(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-15
(45)【発行日】2023-03-24
(54)【発明の名称】全方位測距装置
(51)【国際特許分類】
G01S 17/87 20200101AFI20230316BHJP
G01S 17/10 20200101ALI20230316BHJP
G01C 3/06 20060101ALI20230316BHJP
【FI】
G01S17/87
G01S17/10
G01C3/06 120Q
G01C3/06 140
G01C3/06 110V
(21)【出願番号】P 2019231747
(22)【出願日】2019-12-23
【審査請求日】2021-11-24
(73)【特許権者】
【識別番号】501009849
【氏名又は名称】株式会社日立エルジーデータストレージ
(74)【代理人】
【識別番号】110001689
【氏名又は名称】青稜弁理士法人
(72)【発明者】
【氏名】松浦 直也
(72)【発明者】
【氏名】市川 紀元
【審査官】東 治企
(56)【参考文献】
【文献】米国特許出願公開第2018/0302611(US,A1)
【文献】特開平09-093471(JP,A)
【文献】特開2015-119476(JP,A)
【文献】米国特許出願公開第2010/0165155(US,A1)
【文献】特開2018-146525(JP,A)
【文献】特開2008-281427(JP,A)
【文献】特表2007-525054(JP,A)
【文献】米国特許出願公開第2016/0269716(US,A1)
【文献】国際公開第2016/199850(WO,A1)
【文献】米国特許出願公開第2019/0324352(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/48-7/51
G01S 17/00-17/95
G01C 3/00-3/32
G01B 11/00-11/30
H04N 5/222-5/257
(57)【特許請求の範囲】
【請求項1】
複数の収納室が形成され、前記複数の収納室に対して個別に着脱自在に複数の測距センサが収容される筐体であって、前記複数の測距センサを位置決めして一体的に保持する前記筐体を有し、
対象物までの距離を測定する
前記複数の測距センサ
は、
前記収納室に収容された状態において、中心軸の周りに互いに接近
して放射状に配置
され、
且つ、前記複数の測距センサの検知中心方向
が前記中心軸に直交する面から所定の角度だけ傾斜
した状態で、一体的に
なるように構成
され、
前記測距センサの前記収納室に対する着脱により、前記筐体に収容される前記複数の測距センサの台数を調整可能であり、
前記複数の測距センサは、各々の視野角(以下、FOV)の合計が、測定すべき領域に対応する角度と略同等となるような台数で構成されることを特徴とする全方位測距装置。
【請求項2】
請求項
1に記載の全方位測距装置において、
前記複数の測距センサは、各々のFOVが略90度であって、測定すべき領域に対応する角度が360度のとき、4台で構成されることを特徴とする全方位測距装置。
【請求項3】
請求項1に記載の全方位測距装置において、
前記複数の測距センサの信号処理を行うデータ処理部と、
前記複数の測距センサに電力を供給する電源部と、を備え、
前記データ処理部および前記電源部の少なくとも一方は、前記複数の測距センサで共通化されるとともに、
共通化された前記データ処理部と前記電源部は、前記全方位測距装置の中央部に配置されていることを特徴とする全方位測距装置。
【請求項4】
請求項1に記載の全方位測距装置において、
前記測距センサは、光の飛行時間により対象物までの距離を測定するTOFセンサ(Time Of Flight)であり、
前記TOFセンサは、照射光を出射する発光部と、対象物からの反射光を受光する受光部とを備えることを特徴とする全方位測距装置。
【請求項5】
請求項
4に記載の全方位測距装置において、
前記TOFセンサの前記発光部は光源と拡散板を有し、
前記拡散板は前記光源から出射する光を発散させてFOVを拡大することを特徴とする全方位測距装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、対象物までの距離を全方位で測定する全方位測距装置に関する。
【背景技術】
【0002】
対象物までの距離を測定して距離画像を得るために、照射光が対象物で反射して戻ってくるまでの飛行時間により距離を測定する方式(TOF=Time Of Flight)を用いた測距装置が実用化されている。この場合、測距センサとなるTOFセンサでは、照射光の発光と反射光の露光を周期的に繰り返し、所定の露光期間に蓄積された露光量から照射光に対する反射光の時間遅れを算出して距離を測定する。測定空間が広いときには、同一の測定空間内に複数のTOFセンサを設置して同時に測距動作を行なう。例えば特許文献1には、複数のTOFセンサを設置した場合の装置間の光干渉の判定や干渉対策について記載されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
一般の測距センサは、その検知領域(検知角度幅)が限られているので、例えば部屋の天井に測距センサを取り付けて真下方向を検知しようとすると、検知範囲は真下領域に限られてしまう。そこで、より広い空間(全方位)をカバーするためには、複数の測距センサを設置して検知領域を拡大させることになる。その際、各測距センサの検知領域の重なりを少なくし、かつ検知されない領域が生じないように効率的に設置するのが望ましい。そのため作業者は、複数の測距センサを天井等に設置した後、測距センサ毎に検知領域を調整しなければならず、作業時間と設置コストが増加するという課題があった。
【0005】
特許文献1をはじめ従来技術では、広い空間をカバーするための測距装置、および複数の測距センサを設置する際の作業の効率化については特に考慮されていなかった。
【0006】
本発明の目的は、広い検知範囲をカバーするとともに、複数の測距センサについて相互の検知領域の調整が不要な全方位測距装置を提供することである。
【課題を解決するための手段】
【0007】
本発明の全方位測距装置は、対象物までの距離を測定する複数の測距センサを、中心軸の周りに互いに接近させて放射状に配置し、複数の測距センサの検知中心方向を、中心軸に直交する面から所定の角度だけ傾斜させて一体的に構成したことを特徴とする。
【0008】
好ましくは、前記測距センサは、光の飛行時間により対象物までの距離を測定するTOFセンサ(Time Of Flight)であり、TOFセンサは、照射光を出射する発光部と、対象物からの反射光を受光する受光部とを備える。
また、複数のTOFセンサの発光部は、中心軸の周りに互いに接近させて放射状に配置され、複数のTOFセンサの受光部は共通化され、全方位測距装置の中央部に配置されている。
あるいは、前記測距センサは、一対のカメラの視差により対象物までの距離を測定するステレオカメラである。
【発明の効果】
【0009】
本発明の全方位測距装置によれば、広い検知範囲をカバーするとともに、装置を設置する際、複数の測距センサについて相互の検知領域の調整が不要となり、作業時間と設置コストを低減することができる。
【図面の簡単な説明】
【0010】
【
図1】実施例1に係る全方位測距装置の外観を示す図。
【
図6】全方位測距装置による検知範囲の例を示す図。
【
図8】実施例2に係る全方位測距装置の外観を示す図。
【
図10】実施例3に係る全方位測距装置の外観を示す図。
【
図11】ステレオカメラによる距離測定の原理を示す図。
【発明を実施するための形態】
【0011】
以下、本発明の実施形態を説明する。本発明は複数の測距センサを用いるが、実施例1と実施例2は、測距センサとしてTOFセンサを用いる場合、実施例3は、測距センサとしてステレオカメラを用いる場合について説明する。
【実施例1】
【0012】
図1は、実施例1に係る全方位測距装置1の外観を示す図である。実施例1では、測距センサとしてTOFセンサを用いる。(a)はTOFセンサ10単体について、(b)は全方位測距装置1の全体についての形状を示す。
【0013】
全方位測距装置1は、複数のTOFセンサ10を一体的に構成したもので、検知領域内の対象物までの距離を全方位に測定することができる。この例では、4台のTOFセンサ10を互いに近接させ、中心軸となるZ軸の周りに放射状に配置し、筐体2で固定している。すなわち、4台のTOFセンサ10の長辺は、四角形の4辺を形成している。なお、TOFセンサ10の台数はこれに限らず任意の台数が可能であり、台数が増えると外形は略円環状になる。
【0014】
各TOFセンサ10は、レーザ光などを出射する発光部11と、対象物からの反射光を受光する受光部12とが並べて配置されている。発光部11の出射方向と受光部12の受光方向は略一致させており、それぞれ所定の角度幅を有している。以下、この角度幅を視野角(FOV:Field of view)と呼び、TOFセンサの検知領域となる。
【0015】
全方位測距装置1では各TOFセンサ10を一体化するとき、各TOFセンサ10の検知領域の重なりを少なくし、かつ検知されない領域が生じないように各TOFセンサ10の姿勢を決定する。例えば、全方位測距装置1を天井に取り付けて部屋内の全方位を検知範囲とするときは、各TOFセンサ10の検知領域の中心方向(以下、検知中心方向)を、中心軸であるZ軸に直交する面(すなわち水平面)から下方に所定の角度θだけ傾けて設置する。
【0016】
図2は、全方位測距装置1の断面図である。(a)は、
図1(b)のA-A位置の断面形状を示す。各TOFセンサ10a、10bは、筐体2により所定の位置に保持され、一体化されている。筐体2は、各TOFセンサ10a、10bを保持するため、収納室を有している。これにより、対向するTOFセンサ10a、10bを、所定の間隔で、また検知中心方向を水平面から角度θだけ傾けた姿勢にて保持することができる。
【0017】
さらに、対向するTOFセンサ10a、10bに挟まれた空間には、各TOFセンサ10の信号処理を行う共通のデータ処理部3や、各TOFセンサ10に電力を供給する電源部4を配置する。これにより、装置内部の空間を有効に使用することができ、装置の小型化に寄与できる。また、各TOFセンサ10からデータ処理部3までの距離が均等化され、センサ毎のばらつきが低減して装置の性能向上に寄与する。
【0018】
図2(b)は、TOFセンサ10a、10bを筐体2へ着脱する様子を示したものである。各TOFセンサ10は筐体2の収納室に対し、個別に着脱が可能である。測定すべき領域の広さに応じて不必要となるセンサを外したり、故障したセンサのみを個別に交換したりすることができ、効率的である。そして各TOFセンサ10は、筐体2の収納室に当接して位置決めされるので、着脱しても位置や姿勢が変化することがなく、全方位測距装置1としての測定精度を維持することができる。
【0019】
図3は、発光部11の構成を示す図である。発光部11には、例えばレーザダイオード(LD)などの光源111を用いるが、その出射ビームの広がり(発散角)は非常に狭いので、そのままでは測距センサとしての視野角(FOV)が狭くなってしまう。そこで拡散板112を用いて発散角を拡大させ、所望のFOVを得るようにする。拡散板112は、例えば入射面に微小レンズがランダムに形成されており、微小レンズの形状を変えることで所望のFOVを得ることができる。なお、TOFセンサにおけるFOVの大きさと検知距離とは互いに相反関係にあるので、両者のバランスを取ってFOVを決定する。
【0020】
本例の全方位測距装置1では、4台のTOFセンサ10を組み合わせているので、1台のFOVを90度とすることで、4台をつなぎ合わせて360度の視野(全方位)をカバーすることができる。つまり、使用するTOFセンサは、各々のFOVの合計が、測定すべき領域に対応する角度と略同等となるような台数で構成する。測定空間が部屋内等で検知すべき領域が四角形状の場合、この構成が最も効率が高い。なお、1台のTOFセンサ10のFOVが60度であれば、6台のTOFセンサ10を組み合わせることで、360度の視野(全方位)をカバーすることができる。言い換えれば、全方位測距装置1に使用するTOFセンサ10の台数は、拡散板112の特性(発散角)を選択することで変更可能である。
【0021】
図4は、TOFセンサの測距原理を示す図である。TOFセンサ10は、人物や物体などの測定の対象物30までの距離を測定し、測定した対象物の各部までの距離を2次元の距離データとして出力する。その構成は、発光部11、受光部12、距離演算部14、及び制御部15を有する。
【0022】
発光部11は、レーザダイオード(LD)などの光源を駆動してレーザ等のパルス状の照射光31を出射する。受光部12は、照射光31が対象物30で反射して戻ってきたパルス状の反射光32を検出する。受光部12は、CCDセンサやCMOSセンサなどを2次元状に配列したイメージセンサ13で露光し、各画素位置での光強度を電気信号に変換する。
【0023】
距離演算部14は、受光部12からの出力信号から対象物30までの距離Lを演算し、視野内の距離データを生成する。距離Lを演算では、照射光31と反射光32の時間差dTに基づいて、対象物30までの距離Lを、L=dT×c/2で求めることができる(ここにcは光速)。なお、時間差dTは、複数の露光期間を設定し、その期間内にイメージセンサ13に蓄積された電荷量から求めることができる。制御部15は距離演算部14を介して、発光部11からの照射光31の発光動作と、受光部12での反射光32の露光動作を制御する。
【0024】
図5は、TOFセンサ10からの信号処理を説明する図である。ここでは、4台のTOFセンサ10a~10dの場合を示す。複数のTOFセンサ間の測定時の干渉(マルチパスなど)を回避するため、各TOFセンサは互いに異なる発光パターンで動作させる。各TOFセンサで測定された距離データは、データ処理部3へ送られる。
【0025】
データ処理部3は、SoC(System on a chip)で構成され、各TOFセンサの距離データを座標変換によって結合して、1つの共通の座標系のデータとして出力する。また、距離データを距離値に応じて色分けした画像データに変換することも可能である。さらに、距離データから対象物を判定し、特定のデータだけを出力するといった処理も可能である。これにより、例えば店舗において、1日の来店人数を計算して、その値だけを出力することが可能である。
【0026】
データ処理部3で処理されたデータは、外部機器5(クラウドやサーバ)に転送され、適宜表示、保存される。このように、各TOFセンサの信号処理を行うデータ処理部3および電源部4を共通化しているので、データ処理の効率化とコスト低減が図れる。
【0027】
図6は、全方位測距装置1による検知範囲の例を示す図である。(a)は全方位測距装置1の場合、(b)と(c)は比較のために1台のTOFセンサ10の場合を示す。図面左側は測定空間を水平方向に見た側面図、図面右側は測定空間を垂直方向に見た平面図である。
【0028】
(a)は、
図1(b)に示した全方位測距装置1(4台のTOFセンサ10で構成)を天井に設置した場合で、水平方向に広い検知範囲41が得られる。1台のTOFセンサ10のFOVを90度とし、4台のTOFセンサ10を組み合わせた結果、全方位(360度)の測定が調整不要で可能となる。
【0029】
これに対し(b)と(c)は、1台のTOFセンサ10を天井に設置した場合である。(b)は視野方向を斜めに設定した場合であり、検知範囲40は狭く、測定空間の一方向(図面左側)に限定される。(c)は視野方向を真下に設定した場合であり、検知範囲40’は狭く、TOFセンサ10の真下領域に限定される。
【0030】
このように本実施例の全方位測距装置1によれば、複数のTOFセンサについて相互の検知領域の調整をすることなく、広い検知範囲をカバーすることが可能となる。
【0031】
図7は、全方位測距装置1により得られる距離画像の例を模式的に示す図である。4台のTOFセンサ10a~10dから得られる距離データを、データ処理部3で距離画像に変換した場合である。それぞれのTOFセンサ10a~10dから得られる距離画像50a~50dは、全測定空間の1/4領域の部分画像である。
【0032】
これらの部分画像50a~50dを、データ処理部3によりオーバーラップ領域52でつなぎ合わせて合成すると、全方位の1つの距離画像51を生成することができる。TOFセンサ10a~10dの最適な配置により、合成後の距離画像51では、オーバーラップ領域52が少なく、隣接画像間に隙間が生じることはない。
【0033】
このように実施例1によれば、複数のTOFセンサを一体化して構成した全方位測距装置とすることで、広い検知範囲をカバーするとともに、複数のTOFセンサについて相互の検知領域の調整が不要になる。よって、本実施例の全方位測距装置を測定現場に設置する際には、設置時に行う姿勢調整等の手間が省かれて作業時間と設置コストの低減が可能となる。
【実施例2】
【0034】
実施例2は、複数のTOFセンサの受光部を共通化した場合である。
図8は、実施例2に係る全方位測距装置1’の外観を示す図である。実施例1と同様に測距センサとしてTOFセンサを用いるが、各TOFセンサの受光部を共通化している。ここでは2つのタイプを示し、(a)は四角形タイプ、(b)は円形タイプである。図面中の符号は実施例1と同様に付与している。
【0035】
(a)に示す全方位測距装置1’は、筐体2の周囲の4辺に4個の発光部11を配置し、全方位に照射光を出射する。筐体2の下面中央には共通の受光部12を配置し、全方位からの反射光を受光する構成である。なお、受光部12の入射位置には魚眼レンズ121を配置し、各方向からの反射光を1箇所で集光できるようにしている。本実施例における視野角(FOV)は発光部11の出射方向で決まり、4個の発光部11の出射中心方向は、実施例1(
図1)と同様に、水平面より下方に角度θだけ傾けて設置している。
【0036】
(b)に示す全方位測距装置1’は、略円形の筐体2の円周上に、複数の発光部11を等間隔に配置して全方位に照射光を出射する。受光部12は(a)の構成と同様である。
【0037】
図9は、全方位測距装置1’の断面図であり、
図8(a)のA-A位置の断面形状を示す。対向する発光部11a,11bと、共通の受光部12は、筐体2により保持されている。発光部11a,11bは、光源111と拡散板112を有し、受光部12は、イメージセンサ13と魚眼レンズ121を有する。筐体2の上面側には、データ処理部3や電源部4を配置している。実施例1と異なり、各発光部11a,11bにおける発光タイミングは同一であり、イメージセンサ13の露光タイミングを基準に設定される。
【0038】
実施例2によれば、複数のTOFセンサの受光部を共通化して1箇所に集約したので、全方位測距装置の一層の小型化と低コスト化が可能になる。
【実施例3】
【0039】
実施例3は、測距センサとしてステレオカメラを用いた場合である。ステレオカメラによってもTOFセンサと同様に距離測定が可能となる。
【0040】
図10は、実施例3に係る全方位測距装置の外観を示す図である。(a)は外観斜視図を、(b)と(c)は複数のステレオカメラの配置例を示す平面図である。
【0041】
(a)に示す全方位測距装置1”は、複数のステレオカメラ20を一体的に構成したもので、この例では、4台のステレオカメラ20を四角形の4辺に互いに近接させて放射状に配置し、筐体2で保持している。各ステレオカメラ20は、一対のカメラ21,22を並べて配置し、三角測量の原理で前方の物体までの距離を測定するものである。各ステレオカメラ20の形状は、一対のカメラ21,22が配列される方向に長手形状をなす。
【0042】
ここで、本実施例で採用したステレオカメラ20は、その長手方向の視野角(FOV)がこれと直交する短手方向のFOVよりも大きく得られることから、複数のステレオカメラ20は、短手方向が放射状となるように配置している。これらの構成により、全方位の測定が可能になる。使用するステレオカメラ20の台数と姿勢(水平方向からの傾き)は、実施例1のTOFセンサ10と同様に、使用するステレオカメラ20のFOVと検知中心方向に応じて決定する。
【0043】
(b)と(c)は、4台のステレオカメラ20を用いた場合の配置例である。(b)は口型配置で、ステレオカメラ20の長手方向が四角形の各辺に一致するよう配置している。(c)は(b)における各ステレオカメラ20をさらに近接して配置したもので、1つのステレオカメラの端部20xを、隣接するステレオカメラの長手側面20yに近接させて配置したものである。よって、(c)の近接配置は、(b)の口型配置よりもステレオカメラ同士が接近し、ステレオカメラおよびこれらに囲まれた中央部の占める面積の総和が小さくなることから、全方位測距装置1”のより小型化が可能になる。
【0044】
ここでは4台のステレオカメラ20を用いる場合について説明したが、もちろん、ステレオカメラ20の台数はこれに限らない。(c)の近接配置で台数を増加させた場合は、各ステレオカメラ20は、1つの端部が他の長手側面に近接するように順次に配置され、全体として略円環状をなすような配置となる。
【0045】
また、本実施例の全方位測距装置1”の断面は、実施例1(
図2)と同様の構成である。全方位測距装置1”の内部中央の空間には、各ステレオカメラ20の信号処理を行う共通のデータ処理部3や電源部4が配置され、各ステレオカメラ20は筐体2から着脱可能となっている。
【0046】
図11は、ステレオカメラによる距離測定の原理を示す図である。ステレオカメラ20の左右のカメラ21,22の撮像面において、物体が写る位置は視差Dだけずれている。ステレオカメラ20では、2つの撮影画像内で特徴点(エッジなど)のマッチング処理を行い視差Dを求める。物体を頂点とした三角形(実線)と焦点を頂点とした三角形(破線)は相似関係にある。カメラの焦点距離をf、カメラ間距離をBとすると、視差Dを用いて物体までの距離Zは、Z=B×f/Dで算出される。このようにして、視野内の各物体までの距離を測定する。各ステレオカメラ20で測定された距離データは、実施例1(
図5)と同様にデータ処理されて距離画像が得られる。
【0047】
なお、ステレオカメラでは、上記した撮影用の一対のカメラの他に、撮影を補助するための照明用の発光部や、特定のパターン画像を投影する投影部を有する構成としてもよい。
【0048】
実施例3においても、複数のステレオカメラを一体化して構成した全方位測距装置とすることで、広い検知範囲をカバーするとともに、複数のステレオカメラについて相互の検知領域の調整が不要になる。
【0049】
以上、本発明の各実施例を説明したが、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【符号の説明】
【0050】
1,1’,1”:全方位測距装置、
2:筐体、
3:データ処理部、
4:電源部、
10,10a~10d:TOFセンサ、
11,11a~11b:発光部、
12:受光部、
13:イメージセンサ、
14:距離演算部、
15:制御部、
20:ステレオカメラ、
21,22:カメラ、
111:光源、
112:拡散板、
121:魚眼レンズ。