IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アイシン精機株式会社の特許一覧 ▶ 独立行政法人理化学研究所の特許一覧

<>
  • 特許-変速機の開発支援システムおよび方法 図1
  • 特許-変速機の開発支援システムおよび方法 図2
  • 特許-変速機の開発支援システムおよび方法 図3
  • 特許-変速機の開発支援システムおよび方法 図4
  • 特許-変速機の開発支援システムおよび方法 図5
  • 特許-変速機の開発支援システムおよび方法 図6
  • 特許-変速機の開発支援システムおよび方法 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-15
(45)【発行日】2023-03-24
(54)【発明の名称】変速機の開発支援システムおよび方法
(51)【国際特許分類】
   G06F 30/27 20200101AFI20230316BHJP
   F16H 61/02 20060101ALI20230316BHJP
   F16H 59/68 20060101ALI20230316BHJP
   G06F 30/15 20200101ALI20230316BHJP
【FI】
G06F30/27
F16H61/02
F16H59/68
G06F30/15
【請求項の数】 10
(21)【出願番号】P 2019096189
(22)【出願日】2019-05-22
(65)【公開番号】P2020190951
(43)【公開日】2020-11-26
【審査請求日】2022-04-22
(73)【特許権者】
【識別番号】000000011
【氏名又は名称】株式会社アイシン
(73)【特許権者】
【識別番号】503359821
【氏名又は名称】国立研究開発法人理化学研究所
(74)【代理人】
【識別番号】110000017
【氏名又は名称】弁理士法人アイテック国際特許事務所
(72)【発明者】
【氏名】森川 祐介
(72)【発明者】
【氏名】井手 貴範
(72)【発明者】
【氏名】石原 靖弘
(72)【発明者】
【氏名】森山 英二
(72)【発明者】
【氏名】秋田 拓
(72)【発明者】
【氏名】中川 裕志
(72)【発明者】
【氏名】田部井 靖生
(72)【発明者】
【氏名】宇津呂 武仁
【審査官】堀井 啓明
(56)【参考文献】
【文献】特開平7-121603(JP,A)
【文献】米国特許出願公開第2018/0253095(US,A1)
【文献】米国特許出願公開第2017/0146362(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06F 30/00-30/398
F16H 61/02
F16H 59/68
(57)【特許請求の範囲】
【請求項1】
それぞれ車両に搭載される変速機の物理量の時間変化を示す複数の時系列データを含む問題波形セットに生じている現象を解析するための変速機の開発支援システムであって、
前記物理量の解析済み時系列データをそれぞれ複数含む複数の解析済み波形セットと、前記複数の解析済み波形セットのそれぞれに付随した付随情報とを記憶する記憶装置と、
前記問題波形セットの前記時系列データの変速開始から変速終了までの範囲を複数の変速フェーズに分割すると共に、前記変速フェーズごとに同数のデータにサンプリングして前記複数の時系列データを入力ベクトルに変換する前処理部と、
前記入力ベクトルに基づいて、それぞれについて予め定められた現象が前記問題波形セットに生じているか否かを判定するように教師あり学習によって構築された複数の分類器と、
前記問題波形セットに類似した前記解析済み波形セットを前記複数の解析済み波形セットから抽出する類似波形抽出部と、
前記複数の分類器による判定結果と、前記類似波形抽出部により抽出された前記解析済み波形セットの前記付随情報とを含む解析結果を生成する解析結果生成部と、
を備える変速機の開発支援システム。
【請求項2】
請求項1に記載の変速機の開発支援システムにおいて、
前記複数の分類器は、それぞれSVMによって構築されている変速機の開発支援システム。
【請求項3】
請求項2に記載の変速機の開発支援システムにおいて、
前記複数の分類器は、それぞれの識別境界と前記入力ベクトルとの距離に基づいて前記予め定められた現象が前記問題波形セットに生じているか否かを判定すると共に、前記距離に基づいて前記問題波形セットにおける前記現象の発生確率を算出し、
前記解析結果生成部は、前記問題波形セットに生じている前記現象の前記発生確率を含む前記解析結果を生成する変速機の開発支援システム。
【請求項4】
請求項3に記載の変速機の開発支援システムにおいて、
前記教師あり学習は、何らかの前記現象が生じている前記解析済み波形セットである正例データと、前記現象が生じていない前記解析済み波形セットである負例データとをそれぞれ複数用いて前記識別境界を定めるものであり、
前記教師あり学習に際し、前記正例データの正則化係数には、前記正例データの数の逆数に比例した重みが乗じられ、前記負例データの正則化係数には、前記負例データの数の逆数に比例した重みが乗じられる変速機の開発支援システム。
【請求項5】
請求項1から4の何れか一項に記載の変速機の開発支援システムにおいて、
前記類似波形抽出部は、前記解析済み波形セットの複数の前記解析済み時系列データを前記入力ベクトルと同一構造のベクトルに変換すると共に、前記入力ベクトルと前記解析済み波形セットの前記ベクトルとの距離を算出し、算出した距離に基づいて前記問題波形セットに類似した前記解析済み波形セットを選択する変速機の開発支援システム。
【請求項6】
請求項5に記載の変速機の開発支援システムにおいて、前記距離は、ユークリッド距離またはコサイン距離である変速機の開発支援システム。
【請求項7】
請求項1から6の何れか一項に記載の変速機の開発支援システムにおいて、
前記記憶装置は、前記複数の解析済み波形セットのそれぞれに紐付けられると共に対応する前記現象への対策が記述された複数のレポートを前記付随情報として記憶しており、
前記解析結果生成部は、前記複数の分類器による前記判定結果と、前記類似波形抽出部により抽出された前記解析済み波形セットと、抽出された前記解析済み波形セットの前記レポートとを含む前記解析結果を生成する変速機の開発支援システム。
【請求項8】
請求項1から7の何れか一項に記載の変速機の開発支援システムにおいて、
前記複数の解析済み波形セットには、少なくともそれぞれに生じている前記現象がラベル付けされており、
前記類似波形抽出部は、前記複数の分類器により前記問題波形セットに生じていると判定された前記現象がラベル付けされた前記解析済み波形セットから前記問題波形セットに類似した前記解析済み波形セットを抽出する変速機の開発支援システム。
【請求項9】
請求項1から8の何れか一項に記載の変速機の開発支援システムにおいて、
前記複数の時系列データは、少なくとも、前記変速機の入力回転数の前記変速開始から前記変速終了までの時間変化を示す時系列データ、前記変速機の出力回転数の前記変速開始から前記変速終了までの時間変化を示す時系列データ、および前記車両の加速度の前記変速開始から前記変速終了までの時間変化を示す時系列データを含む変速機の開発支援システム。
【請求項10】
それぞれ車両に搭載される変速機の物理量の時間変化を示す複数の時系列データを含む問題波形セットに生じている現象を解析するための変速機の開発支援方法であって、
前記物理量の解析済み時系列データをそれぞれ複数含む複数の解析済み波形セットと、前記複数の解析済み波形セットのそれぞれに付随した付随情報とを記憶装置に記憶させ、
前記問題波形セットの前記時系列データの変速開始から変速終了までの範囲を複数の変速フェーズに分割すると共に、前記変速フェーズごとに同数のデータにサンプリングして前記複数の時系列データを入力ベクトルに変換し、
それぞれについて予め定められた現象が前記問題波形セットに生じているか否かを判定するように教師あり学習によって構築された複数の分類器に前記入力ベクトルを入力して前記複数の分類器による判定結果を取得し、
前記問題波形セットに類似した前記解析済み波形セットを前記複数の解析済み波形セットから抽出し、
前記複数の分類器による前記判定結果と、抽出された前記解析済み波形セットの前記付随情報とを含む解析結果を生成する、
変速機の開発支援方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、車両に搭載される変速機の開発支援システムおよび方法に関する。
【背景技術】
【0002】
従来、送配電系統に設置され、系統事故時の電圧・電流波形を事故前部から一定時間記録し、通信回線を介してそのデータをサーバーに収集することのできる電力系統事故波形データ収集システムのデータを集めて成る電力系統事故波形データ検索装置が知られている(例えば、特許文献1参照)。この電力系統事故波形データ検索装置は、収集したデータを記憶するデータ格納部と、記憶されたデータの特徴を抽出する特徴抽出部と、抽出された特徴によってデータを分類するデータ分類部と、分類されたデータを検索する検索部と、検索条件を入力する端末装置と、検索結果を表示する表示装置とを含む。データ格納部は、送配電系統の物理的条件に関する情報や、データ収録時の環境条件に関する情報、事故波形を分析して得られる情報、事故後に調査して取得できる情報を複数の事故波形データ毎に格納する。特徴抽出部は、データベースに新たなデータが追加されるたびに波形の瞬時値データからその波形にパルス状波形成分、鋸波成分、矩形波成分、高調波成分、低周波振動成分、半波整流波形成分の少なくとも何れか一つが含まれるか否かを判定すると共に、その事故の様相を判定する。データ分類部は、既に格納されているデータおよび特徴抽出部で判定された特徴データに基づいてデータを分類し、データの選別や並べ替えを行う。これにより、新たな事故波形データが収集された際には、利用者による端末装置からの指示に応じて、あるいは自動的に、送配電系統の物理的条件に関する情報と、データ収録時の環境条件に関する情報と、事故波形を分析して得られる情報とを基に過去のデータが検索され、一致している情報要素の数が多い順に事故波形データがソートされる。そして、各事故波形データに付随して記録されている事故後に調査して取得できる情報が表示装置に出力される。
【先行技術文献】
【特許文献】
【0003】
【文献】特許5401503号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、車両に搭載される自動変速機(オートマチックトランスミッション)といった変速機の変速時におけるフィーリング(変速の質、以下、「変速フィーリング」という)は、車両の乗り心地等に大きな影響を与えるものであり、変速機の開発・改良においては、より良好な変速フィーリングを得るために制御プログラムのパラメータ調整(適合)に多くの工数がかけられる。かかるパラメータ調整に際しては、変速機が搭載された試験車両や実車を走行させ、変速機の動作中における各種物理量の時系列データが取得される。また、変速フィーリングの改善が望まれる場合には、時系列データの解析により、生じている現象(不具合)が特定され、特定された現象に対し、想定される要因や対策の候補が複数抽出される。そして、抽出された候補の中から当該現象の要因や対策が決定され、それらを踏まえて制御プログラムのパラメータが調整されていく。
【0005】
ここで、現象の特定や、当該現象の要因や対策の決定には経験やスキルが要求され、誤った要因や対策が選択されてしまうと、いわゆる手戻りが発生してしまう。これに対して、動作中の変速機から取得された各種物理量の時系列データから、そこに生じている現象等の特定を支援することができる上記特許文献1に記載されたようなシステムがあれば、手戻りを未然に防止して工数を削減したり、経験の少ない技術者に過去の知見を伝えたりすることができるであろう。しかしながら、上記特許文献1に記載された技術のように、動作中の変速機から取得された新たな時系列データの特徴量を抽出し、抽出した特徴量に基づいて現象を判別する場合、新たな現象等が追加されるたびに、特徴量の設計や当該特徴量の抽出方法の構築を行うことが必要となる。このため、時系列データから特徴量を抽出するシステムを変速機の開発等に利用しても、却って工数が増加してしまい、特徴量の設計態様等によってはシステムの解析精度が悪化してしまうおそれもある。
【0006】
そこで、本開示は、工数の削減を図りつつ、変速機の物理量の時系列データを複数含む問題波形セットに生じている現象を精度よく特定して適正な対策を講じるための情報を提供することを主目的とする。
【課題を解決するための手段】
【0007】
本開示の変速機の開発支援システムは、それぞれ車両に搭載される変速機の物理量の時間変化を示す複数の時系列データを含む問題波形セットに生じている現象を解析するための変速機の開発支援システムであって、前記物理量の解析済み時系列データをそれぞれ複数含む複数の解析済み波形セットと、前記複数の解析済み波形セットのそれぞれに付随した付随情報とを記憶する記憶装置と、前記問題波形セットの前記時系列データの変速開始から変速終了までの範囲を複数の変速フェーズに分割すると共に、前記変速フェーズごとに同数のデータにサンプリングして前記複数の時系列データを入力ベクトルに変換する前処理部と、前記入力ベクトルに基づいて、それぞれについて予め定められた現象が前記問題波形セットに生じているか否かを判定するように教師あり学習によって構築された複数の分類器と、前記問題波形セットに類似した前記解析済み波形セットを前記複数の解析済み波形セットから抽出する類似波形抽出部と、前記複数の分類器による判定結果と、前記類似波形抽出部により抽出された前記解析済み波形セットの前記付随情報とを含む解析結果を生成する解析結果生成部とを含むものである。
【0008】
本開示の変速機の開発支援システムでは、問題波形セットに生じている現象の解析が分類問題として扱われ、教師あり学習によって構築された複数の分類器により、それぞれについて予め定められた現象が問題波形セットに生じているか否かが判定される。また、問題波形セットに生じている現象の要因となる変速機の物理現象は、変速フェーズと関わりが深く、問題波形セットに何らかの現象が生じている場合、特定の変速フェーズに含まれるデータに特徴的な傾向が認められることが多い。このため、問題波形セットの複数の時系列データは、変速開始から変速終了までの範囲を複数の変速フェーズに分割すると共に、変速フェーズごとに同数のデータにサンプリングすることで、各分類器に入力される入力ベクトルに変換される。これにより、新たな現象等が追加されるたびに特徴量の設計や当該特徴量の抽出方法の構築を行うことなく、当該問題波形セットに生じている現象を適正に反映した入力ベクトルを得ることができるので、工数の削減を図りつつ、複数の分類器を用いて、問題波形セットに生じている現象を精度よく判別することが可能となる。そして、本開示の変速機の開発支援システムでは、問題波形セットに類似した解析済み波形セットが類似波形抽出部によって複数の解析済み波形セットから抽出され、複数の分類器による判定結果と、抽出された解析済み波形セットの付随情報とを含む解析結果が解析結果生成部によって生成される。これにより、開発支援システムによる解析結果を利用することで、経験やスキルの有無に拘わらず、問題波形セットに生じている現象を特定すると共に、当該現象への対策の情報を得ることができる。この結果、本開示の変速機の開発支援システムによれば、工数の削減を図りつつ、変速機の物理量の時系列データを複数含む問題波形セットに生じている現象を精度よく特定して適正な対策を講じるための情報を提供することが可能となる。
【図面の簡単な説明】
【0009】
図1】本開示の変速機の開発支援システムを示すブロック図である。
図2】本開示の変速機の開発支援システムにより取り扱われる問題波形セットを例示する図表である。
図3】本開示の変速機の開発支援システムにおける各分類器の学習手順を説明するための模式図である。
図4】本開示の変速機の開発支援システムによる問題波形セットの解析手順を示すフローチャートである。
図5】本開示の変速機の開発支援システムによる問題波形セットの解析手順を示すフローチャートである。
図6】本開示の変速機の開発支援システムにおける各分類器による判定手順を説明するための模式図である。
図7】本開示の変速機の開発支援システムにより抽出された解析済み波形セットを例示する図表である。
【発明を実施するための形態】
【0010】
次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。
【0011】
図1は、本開示の変速機の開発支援システム1を示すブロック図である。同図に示す開発支援システム1は、車両に搭載される自動変速機やベルト式無段変速機、電気式無段変速機(ハイブリッドトランスミッション)、デュアルクラッチトランスミッションといった変速機の開発(実機の改良を含む)を支援するためのものである。開発支援システム1は、CPU,ROM,RAM、入出力インターフェース等を含む図示しないコンピュータに実装され、変速機(試作機または実機)の変速フィーリングの改善が望まれる場合に、変速機が搭載された試験車両や実車を走行させて得られた、改善すべき現象が生じている変速中の互いに異なる各種物理量の時系列データを一まとまりにした問題波形セットQWsを解析対象とする。本実施形態において、改善すべき変速中の現象には、例えば、変速に際してクラッチやブレーキといった係合要素が勢いよく係合することで発生するショック等が含まれる。
【0012】
本実施形態において、問題波形セットQWsは、図2に例示するように、改善すべき現象が生じた変速機の変速開始から変速終了までの期間を含む所定時間(例えば、数秒間)内における当該変速機の入力回転数(入力軸の回転数)Ninの時間変化を示す時系列データ、当該所定時間内における当該変速機の出力回転数(出力軸の回転数)Noutの時間変化を示す時系列データ、および当該所定時間内における当該変速機を搭載した車両の加速度(車両加速度)aの時間変化を示す時系列データを含む。同一の現象に対応した入力回転数Ninの時系列データ、出力回転数Noutの時系列データおよび車両加速度aの時系列データは、予め定められた順番で配列され、それにより一まとまりのデータセットである問題波形セットQWsが作成される。
【0013】
図1に示すように、開発支援システム1は、複数の解析済みデータを記憶する記憶装置(データベース)2と、問題波形セットQWsの複数の時系列データに前処理を施す前処理部3と、問題波形セットQWsを分類するための複数の分類器4と、記憶装置2から問題波形セットQWsに関連した解析済みデータを抽出する類似波形抽出部5と、解析結果を生成・出力する解析結果生成部6とを含む。前処理部3、複数の分類器4、類似波形抽出部5および解析結果生成部6は、何れもCPU等のハードウェアとコンピュータにインストールされたプログラム(ソフトウェア)との協働により構築される。
【0014】
記憶装置2は、解析済みデータとして、複数の解析済み波形セットAWsと、それぞれ対応する解析済み波形セットAWsに紐付けられた複数の付随情報とを記憶する。各解析済み波形セットAWsは、複数種類の変速機について取得された、改善すべき現象であって既に対策が施された現象が生じている変速中の物理量の時系列データを複数含むデータセットである。本実施形態において、各解析済み波形セットAWsも、改善すべき現象が生じた変速開始から変速終了までの期間を含む所定時間(例えば、数秒間)内における当該変速機の入力回転数Ninの時間変化を示す時系列データ、当該所定時間内における当該変速機の出力回転数Noutの時間変化を示す時系列データ、および当該所定時間内における車両加速度aの時間変化を示す時系列データを含む。複数の解析済み波形セットAWsの時系列データ間において、データ長、データ値の取得間隔(保存間隔)およびデータ点数は、何れも同一であってもよく、例えばデータ長等が異なっていてもよい。更に、各解析済み波形セットAWsには、それぞれにおいて発生しているショック等の現象がラベル付けされている。なお、1つの解析済み波形セットAWsに対して、複数の現象がラベル付けされることもある。また、付随情報には、対応する現象への対策、すなわち当該現象を解消するために行われた設計変更やプログラムの変更、パラメータ調整の手順等が記述された複数のレポートが含まれる。
【0015】
前処理部3は、問題波形セットQWsの複数の時系列データを複数の分類器4による分類処理等に適した入力ベクトルに変換し、当該入力ベクトルを複数の分類器4および類似波形抽出部5に与えるものである。複数の分類器4は、互いに異なる現象に対応しており、前処理部3からの入力ベクトルに基づいて、それぞれについて予め定められた1つの現象(改善すべき現象)が問題波形セットQWsに生じているか否かを判定するように、何れも教師あり学習であるSVM(サポートベクターマシン)により構築されている。本実施形態では、SVMとして、次式(1)に示すような評価関数(目的関数、ただし、“w”は、識別関数の係数ベクトルであり、“ξ”は、スラック変数である。)を最小化することで、クラス間のマージンを最大にする識別境界(超平面)Hを定める非線形SVM(RBFカーネル)が用いられる。更に、SVMの教師データ(学習データ)としては、何らかの現象が生じている解析済み波形セットAWsである複数の正例データと、現象が生じていない解析済み波形セットAWsである複数の負例データとが用いられる。
【0016】
【数1】
【0017】
また、式(1)において、“C”は、正例データまたは負例データの正則化係数を示し、正例データの正則化係数Cには、当該正例データの数の逆数に比例した重みclassweightcが乗じられ、負例データの正則化係数Cには、負例データの数の逆数に比例した重みclassweightcが乗じられる。本実施形態において、正例データの重みclassweightcは、classweightc=全教師データ数/(2×正例データの数)とされ、負例データの重みclassweightcは、classweightc=全教師データ数/(2×負例データの数)とされている。更に、重みclassweightcの総和は、重みなし(classweightc=1)の場合と同様に、教師データの総数と同一になる。これにより、図3に示すように、正例データ(図3における○印参照)の数が負例データ(図3における×印参照)の数に比べて少ない場合であっても、正例データと負例データとのデータ数の相違が教師あり学習に与える影響を低減させることが可能となる。従って、図3において実線で示すように、各分類器4における識別境界Hを上記重みclassweightcが用いられない場合(図3中破線参照)に比べてより適正に定めることができる。この結果、SVM(教師あり学習)によって、それぞれについて予め定められた現象が問題波形セットQWsに生じているか否かをより精度よく判定可能な複数の分類器4を構築することが可能となる。
【0018】
類似波形抽出部5は、本実施形態において、複数の分類器4の判定結果に応じた解析済み波形セットAWsを記憶装置2から読み出し、読み出した解析済み波形セットAWsをステップS20の前処理と同様の処理により前処理部3からの入力ベクトルと同一構造のベクトルに変換すると共に、入力ベクトル(点p)と解析済み波形セットAWsのベクトル(点q)との距離(d(p,q))を算出する。更に、類似波形抽出部5は、算出した距離(d(p,q))が予め定められた閾値以下になる解析済み波形セットAWsを当該入力ベクトルすなわち問題波形セットQWsに類似したものとして選択する。なお、当該距離は、ユークリッド距離(=||q-p||)であってもよく、コサイン距離すなわちコサイン類似度(=1-p・q/(||p||・||q||))であってもよい。
【0019】
解析結果生成部6は、複数の分類器4による判定結果や、類似波形抽出部5により抽出された解析済み波形セットAWs、抽出された解析済み波形セットAWsに紐付けられた付随情報としてのレポート等を含む解析結果を生成する。そして、解析結果生成部6により生成された解析結果は、上記コンピュータに接続された図示しないディスプレイ上に表示される。
【0020】
続いて、図4から図7を参照しながら、上述の開発支援システム1による問題波形セットQWsの解析手順について説明する。
【0021】
図4は、開発支援システム1による問題波形セットQWsの解析手順を示すフローチャートである。図4に示すように、開発支援システム1が実装されたコンピュータに問題波形セットQWsが入力されると(ステップS10)、前処理部3(コンピュータのCPU)は、問題波形セットQWsの複数の時系列データを入力ベクトルに変換する前処理(ステップS20)を実行する。すなわち、前処理部3は、問題波形セットQWsを受け取ると、まず問題波形セットQWsの各時系列データを例えば線形補間により補間する(ステップS210)。これにより、変速機の種類や開発フェーズ、データ取得環境等によって問題波形セットQWsの各時系列データのデータ取得間隔(保存間隔)が解析済み波形セットAWsの時系列データのもの(例えば、5mSec)と異なっていても、問題波形セットQWsの時系列データと解析済み波形セットAWsの時系列データとの同一時刻におけるデータ同士を比較することが可能となる。
【0022】
ステップS210の補間処理の後、前処理部3は、問題波形セットQWsの各時系列データを例えば移動平均により平滑化する(ステップS220)。これにより、各時系列データからノイズを除去すると共に、補間(線形補間)により生じた不連続部を平滑化することが可能となる。本実施形態において、移動平均期間は、例えば15期間とされる。更に、前処理部3は、問題波形セットQWsの各時系列データから変速開始から変速終了までの範囲(変速処理が行われた区間)のデータを抽出し(ステップS230)、抽出した範囲のデータを例えばz正規化(z-score normalization)により正規化する(ステップS240)。このように、問題波形セットQWsの各時系列データから変速開始から変速終了までの範囲以外のデータを除外することで、現象の分類に必要な情報のみを複数の分類器4に提供することができる。更に、変速開始から変速終了までの範囲のデータを正規化することで、時系列データ間でのオーダーの相違や、時系列データ(同一信号)のオーダー(最小値と最大値との差)が現象の分類に与える影響を低減させることが可能となる。ただし、時系列データ間でのオーダーの相違が比較的小さい場合には、ステップS240における正規化処理が省略されてもよい。
【0023】
続いて、前処理部3は、問題波形セットQWsの各時系列データから抽出された変速開始から変速終了までの範囲の正規化データを複数の変速フェーズに分割する(ステップS250)。複数の変速フェーズには、例えばパワーオンアップシフトの場合、係合要素のピストンを係合側に移動(ストローク)させる変速準備フェーズ、係合される係合要素と解放される係合要素とのトルク分担が変化していくトルクフェーズ、入力回転数Ninが変化していくイナーシャフェーズ、および入力回転数Ninの変化後に終期制御が実行される変速終了フェーズが含まれる。また、例えばパワーオンダウンシフトの場合、複数の変速フェーズには、初期変速制御フェーズ、イナーシャフェーズ、エンドフェーズ等が含まれる。そして、前処理部3は、問題波形セットQWsの各時系列データの変速フェーズごとに同数のデータにサンプリングして複数の時系列データを単一の入力ベクトルに変換する(ステップS260)。より詳細には、前処理部3は、各変速フェーズをN個(本実施形態では、例えば、N=10)の小区間に分割した上で、各小区間における最大値および最小値を抽出する。更に、前処理部3は、問題波形セットQWsの各時系列データから抽出した各小区間の最大値および最小値を予め定められた順番(例えば、入力回転数Nin、出力回転数Nout、車両加速度aの順番で時刻順)に配列して単一の入力ベクトルを得る。上述のような前処理(ステップS20,S210-S260)により生成された入力ベクトルは、複数の分類器4の各々および類似波形抽出部5に与えられる。
【0024】
各分類器4(CPU)は、前処理部3からの入力ベクトルを受け取ると、図6に示すように、それぞれの識別境界Hと入力ベクトル(図中黒丸印参照)との距離dを算出すると共に、算出した距離dに基づいて当該分類器4について予め定められた現象が問題波形セットQWsに生じているか否かを判定する(ステップS30)。識別境界Hと入力ベクトルとの距離dは、当該分類器4について予め定められた現象が問題波形セットQWsに生じている現象である場合(上記正例に該当する場合)、ゼロよりも大きくなり、当該分類器4について予め定められた現象が問題波形セットQWsに生じている現象ではない場合(上記負例に該当する場合)、ゼロよりも小さくなる。
【0025】
更に、ステップS30において、各分類器4は、識別境界Hと入力ベクトルとの距離dに基づいて、問題波形セットQWsにおける当該分類器4について予め定められた現象の発生確率を算出する。本実施形態において、各分類器4は、当該距離dに基づいてロジスティック回帰により発生確率を算出する。すなわち、距離dがゼロである場合、当該発生確率は、50%となり、距離dがゼロよりも大きい場合、距離dが大きいほど発生確率が高く算出される。なお、発生確率は、分類器4の判定精度が高いほど全体的に高く(0%あるいは100%に近く)算出され、当該判定精度が低いほど全体的に50%に近く算出される。そして、各分類器4は、算出した現象の発生確率を判定結果として類似波形抽出部5に与える。
【0026】
各分類器4の発生確率(判定結果)を受け取った類似波形抽出部5(CPU)は、前処理部3からの入力ベクトルと各分類器4からの発生確率(判定結果)とに基づいて複数の解析済み波形セットAWsの中から問題波形セットQWsに類似したものを抽出する(ステップS40)。ステップS40において、類似波形抽出部5は、複数の分類器4により問題波形セットQWsに生じていると判定された現象、すなわち発生確率が50%よりも高い現象がラベル付けされた解析済み波形セットAWsを記憶装置2から読み出し、読み出した解析済み波形セットAWs(時系列データ)を前処理部3からの入力ベクトルと同一構造のベクトルに変換する。更に、ステップS40において、類似波形抽出部5は、入力ベクトルと解析済み波形セットAWsのベクトルとの距離(ユークリッド距離またはコサイン距離)を算出し、算出した距離に基づいて問題波形セットQWsに類似した解析済み波形セットAWsを選択する。本実施形態では、複数の解析済み波形セットAWsが距離の小さい順に並べ替えられ、当該距離の小さい所定数の解析済み波形セットAWsが順番に解析結果として選択される。
【0027】
このように、問題波形セットQWsに類似した解析済み波形セットAWsの抽出に際し、本実施形態では、解析済み波形セットAWsが入力ベクトルと同一構造のベクトルに変換される。これにより、同一の現象に対応した問題波形セットQWsの入力ベクトルと解析済み波形セットAWsのベクトルとで、特徴的な箇所が現れる位置を揃えることができるので、例えば図2に例示した問題波形セットQWsに類似する図7に例示するような解析済み波形セットAWsを複数の解析済み波形セットAWsから精度よく抽出することが可能となる。また、解析済み波形セットAWsに現象をラベル付けしておくことで、問題波形セットQWsに類似した解析済み波形セットAWsを抽出する際の演算負荷を低減することができる。
【0028】
問題波形セットQWsに類似した解析済み波形セットAWsを選択した後、類似波形抽出部5は、問題波形セットQWsに生じていると判定された現象の発生確率と、問題波形セットQWsに類似した解析済み波形セットAWsを示す情報とを解析結果生成部6に与える。解析結果生成部6(CPU)は、類似波形抽出部5等からの情報に基づいて、例えば、問題波形セットQWsを示す波形図、問題波形セットQWsに類似した解析済み波形セットAWsを示す波形図、問題波形セットQWsに生じていると判定された現象の発生確率(複数の分類器4による判定結果)、抽出された解析済み波形セットAWsに紐付けられた付随情報としてのレポート(レポート自体あるいはハイパーリンク)等を含む解析結果を生成する(ステップS50)。そして、解析結果生成部6は、生成した解析結果を図示しないディスプレイ上に表示させる。これにより、開発支援システム1による問題波形セットQWsの解析が完了する。
【0029】
上述のように、開発支援システム1では、問題波形セットQWsに生じている現象の解析が分類問題として扱われ、教師あり学習であるSVMによって構築された複数の分類器4により、それぞれについて予め定められた現象が問題波形セットQWsに生じているか否かが判定される。また、問題波形セットQWsに生じている現象の要因となる変速機の物理現象は、変速フェーズと関わりが深く、問題波形セットQWsに何らかの現象が生じている場合、特定の変速フェーズに含まれるデータに特徴的な傾向が認められることが多い。このため、開発支援システム1において、問題波形セットQWsの複数の時系列データは、変速開始から変速終了までの範囲を複数の変速フェーズに分割すると共に、変速フェーズごとに同数のデータにサンプリングすることで、各分類器4に入力される入力ベクトルに変換される(ステップS20,S230,S250-S260)。これにより、新たな現象や変速種等が追加されるたびに特徴量の設計や当該特徴量の抽出方法の構築を行うことなく、当該問題波形セットQWsに生じている現象を適正に反映した入力ベクトルを得ることができるので、工数の削減を図りつつ、複数の分類器4を用いて、問題波形セットQWsに生じている現象を精度よく判別して該当する確率を算出することが可能となる。
【0030】
すなわち、ステップS20におけるS210-S260の処理のすべてが施された入力ベクトルを複数の分類器4により分類した際のマクロF値と、何れかの前処理が省略されれた際のマクロF値との差を改善代として定義した場合、ステップS250におけるフェーズ分割の改善代は、0.248となり、ステップS230における変速区間の抽出の改善代は、0.098となった。かかる検証結果から、工数の削減を図りつつ問題波形セットQWsに生じている現象を精度よく判別する上で、各時系列データからの変速開始から変速終了までの範囲の抽出(ステップS230)および複数の変速フェーズへの分割(ステップS250)が極めて有用であることが理解されよう。
【0031】
更に、開発支援システム1では、問題波形セットQWsに類似した解析済み波形セットAWsが類似波形抽出部5によって複数の解析済み波形セットAWsから抽出され(ステップS40)、複数の分類器4による判定結果(発生確率)と、抽出された解析済み波形セットAWsの付随情報とを含む解析結果が解析結果生成部6によって生成される(ステップS50)。これにより、開発支援システム1による解析結果を利用することで、経験やスキルの有無に拘わらず、問題波形セットQWsに生じている現象を特定すると共に、当該現象への対策の情報を得ることができる。この結果、開発支援システム1によれば、工数の削減を図りつつ、変速機の物理量の時系列データを複数含む問題波形セットQWsに生じている現象を精度よく特定して適正な対策を講じるための情報を提供することが可能となる。すなわち、開発支援システム1によれば、上記発生確率が精度よく算出されると共に該当する現象に対する対策の候補が複数列挙されることから、利用者は、列挙された対策の候補の中から最適な対策を選択して当該現象への適正な対策を講じることができる。
【0032】
また、上記実施形態において、記憶装置2は、複数の解析済み波形セットAWsのそれぞれに紐付けられると共に対応する現象への対策が記述された複数のレポートを付随情報として記憶している。更に、解析結果生成部6は、複数の分類器4による判定結果と、類似波形抽出部5により抽出された解析済み波形セットAWsと、抽出された解析済み波形セットAWsのレポートとを含む解析結果を生成する(ステップS50)。これにより、開発支援システム1により得られる解析結果をより有用なものとすることが可能となる。
【0033】
更に、上記実施形態において、複数の分類器4は、それぞれの識別境界Hと入力ベクトルとの距離dに基づいて予め定められた現象が問題波形セットQWsに生じているか否かを判定すると共に、当該距離dに基づいて問題波形セットQWsにおける現象の発生確率を算出する。また、解析結果生成部6は、問題波形セットQWsに生じている現象の発生確率を含む解析結果を生成する(ステップS50)。これにより、問題波形セットQWsが複数の互いに異なる解析済み波形セットAWsに類似しても、問題波形セットQWsに生じている現象の発生確率を含む解析結果を利用することで、利用者は、抜け漏れを生じさせることなく、当該問題波形セットQWsに生じている現象を特定することができる。
【0034】
また、開発支援システム1において、複数の分類器4は、それぞれ非線形SVMによって構築される。これにより、複数の分類器4を用いて、問題波形セットQWsに生じている現象を精度よく特定することが可能となる。ただし、複数の分類器4は、非線形SVMによって構築されてもよく、SVM以外の例えばK近傍法や、線形SVM、RandomForest,畳み込みニューラル(CNN)、再帰型ニューラルネットワーク(RNN)、それらの組み合わせによって構築されてもよい。
【0035】
なお、上記実施形態において、類似波形抽出部5は、問題波形セットQWsに類似した解析済み波形セットAWsの抽出に際し、解析済み波形セットAWsの複数の解析済み時系列データを入力ベクトルと同一構造のベクトルに変換すると共に入力ベクトルと解析済み波形セットAWsのベクトルとの距離を算出するが、これに限られるものではない。すなわち、問題波形セットQWsに類似した解析済み波形セットAWsの抽出に際しては、問題波形セットQWsの各時系列データから変速区間(変速開始から変速終了までの範囲)を抽出すると共に、複数の分類器4により問題波形セットQWsに生じていると判定された現象に対応した解析済み波形セットAWsの各時系列データから変速区間を抽出し、抽出したデータ同士の距離をダイナミックタイムワーピング(動的時間伸縮法)により求めてもよい。更に、問題波形セットQWsに類似した解析済み波形セットAWsの抽出に際しては、ステップS240の正規化処理を除くステップS20の前処理により生成された入力ベクトルと、当該入力ベクトルと同一構造に変換された解析済み波形セットAWsのベクトルとの距離を算出してもよい。
【0036】
また、上記実施形態において、複数の解析済み波形セットAWsには、それぞれに生じている現象がラベル付けされているが、問題波形セットQWsおよび解析済み波形セットAWsには、パワーオンアップシフト、パワーオンダウンシフト等の変速種や 1-2速変速、2-3速変速といった変速段の情報がラベル付けされてもよく、問題波形セットQWsに類似した解析済み波形セットAWsの抽出に際して、これらの情報に基づいて解析済み波形セットAWsの絞り込みが行われてもよい。更に、上記実施形態において、問題波形セットQWsおよび解析済み波形セットAWsの複数の時系列データは、入力回転数Ninの時系列データ、出力回転数Noutの時系列データおよび車両加速度aの時系列データに加えて、車両加速度aの変化率等の時系列データを含むものであってもよい。
【0037】
以上説明したように、本開示の変速機の開発支援システムは、それぞれ車両に搭載される変速機の物理量の時間変化を示す複数の時系列データを含む問題波形セット(QWs)に生じている現象を解析するための変速機の開発支援システム(1)であって、前記物理量の解析済み時系列データをそれぞれ複数含む複数の解析済み波形セット(AWs)と、前記複数の解析済み波形セット(AWs)のそれぞれに付随した付随情報とを記憶する記憶装置(2)と、前記問題波形セット(QWs)の前記時系列データの変速開始から変速終了までの範囲を複数の変速フェーズに分割すると共に、前記変速フェーズごとに同数のデータにサンプリングして前記複数の時系列データを入力ベクトルに変換する前処理部(3)と、前記入力ベクトルに基づいて、それぞれについて予め定められた現象が前記問題波形セット(QWs)に生じているか否かを判定するように教師あり学習によって構築された複数の分類器(4)と、前記問題波形セット(QWs)に類似した前記解析済み波形セット(AWs)を前記複数の解析済み波形セット(AWs)から抽出する類似波形抽出部(5)と、前記複数の分類器(4)による判定結果と、前記類似波形抽出部(5)により抽出された前記解析済み波形セット(AWs)の前記付随情報とを含む解析結果を生成する解析結果生成部(6)とを含むものである。
【0038】
本開示の変速機の開発支援システムでは、問題波形セットに生じている現象の解析が分類問題として扱われ、教師あり学習によって構築された複数の分類器により、それぞれについて予め定められた現象が問題波形セットに生じているか否かが判定される。また、問題波形セットに生じている現象の要因となる変速機の物理現象は、変速フェーズと関わりが深く、問題波形セットに何らかの現象が生じている場合、特定の変速フェーズに含まれるデータに特徴的な傾向が認められることが多い。このため、問題波形セットの複数の時系列データは、変速開始から変速終了までの範囲を複数の変速フェーズに分割すると共に、変速フェーズごとに同数のデータにサンプリングすることで、各分類器に入力される入力ベクトルに変換される。これにより、新たな現象等が追加されるたびに特徴量の設計や当該特徴量の抽出方法の構築を行うことなく、当該問題波形セットに生じている現象を適正に反映した入力ベクトルを得ることができるので、工数の削減を図りつつ、複数の分類器を用いて、問題波形セットに生じている現象を精度よく判別することが可能となる。そして、本開示の変速機の開発支援システムでは、問題波形セットに類似した解析済み波形セットが類似波形抽出部によって複数の解析済み波形セットから抽出され、複数の分類器による判定結果と、抽出された解析済み波形セットの付随情報とを含む解析結果が解析結果生成部によって生成される。これにより、開発支援システムによる解析結果を利用することで、経験やスキルの有無に拘わらず、問題波形セットに生じている現象を特定すると共に、当該現象への対策の情報を得ることができる。この結果、本開示の変速機の開発支援システムによれば、工数の削減を図りつつ、変速機の物理量の時系列データを複数含む問題波形セットに生じている現象を精度よく特定して適正な対策を講じるための情報を提供することが可能となる。
【0039】
また、前記複数の分類器(4)は、それぞれSVMによって構築されてもよい。これにより、複数の分類器を用いて、問題波形セットに生じている現象を精度よく特定することが可能となる。なお、SVM(サポートベクターマシン)は、非線形SVMであってもよく、線形SVMであってもよい。
【0040】
更に、前記複数の分類器(4)は、それぞれの識別境界(H)と前記入力ベクトルとの距離(d)に基づいて前記予め定められた現象が前記問題波形セット(QWs)に生じているか否かを判定すると共に、前記距離(d)に基づいて前記問題波形セット(QWs)における前記現象の発生確率を算出するものであってもよく、前記解析結果生成部(5)は、前記問題波形セット(QWs)に生じている前記現象の前記発生確率を含む前記解析結果を生成するものであってもよい。これにより、問題波形セットが複数の互いに異なる解析済み波形セットに類似している場合、問題波形セットに生じている現象の発生確率を含む解析結果を利用することで、当該問題波形セットに生じている現象の誤特定を良好に抑制することが可能となる。
【0041】
また、前記教師あり学習は、何らかの前記現象が生じている前記解析済み波形セット(AWs)である正例データと、前記現象が生じていない前記解析済み波形セット(AWs)である負例データとをそれぞれ複数用いて前記識別境界(H)を定めるものであってもよく、前記教師あり学習に際し、前記正例データの正則化係数(C)には、前記正例データの数の逆数に比例した重み(classweightc)が乗じられてもよく、前記負例データの正則化係数(C)には、前記負例データの数の逆数に比例した重み(classweightc)が乗じられてもよい。これにより、正例データの数が負例データの数に比べて少ない場合であっても、正例データと負例データとのデータ数の相違が教師あり学習に与える影響を低減させることができるので、それぞれについて予め定められた現象が問題波形セットに生じているか否かをより精度よく判定可能な複数の分類器を教師あり学習によって構築することが可能となる。
【0042】
更に、前記類似波形抽出部(5)は、前記解析済み波形セット(AWs)の複数の前記解析済み時系列データを前記入力ベクトルと同一構造のベクトルに変換すると共に、前記入力ベクトルと前記解析済み波形セット(AWs)の前記ベクトルとの距離を算出し、算出した距離に基づいて前記問題波形セット(QWs)に類似した前記解析済み波形セット(AWs)を選択するものであってもよい。これにより、同一の現象に対応した問題波形セットの入力ベクトルと解析済み波形セットのベクトルとで、特徴的な箇所が現れる位置を揃えることができるので、問題波形セットに類似した解析済み波形セットを複数の解析済み波形セットからより精度よく抽出することが可能となる。
【0043】
また、前記距離は、ユークリッド距離またはコサイン距離であってもよい。
【0044】
更に、前記記憶装置(2)は、前記複数の解析済み波形セット(AWs)のそれぞれに紐付けられると共に対応する前記現象への対策が記述された複数のレポートを前記付随情報として記憶するものであってもよく、前記解析結果生成部(6)は、前記複数の分類器(4)による前記判定結果と、前記類似波形抽出部(5)により抽出された前記解析済み波形セット(AWs)と、抽出された前記解析済み波形セット(AWs)の前記レポートとを含む前記解析結果を生成するものであってもよい。これにより、変速機の開発支援システムにより得られる解析結果をより有用なものとすることが可能となる。
【0045】
また、前記複数の解析済み波形セット(AWs)には、少なくともそれぞれに生じている現象がラベル付けされてもよく、前記類似波形抽出部(5)は、前記複数の分類器(4)により前記問題波形セット(QWs)に生じていると判定された前記現象がラベル付けされた前記解析済み波形セット(AWs)から前記問題波形セット(QWs)に類似した前記解析済み波形セット(AWs)を抽出するものであってもよい。これにより、問題波形セットに類似した解析済み波形セットを抽出する際の演算負荷を低減することが可能となる。
【0046】
更に、前記複数の時系列データは、少なくとも、前記変速機の入力回転数(Nin)の前記変速開始から前記変速終了までの時間変化を示す時系列データ、前記変速機の出力回転数(Nout)の前記変速開始から前記変速終了までの時間変化を示す時系列データ、および前記車両の加速度(a)の前記変速開始から前記変速終了までの時間変化を示す時系列データを含むものであってもよい。
【0047】
本開示の変速機の開発支援方法は、それぞれ車両に搭載される変速機の物理量の時間変化を示す複数の時系列データを含む問題波形セット(QWs)に生じている現象を解析するための変速機の開発支援方法であって、前記物理量の解析済み時系列データをそれぞれ複数含む複数の解析済み波形セット(AWs)と、前記複数の解析済み波形セット(AWs)のそれぞれに付随した付随情報とを記憶装置(2)に記憶させ、前記問題波形セット(QWs)の前記時系列データの変速開始から変速終了までの範囲を複数の変速フェーズに分割すると共に、前記変速フェーズごとに同数のデータにサンプリングして前記複数の時系列データを入力ベクトルに変換し、それぞれについて予め定められた現象が前記問題波形セット(QWs)に生じているか否かを判定するように教師あり学習によって構築された複数の分類器(4)に前記入力ベクトルを入力して前記複数の分類器(4)による判定結果を取得し、前記問題波形セット(QWs)に類似した前記解析済み波形セット(AWs)を前記複数の解析済み波形セット(AWs)から抽出し、前記複数の分類器(4)による前記判定結果と、抽出された前記解析済み波形セット(AWs)の前記付随情報とを含む解析結果を生成するものである。
【0048】
かかる方法によれば、工数の削減を図りつつ、変速機の物理量の時系列データを複数含む問題波形セットに生じている現象を精度よく特定して適正な対策を講じるための情報を提供することが可能となる。
【0049】
本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記実施形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を限定するものではない。
【産業上の利用可能性】
【0050】
本開示の発明は、変速機の製造分野において利用可能である。
【符号の説明】
【0051】
1 開発支援システム、2 記憶装置、3 前処理部、4 分類器、5 類似波形抽出部、6 解析結果生成部、AWs 解析済み波形セット、QWs 問題波形セット。
図1
図2
図3
図4
図5
図6
図7