IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 戸田建設株式会社の特許一覧 ▶ NPO法人地盤防災ネットワークの特許一覧 ▶ 太洋基礎工業株式会社の特許一覧

特許7248241地盤改良効果の確認方法及びそれに用いる測定装置
<>
  • 特許-地盤改良効果の確認方法及びそれに用いる測定装置 図1
  • 特許-地盤改良効果の確認方法及びそれに用いる測定装置 図2
  • 特許-地盤改良効果の確認方法及びそれに用いる測定装置 図3
  • 特許-地盤改良効果の確認方法及びそれに用いる測定装置 図4
  • 特許-地盤改良効果の確認方法及びそれに用いる測定装置 図5
  • 特許-地盤改良効果の確認方法及びそれに用いる測定装置 図6
  • 特許-地盤改良効果の確認方法及びそれに用いる測定装置 図7
  • 特許-地盤改良効果の確認方法及びそれに用いる測定装置 図8
  • 特許-地盤改良効果の確認方法及びそれに用いる測定装置 図9
  • 特許-地盤改良効果の確認方法及びそれに用いる測定装置 図10
  • 特許-地盤改良効果の確認方法及びそれに用いる測定装置 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-20
(45)【発行日】2023-03-29
(54)【発明の名称】地盤改良効果の確認方法及びそれに用いる測定装置
(51)【国際特許分類】
   E02D 3/12 20060101AFI20230322BHJP
   E02D 1/08 20060101ALI20230322BHJP
【FI】
E02D3/12 101
E02D1/08
【請求項の数】 5
(21)【出願番号】P 2019118064
(22)【出願日】2019-06-26
(65)【公開番号】P2021004473
(43)【公開日】2021-01-14
【審査請求日】2022-06-08
(73)【特許権者】
【識別番号】000166432
【氏名又は名称】戸田建設株式会社
(73)【特許権者】
【識別番号】519232068
【氏名又は名称】NPO法人地盤防災ネットワーク
(73)【特許権者】
【識別番号】596164652
【氏名又は名称】太洋基礎工業株式会社
(74)【代理人】
【識別番号】100104927
【弁理士】
【氏名又は名称】和泉 久志
(72)【発明者】
【氏名】赤塚 光洋
(72)【発明者】
【氏名】下坂 賢二
(72)【発明者】
【氏名】村田 芳信
(72)【発明者】
【氏名】大野 康年
(72)【発明者】
【氏名】伊藤 孝芳
【審査官】石川 信也
(56)【参考文献】
【文献】特開昭63-315978(JP,A)
【文献】特開平08-145926(JP,A)
【文献】特開2009-024493(JP,A)
【文献】特開2001-241031(JP,A)
【文献】特開平08-041860(JP,A)
【文献】特開2019-077992(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
E02D 3/12
E02D 1/08
G01V 3/18
G01N 27/04
G01N 3/40
(57)【特許請求の範囲】
【請求項1】
薬液注入工法による地盤改良効果の確認方法であって、
地盤改良後において、小型動的コーン貫入試験により深度とNd値との関係を示したNd値の深度分布図を得て、地盤改良前後における前記Nd値の増分量から地盤改良効果を確認する1次的効果確認を行い、
前記1次的効果確認によって地盤改良効果が認められない場合に、前記小型動的コーン貫入試験の貫入孔に電極を備えた測定プローブを挿入して比抵抗を測定する電気検層を行い、深度と比抵抗との関係を示した比抵抗の深度分布図を得て、地盤改良前後における前記比抵抗の減分量から地盤改良効果を確認する2次的効果確認を行うことを特徴とする地盤改良効果の確認方法。
【請求項2】
前記電気検層は、2極法の電極配置により行う請求項1記載の地盤改良効果の確認方法。
【請求項3】
上記請求項1、2いずれかに記載の地盤改良効果の確認方法に用いる測定装置であって、
前記測定装置は、前記測定プローブが着脱可能に挿嵌される中空状の外装スリーブを含み、
前記外装スリーブは、前記測定プローブが前記貫入孔への挿入先端側から前記電極の取付位置を含む範囲に亘って挿嵌される中空部と、前記測定プローブの前記電極に対応する位置に、前記中空部から外面まで貫通するとともに、前記測定プローブを前記中空部に挿嵌した状態で内側の先端が前記電極に接触して設けられた外側電極とが備えられ、
前記貫入孔から前記測定プローブを引き抜くことが困難になった場合に、前記測定プローブが前記外装スリーブから抜けて、前記測定プローブが回収できるようになっていることを特徴とする地盤改良効果の確認方法に用いる測定装置。
【請求項4】
前記外装スリーブは、前記貫入孔に挿入した際、前記外側電極を孔壁に接触させるため、前記外側電極の反対側に、外方に突出した接触促進用凸部が設けられている請求項3記載の地盤改良効果の確認方法に用いる測定装置。
【請求項5】
前記測定プローブの周面に設けられた周方向固定用凸部が、前記外装スリーブに設けられた嵌合部に嵌合することにより、前記外装スリーブと前記測定プローブとの周方向への回転が固定されている請求項3、4いずれかに記載の地盤改良効果の確認方法に用いる測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液状化対策を主目的とした薬液注入工法による地盤改良効果の確認方法及びそれに用いる測定装置に関する。
【背景技術】
【0002】
従来より、埋立地等の軟弱地盤の地盤強化のため、水ガラス(珪酸ナトリウム)などからなる薬液を地盤に注入する薬液注入工法による地盤改良工事が行われている。薬液注入工法による地盤改良工事では、施工後、薬液が対象地盤に満遍なく行き渡っているかを確認する施工確認調査が行われる。
【0003】
薬液注入工法の施工確認調査として最も一般的な方法は、改良土を一軸圧縮強さquにより評価する方法である。しかし、薬液注入工法による改良土の一軸圧縮強さは、qu=50~100kPa程度と小さく、対象地盤によっては強度のバラツキが生じ適正に評価されない場合があった。すなわち、前記一軸圧縮強さquによる評価において、quが50~100kPa程度の小さな地盤の場合、事後調査における試料採取時や供試体作成時に、強度低下に繋がる乱れが生じやすい。また、対象地盤によっては供試体内に貝殻、木片、シルト、有機質土等が混入することにより、強度のバラツキが生じ、適正に評価できない場合があった。
【0004】
このような一軸圧縮試験以外の方法により改良地盤の品質を直接的に評価する方法として、国土交通省の埋立地等における薬液注入工法による地盤改良工事に関する検討委員会等において、ピエゾドライブコーン(PDC)などのように間隙水圧が測定できる動的コーン貫入試験が提唱されている。前記ピエゾドライブコーンは、圧力センサを内蔵したコーンをハンマーの打撃で地盤に貫入し、1打撃毎の貫入量と貫入時の間隙水圧の応答値を計測するものである。貫入量からは、標準貫入試験のN値に相当する地盤の動的な貫入抵抗値(Nd値)が1打撃毎に算出される。また、打撃貫入で生ずる地盤内の間隙水圧から、細粒分含有率Fcが推定されるとともに、この間隙水圧を用いて得られる累積過剰間隙水圧比が薬液の地盤への浸透を評価する指標となり得ることなどが上記の検討委員会等で提案されている。
【0005】
また、薬液注入工法の施工確認調査の他の方法として、電気検層が挙げられる。電気検層は、薬液注入工法では地盤の間隙水が薬液に置き換えられ地盤の圧縮率が変化するとともに、薬液が固化することで地盤の強度が増加することから、改良後の地盤は電気伝導度の特性が変化することを利用したものである。この電気検層では、施工前後における比抵抗値の低下によって、改良効果の定性的判断が可能になる。前記電気検層の測定手順は、ボーリング孔内に、上下方向に所定の間隔で複数の電極が備えられた測定プローブを挿入した後、電流電極に通電し、電極間の電位差から比抵抗を求める。
【0006】
このような電気検層による地盤改良工事の品質確認方法として、下記特許文献1においては、外面に環状の電極が取り付けられた電極取付体を改良体内に挿入し、電極取付体の周囲に造成された改良体に通電し、かかる状態で計測された電流電極間の電流及び電位電極間の電位差を用いて比抵抗を求める方法が開示されている。また、下記非特許文献1においては、薬液注入前後の電気比抵抗の変化から、薬液充填率を求める方法が開示されている。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2000-46510号公報
【非特許文献】
【0008】
【文献】小峯秀雄、「電気比抵抗による薬液注入改良部の充填率の評価方法」、土木学会論文集、No.463/III-22、p.153-162、1993年3月
【発明の概要】
【発明が解決しようとする課題】
【0009】
上述の動的コーン貫入試験について、地盤工学会のJGS基準(JGS 1437-2014)では、大型試験機(SRS)の単位面積・単位貫入量あたりのエネルギーを基準とし、周面摩擦とエネルギーにより補正することで、大型(SRS)と中型(MRS)の各試験装置の結果を相互に比較できることが規定されている。すなわち、大型か中型のいずれかの試験機を用いることが推奨されている。しかしながら、大型試験機(SRS)ではハンマー質量63.5kg、落下高500mm、中型試験機(MRS)ではハンマー質量30kg、落下高350mmと、いずれの試験機においても打撃エネルギーが高く、データのバラツキが生じやすいと考えられる。また、上記の検討委員会の報告では、上述の動的コーン貫入試験において、一軸圧縮強さquは、土の種類毎に、Nd値の増分(ΔNd値)と高い相関があるとされているが、qu=100kPaにおけるNd値の増分量(ΔNd値)は5以下と非常に小さく、バラツキの大きな中・大型試験機を用いた動的コーン貫入試験では、Nd値の増分量が地盤改良による結果なのか、試験機の誤差範囲なのかを判断するのが難しく、明確に評価できる判定手法が望まれていた。
【0010】
一方、上記特許文献1に記載される電気検層による地盤改良の品質確認では、計測の際に、測定プローブの周面に設けられた環状の電極を貫入孔の壁面に接触させる必要があるため、貫入孔と測定プローブの直径をほぼ同程度の寸法にしなければならず、これにより、測定プローブの引抜時の抵抗が大きくなり、測定プローブが回収不能となったり、電極を損傷するなどの問題が生じやすかった。また、電極が貫入孔の壁面に接触しにくく、接触不良による測定精度の低下が生じやすかった。上記非特許文献1では、室内実験のみが行われ、現場での試験における上記の問題を解決するものではない。
【0011】
そこで本発明の第1の課題は、バラツキが少なく、改良地盤の品質が直接的に確認できる地盤改良効果の確認方法を提供することにある。また、第2の課題は、電気検層における測定プローブの回収不能リスクを無くすとともに、電極が孔壁に確実に接触できるようにすることにある。
【課題を解決するための手段】
【0012】
上記第1の課題を解決するために請求項1に係る本発明として、薬液注入工法による地盤改良効果の確認方法であって、
地盤改良後において、小型動的コーン貫入試験により深度とNd値との関係を示したNd値の深度分布図を得て、地盤改良前後における前記Nd値の増分量から地盤改良効果を確認する1次的効果確認を行い、
前記1次的効果確認によって地盤改良効果が認められない場合に、前記小型動的コーン貫入試験の貫入孔に電極を備えた測定プローブを挿入して比抵抗を測定する電気検層を行い、深度と比抵抗との関係を示した比抵抗の深度分布図を得て、地盤改良前後における前記比抵抗の減分量から地盤改良効果を確認する2次的効果確認を行うことを特徴とする地盤改良効果の確認方法が提供される。
【0013】
上記請求項1記載の発明では、地盤改良後において、先ず、小型動的コーン貫入試験によりNd値の深度分布図を得て、地盤改良前後における前記Nd値の増分量から地盤改良効果を確認する1次的効果確認を行う。そして、この1次的効果確認によって地盤改良効果が認められない場合に、前記小型動的コーン貫入試験の貫入孔を利用して電気検層を行い比抵抗の深度分布図を得て、地盤改良前後における前記比抵抗の減分量から地盤改良効果を確認する2次的効果確認を行う。
【0014】
このように、いわゆるPENNYと呼ばれる小型動的コーン貫入試験によって、Nd値の深度分布図を得ているため、標準貫入試験や上述の中・大型試験機を用いたピエゾドライブコーンに比べて、打撃エネルギーのバラツキが少なく、バラツキの生じやすい不均一な埋立て地盤でも地盤強度が適正に評価できるようになる。
【0015】
また、地盤改良効果を確認するに当たって、先ず、前記小型動的コーン貫入試験で得られたNd値の深度分布図によって1次的な効果確認を行い、これでも地盤改良効果が認められない場合に、電気検層による比抵抗の深度分布図から2次的な効果確認を行うというように、2段階で効果確認を行っているため、Nd値の増分量だけでは地盤改良効果が判断できない場合でも、前記比抵抗の減分量から地盤改良効果が明確に把握でき、改良地盤の品質が直接的に確認できるようになる。
【0016】
請求項2に係る本発明として、前記電気検層は、2極法の電極配置により行う請求項1記載の地盤改良効果の確認方法が提供される。
【0017】
上記請求項2記載の発明では、2極法の電極配置により電気検層を行い比抵抗を求めている。2極法の電極配置は、地表付近に設置した電流遠電極に電流のリターンをとり、同じく地表付近に設置した電位遠電極を基準として、電流電極から一定電流を流しながら電位電極で電位を測定するものであり、他の電極配置に比べて、地盤の改良効果がより明確に把握できるようになる。
【0018】
上記第2の課題を解決するために請求項3に係る本発明として、上記請求項1、2いずれかに記載の地盤改良効果の確認方法に用いる測定装置であって、
前記測定装置は、前記測定プローブが着脱可能に挿嵌される中空状の外装スリーブを含み、
前記外装スリーブは、前記測定プローブが前記貫入孔への挿入先端側から前記電極の取付位置を含む範囲に亘って挿嵌される中空部と、前記測定プローブの前記電極に対応する位置に、前記中空部から外面まで貫通するとともに、前記測定プローブを前記中空部に挿嵌した状態で内側の先端が前記電極に接触して設けられた外側電極とが備えられ、
前記貫入孔から前記測定プローブを引き抜くことが困難になった場合に、前記測定プローブが前記外装スリーブから抜けて、前記測定プローブが回収できるようになっていることを特徴とする地盤改良効果の確認方法に用いる測定装置が提供される。
【0019】
上記請求項3記載の発明は、電気検層の際、測定プローブに着脱可能に外嵌される中空状の外装スリーブに関して規定しており、前記外装スリーブは、前記測定プローブが前記貫入孔への挿入先端側から前記電極の取付位置を含む範囲に亘って挿嵌される中空部と、前記測定プローブの前記電極に対応する位置に、前記中空部から外面まで貫通するとともに、前記測定プローブを前記中空部に挿嵌した状態で内側の先端が前記電極に接触して設けられた外側電極とが備えられている。そして、前記測定プローブは、前記貫入孔から前記測定プローブを引き抜くことが困難になった場合に、引抜き抵抗により前記外装スリーブから抜けて、回収できるようになっている。このように、測定プローブを引き抜く際の引抜き抵抗により、外装スリーブが抜けて地中に残置されるとともに、測定プローブが確実に回収できるため、電気検層における高価な測定プローブの回収不能リスクが無くなる。また、測定プローブより大径の外装スリーブが測定プローブに外嵌されているため、外装スリーブに備えられた外側電極が貫入孔の孔壁に確実に接触できるようになる。
【0020】
請求項4に係る本発明として、前記外装スリーブは、前記貫入孔に挿入した際、前記外側電極を孔壁に接触させるため、前記外側電極の反対側に、外方に突出した接触促進用凸部が設けられている請求項3記載の地盤改良効果の確認方法に用いる測定装置が提供される。
【0021】
上記請求項4記載の発明では、測定プローブが挿嵌された外装スリーブを貫入孔に挿入した際、前記外装スリーブに備えられた外側電極を孔壁に接触させるため、外側電極の反対側に、外方に突出した接触促進用凸部が設けられている。これによって、外装スリーブに備えられた外側電極が貫入孔の孔壁により確実に接触できるようになる。
【0022】
請求項5に係る本発明として、前記測定プローブの周面に設けられた周方向固定用凸部が、前記外装スリーブに設けられた嵌合部に嵌合することにより、前記外装スリーブと前記測定プローブとの周方向への回転が固定されている請求項3、4いずれかに記載の地盤改良効果の確認方法に用いる測定装置が提供される。
【0023】
上記請求項5記載の発明では、前記測定プローブに外装スリーブを取り付ける際の測定プローブの電極と前記外装スリーブの外側電極との位置合わせのためと、外装スリーブが外嵌された測定プローブを貫入孔に挿入する際の外装スリーブと測定プローブとの相対的な周方向の回転を防止するため、測定プローブの周面に設けられた周方向固定用凸部が、外装スリーブに設けられた嵌合部に嵌合するようになっている。
【発明の効果】
【0024】
以上詳説のとおり本発明によれば、バラツキが少なく、改良地盤の品質が直接的に確認できるようになる。また、電気検層における測定プローブの回収不能リスクが無くなるとともに、電極が確実に孔壁に接触できるようになる。
【図面の簡単な説明】
【0025】
図1】電気検層に用いる測定装置の概略を示す縦断面図である。
図2】外装スリーブ8が取り付けられた測定プローブ2の正面図である。
図3】測定プローブ2の正面図である。
図4】外装スリーブ本体12を示す、(A)は正面図、(B)は(A)のB-B断面図、(C)は裏面図、(D)は(A)のD-D断面図である。
図5】外装スリーブ先端13を示す、(A)は正面図、(B)は上面図である。
図6】地盤改良の範囲と測定位置を示す平面図である。
図7】その断面図(図6のVII-VII線矢視図)である。
図8】土質柱状図である。
図9】改良Aにおける、(A)はNd値の深度分布図、(B)は比抵抗の深度分布図、(C)は一軸圧縮強さの深度分布図である。
図10】改良Bにおける、(A)はNd値の深度分布図、(B)は比抵抗の深度分布図、(C)は一軸圧縮強さの深度分布図である。
図11】改良DPにおける、(A)はNd値の深度分布図、(B)は比抵抗の深度分布図、(C)は一軸圧縮強さの深度分布図である。
【発明を実施するための形態】
【0026】
以下、本発明の実施の形態について図面を参照しながら詳述する。
【0027】
本発明は、埋立地等の軟弱地盤の地盤強化のため、水ガラス(珪酸ナトリウム)などからなる薬液を地盤に注入する薬液注入工法による地盤改良効果の確認方法であり、具体的には以下の手順による。
【0028】
地盤改良後において、小型動的コーン貫入試験により深度とNd値との関係を示したNd値の深度分布図を得て、地盤改良前後における前記Nd値の増分量から地盤改良効果を確認する1次的効果確認を行い、
前記1次的効果確認によって地盤改良効果が認められない場合に、図1及び図2に示されるように、前記小型動的コーン貫入試験の貫入孔1に電極3、4を備えた測定プローブを挿入して比抵抗Rを測定する電気検層を行い、深度と比抵抗Rとの関係を示した比抵抗Rの深度分布図を得て、地盤改良前後における前記比抵抗Rの減分量から地盤改良効果を確認する2次的効果確認を行う。
【0029】
すなわち、本発明では、小型動的コーン貫入試験で得られたNd値の深度分布図により1次的効果確認を行った後、電気検層で得られた比抵抗の深度分布により2次的効果確認を行っている。以下、この手順に従って具体的に説明する。
【0030】
(1次的効果確認)
前記小型動的コーン貫入試験は、いわゆるPENNYと呼ばれるイタリアのTecnotest社製の小型動的コーン貫入試験機を用いて行う貫入試験である。試験方法は、質量294N(30kgf)のハンマーを油圧モータを利用して自動で高さ20cmの位置から自由落下させて、断面積10cm2、先端角60°の先端コーンを10cm貫入するのに必要な打撃回数(Nd値)を連続的に測定する。1mごとにロッドの回転トルクを測定し、ロッドに作用する摩擦力の影響を補正することで、標準貫入試験のN値と等価なNd値に換算できるようになっている。標準貫入試験と対比した場合の小型動的コーン貫入試験の利点としては、以下の点が挙げられる。
【0031】
(1)標準貫入試験では測定点が1mピッチであるため、薬液注入の層厚が1~2m程度だと計測点を確保できないのに対して、小型動的コーン貫入試験は10cm毎に計測できる。
(2)改良土の一軸圧縮強さquは50~100kPa程度であるため、標準貫入試験だと打撃エネルギーが大きすぎて精度が出ないのに対して、小型動的コーン貫入試験は打撃エネルギーが小さく(対象の強度レンジに対して丁度良く)、測定精度が確保できる。標準貫入試験の場合ハンマー質量63.5kg、落下高さ76cmの自由落下エネルギーは473Jであるのに対し、小型動的コーン貫入試験ではハンマー質量30kg、落下高さ20cmの自由落下エネルギーが58.8Jと、およそ12%の打撃エネルギーとなっている。
(3)落下作業が全自動のため、打撃エネルギーにバラツキが少ない。
(4)試験機が軽く、ハンドリング性が良い。
【0032】
このように、小型動的コーン貫入試験を用いてNd値を測定することにより、標準貫入試験に比べて、狭小な設置スペースで、可搬性に優れ、全自動のため打撃エネルギーのバラツキが少なく、そのためバラツキの生じやすい不均一な埋立て地盤等でも地盤改良効果が確実に確認できる。
【0033】
前記小型動的コーン貫入試験によって、深度とNd値との関係を示したNd値の深度分布図が得られる(図9図11の(A)参照。)。
【0034】
上記小型動的コーン貫入試験によって得られたNd値の深度分布図を用いて、地盤改良効果を確認する1次的効果確認を行う。この1次的効果確認における地盤改良効果の確認方法は、図9(A)、図10(A)及び図11(A)に示されるように、地盤改良前後におけるNd値の増分量により行う。Nd値の増分量は、地盤改良前のNd値が目標改良強度に近い地盤などでは、あまり大きくなく、このNd値による地盤の改良効果が認められない場合がある。その場合には、次述の電気検層による2次的効果確認が行われる。
【0035】
(2次的効果確認)
2次的効果確認では、先ず、前記小型動的コーン貫入試験の後、その貫入孔1を利用して電気検層を行う。前記電気検層は、図1に示される圧入装置によって、前記小型動的コーン貫入試験の貫入孔1に、図2及び図3に示されるように、1つの電流電極3及び2つの電位電極4、4を備えた測定プローブ2を挿入し、孔壁にこれらの電極3、4を接触させながら、電流電極3に電流を流したときの電位を電位電極4によって検出し、孔壁近傍の地盤の比抵抗Rを深度方向に連続的に測定する物理探査手法である。
【0036】
前記圧入装置は、図1に示されるように、貫入孔1の直上の地表面に、貫入孔1の両側にそれぞれ上下方向に沿って伸縮自在とされたピストン20、20が配置され、これらピストン20、20の上端同士に跨設された架台21の中央部に、下端に測定プローブ2が連結された貫入ロッド5を挟持するチャック22が備えられるとともに、前記ピストン20、20の動作を制御するコントロールユニット23が備えられたものである。また、前記コントロールユニット23には、エンジン及び油圧ポンプからなる油圧ユニット24が接続されている。
【0037】
前記圧入装置では、両側のピストン20、20が同調して伸縮し、前記架台21が上下方向に移動することにより、前記チャック22によって挟持された貫入ロッド5が上下方向に移動し、測定プローブ2の貫入孔1への押し込み及び引き抜きが行われるようになっている。
【0038】
電気検層に用いる測定装置は、図2に示されるように、前記電極3、4…が備えられた測定プローブ2と、この測定プローブ2の上端から延び、前記測定プローブ2の内部において先端が前記電極3、4…に接続された電気ケーブル7と、前記測定プローブ2が着脱可能に挿嵌される中空状の外装スリーブ8とを含んでいる。前記電気ケーブル7は、中空円筒状に形成された貫入ロッド5の中空部を通って地上まで延出され、地上において、先端が測定装置に接続されるようになっている。
【0039】
前記測定プローブ2は、断面略円形の棒状の外観を成し、上端部には、貫入ロッド5を連結するための雄ねじ部6が形成され、貫入ロッド5の下端部に設けられた雌ねじ部が螺合できるようになっている。また、前記雄ねじ部6の下端に連続して、中間部9を介して、複数の電極が軸方向(上下方向)に所定の間隔を空けて配列された本体部10が設けられるとともに、この本体部10の下端に連続して、前記本体部10より小径の先端部11が設けられている。
【0040】
前記電気検層の電極配置は、4極法や3極法でもよいが、2極法とするのが好ましい。2極法の電極配置は、図2及び図3に示されるように、上下方向に所定の間隔を空けて1つの電流電極3及び2つの電位電極4、4を配置し、地表付近に設置した電流遠電極(図示せず)に電流のリターンをとり、同じく地表付近に設置した電位遠電極(図示せず)を基準として、電流電極3から一定電流を流しながら電位電極4、4で電位を測定するものである。4極法や3極法の電極配置に比べて、地盤の改良効果がより明確に把握できるようになる。
【0041】
図2に示されるように、測定プローブ2の本体部10に設けられた3つの電極のうち、最上部に配置された電極が電流電極3であり、その下側に配置された2つの電極がそれぞれ電位電極4である。前記電流電極3と上側の電位電極4との電極間隔aは2.5cm、電流電極3と下側の電位電極4との電極間隔bは5cmとするのが好ましい。このように、電流電極3との電極間隔が異なる2つの電位電極4、4を配置することにより、電極間隔が異なる2つの電位差を同時に測定することができるため、測定精度が向上するとともに、測定時間が短縮化できる。
【0042】
前記電極3、4…は導電性の金属材からなり、測定プローブ2の内部から外面まで貫通して設けられ、測定プローブ2の内部でそれぞれ電気ケーブル7の先端が接続している。
【0043】
次いで、前記測定プローブ2を貫入孔1に貫入する際、前記測定プローブ2の先端側に取り付けられる外装スリーブ8について説明する。前記外装スリーブ8は、製作を容易化するため、図2に示されるように、測定プローブ2の本体部10に外嵌される外装スリーブ本体12と、測定プローブ2の先端部11に外嵌される外装スリーブ先端13とに分割して構成するのが好ましい。
【0044】
前記外装スリーブ本体12は、図4に示されるように、軸方向の両端に開放した略円筒状に形成され、図2に示されるように、測定プローブ2に挿嵌した状態で、外径が測定プローブ2の外径より大きくなるように形成されている。外装スリーブ8の外径を測定プローブ2の外径より大きくすることにより、貫入孔1に貫入した際、外装スリーブ8が孔壁に接触しやすくなり、測定精度が向上するとともに、測定プローブ2の損傷が抑制できる。前記外装スリーブ8の外径は、小型動的コーン貫入試験に使用される先端コーンの外径とほぼ同等とするのが好ましい。
【0045】
前記外装スリーブ先端13は、図5に示されるように、上側部分が上方に開放した有底円筒形に形成され、下側部分の外形が下方に向けて尖った円錐形(コーン形)に形成されている。上側の有底円筒形部分の外径は、前記外装スリーブ本体12の外径とほぼ同等に形成されている。コーン先端角は45°~90°程度が好ましく、60°がより好ましい。
【0046】
前記外装スリーブ8は、図4及び図5に示されるように、前記測定プローブ2が貫入孔1への挿入先端側から電極3、4…の取付位置を含む範囲に亘って挿嵌される中空部14と、前記測定プローブ2の電極3、4…に対応する位置に、前記中空部14内から外面まで連続して貫通するとともに、前記測定プローブ2を前記中空部14に挿嵌した状態で内側の先端がそれぞれ前記電極3、4…に接触する外側電極15、16、16とが備えられている。測定プローブ2に備えられた電極3、4…と、外装スリーブ8に備えられた外側電極15、16…とは対応しており、最も上側に配置された外側電極15が電流電極であり、その下側に配置された2つの外側電極16、16が電位電極である。
【0047】
前記外装スリーブ8が取り付けられた測定プローブ2を前記圧入装置によって貫入孔1に貫入して電気検層を行った後、貫入孔1から測定プローブ2を引き抜くことが困難になった場合に、引抜き抵抗により前記測定プローブ2が外装スリーブ8から抜けて、測定プローブ2が回収できるようになっている。このように、測定プローブ2を引き抜く際の引抜き抵抗により、外装スリーブ8が抜けて地中に残置されるとともに、外装スリーブ8から抜けた測定プローブ2が確実に回収できるため、電気検層における高価な測定プローブ2の回収不能リスクが無くなる。前述の通り、前記測定プローブ2は、前記外装スリーブ8より外径が小さく形成されているため、外装スリーブ8を取り付けた状態で圧入された貫入孔1から比較的スムーズに引き抜くことができるようになる。
【0048】
前記外装スリーブ8は、貫入孔1に挿入した際、外側電極15、16…を孔壁に接触させるため、外側電極15、16…の反対側の外面に、外方に突出した接触促進用凸部17が設けられるようにするのが好ましい。前記接触促進用凸部17は、外装スリーブ8の軸方向に対して外側電極15、16…の配置区間の全長を含む範囲に形成された縦長の凸部である。高さは1~8mmが好ましく、3~5mmがより好ましい。前記接触促進用凸部17を設けることによって、外装スリーブ8に備えられた外側電極15、16…が貫入孔1の孔壁により確実に接触でき、電気検層の測定精度が更に向上できる。
【0049】
図3に示されるように、測定プローブ2の周面に周方向固定用凸部18が設けられ、この周方向固定用凸部18が外装スリーブ8に設けられた嵌合部19に嵌合することにより、外装スリーブ8と測定プローブ2との周方向への回転が固定されるようにするのが好ましい。前記周方向固定用凸部18は、測定プローブ2の本体部10の上端部に形成され、前記嵌合部19は、外装スリーブ8の外装スリーブ本体12の上端部に形成されている。前記周方向固定用凸部18を嵌合部19に嵌合することにより、測定プローブ2と、外装スリーブ8のうち外装スリーブ本体12との周方向の回転が防止され、測定プローブ2を貫入孔1に貫入する際などにおいて、測定プローブ2の電極3、4…と外装スリーブ8の外側電極15、16…との位置ずれが生じなくなる。
【0050】
前記電気検層の手順は、前記小型動的コーン貫入試験を行った後、その貫入孔1の直上の地表面に、図1に示される圧入装置を設置し、前記外装スリーブ8が取り付けられた測定プローブ2を貫入孔1に挿入し、測定プローブ2を徐々に圧入しながら深度方向に連続的に比抵抗Rの測定を行う。比抵抗Rの測定間隔は任意であるが、10cm以下、好ましくは5cm以下、より好ましくは1cmとするのがよい。所定の深度まで測定が終了したら、測定プローブ2を貫入孔1から引き抜いて回収する。
【0051】
前記電気検層によって、深度と比抵抗Rとの関係を示した比抵抗Rの深度分布図が得られる(図9図11の(B)参照。)。
【0052】
上記電気検層によって得られた比抵抗Rの深度分布図を用いて、地盤改良効果を確認する。地盤改良効果の確認方法は、地盤改良前後における比抵抗Rの減分量を比較することにより行う。図10(A)、(B)及び図11(A)、(B)に示されるように、上記1次的効果確認のNd値の深度分布図だけでは改良効果が明確に認められない場合でも、2次的効果確認の比抵抗の深度分布図により明確に地盤改良効果が確認できる。電気検層による効果確認(2次的効果確認)は、上記の1次的効果確認によって効果が認められないときにのみ行うのが、作業の効率性及びコスト削減の観点から望ましいが、1次的効果確認によって明確に地盤の改良効果が認められる場合でも、更なる信頼性の向上のため、2次的効果確認を行ってもよい。
【実施例
【0053】
以下、詳細な地盤改良効果の確認方法について、現場で行った具体的な実施例を用いて説明する。図6及び図7に示されるように、対象地盤について、それぞれ仕様の異なる地盤改良を、改良A、改良B、改良DPの3箇所に施工し、その効果を確認した。改良箇所近傍の対象地盤(事前Bor)について標準貫入試験を行い、図8に示される土質柱状図を得た。この結果、シルト混り細砂は、GL-2m~-4mに有機質土を含み、GL-5m以深ではシルトを層状に含んでいる。また、各地盤改良の施工仕様は、表1に示される通りである。測定時の改良体材令は約11ヶ月である。
【0054】
【表1】
【0055】
図6において、▲印は小型動的コーン貫入試験及び電気検層の実施箇所、■印は一軸圧縮強さquを測定するためのブロックサンプリングの実施箇所、●印は一軸圧縮強さquを測定するためのロータリー式三重管サンプリングの実施箇所である。▲印で示される小型動的コーン貫入試験及び電気検層は、改良Aでは改良中心から10cm、40cm離れた2箇所(A1、A2)について行い、改良Bでは改良中心から40cm、70cm、100cm離れた3箇所(B1~B3)について行い、改良DPでは改良中心から30cm離れた1箇所(DP1)について行った。
【0056】
図9は改良Aの深度分布図、図10は改良Bの深度分布図、図11は改良DPの深度分布図である。(B)の比抵抗Rの深度分布図は、電極間隔2.5cmの比抵抗Rである。(C)の一軸圧縮強さquの深度分布図は、材令28日の試験結果である。
【0057】
改良前の地盤は、図9図11の(A)、(B)に○印で示されるように、Nd値=0~20(平均Nd値=9)、R=40~120Ω・m(平均R=65Ω・m)を示し、比抵抗Rは有機質土を含むGL-2m~GL-4m及びシルトを層状に含むGL-5m以深にて30~40Ω・mを示す深度が確認され、改良範囲に細粒分の多い箇所が存在することが想定される。
【0058】
改良Aでは、改良による平均Nd値の増分量は、図9(A)に示されるように、改良中心+10cm位置(●)にて4程度、改良中心+40cm位置(▲)にて12程度となっており、改良によるNd値の増加が認められ、改良効果が確認できる。比抵抗Rの平均値は、図9(B)に示されるように、改良中心+10cm位置(●)にて4Ω・m、改良中心+40cm位置(▲)にて2Ω・mを示し、改良前と比較して1/10~1/100程度に低下している。また、改良範囲全体においてほぼ均一な値を示している。一方、一軸圧縮強さquは、図9(C)に示されるように、有機質土、シルトが混入した供試体では、強度が小さく、バラツキの大きい結果となっている。
【0059】
改良Bでは、図10(A)に示されるように、改良中心+40cm、+70cm、+100cmのいずれの測定点においても、改良による平均Nd値の増分は認められなかった。比抵抗Rの平均値は、図10(B)に示されるように、GL-2.0m~-3.5mでは5~7Ω・mを示すが、GL-3.5m~-4.0mでは35~80Ω・mと未改良地盤に近い値を示している。比抵抗Rの低いGL-2.0m~-2.5mでは、図10(C)に示されるように、一軸圧縮強さquも目標改良強度であるqu=50kPa程度(平均値)を示している。
【0060】
改良DPでは、図11(A)に示されるように、改良中心+30cm位置(●)にて改良による平均Nd値の増分は認められなかった。比抵抗Rの平均値は、図11(B)に示されるように、GL-3.0m~-5.0mでは5Ω・m程度を示すが、他の改良範囲では20~40Ω・mを示している。
【0061】
以上の検討結果より、改良AではNd値の深度分布図を用いた1次的効果確認によって明確に地盤改良効果が確認できる。一方、改良B、改良DPでは、目標改良強度が改良Aに比べて低いため1次的効果確認では判断できなかったが、比抵抗Rの深度分布図を用いた2次的効果確認によって明確に地盤改良効果が確認できる。
【0062】
〔他の形態例〕
上記形態例では、外装スリーブ8が外装スリーブ本体12と外装スリーブ先端13とからなる2つの部材で構成していたが、これらが一体化された1つの部材で構成してもよい。
【符号の説明】
【0063】
1…貫通孔、2…測定プローブ、3…電流電極、4…電位電極、5…貫入ロッド、6…雄ねじ部、7…電気ケーブル、8…外装スリーブ、9…中間部、10…本体部、11…先端部、12…外装スリーブ本体、13…外装スリーブ先端、14…中空部、15…外側電極(電流電極)、16…外側電極(電位電極)、17…接触促進用凸部、18…周方向固定用凸部、19…嵌合部、20…ピストン、21…架台、22…チャック、23…コントロールユニット、24…油圧ユニット
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11