(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-15
(45)【発行日】2023-03-24
(54)【発明の名称】射出成形機を制御するためのシステムおよびアプローチ
(51)【国際特許分類】
B29C 45/77 20060101AFI20230316BHJP
B29C 45/26 20060101ALI20230316BHJP
【FI】
B29C45/77
B29C45/26
(21)【出願番号】P 2020571377
(86)(22)【出願日】2019-06-11
(86)【国際出願番号】 US2019036455
(87)【国際公開番号】W WO2019245794
(87)【国際公開日】2019-12-26
【審査請求日】2022-01-18
(32)【優先日】2018-06-22
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】514159601
【氏名又は名称】アイエムフラックス インコーポレイテッド
(74)【代理人】
【識別番号】110001243
【氏名又は名称】弁理士法人谷・阿部特許事務所
(72)【発明者】
【氏名】イーサン デイビッド スティーフェル
(72)【発明者】
【氏名】ブライラー コリンズ
(72)【発明者】
【氏名】ジーン マイケル アルトネン
(72)【発明者】
【氏名】ブライアン マシュー バーンズ
(72)【発明者】
【氏名】ブランドン マイケル バーチマイヤー
【審査官】関口 貴夫
(56)【参考文献】
【文献】特開昭62-104727(JP,A)
【文献】特開2001-252957(JP,A)
【文献】特開2001-054924(JP,A)
【文献】特開昭56-051339(JP,A)
【文献】特開平06-114908(JP,A)
【文献】特開2009-208252(JP,A)
【文献】特開平07-304079(JP,A)
【文献】特表2016-539820(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B29C 45/00-45/84
(57)【特許請求の範囲】
【請求項1】
金型空洞を形成する金型を有する射出成形機を制御するための方法であって、前記射出成形機は、射出サイクルに従って制御され、前記方法は、
前記射出サイクルのパターンを取得することと、
溶融材料を前記金型空洞に射出するために前記射出成形機を動作させることと、
前記射出サイクル中に前記金型空洞の空洞圧力値を測定することと、
空洞圧力値を測定すると、前記取得したパターンに少なくとも部分的に依存する前記射出サイクルのパターン認識部分を開始することと、を含み、前記測定した空洞圧力値が前記射出サイクルについて前記取得したパターンと一致するように、前記溶融材料に加えられる駆動力が調整されることと、
前記射出サイクルの射出部分の間、溶融圧力制御に基づく入力に従って、前記溶融材料に加えられる前記駆動力を調整することと、
前記溶融圧力制御に基づく入力が、実質的に一定の圧力値で前記射出成形機を動作させることを含む、方法。
【請求項2】
前記パターンを取得するステップが、前記射出サイクルの空洞圧力設定値曲線を取得することを含む、請求項1に記載の方法。
【請求項3】
前記溶融圧力制御に基づく入力が、可変溶融圧力制御曲線に従って前記射出成形機を動作させることを含む、請求項1または2に記載の方法。
【請求項4】
前記溶融材料に加えられる前記駆動力は、圧力、サーボモータ、またはフローコントロールバルブのうちの少なくとも1つによって加えられる、請求項1~3のいずれか一項に記載の方法。
【請求項5】
前記射出サイクルの前記射出部分は、第1のコントローラを介して制御され、パターン認識プロファイルは、第2のコントローラによって開始される、請求項2~4のいずれか一項に記載の方法。
【請求項6】
前記空洞圧力値を測定すると、前記射出サイクルの制御を前記第1のコントローラから前記第2のコントローラに切り替えることをさらに含む、請求項5に記載の方法。
【請求項7】
前記射出サイクルの前記射出部分の間、前記第2のコントローラは、前記第1のコントローラから出力された制御電圧をミラーリングする、請求項6に記載の方法。
【請求項8】
前記溶融圧力制御に基づく入力は、ノズル溶融圧力変換器を含み、前記
測定した空洞圧力
値は、空洞圧力変換器を介して取得される、請求項2~7のいずれか一項に記載の方法。
【請求項9】
射出成形機であって、
射出ユニットおよび金型空洞を形成する金型であって、前記射出ユニットが、溶融
材料を受け入れて前記金型空洞に射出して成形部品を形成するように適合される、射出ユニットおよび金型空洞を形成する金型と、
第1の部分および第2の部分を有する射出サイクルに従って前記射出成形機の動作を制御するように適合されたコントローラと、
前記射出成形機および前記コントローラに結合された第1のセンサと、
前記射出成形機および前記コントローラに結合された第2のセンサであって、前記第1のセンサとは異なる特性を測定するように適合された、第2のセンサと、を備え、
前記射出サイクルの前記第1の部分において、前記コントローラは、前記第1のセンサから取得した測定値に少なくとも部分的に基づいて前記射出ユニットを制御し、イベントが発生すると、前記射出サイクルの前記第2の部分が開始し、前記コントローラはさらに、前記第2のセンサから取得した測定値に少なくとも部分的に基づいて前記射出ユニットを制御し、
前記第1のセンサは、前記射出ユニットの溶融圧力値を測定するように適合されている、射出成形機。
【請求項10】
前記第2のセンサは、前記射出ユニットの空洞圧力値を測定するように適合されている、請求項9に記載の射出成形機。
【請求項11】
前記イベントは、測定された空洞圧力値を含む、請求項9~10のいずれか一項に記載の射出成形機。
【請求項12】
前記空洞圧力値は、約50psiである、請求項11に記載の射出成形機。
【請求項13】
前記コントローラは、前記第2のセンサから取得した測定値および以前に捕捉したパターンに少なくとも部分的に基づいて、前記射出ユニットを制御する、請求項9~12のいずれか一項に記載の射出成形機。
【請求項14】
前記以前に捕捉したパターンは、理想的な空洞圧力設定値曲線を含む、請求項13に記載の射出成形機。
【請求項15】
前記第2のセンサは、仮想センサを含み、前記溶融材料の流頭位置および前記溶融材料の前記流頭における対応する圧力を示す一連のパラメータが生成されている、請求項9~14のいずれか一項に記載の射出成形機。
【請求項16】
前記射出サイクルの前記第1の部分の間、前記コントローラは、入力が前記第1のセンサから取得される溶融圧力プロファイルに従って、前記溶融材料に加えられる駆動力を調整する、請求項9~15のいずれか一項に記載の射出成形機。
【請求項17】
前記射出サイクルの前記第2の部分の間、前記コントローラは、空洞圧力制御に基づいて、前記溶融材料に加えられる駆動力を調整し、入力は、前記第2のセンサから取得されている、請求項9~16のいずれか一項に記載の射出成形機。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
この出願は、2018年6月22日に出願された米国仮出願第62/688,482号の利益を主張し、その全体が参照により本明細書に明示的に組み込まれる。
【0002】
本開示は、一般に、射出成形、より具体的には、特定の圧力プロファイルを使用して射出成形機を制御するためのアプローチに関する。
【背景技術】
【0003】
射出成形は、熱可塑性材料で構成された部品の大量生産に一般的に使用される技術である。反復射出成形プロセス中に、熱可塑性樹脂は、典型的に、小さなペレットまたはビーズの形態で、熱と圧力の下でペレットを溶融する射出成形機に導入される。射出サイクルでは、溶融材料は、特定の所望の空洞形状を有する金型空洞に強制的に射出される。射出されたプラスチックは、金型空洞内に圧力下で保持され、その後冷却されて、金型の空洞形状に非常に似た形状を有する固化部品として除去される。単一の金型は、溶融樹脂の流れを空洞に向けるゲートによって流路に接続することができる任意の数の個別の空洞を有することができる。典型的な射出成形手順には、一般に以下の4つの基本的な動作が含まれる。(1)射出成形機でプラスチックを加熱して、プラスチックが圧力下で流れることを可能にすること、(2)溶融したプラスチックを閉じた2つの金型の半分の間に画定された1つ以上の金型空洞に射出すること、(3)圧力下でプラスチックを1つ以上の空洞内で冷却および硬化させること、および(4)金型の半分を開き、金型から部品を取り出すこと。
【0004】
これらのシステムでは、制御システムが、射出成形機の様々な構成要素の一連の制御値を定義する射出サイクルに従って射出成形プロセスを制御する。例えば、射出サイクルは、固定および/または可変の溶融圧力プロファイルによって駆動することができ、それにより、コントローラは、材料に加えられる駆動力を決定するための入力として、ノズルで感知された圧力を使用する。射出サイクルは、固定または可変のねじ速度プロファイルによって制御することもでき、それにより、制御部は、材料に適用される駆動速度を決定するための入力として射出ねじの速度を感知する。
【0005】
成形条件の変化は、溶融プラスチック材料の特性に大きな影響を与える可能性がある。一例として、樹脂バッチ間の材料仕様の違いおよび環境条件の変化(周囲温度または湿度の変化など)により、溶融プラスチック材料の粘度が上昇または低下する可能性がある。溶融プラスチック材料の粘度が変化すると、成形部品の品質に影響を与える可能性がある。例えば、溶融プラスチック材料の粘度が上昇すると、成形部品は、最適な部品品質を達成するために、充填後、必要な圧力が高くなるため、「パック不備」になるか、または密度が低くなる可能性がある。逆に、溶融プラスチック材料の粘度が低下すると、より薄い溶融プラスチック材料が金型空洞の継ぎ目に押し込まれるため、成形部品がフラッシュを経験する可能性がある。さらに、未使用の材料と混合された再生プラスチック材料は、組み合わされたプラスチック材料のメルトフローインデックス(MFI)に影響を与える可能性がある。2つの材料の混合に一貫性がないと、サイクル間でMFIの変動が生じる可能性もある。
【0006】
一部の従来の射出成形機は、粘度、MFI、または他の材料特性の変化を考慮するように成形サイクルを調整しない。その結果、これらの射出成形機は低品質の部品を生産する可能性があり、品質管理検査中に除去する必要があり、それによって動作上の非効率につながる。さらに、射出成形の実行には数千とは言わないまでも数百の金型サイクルが含まれ得るので、射出成形機の環境条件は、実行の各金型サイクルにわたって一定ではない。したがって、金型サイクルが実行開始時の環境要因を考慮して適合されている場合でも、環境条件の変化により、実行の後半で実施される金型サイクル中に低品質の部品が依然として生産される可能性がある。
【0007】
追加的に、感知された溶融圧力値に依存すると、成形部品に一貫性がなくなる可能性がある。例えば、射出サイクルが固定溶融圧力設定値曲線に基づいている環境では、射出サイクルは、様々な特性を有する材料(例えば、粉砕再生、生分解性、および/または再生可能な材料)を適切に射出できない可能性がある。追加的に、一部のシステムでは調整可能な溶融圧力設定値曲線を使用する場合があるが、これらのシステムでは、材料仕様(例えば、粘度および部品密度)が変更された場合に、材料公差を維持できないことがよくある。その結果、これらのシステムは一貫性のない寸法の部品を生産する可能性があり、したがって、動作上の非効率性がさらに高まる。これらの問題は、ねじ速度によって移送位置に制御し、サイクルを射出から保持に移動する従来の射出成形プロセスでさらに現実化される。例えば、粘度が低下すると、材料の移動が容易になる。射出部分は、公称プロセスと同じ速度で材料を移動するが、同じ保持圧力に制御して、より密度の高い部品を生じさせる。逆に、粘度の高い材料は、公称速度で充填された後、密度の低い部品を作成し、潜在的にパック不備になるか、または寸法仕様から外れた部品を作成する。
【発明の概要】
【0008】
本発明の範囲内の実施形態は、理想的な空洞圧力プロファイルを射出サイクルの動作を制御するためのシステム入力として扱うことによって、繰り返し可能に一貫した部品を生産するための射出成形機の制御に関する。射出成形機を制御するためのシステムおよびアプローチは、最初に射出サイクルのパターン(例えば、空洞圧力設定値曲線)を取得し、射出成形機を動作させて溶融材料を金型空洞に射出することを含む。金型サイクル中に金型空洞の空洞圧力値が測定される。公称空洞圧力値を測定すると、取得したパターンに少なくとも部分的に依存する射出サイクルのパターン認識部分が開始され、測定した空洞圧力が空洞圧力設定値曲線と一致するように、溶融材料に加えられる駆動力が調整される。
【0009】
これらの例では、射出サイクルの射出部分の間、溶融材料に加えられる駆動力は、速度または溶融圧力制御に基づく入力に従って調整される。溶融圧力制御に基づく入力は、実質的に一定の圧力値で射出成形機を動作させることを含み得る。いくつかの例では、射出成形機は、材料の溶融特性の変化によって定義される可変溶融圧力制御曲線に従って動作することができる。
【0010】
溶融材料に圧力を加えるために、任意の数の駆動機構を使用してもよい。例えば、電気プレス、サーボ油圧プレス、完全油圧、または任意の他の種類のプレスを使用してもよい。いくつかの例では、溶融圧力制御に基づく入力は、ノズル溶融圧力変換器を介して受信されてもよい。空洞圧力測定値は、空洞内または空洞の近くに配置された空洞圧力変換器を介して取得されてもよい。
【0011】
いくつかの例では、射出サイクルの射出部分は、第1のコントローラを介して制御され得、第2のコントローラは、射出サイクルのパターン認識部分の動作を開始し得る。いくつかの形態では、公称空洞圧力値を測定すると、射出サイクルの制御は、第1のコントローラから第2のコントローラに切り替えることができる。射出サイクルの射出部分の間、第2のコントローラは、最初に第1のコントローラから出力された制御電圧をミラーリングすることができる。この制御電圧は、(例えば、ねじまたはプレスを介して)溶融材料が受ける駆動力を調整する少なくとも1つの要因であり得る。
【0012】
別の態様によれば、射出成形機は、射出ユニットおよび金型空洞を形成する金型と、射出サイクルに従って射出成形機の動作を制御するように適合されたコントローラと、射出成形機およびコントローラに結合された第1および第2の圧力センサと、を含んでもよい。射出ユニットは、溶融プラスチック材料を受け入れて金型空洞に射出し、成形部品を形成するように適合されている。射出サイクルは、第1の部分および第2の部分を含み、第1の部分の間、コントローラは、第1のセンサから取得した測定値に少なくとも部分的に基づいて射出ユニットを制御する。あるイベントが発生すると、射出サイクルの第2の部分が開始し、それにより、コントローラは、第2のセンサから取得した測定値に少なくとも部分的に基づいて射出ユニットをさらに制御する。
【図面の簡単な説明】
【0013】
本明細書は、本開示と見なされる主題を特に指摘し明確に主張する特許請求の範囲で結論付けるが、本発明は、添付の図面と併せて以下の説明からより完全に理解されると考えられる。図面のうちのいくつかは、他の要素をより明確に示す目的で選択された要素を省略することによって簡略化されたものであり得る。いくつかの図面におけるこのような要素の省略は、対応する記述において明示的に描出され得る場合を除いて、例示的な実施形態のうちのいずれにおいても必ずしも特定の要素の存否を示すものではない。図面は、必ずしも一定の縮尺ではない。例えば、図中のいくつかの要素の寸法および/または相対的な位置付けは、本発明の様々な実施形態の理解の向上を助けるために、他の要素に対して誇張されている場合がある。
【0014】
【
図1】本開示の様々な実施形態によるコントローラが結合された例示的な射出成形機の概略図を示す。
【
図2】本開示の様々な実施形態による射出成形サイクルの例示的な射出プロファイルを示す。
【
図3】射出成形サイクルの従来技術の射出プロファイルの第1の例を示しており、それにより、溶融圧力設定値は、材料特性の変化を考慮して調整される。
【
図4】射出成形サイクルの従来技術の射出プロファイルの第2の例である。
【
図5】本開示の様々な実施形態によるパターン認識制御を利用する射出成形サイクルの第1の例示的な射出プロファイルを示す。
【
図6】本開示の様々な実施形態によるパターン認識制御を利用する射出成形サイクルの第2の例示的な射出プロファイルを示す。
【発明を実施するための形態】
【0015】
一般的に言えば、本開示の態様は、射出成形機を制御するためのシステムおよびアプローチを含み、動作パターン(例えば、動作曲線)が取得され、機械の少なくとも部分的な制御動作に使用される。これらのシステムおよびアプローチでは、射出サイクルは、所望の寸法公差内にとどまる高品質の部品を示している所望の動作パターンに(すなわち、閉ループ方式で)少なくとも部分的に依存している。したがって、システムは、その出力が動作パターンの出力と一致するように、必要に応じて射出プロセスの動作パラメータを調整することができる。本明細書で使用される際、「射出サイクルのパターン認識部分を開始すること」という句は、コントローラが、取得した動作パターンまたはプロファイルに依存する方式で射出成形機を動作させる動作を開始することを意味する。
【0016】
いくつかの例では、動作パターンは、検証段階中に識別できる動作曲線の形態であってもよい。好適な動作曲線のそのような例の1つは、空洞圧力曲線である。以下でさらに詳細に説明するように、システムは、システムの出力が以前に識別された空洞圧力曲線の出力と一致するように、射出成形機の動作パラメータを調整することができる。
【0017】
図面に目を向けると、射出成形プロセスが本明細書で説明される。本明細書に説明されるアプローチは、電気プレス、サーボ油圧プレス、油圧プレス、および他の既知の機械に好適である可能性がある。
図1に示されるように、射出成形機100は、射出ユニット102およびクランプシステム104を含む。射出ユニット102は、ペレット108の形態または任意の他の好適な形態の材料を受け入れるように適合されたホッパー106を含む。これらの例の多くでは、ペレット108は、ポリマーまたはポリマーベースの材料であり得る。他の例も可能である。
【0018】
ホッパー106は、ペレット108を射出ユニット102の加熱されたバレル110に供給する。加熱されたバレル110に供給されると、ペレット108は、往復ねじ112によって加熱されたバレル110の端部まで駆動され得る。加熱されたバレル110の加熱および往復ねじ112によるペレット108の圧縮により、ペレット108を溶融させ、それにより、溶融プラスチック材料114を形成する。溶融プラスチック材料114は、典型的には、約130℃~約410℃の範囲内で選択された温度で処理される。
【0019】
往復ねじ112は前方に進み、溶融プラスチック材料114をノズル116に向かって押して、プラスチック材料のショットを形成し、これは、最終的に、1つ以上のゲート120を介して金型118の金型空洞122に射出され、このゲートは溶融プラスチック材料114の流れを金型空洞122に導く。言い換えれば、往復ねじ112は、溶融プラスチック材料114に力を及ぼすように駆動される。他の実施形態では、ノズル116は、供給システム(図示せず)によって1つ以上のゲート120から分離され得る。金型空洞122は、金型118の第1の金型側面125と第2の金型側面127との間に形成され、第1および第2の金型側面125、127は、プレスまたはクランプユニット124を介して圧力下で一緒に保持される。
【0020】
プレスまたはクランプユニット124は、成形プロセス中に、2つの金型半分125、127を分離するように作用する射出圧力によって及ぼされる力よりも大きい所定のクランプ力を加え、それにより、第1および第2の金型側面125、127を一緒に保持し、一方で、溶融プラスチック材料114は、金型空洞122に射出される。これらのクランプ力を支持するために、クランプシステム104は、タイバーなどの任意の他の数の構成要素に加えて、金型フレームおよび金型ベースを含むことができる。
【0021】
溶融プラスチック材料114のショットが金型空洞122に射出されると、往復ねじ112は、前方への動きを停止する。溶融プラスチック材料114は、金型空洞122の形態を取り、プラスチック材料114が固化するまで金型118内で冷却される。固化すると、プレス124は、第1および第2の金型側面115、117を解放し、これらは次に互いに分離される。次に、完成した部品を金型118から取り出すことができる。金型118は、全体的な生産率を高めるために、任意の数の金型空洞122を含んでもよい。空洞の形状および/または設計は、互いに同一、類似、および/または異なる場合がある。例えば、組合せ金型は、互いに嵌合するか、さもなければ動作することを目的とした関連する構成部品の空洞を含み得る。
【0022】
射出成形機100はまた、接続145を介して機械100と通信可能に結合されたコントローラ140を含む。接続145は、電子信号を送信および/または受信するように適合された任意の種類の有線および/または無線通信プロトコルであり得る。これらの例では、コントローラ140は、少なくとも1つのセンサ、例えば、ノズル116内またはその近くに配置されたセンサ128、および/または金型空洞122内またはその近くに配置されたセンサ129と信号通信している。いくつかの例では、センサ129は、射出機100のマニホルドまたはランナーに配置されている。金型118および/または機械100の任意の数の特性を感知することができる任意の数の追加のセンサを使用して、機械100の所望の位置に置いてもよいことが理解される。さらなる例として、金型空洞122内の流頭進行を検出することができる任意の種類のセンサを使用してもよい。
【0023】
コントローラ140は、射出成形機100に対していくつかの位置に配設することができる。例として、コントローラ140は、機械100と一体であるか、機械に取り付けられた筐体に含まれるか、機械に隣接または近接して位置付けられる別個の筐体に含まれるか、または機械から離れて位置付けられることができる。いくつかの実施形態では、コントローラ140は、当技術分野で知られているおよび/または一般的に使用されている有線および/または有線信号通信を介して、機械の機能を部分的または完全に制御することができる。
【0024】
センサ128は、溶融プラスチック材料114の1つ以上の特性を(直接的または間接的に)測定するように適合された任意の種類のセンサであり得る。センサ128は、例えば、圧力、温度、粘度、流量、硬度、ひずみ、例えば半透明性、色、光の屈折、および/または光の反射などの光学特性などの当技術分野で知られ、使用されている溶融プラスチック材料114の任意の特性、またはこれらを示す任意の数の追加の特性のうちの任意の1つ以上を測定してもよい。センサ128は、溶融プラスチック材料114と直接接触してもよいし、またはそうでなくてもよい。いくつかの例では、センサ128は、溶融プラスチック材料114に関連する特性だけでなく、射出成形機100の任意の数の特性を測定するように適合され得る。一例として、センサ128は、ノズル116での溶融プラスチック材料114の溶融圧力を測定する圧力変換器であってもよい。
【0025】
センサ128は、コントローラ140の入力に送信される信号を生成する。センサ128がノズル116内に配置されていない場合、コントローラ140は、ノズル116内の測定された特性の値を推定または計算するための適切な補正係数を提供するために、論理、コマンド、および/または実施可能なプログラム命令を用いて設定、構成、および/またはプログラムされ得る。
【0026】
同様に、センサ129は、溶融プラスチック材料114の1つ以上の特性を(直接的または間接的のいずれかで)測定して、金型空洞122内のその存在および/または状態を検出するように適合された任意の種類のセンサであり得る。様々な実施形態では、センサ129は、金型空洞122内の充填終了位置またはその近くに配置することができる。センサ129は、例えば、圧力、温度、粘度、流量、硬度、ひずみ、例えば半透明性、色、光の屈折、および/または光の反射などの光学特性などの当技術分野で知られている溶融プラスチック材料114および/または金型空洞122の任意の数の特性、またはこれらを示す任意の数の追加の特性のうちの任意の1つ以上を測定しもよい。センサ129は、溶融プラスチック材料114と直接接触してもよいし、またはそうでなくてもよい。一例として、センサ129は、空洞122内の溶融プラスチック材料114の空洞圧力を測定する圧力変換器であってもよい。センサ129は、コントローラ140の入力に送信される信号を生成する。任意の数の追加のセンサを使用して、動作パラメータを感知および/または測定してもよい。
【0027】
コントローラ140はまた、ねじ制御126と信号通信している。いくつかの実施形態では、コントローラ140は、コントローラ140の出力からねじ制御126に送信される信号を生成する。コントローラ140は、例えば、(ねじ制御126を制御して、ねじ112を、ノズル116内の溶融プラスチック材料114に対応する所望の値を維持する速度で前進させることによって)射出圧力、バレル温度、クランプの開速度および/または閉速度、冷却時間、射出前進時間、全体のサイクル時間、圧力設定値、取り出し時間、ねじ回復速度、ならびにねじ速度などの機械の任意の数の特性を制御することができる。他の例も可能である。
【0028】
コントローラ140からの1つ以上の信号は、一般に、材料粘度、金型温度、溶融温度の変動、および充填速度に影響を与える他の変動がコントローラ140によって考慮されるように、成形プロセスの動作を制御するために使用され得る。調整がリアルタイムまたはほぼリアルタイムで(すなわち、センサ128、129の感知値とプロセスに加えられる変更との間の最小の遅延で)コントローラ140によって行われてもよく、または補正が後続のサイクルで行われ得る。さらに、任意の数の個々のサイクルから導出されるいくつかの信号を、成形プロセスを調整するための基礎として使用してもよい。コントローラ140は、当技術分野で知られている任意の種類の信号通信アプローチを介して、センサ128、129、ねじ制御126、および/または機械100内の任意の他の構成要素に接続してもよい。
【0029】
コントローラ140は、その動作を制御するように適合されたソフトウェア141、任意の数のハードウェア要素142(例えば、非一時的メモリモジュールおよび/またはプロセッサなど)、任意の数の入力143、任意の数の出力144、および任意の数の接続145を含む。ソフトウェア141は、非一時的なコンピュータ可読媒体の形態でコントローラ140の非一時的なメモリモジュールに直接ロードされ得るか、または代替的にコントローラ140から離れて配置され、任意の数の制御アプローチを介してコントローラ140と通信し得る。ソフトウェア141は、金型サイクルに従って射出成形機100を制御するための論理および/またはコマンドを含み得る論理、コマンド、および/または実施可能なプログラム命令を含む。ソフトウェア141は、オペレーティングシステム、動作環境、アプリケーション環境、および/またはユーザインターフェースを含んでもよいし、または含まなくてもよい。
【0030】
ハードウェア142は、入力143を使用して、コントローラ140によって制御されている射出成形機から信号、データ、および情報を受信する。ハードウェア142は、出力144を使用して、信号、データ、および/または他の情報を射出成形機に送信する。接続145は、信号、データ、および情報がコントローラ140とその射出成形機100との間で送信され得る経路を表す。様々な実施形態では、この経路は、本明細書に記載されるかまたは当技術分野で知られている任意の方法で構成された、直接または間接の物理的接続に類似して機能する物理的接続または非物理的通信リンクであり得る。様々な実施形態では、コントローラ140は、当技術分野で知られている任意の追加または代替の方法で構成することができる。
【0031】
接続145は、信号、データ、および情報がコントローラ140と射出成形機100との間で送信され得る経路を表す。様々な実施形態では、これらの経路は、本明細書に記載されるかまたは当技術分野で知られている任意の方法で構成された、直接または間接の物理的接続のいずれかと同様に機能する物理的接続または非物理的通信リンクであり得る。様々な実施形態では、コントローラ140は、当技術分野で知られている任意の追加または代替の方法で構成することができる。
【0032】
いくつかの例では、コントローラ140は、第1および第2のコントローラの形態であり得、これらの各々は、コントローラ140のものと同様の特徴を有する。これらの例では、第1のコントローラは、射出サイクルの第1の部分を制御することができ、第2のコントローラは、射出サイクルの第2の部分を制御することができる。
【0033】
図2に示されるように、従来の射出成形サイクルの例示的な射出プロファイル200は、いくつかの別個の段階を含む。図示の例は、実質的に一定の圧力プロファイルを示しているが、他の圧力プロファイル(例えば、速度制御された高圧射出成形プロセス)を、本明細書に記載のアプローチと組み合わせて使用してもよい。図示の例では、センサ128、129は、任意の種類の圧力センサ(例えば、ゲージ圧力センサ、差圧センサ、ピエゾ抵抗ひずみゲージなどの力コレクタ型センサ、容量センサ、共振センサ、熱センサ、および/または電磁センサ)であり、ノズル116におよび金型118の内側、内側近く、または外壁上の位置に配設される。具体的には、センサ128は、射出機の溶融圧力を感知するノズル変換器であり得、センサ129は、射出機の空洞圧力を感知する空洞圧力変換器であり得る。
【0034】
図示の例では、理想的な溶融圧力プロファイルまたは設定値210の形態の動作パターンが識別され、射出成形機100の動作を制御するための入力として使用される。言い換えれば、この例では、溶融圧力設定値210は、機械100がどのように動作すべきかを決定する入力として使用され、一方で、センサ128は、コントローラ140にフィードバックを提供して、溶融圧力設定値210に一致するように射出サイクルを調整すべきかどうかを決定する。
図2に示されるように、溶融圧力曲線212は、センサ128によって測定された溶融圧力を反映している。したがって、コントローラ140は、溶融圧力曲線212を溶融圧力設定値210に維持するために、ねじ112に加えられる圧力を調整することができる。使用される機械100の種類に応じて、異なるバルブおよび/またはモータを使用して、ねじ112の背面に加えられる圧力を維持および/または調整することができる。例えば、サーボモータを使用してねじドライブを回転させ、ねじ112の動きを制御してもよいし、フローコントロールバルブを使用して、ねじ112に作用する油圧流体の量を制御してもよいし、または比例バルブを使用してもよい。
【0035】
第1の段階202の間、溶融プラスチック材料114は、最初に金型空洞122を充填する。この段階202において、コントローラ140は、溶融圧力を実質的に一定の圧力値(例えば、約10,000psi)に増加させ、次いで、溶融プラスチック材料114が金型空洞122を充填する間、溶融圧力をこの圧力値またはその近くに保持させる。次に、溶融プラスチック材料114は、金型空洞122内のすべての間隙が確実に埋め戻されるように溶融圧力が維持されるパック/保持段階204に入る。これらのシステムでは、金型空洞122は、流路の端部からゲート120に向かって戻るように充填される。その結果、固化の様々な段階にある溶融プラスチック材料114がそれ自体の上にパックされる。これらのアプローチでは、測定された空洞圧力の量に基づいて、溶融圧力が上昇または低下する。変化の程度は、以下で説明するように、空洞圧力の量と乗数に依存し、これらは、プロセス検証中に決定され、必要に応じて調整される。
【0036】
このプロセス中、金型空洞122が溶融プラスチック材料114で実質的および/または完全に充填されると、金型空洞122内のセンサ129によって測定された圧力は、最終的にゼロ以外の値になる。射出サイクルがゼロ以外の空洞圧力に達するのにかかる時間は、「ステップ時間」として定義することができ、これは、金型空洞122を充填するのに必要な時間(例えば、「充填時間」)にプロセス係数調整(「PFA」)値を足したものに等しい。PFAは、金型で測定された空洞圧力の量の乗数である。空洞圧力が測定されると、プロセスの検証中に決定された乗数(PFA)に基づいて、溶融圧力設定値の調整が行われる。この乗数は、高品質の部品を製造するために必要に応じて調整することができる。
図2の図示の例では、全体のステップ時間は、段階202の持続時間に対応し、したがって、固定値を維持することを意図している。しかしながら、後述するように、実際には、各射出サイクルの実際のステップ時間は、材料の特性によって変化する場合がある。
【0037】
センサ129によって感知された空洞圧力を示す
図2の曲線220によって示されるように、射出サイクル中および空洞が実質的に完全に充填されると、空洞圧力は急速に最大値まで増加し、その後、射出サイクルが完了したときの最小値に戻るまで減少する。従来の射出システムでは、空洞圧力曲線220は、射出サイクルの品質を表すデータを提供するために使用することができる射出システムの単なる出力である。前述のように、検証段階では、理想的および/または望ましい特性を備えた成形部品が取得されるまで、多数の様々な射出サイクルが実行される。この理想的な射出サイクルは、充填時間、充填圧力、および材料特性に少なくとも部分的に基づく対応する理想的なパターンを出力として生産する。したがって、好適な物理的特性を有する部品を生産する好適な射出サイクルが実行されたと判断されると、図示の空洞圧力曲線220などの結果として生じる空洞圧力曲線は、後続の射出成形プロセスで使用される射出サイクル中に取得される理想的なパターンの一例であり得る。
【0038】
図2に示されている例示的な射出プロファイル200は、材料特性の変化を考慮していない。むしろ、射出プロファイル200は、以前に識別された溶融圧力制御設定値210に一致するようにシステムを制御することによって駆動される。したがって、材料および/または環境への変化が常に発生する場合、コントローラ140は、(例えば、指定されたねじ速度に固執するのとは対照的に)固定の溶融圧力設定値210に固執する手法で射出サイクルを制御し続ける。言い換えれば、コントローラ140は、溶融プラスチック材料114が多かれ少なかれ粘性であるか、および/または他の様々な材料特性を有するかどうかに関係なく、ねじ112に同じ圧力をかけ続ける。したがって、ねじ速度およびステップ時間は、システム100の出力となる。溶融プラスチック材料114がこれらの後続の射出サイクルで異なる材料特性を有する場合、射出プロファイルは変化するステップ時間をもたらし、金型空洞は過充填または過少充填される。言い換えれば、射出プロファイル200は、実際のステップ時間が以前に識別されたステップ時間と一致することを意図しているが、サイクルの特定の充填部分の実際のステップ時間は、以前に観察されたステップ時間値よりも短いまたは長い場合がある。これらの条件のいずれかは、成形部品の品質に悪影響を及ぼす。充填段階202は、変化する材料溶融特性を補償しない可能性があるが、この補償は、空洞圧力制御を使用して、プロセスのパック/保持204段階で実行される。例示のパック/保持段階に見られるように、ノズル感知溶融圧力212はシステムの出力になり、一方、空洞感知溶融圧力220は、設定値に制御される。
【0039】
システム内の様々な材料および/または環境変化の存在を克服するために、射出サイクルを調整する射出プロファイルが以前に採用されており、その例が
図3および
図4の射出プロファイル300に示されている。射出プロファイル300において、溶融圧力設定値310は、全体的なステップ時間を一定のままにさせる(すなわち、元の/理想的な射出サイクルから取得されるステップ時間に等しいままにさせる)ように、必要に応じて調整可能である。全体的なステップ時間が一定のままであることに加えて、これらの例では、充填時間とPFA時間との間の比率も一定であり、それにより、粘度がシフトした際に、金型空洞122全体が常に充填され、それによってフラッシュを回避することを確実にする。これらの例では、溶融プラスチック材料114上で一定の剪断速度が維持される。
【0040】
図3および
図4に示されるように、射出プロファイル300の間、コントローラ140は、同じステップ時間または充填速度を維持するために、センサ128を介して溶融圧力312を監視する。したがって、粘度がシフトすると、溶融圧力制御は、溶融圧力設定値310を補償および調整する。例えば、
図3に示されるように、溶融プラスチック材料114の粘度が増加すると、溶融圧力プロファイル310は、溶融プラスチック材料114上で同じ量の剪断を維持するために、より高い溶融圧力で動作する代替の溶融圧力プロファイル310aにシフトする。したがって、溶融圧力曲線312aによって示される感知された溶融圧力は、元の溶融圧力曲線312よりも高い。同様に、
図4に示されるように、溶融プラスチック材料114の粘度が低下すると、溶融圧力プロファイル310は、溶融プラスチック材料114上で同じ量の剪断を維持するために、より低い溶融圧力で動作する代替の溶融圧力プロファイル310bにシフトする。したがって、溶融圧力曲線312bによって示される感知された溶融圧力は、元の溶融圧力曲線312よりも低い。自動粘度調整のアプローチの追加の詳細は、2018年5月2日に出願された米国仮出願第62/665,866号、および2017年10月5日に出願された米国仮出願第62/568,548号に記載されており、その全体は参照により本明細書に組み込まれる。
【0041】
射出プロファイル300は、環境の変化および/または溶融プラスチック材料114の特性を考慮して調整を行うことを可能にするが、溶融圧力は、依然として射出サイクルを駆動するための決定要因として使用される。このプロファイル300では、空洞圧力が測定された後、溶融圧力はPFAに応じて増加または減少する可能性があるが、概ね平らになり、一定のままである。それが横ばいになる圧力は、ピーク空洞圧力のみならずPFAの乗数によって決定される。
図3および
図4に示されるように、代替の溶融圧力プロファイル310a、310bを使用する場合、結果として生じるパターン(すなわち、それぞれ空洞圧力曲線320a、320b)は、単に射出プロファイル300の出力である。空洞圧力曲線320a、320bの各々は、以前に決定された理想的な空洞圧力曲線320から、曲線320a、30bの下のピーク空洞圧力値および面積に有意な変動を有する。空洞圧力曲線320a、320bの形状は、溶融圧力制御に変更が加えられたときに同一ではないため、結果として生じる部品は、すべての寸法公差を保持しない可能性があり、したがって、望ましくない構造的および/または他の特性を有する可能性がある。曲線間のわずかな不一致は重要ではないように見える可能性があるが、結果として生じる部品の品質は大幅に劣り得、美的および/または構造上の欠陥が含まれる可能性がある。したがって、射出プロファイル300は、プロセス全体を変更せずに(すなわち、時間を公称の測定された空洞圧力に一定に保つように溶融圧力を調整することによって)調整を可能にするが、このプロセスは、典型的に、限界寸法を有する部品には使用されない。
【0042】
したがって、
図5および
図6に示されるように、本開示のシステムおよびアプローチは、射出プロファイル400への入力としてセンサ129からの測定値を使用する。前述のように、センサ129は、空洞圧力の変化を感知する変換器であり得、その後、コントローラ140が空洞圧力値を識別するために解釈する較正された電圧信号に変換される電荷を送信し得る。
【0043】
また、前述のように、検証段階では、好適な品質の成形部品を生成する理想的な射出パターンを決定することで、理想的なパターンを取得できる。本明細書で使用される場合、「理想的なパターン」とは、かなり欠陥のない部品を確実にもたらす、取得可能で望ましいパターンを意味する。パターンの一例は、理想的な空洞圧力プロファイル420であり得る。射出プロファイル400では、射出成形機100が前と同じように動作して、溶融プラスチック材料114を金型空洞122に射出する。射出サイクルは、公称空洞圧力の検出などのイベントが発生するまで続く。例えば、射出段階の間、空洞圧力は、公称空洞圧力値(例えば、約50psi)が測定されるまで継続的に観察される。この公称値は、最適な射出サイクルの設定中に決定され、好ましくは、空洞圧力の実際の増加の指標となるのにかなり十分な値であり、気泡または部品内の他の不一致ではない。
【0044】
公称空洞圧力値を測定すると、コントローラ140は、射出サイクルのパターン認識部分(例えば、空洞圧力制御部分など)を開始する。このパターン認識部分では、ねじ112によって加えられる駆動力は、測定された空洞圧力422が以前に取得した理想的なパターン(例えば、理想的な空洞圧力プロファイル420)と一致するように調整される。言い換えれば、センサ129によって測定された空洞圧力は、射出プロファイル400への入力となり、コントローラ140は、測定された空洞圧力422が空洞圧力プロファイル420と一致するように、ねじ112に加えられる圧力を調整する。測定された空洞圧力422が以前に識別された理想的な空洞圧力プロファイル420と一致することを確実にすることにより、機械100は、同一の物理的および構造的特性を有する同じ部品を一貫して製造する。
【0045】
言い換えれば、溶融プラスチック材料114の粘度、溶融密度、および/または他の特性がシフトするにつれて、同じ成形部品を維持するために、充填段階402中および後の両方で射出プロファイル400の補償が必要である。第1段階では、溶融圧力制御プロファイルまたは設定値410を使用して、溶融プラスチック材料114に最適な量の圧力を加え、これは、ノズル116またはその近くに配置されたセンサ128を介して監視および感知される。保持段階404では、空洞圧力制御プロファイルまたは設定値420を使用して、金型内の材料に最適な量の圧力を加え、これは、金型空洞122またはその近くに配置されたセンサ129を介して監視および感知される。
【0046】
図6に示されるように、溶融プラスチック材料114に対するこれらの変動が発生すると、コントローラ140は、溶融圧力および空洞圧力プロファイルを維持するために必要とされるリアルタイムまたはほぼリアルタイムの調整を計算する。充填段階402の間、コントローラ140が溶融プラスチック材料114の特性の変化を認識すると、溶融圧力設定値410は、サイクルが理想的な射出プロファイルと同時に公称空洞圧力に達することを保証するために必要に応じて調整された溶融圧力設定値(点線410aおよび410bによって示される)に調整される。同様に、保持段階404において、ねじ112に加えられる力(および/またはその動き)は、空洞圧力プロファイル(点線420a、420bによって示される)の偏差に応答して、リアルタイムまたはほぼリアルタイムで調整され、感知された圧力曲線422が空洞圧力設定値420と一致することを確実にする。
【0047】
いくつかの例では、前述のように、コントローラ140は、測定された空洞圧力が、以前に識別された理想的な空洞圧力プロファイル420と一致することを確実にするが、他の例では、コントローラは、測定された空洞圧力が、以前に識別された理想的な空洞圧力プロファイル420の指定された範囲(例えば、1つの標準偏差)内にあることを確実にし得る。言い換えれば、射出プロファイル400は、特定の範囲内でループを閉じる。例えば、コントローラ140は、以前に識別された理想的な空洞圧力プロファイル420から取られたピーク空洞圧力値と比較した場合、許容可能なピーク空洞圧力値の上限および/または下限を設定することができる。追加的または別個に、コントローラ140は、以前に識別された理想的な空洞圧力プロファイル420から導出された整数値と比較した場合、許容可能な積分(すなわち、空洞圧力曲線の下の領域)値の上限および/または下限を設定することができる。一例では、測定値(すなわち、ピーク空洞圧力および整数値)の上限および下限は、以前に識別された理想的な空洞圧力プロファイル420から導出された値の約5%以内であり得る。好適な限界の他の例が可能である。
【0048】
射出プロファイル400では、センサ129が公称空洞圧力値を測定する前に、任意の種類の制御プロファイルを使用できることが理解される。例えば、射出プロファイル400の第1段階402の間、コントローラは、以下と同様の手法で射出プロファイル400を制御することができる。すなわち、a)射出プロファイル200の第1段階202(すなわち、固定溶融圧力設定値の使用)、b)射出プロファイル300の第1段階302(すなわち、可変溶融圧力設定値の使用)、および/またはc)任意の他の制御プロファイルの使用。しかしながら、
図5および
図6の図示の例では、可変溶融圧力制御プロファイルが使用されている。
【0049】
前述のように、射出プロファイル400において、コントローラ140は、溶融圧力制御プロファイルから空洞圧力制御プロファイル420に自動的に切り替わる。この移行は、システムによって感知されている1つ以上の信号の突然の変化または特定の値などの任意の数の異なるイベントの発生に基づいて発生する可能性があることが理解される。さらに、いくつかの例では、コントローラ140は、空洞圧力プロファイル420に切り替えるための適切な条件を自動的に識別するための機械学習技術を組み込むことができる。
【0050】
これらの例のいくつかでは、コントローラ140は、2つの別々のまたは別個のコントローラの形態であり得、それにより、第1のコントローラは、溶融圧力プロファイルの制御に責任があり、第2のコントローラは、空洞圧力プロファイル420の制御に責任がある。これらの例では、第1のコントローラは、ねじ制御器126によって受信される出力電圧を生成することによって、溶融圧力プロファイルを制御する。同時に、第2のコントローラは、第1のコントローラによって生成された出力電圧をミラーリングすることができるが、この出力電圧は、ねじ制御器126に送信されない。射出サイクルのパターン認識部分の動作が開始されると、「切り替え」が行われ、それによって、第2のコントローラの出力電圧がねじ制御器126に送信され、空洞圧力プロファイル420が、射出サイクルの動作を少なくとも部分的に制御するために使用される。したがって、溶融圧力制御から空洞圧力制御への移行はシームレスであり、ねじ制御器126は、中断されない制御信号を受信する。
【0051】
いくつかの例では、センサ129は、金型空洞122から離れて配設されてもよく、それでもなおそれと通信することができる。例えば、2016年7月22日に出願された米国出願第15,216,762号(その全体が参照により本明細書に組み込まれる)は、仮想空洞センサとして1つ以上の外部センサの使用を説明している。そのようなセンサまたはセンサ構成は、本明細書に記載のセンサ129と交換可能に使用することができる。
【0052】
上記のアプローチは、以前に識別されたパターンが射出サイクルの少なくとも一部を駆動するために使用される任意の射出プロセスと組み合わせて使用してもよい。これらのアプローチは、例えばシリコーンおよび金属部品などの様々な材料から構築された任意の数の異なる成形部品の形成に使用してもよい。
【0053】
当業者は、本発明の範囲から逸脱することなく、上述の実施形態に関して多種多様な修正、変更、および組み合わせを行うことができ、そのような修正、変更、および組み合わせが本発明の概念の範囲内にあると見るべきであることを認識するであろう。
【0054】
また、本特許出願の最後にある特許請求項は、請求項(複数可)において明示的に列挙される「~するための手段」または「~するためのステップ」という表現などの、伝統的なミーンズ・プラス・ファンクション表現が明示的に列挙されていない限り、米国特許法第112(f)に基づいて解釈されることを意図したものではない。本明細書に記載のシステムおよび方法は、コンピュータ機能の改善、および従来のコンピュータの機能の改善に関する。