IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ジャパン・ニュー・エナジー株式会社の特許一覧

<>
  • 特許-地熱発電装置 図1
  • 特許-地熱発電装置 図2
  • 特許-地熱発電装置 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-15
(45)【発行日】2023-03-24
(54)【発明の名称】地熱発電装置
(51)【国際特許分類】
   F03G 4/00 20060101AFI20230316BHJP
【FI】
F03G4/00 501
【請求項の数】 1
(21)【出願番号】P 2018208505
(22)【出願日】2018-11-05
(65)【公開番号】P2020076333
(43)【公開日】2020-05-21
【審査請求日】2021-10-25
(73)【特許権者】
【識別番号】514019671
【氏名又は名称】ジャパン・ニュー・エナジー株式会社
(74)【代理人】
【識別番号】100167690
【弁理士】
【氏名又は名称】横井 直
(72)【発明者】
【氏名】坂本 秀男
【審査官】津田 真吾
(56)【参考文献】
【文献】米国特許出願公開第2013/0232973(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F03G 4/00
F24T 10/00
(57)【特許請求の範囲】
【請求項1】
地中の熱を溶融塩を使用した第1の作動媒体により回収し、地上にて第2の作動媒体により熱交換を行う熱交換器を備え、前記第2の作動媒体により蒸気タービンを駆動させて発電を行う地熱発電装置であって、
前記第1の作動媒体の融点よりも低くなる地熱帯の領域内にあって、前記第1の作動媒体を凝固させない温度に管内を保つ断熱構造を設けた熱媒体移送管と、
前記熱媒体移送管の外周を覆い、外部から得られる熱により発熱するヒーターと、
を備えたことを特徴とする地熱発電装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、地熱帯を熱源として、第1の作動媒体を介して地中にて熱交換を行い、第1の作動媒体の熱を熱交換器内にて熱交換を行った第2の作動媒体により発電を行う地熱発電装置に関する。
【背景技術】
【0002】
従来から地熱発電装置では、地熱帯に存在する自然の蒸気を自然の圧力を利用して取り出し、気水分離して使用する方法であるため、取り出された蒸気には地熱帯特有の硫黄やその他の不純物が多量に含まれている。この不純物はスケールとなって、熱井戸や配管類、あるいはタービンの羽根等に付着する。スケールが付着すると、経年的に発電量が減少し、長期間の使用が困難となる。
【0003】
特許文献1では、バイナリー発電システムにおいて、熱源流体が地熱流体又は地熱との熱交換により吸熱し、蒸発器で放熱して再び地熱流体又は地熱との熱交換のために還流する閉ループ循環流路を構成するとともに、低沸点媒体を冷却する冷却流体についても、地中に放熱冷却を行う閉ループ流路を構成するか、蒸発器を通過した後の熱源流体を駆動熱源とする冷凍機と熱交換器を備え、凝縮器における低沸点媒体の凝縮液化を最適化できるよう、冷却流体の温度を制御して凝縮器への冷却流体供給を行う閉ループ流路を構成する地熱発電システムが提案されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2014-84857号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
上記のように、地熱流体を汲み上げて利用する発電方法では、配管設備やタービン等の設備にスケールが付着して経年的には発電量が低下し、又はメンテナンスが必要である。環境面においても地熱流体を汲み上げて利用するため、温泉水の吐出量等に影響することも考えられる。また、汲み上げて地熱流体を発電に利用した後の水は、還元井から大地に戻すのであるが、スケールを除去するための化学物質等が含まれており環境に与える影響が少なからず発生する。
更に、特許文献1にみられるように地下の熱だけを利用して発電を行う方法は、環境によく温泉水への湯量や化学物質等への懸念も考慮する必要がないため有効である。
【0006】
マグマが地表近くにある火山地帯では掘削する距離が短くても300℃以上の高温の地熱帯により熱を交換することができる。
しかしながら、従来のように第1の作動媒体に純水を使用する場合には、蒸気とならずに熱水のまま閉ループ内を循環させる場合には、蒸発しない温度に圧力を保つため、ポンプに負担が掛かってしまうという問題がある。
例えば、300℃の水を蒸気にすることなく搬送する際の圧力は8587kPa以上の圧力が必要である。
【0007】
本発明は、このような課題を鑑みされたものであり、地熱帯から得られた熱量を地上において有効に利用し、地上における負荷設備の負担を減らしながら、地中における高温の地熱帯での熱交換が可能な地熱発電装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は、上述の目的を達成するために、以下の手段を採った。
【0009】
地中の熱を第1の作動媒体により回収し、地上にて第2の作動媒体により熱交換を行う熱交換器を備え、前記第2の作動媒体により蒸気タービンを駆動させて発電を行う地熱発電装置であって、前記第1の作動媒体は溶融塩を備え、前記第1の作動媒体の融点よりも低くなる地熱帯の領域内にあって、前記第1の作動媒体を凝固させない温度に管内を保つ断熱構造を設けた熱媒体移送管を備えたことを特徴とする。
【発明の効果】
【0010】
以上の特徴によって、溶融塩を使用することによって、高温であってもポンプ圧を上げることなく液体のまま第1の作動媒体を搬送することができる。また、溶融塩を使用することによって、たとえ不測の事態があって、有害となる物質でないため環境に配慮することができる。また断熱構造を備えることにより、溶融塩の凝固を防ぐことが可能である。
【図面の簡単な説明】
【0011】
図1図1は、実施形態にかかる本発明の地熱発電装置の構成を示す概要図である。
図2図2は、実施形態にかかる本発明の地熱帯と第1の作動媒体の温度の状態を現した概要図である。
図3図3は、実施形態にかかる本発明の熱媒体移送管の構成を示す概要図である。
【発明を実施するための形態】
【0012】
本発明にかかる地熱発電装置1の実施形態について、図面を参照しつつ詳細に説明する。尚、以下に説明する実施形態及び図面は、本発明の実施形態の一部を例示するものであり、これらの構成に限定する目的に使用されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更することができる。各図において対応する構成要素には同一又は類似の符号が付されている。
【0013】
図1は、実施形態にかかる本発明の地熱発電装置1の構成を示す概要図である。地熱発電装置1は、第1の作動媒体(I1~I5)に、溶融塩を使用している。溶融塩は、例えば、アルカリ金属ハロゲン系では、CaCl2、NaF-AlF3及びLiF-BeF2等がある。また、オキシ酸塩系では、KNO3-NaNO3及びLiNO3-AgNO3がある。分子性溶融塩系では、AlCl3-NaClがある。本実施例は、NaNO3、KNO3及びNaNO2を7:44:9の割合の溶融塩を使用した例を示す。NaNO3/KNO3/NaNO2は、140℃の融点を示し、550℃まで分解は起こらない。
【0014】
また、第2の作動媒体(J1~J4)は、水を使用している。尚、第2の作動媒体(J1~J6)は水だけでなく、可燃性や毒性のない不活不活性ガスのHFC-245fa、R245fa等や沸点の低い媒体(水とアンモニアの混合物等、炭化水素(ペンタン))を使用しても良い。
【0015】
地熱発電装置1は、主に熱媒体移送管10、蒸発器50、循環ポンプ5、蒸気タービンT、発電機G、媒体ポンプ55、受電設備H及び冷却器56とで構成されている。
【0016】
本発明では、第1の作動媒体(I1~I5)は、熱媒体移送管10及び地上の配管を経由して蒸発器50に至り、再び熱媒体移送管10へ循環する閉ループを形成する。
また、第2の作動媒体(J1~J4)においても、蒸発器50、蒸気タービンT、冷却器56、媒体ポンプ55及び予熱器51を循環する閉ループを形成する。
【0017】
図1は、熱交換器である蒸発器50及び予熱器51を中心に第1の作動媒体(I1~I5)により地中熱を回収する熱媒体移送管10と第2の作動媒体(J1~J4)により蒸気発電を行う装置とに分かれる。
【0018】
先ず、第1の作動媒体(I1~I5)により地中熱を回収するシステムについて説明する。第1作動媒体I1は、循環ポンプ5により配管を通して熱媒体移送管10に送られる。地表Kから地中深部にある熱源となる地熱帯Sまで熱媒体移送管10が埋設されている。
【0019】
図3を参照し以下に熱媒体移送管10について説明する。図3に示す熱媒体移送管10は、外側に円筒状の媒体注入管11が埋設され、その媒体注入管11の周囲は地表Kから地熱帯Sに至る領域の前まで、すなわち発電に必要な温度よりも低い温度の地中の領域は、地熱セメント15により固められており、崩落の危険がないように施されており、また断熱の機能も有している。
【0020】
熱媒体移送管10は、熱媒体移送管10の媒体注入管11の最深部に位置する地熱帯Sの流体又は岩盤からの熱を吸収する。熱媒体移送管10の長さは、地熱帯Sの温度により全長が変化し、350℃前後を熱として吸収できる地熱帯まで伸びている。
【0021】
媒体注入管11は、ステンレス等の素材で形成されている。温度の高い地熱帯Uの領域において、媒体注入管11は、伝熱面積を拡大させるためにフィン等が溶接等で付けられている。
また、火山地帯や温泉地帯にみられる熱媒体移送管10の耐酸性対策として耐酸性塗料を使用し、粉体塗装によるポリイミド樹脂又はフッ素樹脂等により高温且つ耐酸性の塗料として媒体注入管11に塗装することも可能である。
【0022】
第1の作動媒体I1の熱が奪われないように、断熱塗料や樹脂等の断熱材や空気層を設ける等の断熱構造16がとられている。また、熱媒体移送管10は、断熱構造をとるために断熱が必要な断熱領域について3重管構造をとっても良い。
【0023】
媒体注入管11は、地表Kに近い地中熱の温度の低い領域では、溶融塩I1が融点以下に低下し凝固が起きた場合や凝固を防止するためにヒーター8により熱を与えている。
ヒーター8は、電気を使用して発熱体に電力を加える構造や熱媒体が通る伝熱配管等により媒体注入管11を暖める構造が考えられる。
【0024】
熱媒体移送管10は、媒体注入管11の内側に、地熱帯Sで熱せられた水を移送する円筒状の媒体取出管12を設けている。媒体取出管12は、媒体注入管11の内側であって同軸上に円筒状に形成されている。媒体取出管12は、管の内側を第1の作動媒体I3が通過可能な円筒状とし、その外側は垂直方向に沿って真空断熱構造又は断熱材を付設した断熱構造17としている。断熱構造17は、最深部Sの地中で回収した第1の作動媒体の温度を低下させることなく、地表Kに第1の作動媒体I3を搬送できる構造としている。
【0025】
図2は温度分布20を示しているが、地熱帯温度分布21に従って、熱媒体移送管10は断熱構造16、17、吸熱構造及びヒーター8が付設される位置が定められる。点A附近は地熱帯の温度分布に水脈があり温度が最も下がる地点であることから断熱構造16やヒーター8を付設する位置である。また、第1の作動媒体(I1~I5)である溶融塩(NaNO3/KNO3/NaNO2)については融点26が140℃(1点2点鎖線)であることから、この温度より低い地熱帯については境界24(1点1点鎖線)を境に、断熱領域として断熱構造16、17が必要である。
【0026】
以上の構造をとることにより、第1の作動媒体(I1~I3)は、溶融塩温度分布25に示すように300℃の温度を保ち地表Sに搬送される。
【0027】
図1に示すように地表Kに搬送された第1の作動媒体I3は、熱交換の役割も持つ蒸発器50に流入し、その後、蒸発器50を通過した第1の作動媒体I4は熱交換の役割も持つ予熱器51に流入する。蒸発器50内を通過した第1の作動媒体I5は、予熱器51内を通過する際に熱交換し、第2の作動媒体を予熱する。
蒸発器50又は予熱器51の前後や循環ポンプ5の熱媒体移送管10への流入側に、第1の作動媒体(I1~I5)の流量を調整する制御弁6が設けられている。制御弁6は、第1の作動媒体(I1~I5)の温度や流量の調整が可能である。
【0028】
循環ポンプ5の使用について、第1の作動媒体(I)は、基本的には熱媒体移送管の10入口及び出口間の温度差による自然循環によって駆動され、例えば、自然循環駆動に必要な温度差が得られない場合に、循環ポンプ5が補助的に使用される。また、自然循環駆動はするが、必要な流量が得られない場合、又は第1の作動流体(I1)の初期装荷やドレインの際に循環ポンプ5が使用される。
本実施例では地熱帯Uで熱交換する媒体として溶融塩を使用しているが、熱媒体移送管10の破損等があり外部に流出したとしても、環境に害を与えることはなく、作業面においても安全に扱うことが可能である。
【0029】
循環ポンプ5は、溶融塩に多い耐アルカリ性の金属を使用して形成し、その軸受けについて耐アルカリ金属とは異なる素材を使用することにより同種金属による溶着を防ぐことが可能であり、循環ポンプ5に負担を掛けることがない。
【0030】
次に、第2の作動媒体(J1~J4)により蒸気発電を行う装置について図1を参照し説明する。
上述したように蒸発器50を通過する第1の作動媒体(I4)が300℃もの温度を維持し、蒸発器50内を高温に保っている。第2の作動媒体(J4)は、300℃よりも低沸点(水の場合には100℃)であるために、蒸発器50内で蒸気となる。その蒸気となった第2の作動媒体(J1)は、蒸気タービンTを回転させ、発電機Gにより発電を行っている。
【0031】
蒸気タービンTに使用された後の蒸気である第2の作動媒体(J2)は、冷却塔57を備えた冷却器56により水に戻され第2の作動媒体(J3)となって媒体ポンプ55により予熱器51に送られる。予熱器51内は、蒸発器50を通過した第1の作動媒体(I5)にて熱交換され高温に保たれている。また、その予熱器51内の熱により第2の作動媒体(J3)を予熱し、蒸発器50内に予熱された第2の作動媒体(J4)を流入させている。
【0032】
(技術的徴)
以下に本実施形態の技術的特徴点の一例を括弧内に示すが、特に限定するものでもなく例示しているものであり、これら特徴から考えられる効果についても記載する。
【0033】
<第1の特徴点>
地中の熱を第1の作動媒体(例えば、主に第1の作動媒体(I1~I5))により回収し、地上にて第2の作動媒体(例えば、主に第2の作動媒体(J1~J4))により熱交換を行う熱交換器(例えば、主に蒸発器50、予熱器51)を備え、前記第2の作動媒体により蒸気タービン(例えば、主に蒸気タービンT)を駆動させて発電を行う地熱発電装置であって、
前記第1の作動媒体は溶融塩(例えば、主にNaNO3/KNO3/NaNO2)を備え、
前記第1の作動媒体の融点よりも低くなる地熱帯の領域内にあって、前記第1の作動媒体を凝固させない温度に管内を保つ断熱構造(例えば、断熱構造16、17、地熱セメント15)を設けた熱媒体移送管(例えば、主に熱媒体移送管10)を備えたことを特徴とする。
【0034】
以上の特徴によって、溶融塩を使用することによって、高温であっても大きなポンプ動力を使うことなく液体のまま第1の作動媒体を搬送することができる。また、溶融塩を使用することによって、たとえ不測の事態があって、有害となる物質でないため環境に配慮することができる。また断熱構造を備えることにより、溶融塩の凝固を防ぐことが可能である。
【0035】
<第2の特徴点>
前記断熱構造は、前記熱媒体移送管の外周を覆う地熱セメント(例えば、主に地熱セメント15)を備えたことを特徴とする。
以上の特徴によって、地熱セメントは、熱媒体移送管の埋設時に崩落を防ぐ機能を有しながら、断熱構造をとることも可能である。
【0036】
<第3の特徴点>
前記熱媒体移送管の外周を覆い、外部から得られる熱により発熱するヒーター(例えば、ヒーター8)を備えたことを特徴とする。
以上の特徴によって、第1の作動媒体が不意に凝固したとしてもヒーターにより凝固状態から融解状態にすることが可能であるとともに、未然に凝固することを防ぐことも可能である。
【0037】
<第4の特徴点>
前記熱媒体移送管は、外周に樹脂塗装を施したことを特徴とする。
以上の特徴によって、高温である火山地帯にみられる酸性の土壌に対して熱媒体移送管の腐食を防ぐことが可能である。
【産業上の利用可能性】
【0038】
上述した実施の形態で示すように、火山地帯だけでなく、温泉が湧き出る地熱帯や海中での火山地帯等にも利用することができる。
【符号の説明】
【0039】
1…地熱発電装置、5…循環ポンプ、8…ヒーター、10…熱媒体移送管、
11…媒体注入管、12…媒体取出管、15…地熱セメント、16、17…断熱構造、
20…温度分布、21…地熱帯温度分布、24…境界、25…溶融塩温度分布、
26…融点、50…蒸発器、51…予熱器、55…媒体ポンプ、T…蒸気タービン、
G…発電機、H…受電設備、K…地表、
I、I1、I2、I3、I4、I5…第1の作動媒体、
J1、J2、J3、J4…第2の作動媒体、S…地熱帯。
図1
図2
図3