IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友電気工業株式会社の特許一覧

特許7249325レドックスフロー電池、及びレドックスフロー電池システム
<>
  • 特許-レドックスフロー電池、及びレドックスフロー電池システム 図1
  • 特許-レドックスフロー電池、及びレドックスフロー電池システム 図2
  • 特許-レドックスフロー電池、及びレドックスフロー電池システム 図3
  • 特許-レドックスフロー電池、及びレドックスフロー電池システム 図4
  • 特許-レドックスフロー電池、及びレドックスフロー電池システム 図5
  • 特許-レドックスフロー電池、及びレドックスフロー電池システム 図6
  • 特許-レドックスフロー電池、及びレドックスフロー電池システム 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-22
(45)【発行日】2023-03-30
(54)【発明の名称】レドックスフロー電池、及びレドックスフロー電池システム
(51)【国際特許分類】
   H01M 8/18 20060101AFI20230323BHJP
   H01M 8/02 20160101ALI20230323BHJP
   H01M 8/0202 20160101ALI20230323BHJP
   H01M 8/0271 20160101ALI20230323BHJP
   H01M 8/0273 20160101ALI20230323BHJP
   H01M 8/04 20160101ALI20230323BHJP
   H01M 8/043 20160101ALI20230323BHJP
   H01M 8/04537 20160101ALI20230323BHJP
   H01M 8/1004 20160101ALI20230323BHJP
   H01M 8/2465 20160101ALI20230323BHJP
【FI】
H01M8/18
H01M8/02
H01M8/0202
H01M8/0271
H01M8/0273
H01M8/04 Z
H01M8/043
H01M8/04537
H01M8/1004
H01M8/2465
【請求項の数】 7
(21)【出願番号】P 2020504644
(86)(22)【出願日】2018-03-09
(86)【国際出願番号】 JP2018009349
(87)【国際公開番号】W WO2019171603
(87)【国際公開日】2019-09-12
【審査請求日】2020-09-23
【審判番号】
【審判請求日】2022-02-28
(73)【特許権者】
【識別番号】000002130
【氏名又は名称】住友電気工業株式会社
(74)【代理人】
【識別番号】100100147
【弁理士】
【氏名又は名称】山野 宏
(74)【代理人】
【識別番号】100116366
【弁理士】
【氏名又は名称】二島 英明
(72)【発明者】
【氏名】久畑 満
(72)【発明者】
【氏名】桑原 雅裕
【合議体】
【審判長】池渕 立
【審判官】土屋 知久
【審判官】山本 佳
(56)【参考文献】
【文献】特開2017-16788(JP,A)
【文献】特開2017-27663(JP,A)
【文献】特開2002-175822(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M8/00-8/0297
H01M8/08-8/2495
H01M4/86-4/98
(57)【特許請求の範囲】
【請求項1】
セルスタックと、
前記セルスタックに正極電解液を循環させる正極循環機構と、
前記セルスタックに負極電解液を循環させる負極循環機構と、を備えるレドックスフロー電池であって、
前記セルスタックは、
セルを複数積層した積層体と、
前記積層体をその積層方向の両側から挟み込む一対のエンドプレートと、を備え、
前記セルは、正極電極と負極電極と両電極の間に介在される隔膜を備え、
前記隔膜は、前記隔膜を平面視したときの少なくとも中央側に、水素イオン透過能を有するイオン透過部を備え、
前記正極電極及び前記負極電極の平面面積が共に250cm以上で、かつ前記イオン透過部の平面面積が、前記正極電極及び前記負極電極の平面面積よりも小さく、
更に前記イオン透過部のうち、実際に前記正極電極及び前記負極電極に対向する対向部の平面面積は、前記正極電極及び前記負極電極のうちの小さい方の平面面積の50%以上99.9%以下であり、
電力系統の停電時、前記セル内に残存する電解液の電力を利用して前記正極循環機構及び前記負極循環機構を動作させることができる、レドックスフロー電池。
【請求項2】
前記隔膜の平面面積が、前記正極電極及び前記負極電極の平面面積よりも小さい請求項1に記載のレドックスフロー電池。
【請求項3】
双極板と枠体とを有し、前記隔膜をその一面側と他面側から挟み込む第一セルフレーム及び第二セルフレームと、
前記隔膜と、前記第一セルフレームの前記双極板と、の間に形成され、前記正極電極を収納する正極空間と、
前記隔膜と、前記第二セルフレームの前記双極板と、の間に形成され、前記負極電極を収納する負極空間と、
前記隔膜に接することなく前記枠体の内周縁の全周にわたって接する外周部、及び前記隔膜の外周縁の全周にわたって接する内周部を有する枠シールと、を備える請求項2に記載のレドックスフロー電池。
【請求項4】
前記隔膜は、前記イオン透過部と、その外周を取り囲む枠状のイオン非透過部と、を備え、
前記隔膜の平面面積が、前記正極電極と前記負極電極のいずれの平面面積よりも大きい請求項1に記載のレドックスフロー電池。
【請求項5】
双極板と枠体とを有し、前記隔膜をその一面側と他面側から挟み込む第一セルフレーム及び第二セルフレームと、
前記隔膜と、前記第一セルフレームの前記双極板と、の間に形成され、前記正極電極を収納する正極空間と、
前記隔膜と、前記第二セルフレームの前記双極板と、の間に形成され、前記負極電極を収納する負極空間と、を備え、
前記隔膜の前記イオン非透過部が、前記第一セルフレームの前記枠体の内周縁と、前記第二セルフレームの前記枠体の内周縁とに接する請求項4に記載のレドックスフロー電池。
【請求項6】
前記正極電極と前記負極電極の厚さは共に、0.1mm以上4mm以下である請求項1から請求項5のいずれか1項に記載のレドックスフロー電池。
【請求項7】
請求項1から請求項6のいずれか1項に記載のレドックスフロー電池と、
前記レドックスフロー電池に繋がる電力系統の停電を検知する検知装置と、
前記検知装置の検知結果に基づいて、前記セル内に残存する前記正極電解液と前記負極電解液とで、前記正極循環機構及び前記負極循環機構を動作させる制御部と、を備えるレドックスフロー電池システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、セル、セルスタック、レドックスフロー電池、及びレドックスフロー電池システムに関するものである。
【背景技術】
【0002】
特許文献1,2には、電力系統との間で充放電を行なうセルと、セルに供給される電解液を貯留するタンクと、セルとタンクとの間で電解液を循環させる循環ポンプと、セルと電力系統との間に配置される交流/直流変換器(電力変換器)と、を備えるレドックスフロー電池システムが開示されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2012-164530号公報
【文献】特開2017-16788号公報
【発明の概要】
【0004】
本開示のセルは、
正極電極と負極電極と両電極の間に介在される隔膜とを備え、レドックスフロー電池に用いられるセルであって、
前記隔膜は、前記隔膜を平面視したときの少なくとも中央側に、水素イオン透過能を有するイオン透過部を備え、
前記正極電極及び前記負極電極の平面面積が共に250cm以上で、かつ前記イオン透過部の平面面積が、前記正極電極及び前記負極電極の平面面積よりも小さく、
更に前記イオン透過部のうち、実際に前記正極電極及び前記負極電極に対向する対向部の平面面積は、前記正極電極及び前記負極電極のうちの小さい方の平面面積の50%以上99.9%以下である。
【0005】
本開示のセルスタックは、
本開示のセルを複数積層した積層体と、
前記積層体をその積層方向の両側から挟み込む一対のエンドプレートと、を備える。
【0006】
本開示のレドックスフロー電池は、
本開示のセルスタックと、
前記セルに正極電解液を循環させる正極循環機構と、
前記セルに負極電解液を循環させる負極循環機構と、を備える。
【0007】
本開示のレドックスフロー電池システムは、
本開示のレドックスフロー電池と、
前記レドックスフロー電池に繋がる電力系統の停電を検知する検知装置と、
前記検知装置の検知結果に基づいて、前記セル内に残存する前記正極電解液と前記負極電解液とで、前記正極循環機構及び前記負極循環機構を動作させる制御部と、を備える。
【図面の簡単な説明】
【0008】
図1】レドックスフロー電池の動作原理を説明する図である。
図2】実施形態1に係るセルの分解図である。
図3】実施形態1に係るセルの縦断面図である。
図4】実施形態1に係るセルスタックの縦断面図である。
図5】実施形態1に係るレドックスフロー電池を備えるレドックスフロー電池システムの概略構成図である。
図6】実施形態2に係るセルの分解図である。
図7】実施形態2に係るセルの縦断面図である。
【発明を実施するための形態】
【0009】
[本開示が解決しようとする課題]
レドックスフロー電池システムは、電力系統の停電時に自力で電力系統に放電できない。レドックスフロー電池システムでは、セル内に電解液を循環させる循環ポンプが停止すると、継続的に充放電できないからである。その対策として、特許文献1では、電力系統の停電時に循環ポンプを駆動する無停電電源装置(Uninterruptible Power Supply:UPS)が設けられている。しかし、循環ポンプを動作させる電力をまかなうためのUPSはレドックスフロー電池の電池容量に応じて大型化するため、設置スペースを多く必要とするという問題や、設置コストがかかるという問題がある。
【0010】
そこで、本開示は、電力系統の停電時に自力で電力系統に放電できるレドックスフロー電池を構築できるセル、及びセルスタックを提供することを目的の一つとする。また、本開示は、電力系統の停電時に自力で電力系統に放電できるレドックスフロー電池、及びレドックスフロー電池システムを提供することを目的の一つとする。
【0011】
[本願発明の実施形態の説明]
最初に本願発明の実施形態の内容を列記して説明する。
【0012】
<1>実施形態に係るセルは、
正極電極と負極電極と両電極の間に介在される隔膜とを備え、レドックスフロー電池に用いられるセルであって、
前記隔膜は、前記隔膜を平面視したときの少なくとも中央側に、水素イオン透過能を有するイオン透過部を備え、
前記正極電極及び前記負極電極の平面面積が共に250cm以上で、かつ前記イオン透過部の平面面積が、前記正極電極及び前記負極電極の平面面積よりも小さく、
更に前記イオン透過部のうち、実際に前記正極電極及び前記負極電極に対向する対向部の平面面積は、前記正極電極及び前記負極電極のうちの小さい方の平面面積の50%以上99.9%以下である。
【0013】
上記構成のセルによれば、両電極内に非常用の電解液を貯留しておくことができるので、電力系統の停電時に自力で電力系統に放電できるレドックスフロー電池を構築することができる。両電極内に非常用の電解液を貯留できるのは、両電極を平面視したときの平面面積が250cm以上で、かつ正極電極、負極電極、及び隔膜のイオン透過部の対向部の平面面積のうち、対向部の平面面積が最も小さくなっているからである。イオン透過部の対向部の平面面積を両電極の平面面積よりも小さくすることで、両電極においてイオン透過部が接触しない非接触部分が形成され、当該非接触部分にある電解液の電池反応を抑制できる。この電池反応が抑制された電解液が、停電時に非常用の電解液として利用できる。ここで、両電極の平面面積を250cm以上とすることで、両電極に流通される電解液量が多くなり、非常用の電解液が十分な量確保できる。
【0014】
イオン透過部の対向部の平面面積が、小さい方の電極の平面面積の99.9%以下であれば、レドックスフロー電池の再起動に十分な量の電解液を各電極に貯留できる。一方、イオン透過部の平面面積が、小さい方の電極の平面面積の50%以上であれば、電池反応面積が小さくなり過ぎて、レドックスフロー電池の電池容量が低下し過ぎることを抑制できる。イオン透過部の平面面積は更に、小さい方の電極の平面面積の60%以上95%以下とすることが好ましく、70%以上90%以下とすることがより好ましい。
【0015】
<2>実施形態に係るセルの一形態として、
前記隔膜の平面面積が、前記正極電極及び前記負極電極の平面面積よりも小さい形態を挙げることができる。
【0016】
隔膜の平面面積が両電極よりも小さいことで、非常用の電解液を確実に確保できるし、隔膜の材料を低減できる。
【0017】
<3>前記隔膜の平面面積が、前記正極電極及び前記負極電極の平面面積よりも小さい実施形態に係るセルの一形態として、
双極板と枠体とを有し、前記隔膜をその一面側と他面側から挟み込む第一セルフレーム及び第二セルフレームと、
前記隔膜と、前記第一セルフレームの前記双極板と、の間に形成され、前記正極電極を収納する正極空間と、
前記隔膜と、前記第二セルフレームの前記双極板と、の間に形成され、前記負極電極を収納する負極空間と、
前記隔膜に接することなく前記枠体の内周縁の全周にわたって接する外周部、及び前記隔膜の外周縁の全周にわたって接する内周部を有する枠シールと、を備える形態を挙げることができる。
【0018】
第一セルフレームと第二セルフレームとで隔膜を挟み込み、枠シールで隔膜を支持することで、セル内における隔膜のずれを効果的に抑制できる。また、枠シールによって隔膜の外周縁と枠体の内周縁とを封止することで、セル内で正極電解液と負極電解液とが混ざることを抑制できる。
【0019】
<4>実施形態に係るセルの一形態として、
前記隔膜は、前記イオン透過部と、その外周を取り囲む枠状のイオン非透過部と、を備え、
前記隔膜の平面面積が、前記正極電極と前記負極電極のいずれの平面面積よりも大きい形態を挙げることができる。
【0020】
隔膜の平面面積を両電極の平面面積よりも大きくすることで、両電極の接触を効果的に防止できる。また、隔膜の平面面積を大きくするにあたり、イオン透過部とイオン非透過部とで隔膜を形成することで、イオン透過部を構成する材料を削減できる。
【0021】
<5>隔膜の平面面積が両電極の平面面積よりも大きい実施形態に係るセルの一形態として、
双極板と枠体とを有し、前記隔膜をその一面側と他面側から挟み込む第一セルフレーム及び第二セルフレームと、
前記隔膜と、前記第一セルフレームの前記双極板と、の間に形成され、前記正極電極を収納する正極空間と、
前記隔膜と、前記第二セルフレームの前記双極板と、の間に形成され、前記負極電極を収納する負極空間と、を備え、
前記隔膜の前記イオン非透過部が、前記第一セルフレームの前記枠体の内周縁と、前記第二セルフレームの前記枠体の内周縁とに接する形態を挙げることができる。
【0022】
第一セルフレームの枠体と第二セルフレームの枠体とで隔膜のイオン非透過部を挟み込むことで、セル内における隔膜のずれを効果的に抑制できる。また、隣接する両セルフレームの枠体間に挟持された隔膜によって、セル内で正極電解液と負極電解液との混合を抑制できる。
【0023】
<6>実施形態に係るセルの一形態として、
前記正極電極と前記負極電極の厚さは共に、0.1mm以上4mm以下である形態を挙げることができる。
【0024】
両電極の厚さを0.1mm以上とすることで、電極内に貯留できる非常用の電解液の量を十分に確保できる。また、両電極の厚さを4mm以下とすることで、セルの厚みが厚くなり過ぎることを抑制できる。上記厚さは、0.1mm以上2.5mm以下とすることが好ましく、0.1mm以上1.5mm以下とすることがより好ましい。
【0025】
<7>実施形態に係るセルスタックは、
上記<1>から<6>のいずれかのセルを複数積層した積層体と、
前記積層体をその積層方向の両側から挟み込む一対のエンドプレートと、を備える。
【0026】
上記セルスタックを用いてレドックスフロー電池を構築することで、電力系統の停電時に自力で電力系統に放電できるレドックスフロー電池とすることができる。実施形態に係るセルを用いてセルスタックを形成することで、セルスタック内の複数のセルのそれぞれに非常用の電解液を貯留できるからである。
【0027】
<8>実施形態に係るレドックスフロー電池は、
上記<7>のセルスタックと、
前記セルに正極電解液を循環させる正極循環機構と、
前記セルに負極電解液を循環させる負極循環機構と、を備える。
【0028】
上記レドックスフロー電池によれば、電力系統の停電時、セル内に残存する電解液の電力を利用して正負極の循環機構に備わる循環ポンプを動作させることができる。循環ポンプを動作させることができれば、正負極の循環機構に備わるタンク内に貯留される電解液の電力を取り出すことができ、その電力でさらに循環ポンプの動作を継続させることができる。その結果、タンク内の電解液の電力を電力系統に放電することができる。このように、実施形態に係るレドックスフロー電池は自力で電力系統に放電できる。
【0029】
<9>実施形態に係るレドックスフロー電池システムは、
上記<8>のレドックスフロー電池と、
前記レドックスフロー電池に繋がる電力系統の停電を検知する検知装置と、
前記検知装置の検知結果に基づいて、前記セル内に残存する前記正極電解液と前記負極電解液とで、前記正極循環機構及び前記負極循環機構を動作させる制御部と、を備える。
【0030】
検知装置と制御部とを備える上記レドックスフロー電池システムによれば、電力系統の停電時に自動でレドックスフロー電池を再起動し、レドックスフロー電池から電力系統に放電することができる。
【0031】
電力系統の停電時に自力で放電できる実施形態のレドックスフロー電池システムは、UPSを必要としない。UPSを必要としないことで、例えば次のような効果を得ることができる。
[1]UPSの設置スペースを確保する必要がないため、レドックスフロー電池システムの設置場所の自由度が高い。
[2]UPSの設置スペースに利用していた空間により大型のタンクを設置するなどして、レドックスフロー電池システムの電池容量の向上を図ることができる。
[3]UPSの設置の手間、コストを削減することができる。
【0032】
[本願発明の実施形態の詳細]
以下、本開示のセル、セルスタック、レドックスフロー電池、及びレドックスフロー電池システムの実施形態を説明する。なお、本願発明は実施形態に示される構成に限定されるわけではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内の全ての変更が含まれることを意図する。
【0033】
<実施形態1>
実施形態に係るセル、セルスタック、レドックスフロー電池、及びレドックスフロー電池システムの説明に先立ち、レドックスフロー電池(以下、RF電池)の基本構成を図1に基づいて説明する。
【0034】
≪基本構成≫
RF電池は、電解液循環型の蓄電池の一つであって、太陽光発電や風力発電といった新エネルギーの蓄電などに利用されている。このRF電池の動作原理を図1に基づいて説明する。RF電池は、正極電解液に含まれる活物質イオンの酸化還元電位と、負極電解液に含まれる活物質イオンの酸化還元電位との差を利用して充放電を行う電池である。RF電池は、電力変換器91を介して、電力系統9の変電設備90に繋がっており、電力系統9との間で充放電を行なう。本例の電力系統9は交流送電を行う電力系統であって、電力変換器91は交流/直流変換器である。電力系統は直流送電を行う電力系統であっても良く、その場合、電力変換器は直流/直流変換器である。一方、RF電池は、水素イオンを透過させる隔膜101で正極セル102と負極セル103とに分離されたセル100を備える。
【0035】
正極セル102には正極電極104が内蔵され、かつ正極電解液8Pを貯留する正極電解液用タンク106が導管108,110を介して接続されている。導管108には循環ポンプ112が設けられており、これら部材106,108,110,112によって正極電解液8Pを循環させる正極用循環機構100Pが構成されている。同様に、負極セル103には負極電極105が内蔵され、かつ負極電解液8Nを貯留する負極電解液用タンク107が導管109,111を介して接続されている。導管109には循環ポンプ113が設けられており、これらの部材107,109,111,113によって負極電解液8Nを循環させる負極用循環機構100Nが構成されている。各タンク106,107に貯留される電解液8P,8Nは、充放電の際に循環ポンプ112,113によりセル102,103内に循環される。充放電を行なわない場合、循環ポンプ112,113は停止され、電解液8P,8Nは循環されない。
【0036】
≪セル≫
以上説明したRF電池の基本構成を踏まえて、実施形態に係るセル1を図2,3に基づいて説明する。本例のセル1は、互いに隣接する第一セルフレーム2A及び第二セルフレーム2Bと、両セルフレーム2A,2B間に配置される正極電極104、負極電極105、及び隔膜3を備える。本例のセル1は更に、一対の枠シール4A,4Bを備える。ここで、図3では第一セルフレーム2Aと第二セルフレーム2Bとを離隔した状態で示しているが、実際にはセルフレーム2A,2Bはほぼ密着している。以下、セル1の各構成を詳細に説明する。
【0037】
[セルフレーム]
第一セルフレーム2Aと第二セルフレーム2Bとは、同じ部材であり、貫通窓を有する枠体22と、貫通窓を塞ぐ双極板21と、を有している。つまり、枠体22は、双極板21をその外周側から支持している。本例では、各セルフレーム2A,2Bに備わる枠体22の外形も双極板21の形状も矩形状であるが、円形状や多角形状などであってもかまわない。第一セルフレーム2Aの枠体22と第二セルフレーム2Bの枠体22との間にはシール部材2sが挟み込まれており、枠体22同士の隙間から電解液が漏れないようになっている。
【0038】
セルフレーム2A,2Bは、例えば、双極板21の外周部に一体に枠体22を成形することで作製することができる。また、貫通窓の外周近傍を薄肉に形成した枠体22と、枠体22とは別に作製した双極板21とを用意し、枠体22の薄肉部に双極板21の外周部を嵌めこむことで、セルフレーム2A,2Bを作製することもできる。この場合、双極板21は枠体22に重ねられているだけでも良いし、接着されていても良い。
【0039】
図3に示すように、第一セルフレーム2Aには、双極板21の一面と、枠体22の内周面と、後述する隔膜3と、で囲まれる正極空間204が形成され、この正極空間204に正極電極104が配置される。また、第二セルフレーム2Bには、双極板21の他面と、枠体22の内周面と、後述する隔膜3と、で囲まれる負極空間205が形成され、この負極空間205に負極電極105が配置される。この構成では、隣接する各セルフレーム2A,2Bに嵌め込まれた双極板21の間に一つのセル1が形成されることになる。
【0040】
枠体22への電解液の流通は、給液用マニホールド23,24、及び排液用マニホールド25,26により行われる(図2)。正極電解液は、給液用マニホールド23からセルフレーム2A,2Bの一面側(紙面表側)に形成される入口スリット23sを介して正極電極104に供給され、セルフレーム2A,2Bの上部に形成される出口スリット25sを介して排液用マニホールド25に排出される。同様に、負極電解液は、給液用マニホールド24からセルフレーム2A,2Bの他面側(紙面裏側)に形成される入口スリット24sを介して負極電極105に供給され、セルフレーム2A,2Bの上部に形成される出口スリット26sを介して排液用マニホールド26に排出される。
【0041】
双極板21及び枠体22は、公知の材料で形成することができる。例えば、双極板21は、プラスチックカーボンなどで形成したり、枠体22は、塩化ビニル樹脂、ポリプロピレン、ポリエチレン、フッ素樹脂、エポキシ樹脂などのプラスチックで形成することが挙げられる。
【0042】
[電極]
図3に示すように、正極電極104は、第一セルフレーム2Aの正極空間204に収納され、負極電極105は、第二セルフレーム2Bの負極空間205に収納される。正極電極104と負極電極105とは隔膜3を挟んで互いに対向して配置される。本例の正極電極104及び負極電極105はそれぞれ、正極空間204及び負極空間205と略同じサイズ・同じ形状である。正極電極104と負極電極105とはサイズや形状が異なっていてもかまわない。
【0043】
ここで、正極電極104(負極電極105)の厚さは、正極空間204(負極空間205)の深さよりも大きくてもかまわない。その場合、セルフレーム2A,2B同士を積層方向(図2の紙面左右方向)に締め付けてセル1を組み立てたとき、正極電極104(負極電極105)は圧縮され、正極空間204(負極空間205)に収納された状態になる。
【0044】
電極104,105を平面視したときの平面面積は共に、250cm以上とする。電極104,105の平面面積を250cm以上とすることで、後述するように、RF電池10を再起動するのに十分な量の非常用の電解液をセル1内に貯めておくことができる。また、上記平面面積を大きくすることでRF電池の出力を大きくすることができる。これらの点に鑑み、上記平面面積は更に300cm以上とすることが好ましく、400cm以上とすることがより好ましい。
【0045】
また、正極空間204(負極空間205)に収納された状態の正極電極104(負極電極105)の厚みは、0.1mm以上4mm以下とすることが好ましい。両電極104,105の厚さを0.1mm以上とすることで、電極104,105内に貯留できる非常用の電解液の量を十分に確保できる。また、電極104,105の厚さを4mm以下とすることで、セル1の厚みが厚くなり過ぎることを抑制できる。上記厚さは、0.1mm以上2.5mm以下とすることが好ましく、0.1mm以上1.5mm以下とすることがより好ましい。
【0046】
電極104,105は、公知の材料で形成することができ、弾性を有する多孔質材料で形成することが好ましい。電極104,105は、例えば、カーボンフェルトなどで形成することが挙げられる。
【0047】
[隔膜]
隔膜3は、両セルフレーム2A,2B間で正負の電極104,105間に介在される。隔膜3は、隔膜3を平面視したときの少なくとも中央側にイオン透過部30を備える。イオン透過部30は水素イオンを透過させるが、活物質イオンは透過させない部分であって、本例の隔膜3はその全面がイオン透過部30で構成されている。
【0048】
本例の隔膜3は枠体22の内周縁部に達しない大きさに形成されており、隔膜3の平面面積、即ちイオン透過部30の平面面積は、電極104,105の平面面積よりも小さい。更に本例の場合、後述する枠シール4A,4Bが隔膜3と電極104,105との間に介在されているため、イオン透過部30のうち、実際に電極104,105に対向する対向部の平面面積は、イオン透過部30全体の平面面積よりも小さくなっている。その対向部の平面面積は、電極104,105のうち、小さい方の電極の平面面積の50%以上99.9%以下とする。対向部の平面面積は、小さい方の電極の平面面積の60%以上95%以下とすることが好ましく、70%以上90%以下とすることがより好ましい。対向部の平面面積を限定する意義については、後段の効果の欄に詳述する。
【0049】
隔膜3は、公知の材料で形成することができる。隔膜3は、例えば、スチレンとジビニルベンゼンのスルホン化共重合体や、パーフルオロスルホン酸とポリテトラフルオロエチレンの共重合体などで形成することが挙げられる。
【0050】
[枠シール]
枠シール4A,4Bは、隔膜3の正極電極104側及び負極電極105側に配置される枠状の部材であって、正負の電解液をそれぞれ正極空間204及び負極空間205内に封止する。隔膜3の正極電極104側にのみ枠シール4Aを設けても良いし、隔膜3の負極電極105側にのみ枠シール4Bを設けても良い。枠シール4A,4Bは貫通孔40(特に図2参照)を有し、枠シール4A,4Bの内周輪郭線(貫通孔40の輪郭線)は隔膜3よりも小さく、外周輪郭線は枠体22の内周輪郭線よりも大きい。そのため、枠シール4A,4Bは、隔膜3の周縁部に全周に亘って接する内周部41と、隔膜3に接することなく両セルフレーム2A,2Bの枠体22間に挟まれる外周部42と、に機能上区分することができる。
【0051】
上記構成を備える枠シール4A,4Bを隔膜3と電極104,105との間に介在させると、図3に示すように、隔膜3のイオン透過部30のうち、枠シール4A,4Bの貫通孔40が露出する部分が、実際に電極104,105に対向する対向部となる。つまり、本例の場合、イオン透過部30の対向部の平面面積は、枠シール4A,4Bの貫通孔40の開口面積に等しいと言える。
【0052】
各枠シール4A,4Bの内周部41は、セルフレーム2A,2B同士を積層方向(図2の紙面左右方向)に締め付けてセル1を組み立てたとき、各電極104,105の反発力によって押圧され、隔膜3の周縁部と密接(密着)した状態になる。また、各枠シール4A,4Bの外周部42は、枠体22間に挟まれて圧接され、枠体22と密接(密着)した状態になる。枠シール4A,4Bによってセルフレーム2A,2Bの枠体22,22間の隙間を封止できるのであれば、図3のシール部材2sを省略してもかまわない。
【0053】
枠シール4A,4Bは、シート状又はフィルム状であり、その厚さは例えば、0.1mm以上2.0mm以下、好ましくは0.2mm以上0.6mm以下である。枠シール4A,4Bは、電解液に対する耐性を有し、隔膜3よりも安価で強度の高い材料で形成することが挙げられる。枠シール4A,4Bは、例えば、塩化ビニル樹脂、ポリプロピレン、ポリエチレン、フッ素樹脂、エポキシ樹脂などのプラスチックやゴムで形成することが挙げられる。
【0054】
電極104,105の反発力によって枠シール4A,4Bの内周部41が隔膜3の周縁部と密着することで、枠シール4A,4Bの内周部41と隔膜3との間をシールすることができる。また、枠シール4A,4Bの外周部42が枠体22と密着することで、枠シール4A,4Bの外周部42と枠体22との間をシールすることができる。従って、枠シール4A,4Bにより、従来に比較して隔膜3の平面面積を小さくできながら、空間204,205内からの電解液の漏洩を抑制でき、正負の電解液の混合を抑制できる。隔膜3の面積が小さくて済むため、隔膜3の形成材料の使用量を削減でき、低コスト化が可能である。
【0055】
[効果]
以上説明した構成を備えるセル1によれば、両電極104,105内に非常用の電解液を貯留しておくことができるので、電力系統の停電時に自力で電力系統に放電できるレドックスフロー電池を構築することができる。両電極104,105内に非常用の電解液を貯留できるのは、両電極104,105を平面視したときの平面面積が250cm以上で、かつイオン透過部30の対向部の平面面積が両電極104,105の平面面積よりも小さくなっているからである。イオン透過部30の対向部の平面面積を両電極104,105の平面面積よりも小さくすることで、両電極104,105においてイオン透過部30が接触しない非接触部分が形成され、当該非接触部分にある電解液の電池反応を抑制できる。この電池反応が抑制された電解液が、停電時に非常用の電解液として利用できる。ここで、両電極104,105の平面面積を250cm以上とすることで、両電極104,105に流通される電解液量が多くなり、非常用の電解液が十分な量確保できる。
【0056】
≪セルスタック≫
上記セル1は通常、図4に示すような、セルスタック5と呼ばれる構造体の内部に形成される。セルスタック5はサブスタック5sを複数積層した積層体50を二枚のエンドプレート52,52で挟み込み、締付機構53で締め付けることで構成されている。サブスタック5sは、図2,3に示すセル1を複数積層し、その積層体を給排板51,51で挟み込んだ構成を備える。
【0057】
セルスタック5を用いてレドックスフロー電池を構築することで、電力系統の停電時に自力で電力系統に放電できるレドックスフロー電池とすることができる。図2,3に示すセル1を用いてセルスタック5を形成することで、セルスタック5内の複数のセル1のそれぞれに非常用の電解液を貯留できるからである。
【0058】
≪RF電池、及びRF電池システム≫
図5を参照して、RF電池10と、そのRF電池10を備えるRF電池システムαを説明する。RF電池10は、図4に示すセルスタック5と、セルスタック5に繋がる循環機構100P,100Nと、を備える。循環機構100P,100Nの構成は、図1を参照して説明した基本構成と同じである。図5では便宜上、セルスタック5の代わりにセル1を図示している。また、図5ではセル1内に貯留される電解液8の液面を模式的に示しているが、実際のセル1内では、正極電解液8Pと負極電解液8Nとは混合されない。
【0059】
[充放電制御部]
本例のRF電池システムαは、セル1の充放電を制御する充放電制御部6を備える。より具体的には、充放電制御部6は、細線矢印で示す信号線によって、電力変換器91と循環ポンプ112,113の動作を制御することで、セル1の充放電を制御する。充放電制御部6で制御する電力変換器91は、電力系統9が交流であれば直流/交流変換器、直流であれば直流/直流変換器などである。
【0060】
充放電制御部6には、電力系統9の停電を検知する検知装置90Sから延びる信号線が繋がっている。そのため、充放電制御部6は、検知装置90Sの検知結果に基づいて電力系統9の停電を把握することができる。検知装置90Sとしては、変電設備90に備わり、電力系統9の電圧を監視する電圧計などを利用することができる。
【0061】
充放電制御部6は、電力変換器91に電気的に繋がっている。充放電制御部6は、常時セル1から電力を供給されるように構成しても良いし、電力系統9の非停電時は電力系統9から電力を供給され、電力系統9の停電時はセル1から電力を供給されるように構成しても良い。
【0062】
本例のRF電池システムαでは、電力変換器91から循環ポンプ112,113に電力を供給するポンプ配線7が設けられている。ポンプ配線7は、電力変換器91と電力系統9との間から分岐して循環ポンプ112,113に延びていても良い。このような構成とすることで、電力系統9の非停電時には、電力系統9からの電力で循環ポンプ112,113を動作できるし、電力系統9の停電時には、セル1内に残留する電解液8の電力を利用して循環ポンプ112,113を動作できる。循環ポンプ112,113に供給される電力量は、充放電制御部6によって制御される。本例の循環ポンプ112,113の動作信号は、細線矢印で示すように、充放電制御部6から発せられる。動作信号は、循環ポンプ112,113のON/OFFを切り替える信号である。ここで、本例の循環ポンプ112,113は、交流で動作するものを利用している。電力系統9が直流送電系統であれば、循環ポンプ112,113は直流で動作するものを利用する。
【0063】
[電解液]
RF電池10に用いる正極電解液8Pと負極電解液8Nには、公知の電解液を使用できる。例えば、正負の電解液としては、正極及び負極の活物質としてVイオンを含有する電解液、正極活物質としてFeイオン、負極活物質としてCrイオンを含有する電解液、正極活物質としてMnイオン、負極活物質としてTiイオンを含有する電解液などが挙げられる。
【0064】
本例では、タンク106,107内の電解液8P,8Nの液面が、セル1内の電解液8の液面よりも高くなるようにタンク106,107を配置している。これは、電解液8P,8Nの循環が停止したときに、電解液8をセル1内に留めておくためである。その他、導管108,109にバルブを設け、電解液8P,8Nの循環を止めてもセル1内に電解液8を留めておけるようにしても良い。その場合、タンク106,107の配置は特に限定されない。
【0065】
≪RF電池システムの運転方法≫
[通常運転時]
RF電池システムαの通常運転時(非停電時)、RF電池システムαの充放電制御部6は、電力変換器91と循環ポンプ112,113の動作を制御してセル1の充放電を制御する。
【0066】
RF電池システムαの通常運転時、循環ポンプ112,113を停止して、セル1への電解液8P,8Nの循環を停止することがある。循環ポンプ112,113を停止する状況としては、例えば、RF電池10が十分に充電された場合などを挙げることができる。
【0067】
[電力系統の停電時]
電力系統9の停電時、RF電池システムαの充放電制御部6は、セル1内に残存する電解液8の電力を利用して、循環ポンプ112,113を動作させ、タンク106,107内の電解液8P,8Nの電力を電力系統9に放電する。循環ポンプ112,113を動作させるのに十分な電力をセル1内の電解液8から取り出せるのは、図2,3を参照して説明したセル1が、その内部に非常用の電解液8を貯留できる構成となっているからである。
【0068】
電力系統9の停電時の具体的なRF電池システムαの挙動を説明する。まず、充放電制御部6は、検知装置90Sによって電力系統9の電圧の変化に基づいて電力系統9の停電を検知する。電力系統9の停電を検知すると、充放電制御部6は、停電時専用のモードで再起動する。充放電制御部6の再起動の電力は、セル1内に残存する電解液8の電力で行なわれる。
【0069】
停電時専用のモードで起動した充放電制御部6は、電力変換器91に指令し、電力変換器91に循環ポンプ112,113を動作させるのに最適な周波数の交流電力を生成させる。そして、充放電制御部6は、電力変換器91にその交流を循環ポンプ112,113に供給させ、循環ポンプ112,113を動作させる。循環ポンプ112,113が一旦動いてしまえば、タンク106,107内の電解液8P,8Nがセルに送り込まれ、電解液8P,8Nの電力も取り出せるので、循環ポンプ112,113の動作を継続できる。その結果、タンク106,107内の電解液8P,8Nの電力を電力系統9に放電することができる。
【0070】
[効果]
上述したように、本例のRF電池システムαによれば、電力系統9の停電時に自力で放電できるため、RF電池システムαにUPSを必要としない。UPSを必要としないことで、次のような効果を得ることができる。
[1]UPSの設置スペースを確保する必要がないため、RF電池システムαの設置場所の自由度が高い。
[2]UPSの設置スペースに利用していた空間により大型のタンク106,107を設置するなどして、RF電池システムαの電池容量の向上を図ることができる。
[3]UPSの設置の手間、コストを削減することができる。
【0071】
<実施形態2>
実施形態2では、実施形態1とは異なるセル1を図6,7に基づいて説明する。
【0072】
図6,7に示すように、本例のセル1は、枠シール4A,4B(図2,3)を用いていない点、隔膜3が電極104,105よりも大きくなっている点で、実施形態1のセル1と異なる。
【0073】
隔膜3は、イオン透過部30と、その外周を取り囲むイオン非透過部31と、で構成されている。このような隔膜3は、例えば、水素イオンを透過しない基材を用意し、その基材の中央部分を後処理することで得られる。この場合、基材のうち、後処理された部分がイオン透過部30となり、それ以外の部分がイオン非透過部31となる。後処理としては、例えば、イオン交換樹脂の塗布や含浸、ポリマーアルコールの含浸焼結を挙げることができる。
【0074】
隔膜3のイオン透過部30の平面面積は、電極104,105の平面面積よりも小さくなっており、隔膜3全体の平面面積は、枠体22の貫通窓の平面面積よりも大きくなっている。この隔膜3をセルフレーム2A,2Bで挟み込むと、隔膜3のイオン非透過部31が、第一セルフレーム2Aの枠体22の内周縁と、第二セルフレーム2Bの枠体22の内周縁とに接する。イオン非透過部31は更に、シール部材2sに及ぶ大きさとすることが好ましく、そうすることで正負の電解液をそれぞれ正極空間204及び負極空間205内に封止し易いし、セル1外に電解液が漏れ難い。
【0075】
本例の構成では、イオン透過部30の全面が電極104,105に対向する対向部となっている。つまり、対向部の平面面積は、即ちイオン透過部30の平面面積である。この場合、イオン透過部30の平面面積を電極104,105の平面面積の50%以上99.9%以下とすることで、実施形態1のセル1と同様に、セル1内に非常用の電解液を貯留することができる。そのため、本例のセル1を用いて、図5に示すRF電池システムαを構築すれば、電力系統9の停電時に自力で電力系統9に放電を行なうことができるRF電池システムαとできる。
【0076】
<用途>
実施形態のRF電池システムαは、太陽光発電、風力発電などの新エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした蓄電池システムとして利用できる。また、本実施形態のRF電池システムαは、一般的な発電所に併設されて、瞬低・停電対策や負荷平準化を目的とした大容量の蓄電池システムとしても利用することができる。
【0077】
<試験例>
試験例では、実施形態1のセル1における隔膜3の平面面積を変化させた試験体セルA~Dを作製し、試験体セルA~D内に残存する電解液で図5のRF電池システムαの循環ポンプ112,113を起動させることができるかを試験した。各試験体セルA~Dに用いる電極104,105は共通で、電極104,105の平面面積は250cm、厚さは1mmであった。
【0078】
・試験体セルA…イオン透過部30における電極104,105に対向する対向部の平面面積を電極104,105の平面面積の99.9%としたセル1
・試験体セルB…対向部の平面面積を電極104,105の平面面積の75%としたセル1
・試験体セルC…対向部の平面面積を電極104,105の平面面積の99.95%としたセル1
・試験体セルD…対向部の平面面積が電極104,105の平面面積と同じとしたセル1
【0079】
試験の結果、試験体セルA,Bは循環ポンプ112,113を起動できたが、試験体セルC,Dは循環ポンプ112,113を起動できなかった。これらの結果から、セル1内に循環ポンプ112,113を起動できるだけの非常用の電解液を貯留するためには、少なくともイオン透過部30の対向部の平面面積を電極104,105の平面面積の99.9%以下とする必要があることが分かった。
【符号の説明】
【0080】
α レドックスフロー電池システム(RF電池システム)
10 レドックスフロー電池(RF電池)
1 セル
2A 第一セルフレーム 2B 第二セルフレーム 2s シール部材
21 双極板 22 枠体
23,24 給液用マニホールド 25,26 排液用マニホールド
23s,24s 入口スリット 25s,26s 出口スリット
204 正極空間 205 負極空間
3 隔膜
30 イオン透過部 31 イオン非透過部
4A,4B 枠シール
40 貫通孔 41 内周部 42 外周部
5 セルスタック 5s サブスタック
50 積層体 51 給排板 52 エンドプレート 53 締付機構
6 充放電制御部(制御部)
7 ポンプ配線
8 電解液 8P 正極電解液 8N 負極電解液
9 電力系統
90 変電設備 91 電力変換器 90S 検知装置
100 セル 101 隔膜 102 正極セル 103 負極セル
100P 正極用循環機構 100N 負極用循環機構
104 正極電極 105 負極電極 106 正極電解液用タンク
107 負極電解液用タンク 108,109,110,111 導管
112,113 循環ポンプ
図1
図2
図3
図4
図5
図6
図7