはそのような向きとは異なる向きで設置されてもよい。
図3以降についても同様である。
【0020】
発電モジュール1は、燃料電池スタック100と、補助器300と、配管61,62,71,72を備える。補助器300は、特許請求の範囲における熱源部に相当する。酸化剤ガス導入配管61は、特許請求の範囲における接続流路に相当する。
【0021】
A-2.燃料電池スタック100の構成:
図3は、第1実施形態における燃料電池スタック100の外観構成を示す斜視図であり、
図4は、
図3のIV-IVの位置における燃料電池スタック100のXZ断面構成を示す説明図であり、
図5は、
図3のV-Vの位置における燃料電池スタック100のXZ断面構成を示す説明図である。各図には、方向を特定するための互いに直交するXYZ軸が示されている。
図3から
図8の説明では、便宜的に、Z軸正方向を上方向と呼び、Z軸負方向を下方向と呼ぶものとする。なお、燃料電池スタック100は、実際にはそのような向きとは異なる向きで設置されてもよい。また、以下では、Z軸方向に直交する方向を、面方向と呼ぶものとする。
【0022】
燃料電池スタック100は、複数の(本実施形態では7つの)燃料電池発電単位(以下、単に「発電単位」という)102と、一対のターミナルプレート410,420と、一対の絶縁シート510,520と、一対のエンドプレート104,106とを備える。7つの発電単位102は、所定の配列方向(本実施形態では上下方向)に並べて配置されている。一対のターミナルプレート410,420は、複数の発電単位102から構成される集合体(以下、「発電ブロック103」という)を上下から挟むように配置されている。一対の絶縁シート510,520は一対のターミナルプレート410,420を上下から挟むように配置されている。また、一対のエンドプレート104,106は、一対の絶縁シート510,520を上下から挟むように配置されている。なお、上記配列方向(上下方向)は、特許請求の範囲における第1の方向に相当する。エンドプレート104,106は、特許請求の範囲におけるエンド部材に相当する。
【0023】
図3に示すように、燃料電池スタック100を構成する各層(上側のエンドプレート104、各発電単位102、各ターミナルプレート410,420、各絶縁シート510,520)のZ軸方向回りの外周の4つの角部周辺には、各層を上下方向に貫通し、かつ、Z軸方向視において略円形の孔が形成されている。さらに燃料電池スタック100を構成する下側のエンドプレート106のZ軸方向回りの外周の4つの角部周辺の上面には、後述するボルト22の下側端部が螺合される孔(ねじ孔)が形成されている。各発電単位102と各ターミナルプレート410,420と各絶縁シート510,520と各エンドプレート104,106とに形成され互いに対応する孔同士が上下方向に連通して、上側のエンドプレート104から下側のエンドプレート106にわたって上下方向に延びるボルト孔109を構成している。以下の説明では、ボルト孔109を構成するために各層に形成された孔も、ボルト孔109ということがある。
【0024】
各ボルト22は、上下方向に延びる各ボルト孔109に挿通されている。各ボルト22の下側端部には、各ボルト22が、下側のエンドプレート106に係合可能なように、下側のエンドプレート106のZ軸方向回りの外周の4つの角部周辺の上面に形成された上記孔(ねじ孔)に螺合可能なねじ部が形成されている。このように、本実施形態の燃料電池スタック100では、各ボルト22の頭部と下側のエンドプレート106とによって、各発電単位102および各エンドプレート104,106が一体に締結されている。ここで、「各ボルト22が、下側のエンドプレート106に係合」しているとは、各ボルト22が直接的にまたは他の部材(例えば、ナット)を介して下側のエンドプレート106に取り付けられていることを意味する。
【0025】
また、
図3から
図5に示すように、燃料電池スタック100を構成する各層(各発電単位102、下側のターミナルプレート420および下側の絶縁シート520)のZ軸方向回りの外周辺の付近には、各発電単位102と、下側のターミナルプレート420とを上下方向に貫通する孔が形成されており、各発電単位102に形成され互いに対応する孔同士が上下方向に連通して、複数の発電単位102にわたって上下方向に延びる連通孔108を構成している。以下の説明では、連通孔108を構成するために各層に形成された孔も、連通孔108ということがある。
【0026】
図3および
図4に示すように、燃料電池スタック100のZ軸方向回りの外周における1つの辺(Y軸に平行な2つの辺の内のX軸正方向側の辺)の付近に位置する連通孔108は、燃料電池スタック100の外部から酸化剤ガスOGが導入され、その酸化剤ガスOGを各発電単位102の後述する空気室166に供給するガス流路である酸化剤ガス導入マニホールド161として機能し、該辺の反対側の辺(Y軸に平行な2つの辺の内のX軸負方向側の辺)の付近に位置する連通孔108は、各発電単位102の空気室166から排出されたガスである酸化剤オフガスOOGを燃料電池スタック100の外部へと排出するガス流路である酸化剤ガス排出マニホールド162として機能する。酸化剤ガスOGとしては、例えば空気が使用される。空気室166は、特許請求の範囲におけるガス室に相当する。酸化剤ガス導入マニホールド161および酸化剤ガス排出マニホールド162は、それぞれ、特許請求の範囲におけるマニホールドに相当する。
【0027】
また、
図3および
図5に示すように、燃料電池スタック100のZ軸方向回りの外周を構成する辺の内、上述した酸化剤ガス排出マニホールド162として機能する連通孔108に最も近い辺の付近に位置する他の連通孔108は、燃料電池スタック100の外部から燃料ガスFGが導入され、その燃料ガスFGを各発電単位102の後述する燃料室176に供給するガス流路である燃料ガス導入マニホールド171として機能し、上述した酸化剤ガス導入マニホールド161として機能する連通孔108に最も近い辺の付近に位置する他の連通孔108は、各発電単位102の燃料室176から排出されたガスである燃料オフガスFOGを燃料電池スタック100の外部へと排出するガス流路である燃料ガス排出マニホールド172として機能する。燃料ガスFGとしては、例えば都市ガスを改質した水素リッチなガスが使用される。燃料室176は、特許請求の範囲におけるガス室に相当する。燃料ガス導入マニホールド171および燃料ガス排出マニホールド172は、それぞれ、特許請求の範囲におけるマニホールドに相当する。
【0028】
(ターミナルプレート410,420、絶縁シート510,520およびエンドプレート104,106の構成)
一対のターミナルプレート410,420は、略矩形の平板形状の導電性部材であり、例えばステンレスにより形成されている。各ターミナルプレート410,420のZ軸方向における厚さ(板厚)は、0.2mm以上、3mm以下である。上側のターミナルプレート410は、複数の発電単位102から構成される発電ブロック103の上方向側に配置されており、下側のターミナルプレート420は、発電ブロック103の下方向側に配置されている。すなわち、上側のターミナルプレート410は、複数の単セル110の内、Z軸方向において、最も上方向側に位置する単セル110を備える発電単位102の上方向側に配置されている。また、下側のターミナルプレート420は、複数の単セル110の内、Z軸方向において、最も下方向側に位置する単セル110を備える発電単位102の下方向側に配置されている。
図3に示すように、上側のターミナルプレート410には、4つのボルト孔109が形成されている。また、下側のターミナルプレート420には、4つの連通孔108と、4つのボルト孔109とが形成されている(
図4および
図5参照)。上側のターミナルプレート410は、燃料電池スタック100のプラス側の出力端子として機能し、下側のターミナルプレート420は、燃料電池スタック100のマイナス側の出力端子として機能する。
【0029】
一対の絶縁シート510,520は、略矩形のシート状の絶縁部材である。絶縁シート510,520は、例えばマイカ、アルミナ、窒化ケイ素、ジルコニア等により形成されている。各絶縁シート510,520のZ軸方向における厚さ(シート厚)T1は、0.1mm以上、5mm以下であり、好ましくは、1mm以上、5mm以下である。上側の絶縁シート510は、上側のターミナルプレート410の上方向側に配置されており、下側の絶縁シート520は、下側のターミナルプレート420の下方向側に配置されている。上側のターミナルプレート410と同様に、上側の絶縁シート510には、4つのボルト孔109が形成されている。また、下側のターミナルプレート420と同様に、下側の絶縁シート520には、4つの連通孔108と、4つのボルト孔109とが形成されている。なお、本明細書において、「導電性部材」とは、電気抵抗率が100μΩ・m以下である部材を意味し、「絶縁部材」とは、電気抵抗率が10MΩ・m以上である部材を意味している。
【0030】
一対のエンドプレート104,106は、略矩形の平板形状の導電性部材であり、例えばステンレスにより形成されている。各エンドプレート104,106のZ軸方向における厚さ(板厚)は、1mm以上、15mm以下である。上側のエンドプレート104は、上側の絶縁シート510の上方向側に配置されており、下側のエンドプレート106は、下側の絶縁シート520の下方向側に配置されている。換言すれば、一対のエンドプレート104,106は、発電ブロック103を挟んでZ軸方向に互いに対向し、かつ、発電単位102(ひいては、発電ブロック103)から絶縁されるように配置されている。一対のエンドプレート104,106によって、一対の絶縁シート510,520と、一対のターミナルプレート410,420と、複数の発電単位102とが押圧された状態で挟持されている。
図3に示すように、上側のエンドプレート104には、4つのボルト孔109が形成されている。また、下側のエンドプレート106には、4つの流路用貫通孔107と、4つのボルト孔109とが形成されている(
図4および
図5参照)。4つの流路用貫通孔107は、それぞれ、酸化剤ガス導入マニホールド161、酸化剤ガス排出マニホールド162、燃料ガス導入マニホールド171、燃料ガス排出マニホールド172に連通している。各流路用貫通孔107によって、それぞれ、開口部OPが画定される。より具体的には、開口部OPは、それぞれ、燃料電池スタック100における下側のエンドプレート106の表面S106aに開口し、各マニホールド161,162,171,172に連通している。なお、下側のエンドプレート106の表面S106aは、特許請求の範囲における特定表面に相当する。
【0031】
(配管61,62,71,72等の構成)
図1、
図2、
図4および
図5に示すように、燃料電池発電モジュール1は、さらに、燃料電池スタック100の下側のエンドプレート106に対して複数の発電単位102とは反対側(すなわち、下側)に配置された配管61,62,71,72を備える。配管61,62,71,72は、それぞれ、内部にガス流路が形成された筒状の部材であり、例えば、金属により形成されている。
図2および
図4に示すように、酸化剤ガス導入マニホールド161には、酸化剤ガス導入配管61が接続されており、酸化剤ガス排出マニホールド162には、酸化剤ガス排出配管62が接続されている。また、
図2および
図5に示すように、燃料ガス導入マニホールド171には、燃料ガス導入配管71が接続されており、燃料ガス排出マニホールド172には、燃料ガス排出配管72が接続されている。なお、各配管61,62,71,72と下側のエンドプレート106との間には、絶縁シート26が配置されている。絶縁シート26は、例えばマイカシートや、セラミック繊維シート、セラミック圧粉シート、ガラスシート、ガラスセラミック複合剤等により構成される。配管61,62,71,72は、例えば、図示しない固定用部材(例えばボルト)によって、燃料電池スタック100および後述の補助器300に接続されている。酸化剤ガス導入配管61の詳細構成については、後で説明する。
【0032】
(発電単位102の構成)
図6は、
図4に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図であり、
図7は、
図5に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図であり、
図8は、
図3のVIII-VIIIの位置における互いに隣接する2つの発電単位102のYZ断面構成を示す説明図である。
図6から
図8に示すように、発電の最小単位である発電単位102は、燃料電池単セル(以下、単に「単セル」という)110と、セパレータ120と、空気極側フレーム130と、空気極側集電部材134と、燃料極側フレーム140と、燃料極側集電部材144と、発電単位102の最上層および最下層を構成する一対のインターコネクタ150とを備えている。セパレータ120、空気極側フレーム130、燃料極側フレーム140、インターコネクタ150におけるZ軸方向回りの外周には、上述した各マニホールド161,162,171,172として機能する各連通孔108を構成する孔と、各ボルト孔109を構成する孔とが形成されている。なお、発電単位102は単セル110を備えるため、上述した発電ブロック103は、単セル110が上下方向に複数並べて配置された構造体であるとも表現できる。
【0033】
一対のインターコネクタ150は、Z軸方向視で単セル110より大きい略矩形の平板形状の導電性部材であり、例えばフェライト系ステンレスにより形成されている。インターコネクタ150は、発電単位102間の電気的導通を確保すると共に、発電単位102間での反応ガスの混合を防止する。また、本実施形態では、2つの発電単位102が隣接して配置されている場合、1つのインターコネクタ150は、隣接する2つの発電単位102に共有されている。すなわち、ある発電単位102における上側のインターコネクタ150は、その発電単位102の上側に隣接する他の発電単位102における下側のインターコネクタ150と同一部材である。また、燃料電池スタック100は一対のターミナルプレート410,420を備えているため、燃料電池スタック100において最も上に位置する発電単位102は上側のインターコネクタ150を備えておらず、最も下に位置する発電単位102は下側のインターコネクタ150を備えていない(
図4および
図5参照)。
【0034】
単セル110は、電解質層112と、電解質層112を挟んで上下方向(発電単位102が並ぶ配列方向)に互いに対向する空気極(カソード)114および燃料極(アノード)116とを備える。なお、本実施形態の単セル110は、燃料極116で電解質層112および空気極114を支持する燃料極支持形の単セルである。空気極114および燃料極116は、それぞれ、特許請求の範囲における特定電極に相当する。
【0035】
電解質層112は、Z軸方向視で略矩形の平板形状部材であり、緻密な層である。電解質層112は、例えば、YSZ(イットリア安定化ジルコニア)、ScSZ(スカンジア安定化ジルコニア)、SDC(サマリウムドープセリア)、GDC(ガドリニウムドープセリア)、ペロブスカイト型酸化物等の固体酸化物により形成されている。空気極114は、Z軸方向視で電解質層112より小さい略矩形の平板形状部材であり、多孔質な層である。空気極114は、例えば、ペロブスカイト型酸化物(例えばLSCF(ランタンストロンチウムコバルト鉄酸化物)、LSM(ランタンストロンチウムマンガン酸化物)、LNF(ランタンニッケル鉄酸化物))により形成されている。燃料極116は、Z軸方向視で電解質層112と略同一の大きさの略矩形の平板形状部材であり、多孔質な層である。燃料極116は、例えば、Ni(ニッケル)、Niとセラミック粒子からなるサーメット、Ni基合金等により形成されている。このように、本実施形態の単セル110(発電単位102)は、電解質として固体酸化物を用いる固体酸化物形燃料電池(SOFC)である。
【0036】
セパレータ120は、中央付近に上下方向に貫通する略矩形の孔121が形成されたフレーム状の部材であり、例えば、ステンレス等の金属材料により形成されている。セパレータ120における孔121の周囲部分は、電解質層112における空気極114の側の表面の周縁部に対向している。セパレータ120は、その対向した部分に配置されたロウ材(例えばAgロウ)により形成された接合部124により、電解質層112(単セル110)と接合されている。セパレータ120により、空気極114に面する空気室166と燃料極116に面する燃料室176とが区画され、単セル110の周縁部における一方の電極側から他方の電極側へのガスのリークが抑制される。なお、単セル110とセパレータ120との接合箇所付近に、空気室166と燃料室176との間をシールするシール部材(例えば、ガラスシール部材)がさらに設けられてもよい。
【0037】
空気極側フレーム130は、中央付近に上下方向に貫通する略矩形の空気室用孔131が形成された部材であり、例えば、マイカ等の絶縁体により形成されている。空気極側フレーム130は、セパレータ120における電解質層112に対向する側とは反対側の表面の周縁部と、インターコネクタ150における空気極114に対向する側の表面の周縁部とに接触している。空気極側フレーム130に形成された空気室用孔131によって、空気極114に面する空気室166が構成される。また、空気極側フレーム130によって、発電単位102に含まれる一対のインターコネクタ150間が電気的に絶縁される。また、空気極側フレーム130には、酸化剤ガス導入マニホールド161と空気室166とを連通する酸化剤ガス供給連通流路132と、空気室166と酸化剤ガス排出マニホールド162とを連通する酸化剤ガス排出連通流路133とが形成されている。
【0038】
燃料極側フレーム140は、中央付近に上下方向に貫通する略矩形の燃料室用孔141が形成された部材であり、例えば、金属により形成されている。燃料極側フレーム140は、セパレータ120における電解質層112に対向する側の表面の周縁部と、インターコネクタ150における燃料極116に対向する側の表面の周縁部とに接触している。燃料極側フレーム140に形成された燃料室用孔141によって、燃料極116に面する燃料室176が構成される。また、燃料極側フレーム140には、燃料ガス導入マニホールド171と燃料室176とを連通する燃料ガス供給連通流路142と、燃料室176と燃料ガス排出マニホールド172とを連通する燃料ガス排出連通流路143とが形成されている。
【0039】
燃料極側集電部材144は、燃料室176内に配置されている。燃料極側集電部材144は、インターコネクタ対向部146と、電極対向部145と、電極対向部145とインターコネクタ対向部146とをつなぐ連接部147とを備えており、例えば、ニッケルやニッケル合金、ステンレス等により形成されている。電極対向部145は、燃料極116における電解質層112に対向する側とは反対側の表面に接触しており、インターコネクタ対向部146は、インターコネクタ150における燃料極116に対向する側の表面に接触している。燃料極側集電部材144は、このような構成であるため、燃料極116とインターコネクタ150とを電気的に接続する。なお、電極対向部145とインターコネクタ対向部146との間には、例えばマイカにより形成されたスペーサ149が配置されている。そのため、燃料極側集電部材144が温度サイクルや反応ガス圧力変動による発電単位102の変形に追随し、燃料極側集電部材144を介した燃料極116とインターコネクタ150との電気的接続が良好に維持される。
【0040】
空気極側集電部材134は、空気室166内に配置されている。空気極側集電部材134は、複数の略四角柱状の集電部材要素135から構成されており、例えば、フェライト系ステンレスにより形成されている。空気極側集電部材134は、空気極114における電解質層112に対向する側とは反対側の表面と、インターコネクタ150における空気極114に対向する側の表面とに接触している。ただし、上述したように、燃料電池スタック100において最も上に位置する発電単位102は上側のインターコネクタ150を備えていないため、当該発電単位102における空気極側集電部材134は、上側のターミナルプレート410に接触している。空気極側集電部材134は、このような構成であるため、空気極114とインターコネクタ150とを電気的に接続する。なお、本実施形態では、空気極側集電部材134とインターコネクタ150とは一体の部材として形成されている。すなわち、該一体の部材の内の、上下方向(Z軸方向)に直交する平板形の部分がインターコネクタ150として機能し、該平板形の部分から空気極114に向けて突出するように形成された複数の凸部である集電部材要素135が空気極側集電部材134として機能する。また、空気極側集電部材134とインターコネクタ150との一体部材は、導電性のコートによって覆われていてもよく、空気極114と空気極側集電部材134との間には、両者を接合する導電性の接合層が介在していてもよい。なお、各発電単位102において、空気極側集電部材134と上側のインターコネクタ150とが別の部材であるとしてもよい。
【0041】
A-3.補助器300の構成:
図1および
図2に示すように、補助器300は、蒸発器310および改質・加熱器330を備える。補助器300は、燃料電池スタック100の上方向に並べて配置されており、配管61,62,71,72によって支持されている。燃料電池スタック100および補助器300は、断熱材350によって包囲されているとともに、燃料電池スタック100と補助器300との間にも断熱材350が設けられており、燃料電池スタック100からの熱の放散を抑制している。蒸発器310および改質・加熱器330は、それぞれ、内部に空間が形成された略直方体状の箱形部材であり、例えばステンレス材やアルミ添加ステンレス材により形成されている。
【0042】
(蒸発器310の構成)
蒸発器310には、外部から改質水RWを導入するための改質水導入配管220と、外部から原燃料ガスRFGを導入するための原燃料ガス導入配管222と、排ガスEGを排出するための排ガス排出管223とが接続されている。また、蒸発器310には、改質・加熱器330のハウジング335から蒸発器310へ排ガスEGを導入するための排ガス導入配管226と、蒸発器310から改質器331へ混合ガスを導入するための混合ガス導入配管228とが接続されている。
【0043】
蒸発器310は、排ガス導入配管226を通じて導入された排ガスEGの熱により、改質水導入配管220から導入された改質水RWを蒸発させて水蒸気を生成すると共に、この水蒸気を原燃料ガス導入配管222から導入された原燃料ガスRFGと混合するように構成されている。蒸発器310において水蒸気と混合された原燃料ガスRFGは、混合ガス導入配管228を通じて改質・加熱器330(より具体的には、後述の改質器331)に供給される。なお、改質水RWを加熱した排ガスEGは排ガス排出管223を通じて外部に排出される。
【0044】
(改質・加熱器330の構成)
改質・加熱器330は、改質器331と、燃焼器333と、ハウジング335とを備えている。改質器331および燃焼器333は、ハウジング335によって密閉された空間内に収容されている。上述の配管61,62,71,72は、それぞれ、改質・加熱器330に接続されている。より具体的には、酸化剤ガス導入配管61はハウジング335に接続され、燃料ガス導入配管71は改質器331に接続され、酸化剤ガス排出配管62および燃料ガス排出配管72は燃焼器333に接続されている。
【0045】
ハウジング335は、内壁335aと外壁335bとを有する二重壁構造に構成されており、内壁335aと外壁335bの間には空気流路335Aが形成されている。ハウジング335には、外部から空気流路335Aへと酸化剤ガスOG(空気)を導入するための空気導入配管224が接続されている。空気流路335Aに導入された酸化剤ガスOGは、空気流路335Aを流れる間に、燃焼器333によって生成された燃焼熱(排ガスEG)により加熱される。空気流路335A内において加熱された酸化剤ガスOGは、酸化剤ガス導入配管61を介して燃料電池スタック100に供給され、燃料電池スタック100の発電に使用される。空気流路335Aの内部には、伝熱用フィン336が配置されている。伝熱用フィン336により、内壁335aの熱を空気流路335Aに効率良く伝播させることができる。内壁335a、外壁335bおよび伝熱用フィン336は、いずれも金属板により形成されている。なお、
図2では、便宜的に、伝熱用フィン336の一部の図示を省略している。内壁335a、外壁335bおよび伝熱用フィン336は、特許請求の範囲における熱交換器に相当する。
【0046】
改質器331は、原燃料ガスRFGを改質して水素リッチな燃料ガスFGを生成するための室である。改質器331には、蒸発器310から、水蒸気が混合された原燃料ガスRFGを導入するための混合ガス導入配管228が接続されている。また、改質器331は、燃料ガス導入配管71を介して、燃料ガス導入マニホールド171と連通している。燃料ガス導入配管71を介して燃料電池スタック100へと供給された燃料ガスFGは、燃料電池スタック100において発電に使用される。なお、本実施形態では、改質器331に、改質反応を促進させる触媒が配置されている。
【0047】
燃焼器333は、燃料電池スタック100から排出される酸化剤オフガスOOGと燃料オフガスFOGとを混合して燃焼させるための室である。燃焼器333は、酸化剤ガス排出配管62を介して、酸化剤ガス排出マニホールド162と連通しており、かつ、燃料ガス排出配管72を介して、燃料ガス排出マニホールド172と連通している。なお、本実施形態では、燃焼器333に、酸化剤オフガスOOGおよび燃料オフガスFOGの燃焼を促進させる触媒が配置されている。
【0048】
上述したように、改質器331および燃焼器333はハウジング335内に収容され、ハウジング335は断熱材350によって包囲されている。このため、酸化剤ガス排出配管62、燃料ガス導入配管71および燃料ガス排出配管72は、それぞれ、ハウジング335および断熱材350を貫通して燃料電池スタック100へ延びている。酸化剤ガス導入配管61は、断熱材350を貫通して燃料電池スタック100へ延びている。
【0049】
A-4.燃料電池スタック100の動作:
図4に示すように、酸化剤ガスOGは、酸化剤ガス導入配管61を介して酸化剤ガス導入マニホールド161に導入され、酸化剤ガス導入マニホールド161から各発電単位102の空気室166に供給される。また、
図5に示すように、燃料ガスFGは、燃料ガス導入配管71を介して燃料ガス導入マニホールド171に導入され、燃料ガス導入マニホールド171から各発電単位102の燃料室176に供給される。
【0050】
各発電単位102の空気室166に酸化剤ガスOGが供給され、燃料室176に燃料ガスFGが供給されると、単セル110において酸化剤ガスOGに含まれる酸素と燃料ガスFGに含まれる水素との電気化学反応による発電が行われる。この発電反応は発熱反応である。各発電単位102において、単セル110の空気極114は空気極側集電部材134を介して一方のインターコネクタ150に電気的に接続され、燃料極116は燃料極側集電部材144を介して他方のインターコネクタ150に電気的に接続されている。また、燃料電池スタック100に含まれる複数の発電単位102は、電気的に直列に接続されている。そのため、燃料電池スタック100の出力端子として機能するターミナルプレート410,420から、各発電単位102において生成された電気エネルギーが取り出される。なお、SOFCは、比較的高温(例えば700℃から1000℃)で発電が行われることから、起動後、発電により発生する熱で高温が維持できる状態になるまで、燃料電池スタック100が加熱器(図示せず)により加熱されてもよい。
【0051】
各発電単位102の空気室166から排出されたガスである酸化剤オフガスOOGは、
図2および
図4に示すように、酸化剤ガス排出マニホールド162および酸化剤ガス排出配管62を介して、補助器300の燃焼器333に導入される。また、各発電単位102の燃料室176から排出されたガスである燃料オフガスFOGは、
図2および
図5に示すように、燃料ガス排出マニホールド172および燃料ガス排出配管72を介して、補助器300の燃焼器333に導入される。燃焼器333に導入された酸化剤オフガスOOGおよび燃料オフガスFOGは、燃焼器333において混合されて燃焼し、その後、排ガスEGとして排ガス導入配管226を介して蒸発器310へと排出される。なお、燃焼器333において発生する熱により、改質器331における改質反応が促進されると共に、燃料電池スタック100が加熱される。
【0052】
なお、本実施形態の燃料電池スタック100を構成する各発電単位102では、空気室166における酸化剤ガスOGの主たる流れ方向と燃料室176における燃料ガスFGの主たる流れ方向とが、略反対方向(互いに対向する方向)となっている。すなわち、本実施形態の発電単位102(燃料電池スタック100)は、カウンターフロータイプのSOFCである。
【0053】
A-5.酸化剤ガス導入配管61の詳細構成:
図1を参照して、酸化剤ガス導入配管61の詳細構成を説明する。酸化剤ガス導入配管61は、接続部分CPにおいて、燃料電池スタック100のエンドプレート106が有する開口部OPのうち、酸化剤ガス導入マニホールド161に連通する開口部OPに連通するよう接続されている。上述したように、酸化剤ガス導入配管61は、筒状の部材である。より具体的には、本実施形態の酸化剤ガス導入配管61は、重複部分OLと、重複部分OLを除く部分である非重複部分NOLとを有している。重複部分OLは、Z軸方向視において、開口部OPに重なる部分である。換言すれば、重複部分OLは、開口部OPの径方向に直交する方向(本実施形態において、Z軸方向)に延びる部分である。
【0054】
本実施形態において、非重複部分NOLは、補助器300の方向(本実施形態において、X軸方向)へ延びる部分である。本実施形態では、非重複部分NOLの上端部は、径が拡大された拡径部ERを有している。X軸方向視において、拡径部ERの下方向側の表面S61は、エンドプレート106の表面S106bに重複する被支持部分SPを有する。被支持部分SPは、エンドプレート106の表面S106bに対して、例えば、溶接等により接合されている。このようにして、本実施形態における酸化剤ガス導入配管61の非重複部分NOLは、エンドプレート106によって支持される。酸化剤ガス導入配管61は、特許請求の範囲における接続流路に相当する。Z軸方向視は、特許請求の範囲における「特定表面と直交する方向視」に相当する。また、重複部分OLは、特許請求の範囲における「開口部に重なる部分」に相当し、非重複部分NOLは、特許請求の範囲における非重複部分に相当する。
【0055】
A-6.本実施形態の効果:
以上説明したように、本実施形態の発電モジュール1は、燃料電池スタック100と、補助器300と、燃料電池スタック100と補助器300とを接続する配管61,62,71,72とを備えている。配管61,62,71,72は、それぞれ、燃料電池スタック100におけるエンドプレート106の表面S106aに形成された開口部OPと、補助器300とを連通するように接続されている。酸化剤ガス導入配管61は、重複部分OLと、非重複部分NOLとを有している。非重複部分NOLは、燃料電池スタック100によって支持されている。このため、本実施形態の発電モジュール1では、酸化剤ガス導入配管61における燃料電池スタック100との接続部分CPにかかる荷重(具体的には、補助器300および酸化剤ガス導入配管61に起因する荷重)を、非重複部分NOLにおける被支持部分SPへと分散することができる。従って、本実施形態の発電モジュール1によれば、酸化剤ガス導入配管61における接続部分CPにかかる上記荷重を低減させることができる。
【0056】
本実施形態の発電モジュール1では、非重複部分NOLは、エンドプレート106によって支持されている。このように、非重複部分NOLを、燃料電池スタック100を構成する部材のうちのエンドプレート106によって支持することにより、発電ブロック103によって支持する構成と比較して、発電ブロック103への上記荷重による影響を低減することができる。
【0057】
本実施形態の発電モジュール1において、燃料電池スタック100は、各発電単位102が、固体酸化物形燃料電池の発電単位である、固体酸化物形燃料電池スタックである。固体酸化物形燃料電池スタックは、固体高分子型燃料電池スタック等の他のタイプの燃料電池スタックと比較して、より高温で作動させるため、配管も高温環境で使用される。そのため、低温での使用時と比較して、配管の剛性が低下した状態で使用される。これにより、配管における接続部分の劣化や、配管や補助器300の燃料電池スタック100からの脱離等のおそれが特に懸念される。本実施形態の発電モジュール1によれば、酸化剤ガス導入配管61における非重複部分NOLが、燃料電池スタック100によって支持されているため、酸化剤ガス導入配管61における接続部分CPの劣化や、酸化剤ガス導入配管61や補助器300の燃料電池スタック100からの脱離等を低減することができる。
【0058】
本実施形態の発電モジュール1において、補助器300は、改質器331と燃焼器333とを有している。本実施形態の発電モジュール1によれば、補助器300が、改質器331と燃焼器333とを有する構成においても、酸化剤ガス導入配管61における接続部分CPにかかる上記荷重を低減させることができる。
【0059】
本実施形態の発電モジュール1において、補助器300は、熱交換器を有する構成としてもよい。本実施形態の発電モジュール1によれば、補助器300が、熱交換器を有する構成においても、酸化剤ガス導入配管61における接続部分CPにかかる上記荷重を低減させることができる。
【0060】
B.第2実施形態:
図9は、第2実施形態における発電モジュール1Aの外観構成を示す説明図である。第2実施形態の発電モジュール1Aは、酸化剤ガス導入配管61に代えて酸化剤ガス導入配管61Aを備え、さらに、支持部材65Aを備えている点で、上述した第1実施形態の発電モジュール1の構成と異なる。以下では、第2実施形態の発電モジュール1Aの構成のうち、上述した第1実施形態の発電モジュール1の構成と同一の構成については、同一の符号を付すことによってその説明を適宜省略する。
【0061】
酸化剤ガス導入配管61Aは、第1実施形態の酸化剤ガス導入配管61と同様に、重複部分OLと非重複部分NOLとを有している。本実施形態の酸化剤ガス導入配管61Aでは、非重複部分NOLは、拡径部ERを有していない。換言すれば、非重複部分NOLにおける酸化剤ガス導入配管61Aの内径は略一定である。本実施形態における酸化剤ガス導入配管61Aの非重複部分NOLは、第1実施形態における酸化剤ガス導入配管61の非重複部分NOLと同様に、補助器300の方向(本実施形態において、X軸方向)へ延びる部分である。酸化剤ガス導入配管61Aは、特許請求の範囲における接続流路に相当する。
【0062】
支持部材65Aは、例えば、L字形状の板状部材であり、金属により形成されている。支持部材65Aは、熱膨張差に起因する熱応力が酸化剤ガス導入配管61Aに生じることを抑制するために、例えば、酸化剤ガス導入配管61Aと同一の材料により形成される。支持部材65AのL字形状を構成する一方の辺は、酸化剤ガス導入配管61Aの被支持部分SPに、例えば、溶接等により接合されている。ここで、被支持部分SPは、酸化剤ガス導入配管61Aの非重複部分NOLにおける表面SA61の一部である。一方、支持部材65AのL字形状を構成する他方の辺は、エンドプレート106の表面S106bに、例えば、溶接等により接合されている。このようにして、本実施形態における酸化剤ガス導入配管61Aの非重複部分NOLは、エンドプレート106によって支持される。
【0063】
本実施形態の発電モジュール1Aは、非重複部分NOLと燃料電池スタック100とに接続され、かつ、酸化剤ガス導入配管61Aを支持する支持部材65Aを備えている。換言すれば、本実施形態の発電モジュール1Aでは、非重複部分NOLは、支持部材65Aを介して燃料電池スタック100に支持されている。本実施形態の発電モジュール1Aによれば、第1実施形態の発電モジュール1の奏する効果に加えて、以下の効果を奏する。すなわち、支持部材65Aを介することにより、非重複部分NOLにおける燃料電池スタック100への支持をより確実にすることができる。また、本実施形態の発電モジュール1Aによれば、酸化剤ガス導入配管61Aを直接的に燃料電池スタック100に支持させることを要さないため、酸化剤ガス導入配管61Aの設計の自由度を向上させることができる。
【0064】
C.第3実施形態:
図10は、第3実施形態における発電モジュール1Bの外観構成を示す説明図である。第3実施形態の発電モジュール1Bは、酸化剤ガス導入配管61Aおよび支持部材65Aに代えて、それぞれ、酸化剤ガス導入配管61Bおよび支持部材65Bを備えている点で、上述した第2実施形態の発電モジュール1Aの構成と異なる。以下では、第3実施形態の発電モジュール1Bの構成のうち、上述した実施形態の発電モジュール1,1Aの構成と同一の構成については、同一の符号を付すことによってその説明を適宜省略する。
【0065】
酸化剤ガス導入配管61Bは、第2実施形態の酸化剤ガス導入配管61Aと同様に、重複部分OLと非重複部分NOLとを有している。本実施形態の酸化剤ガス導入配管61Bでは、非重複部分NOLは、補助器300の方向(本実施形態において、X軸方向)へ延びる部分と、燃料電池スタック100におけるエンドプレート106の表面S106bに略平行に延びる部分とを有している。酸化剤ガス導入配管61Bは、特許請求の範囲における接続流路に相当する。
【0066】
支持部材65Bは、例えば、C字形状の板状部材である。支持部材65Bの形成材料は、第2実施形態の支持部材65Aと同様に、金属であり、例えば、酸化剤ガス導入配管61Bと同一の材料により形成される。支持部材65Bの一方の端部は、エンドプレート104の表面S104bに、他方の端部は、エンドプレート106の表面S106bに、それぞれ、例えば、溶接等により接合されている。支持部材65Bは、上記両端部の間に、燃料電池スタック100におけるエンドプレート104,106の表面S104b,S106bに略平行に延びる平面部分を有している。支持部材65Bの上記平面部分は、酸化剤ガス導入配管61Bの被支持部分SPに、例えば、溶接等により接合されている。ここで、被支持部分SPは、酸化剤ガス導入配管61Bの非重複部分NOLにおける表面SB61の一部である。このようにして、本実施形態における酸化剤ガス導入配管61Bの非重複部分NOLは、エンドプレート104,106によって支持される。
【0067】
本実施形態の発電モジュール1Bは、非重複部分NOLと燃料電池スタック100とに接続され、かつ、酸化剤ガス導入配管61Bを支持する支持部材65Bを備えている。本実施形態の発電モジュール1Bによれば、上記実施形態の発電モジュール1,1Aの奏する効果に加えて、以下の効果を奏する。すなわち、本実施形態の発電モジュール1Bでは、支持部材65Bは、上側のエンドプレート104と下側のエンドプレート106との両方に接続されている。このため、上記荷重を上側のエンドプレート104とエンドプレート106との両方に分散することができる。
【0068】
D.変形例:
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
【0069】
第1実施形態では、配管61,62,71,72のうちの酸化剤ガス導入配管61の非重複部分NOLが、燃料電池スタック100に支持されている構成を採用したが、これに限定されない。例えば、配管62,71,72の少なくとも1つにおける非重複部分が、酸化剤ガス導入配管61と同様に、燃料電池スタック100に支持されていてもよい。また、酸化剤ガス排出マニホールド162には、酸化剤ガス排出配管62が接続されていなくてもよい。第2実施形態および第3実施形態の発電モジュール1A,1Bについても、上記と同様である。すなわち、例えば、他の配管の少なくとも1つにおける非重複部分が、酸化剤ガス導入配管61A,61Bと同様に、支持部材65A,65Bによって、燃料電池スタック100に支持されていてもよい。また、発電モジュールを構成する複数の配管が燃料電池スタック100によって支持されている構成において、当該複数の配管の支持方法は、同一であってもよく、また、異なっていてもよい。すなわち、当該複数の配管の支持方法に、第1実施形態から第3実施形態までの支持方法を混合して採用されていてもよい。
【0070】
上記実施形態では、酸化剤ガス導入配管61,61A,61Bが、それぞれ、1つの被支持部分SPを有する構成を採用したが、これに限定されない。酸化剤ガス導入配管61,61A,61Bは、それぞれ、複数の被支持部分SPを有することにより、複数箇所へと上記荷重を分散させることとしてもよい。また、第2実施形態および第3実施形態において、酸化剤ガス導入配管61A,61Bを支持する支持部材65A,65Bが、他の配管についても支持するように構成されていてもよい。
【0071】
第2実施形態および第3実施形態において、支持部材65A,65Bの形状は、特に限定されない。例えば、支持部材65Aでは、その一部が、酸化剤ガス導入配管61Aにおける非重複部分NOLの表面SA61に接合され、他の一部が燃料電池スタック100を構成する部材に接合されていればよい。また、支持部材65Bでは、その一部が、酸化剤ガス導入配管61Bにおける非重複部分NOLの表面SB61に接合され、他の一部が燃料電池スタック100を構成する1または複数の部材に接合されていればよい。また、支持部材65A,65Bの形状として、応力緩和機能を発揮する形状が採用されていてもよい。このような形状として、例えば、支持部材65Bの形状として、Z字形状等を採用することができる。また、燃料電池スタック100が、ボルト22の締結用に座金を備える構成において、当該座金の形状を、支持部材65A,65Bの機能を発揮する形状としてもよい。例えば、支持部材は、座金として機能する部分と、酸化剤ガス導入配管61A,61Bの非重複部分NOLに接合される部分とを備える形状とすることができる。
【0072】
第2実施形態および第3実施形態において、支持部材65A,65Bは、エンドプレート106の表面S106bに接合されている構成としたが、これに限定されない。例えば、エンドプレート106の表面S106aに接合されていてもよい。
【0073】
上記実施形態において、開口部OPは、エンドプレート106の表面S106aに形成されていなくてもよい。例えば、開口部OPは、エンドプレート104や他の部材の表面に形成されていてもよい。
【0074】
上記実施形態および変形例における各部材を構成する材料は、あくまで例示であり、各部材が他の材料により構成されていてもよい。例えば、支持部材65A,65Bが、それぞれ、酸化剤ガス導入配管61A,61Bと同一の材料により形成されていなくてもよい。また、発電モジュール1が複数の支持部材を有する構成において、各支持部材の形成材料は、互いに同一であってもよく、また、異なっていてもよい。
【0075】
上記実施形態では、X軸正方向を上方向としたが、これに限定されない。換言すれば、補助器300が、燃料電池スタック100の上方向に並べて配置される構成に限定されず、補助器300が、燃料電池スタック100の水平方向に並べて配置される構成であってもよい。
【0076】
また、上記実施形態では、燃料電池スタック100のガス流れに関する構成として、酸化剤ガスOGの主たる流れ方向と燃料ガスFGの主たる流れ方向とが互いに対向する方向となるカウンターフロータイプの構成が採用されているが、本発明は、酸化剤ガスOGの主たる流れ方向と燃料ガスFGの主たる流れ方向とが略同一方向となるコフロータイプの構成や、酸化剤ガスOGの主たる流れ方向と燃料ガスFGの主たる流れ方向とが互いに略直交する方向となるクロスフロータイプの構成にも同様に適用することができる。
【0077】
また、上記実施形態では、補助器300は、蒸発器310と、改質・加熱器330とを備えているがこれに限定されない。また、改質・加熱器330は、改質器331と、燃焼器333と、熱交換器とを備えているがこれに限定されない。例えば、補助器300が備える燃焼器の数は複数であってもよい。また、補助器300は、蒸発器310と、改質器331と、燃焼器333と、熱交換器との少なくとも1つを備えていなくてもよい。
【0078】
また、上記実施形態では、発電モジュール1,1A,1Bが、熱源部としての補助器300を備えるとしているが、発電モジュール1,1A,1Bが、補助器300に代えて、または、補助器300に加えて、他の熱源部を備えるとしてもよい。
【0079】
また、上記実施形態では、固体酸化物形燃料電池(SOFC)を例に説明したが、本明細書に開示される技術は、溶融炭酸塩形燃料電池(MCFC)といった他のタイプの燃料電池(または電解セル)にも適用可能である。
【符号の説明】
【0080】
1,1A,1B:発電モジュール 22:ボルト 26:絶縁シート 61,61A,61B:酸化剤ガス導入配管 62:酸化剤ガス排出配管 65A,65B:支持部材 71:燃料ガス導入配管 72:燃料ガス排出配管 100:燃料電池スタック 102:発電単位 103:発電ブロック 104,106:エンドプレート 107:流路用貫通孔 108:連通孔 109:ボルト孔 110:単セル 112:電解質層 114:空気極 116:燃料極 120:セパレータ 121:孔 124:接合部 130:空気極側フレーム 131:空気室用孔 132:酸化剤ガス供給連通流路 133:酸化剤ガス排出連通流路 134:空気極側集電部材 135:集電部材要素 140:燃料極側フレーム 141:燃料室用孔 142:燃料ガス供給連通流路 143:燃料ガス排出連通流路 144:燃料極側集電部材 145:電極対向部 146:インターコネクタ対向部 147:連接部 149:スペーサ 150:インターコネクタ 161:酸化剤ガス導入マニホールド 162:酸化剤ガス排出マニホールド 166:空気室 171:燃料ガス導入マニホールド 172:燃料ガス排出マニホールド 176:燃料室 220:改質水導入配管 222:原燃料ガス導入配管 223:排ガス排出管 224:空気導入配管 226:排ガス導入配管 228:混合ガス導入配管 300:補助器 310:蒸発器 330:改質・加熱器 331:改質器 333:燃焼器 335:ハウジング 335A:空気流路 335a:内壁 335b:外壁 336:伝熱用フィン 350:断熱材 410,420:ターミナルプレート 510,520:絶縁シート CP:接続部分 EG:排ガス ER:拡径部 FG:燃料ガス FOG:燃料オフガス NOL:非重複部分 OG:酸化剤ガス OL:重複部分 OOG:酸化剤オフガス OP:開口部 RFG:原燃料ガス RW:改質水 S104b:表面 S106a:表面 S106b:表面 S61:表面 SA61:表面 SB61:表面 SP:被支持部分