IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アルコン インコーポレイティドの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-22
(45)【発行日】2023-03-30
(54)【発明の名称】マルチビュー眼科診断システム
(51)【国際特許分類】
   A61B 3/10 20060101AFI20230323BHJP
   A61F 9/008 20060101ALI20230323BHJP
   A61B 3/103 20060101ALI20230323BHJP
   A61B 3/107 20060101ALI20230323BHJP
【FI】
A61B3/10 100
A61F9/008 130
A61B3/103
A61B3/107 ZDM
【請求項の数】 11
(21)【出願番号】P 2020527883
(86)(22)【出願日】2018-12-07
(65)【公表番号】
(43)【公表日】2021-02-25
(86)【国際出願番号】 IB2018059794
(87)【国際公開番号】W WO2019123086
(87)【国際公開日】2019-06-27
【審査請求日】2021-11-22
(31)【優先権主張番号】62/608,917
(32)【優先日】2017-12-21
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】319008904
【氏名又は名称】アルコン インコーポレイティド
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【弁理士】
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100147555
【弁理士】
【氏名又は名称】伊藤 公一
(74)【代理人】
【識別番号】100160705
【弁理士】
【氏名又は名称】伊藤 健太郎
(74)【代理人】
【識別番号】100211177
【弁理士】
【氏名又は名称】赤木 啓二
(72)【発明者】
【氏名】マルティン グリュンディヒ
(72)【発明者】
【氏名】ペーター ツィーガー
【審査官】高松 大
(56)【参考文献】
【文献】国際公開第2014/149839(WO,A1)
【文献】特表2016-514532(JP,A)
【文献】特表2014-509910(JP,A)
【文献】特表2017-502817(JP,A)
【文献】国際公開第2016/187675(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 3/10
A61F 9/008
A61B 3/103
A61B 3/107
(57)【特許請求の範囲】
【請求項1】
マルチビュー診断システムであって、
OCTエンジンと、
前記OCTエンジンと眼科目標物との間に複数のビーム経路を画定する複数の光学素子であって、各ビーム経路は前記眼科目標物の異なる視野角に対応する、複数の光学素子と、
前記OCTエンジンにより生成されたOCT結像ビームをそれぞれの各ビーム経路に沿って前記眼科目標物へと向けるように、第一のOCT結像ビームを第一のビーム経路に沿って前記眼科目標物へと向けるように、第二のOCT結像ビームを静止ミラーの集合により画定される第二のビーム経路に沿って前記眼科目標物へと向けるように、構成されたスキャナであって、前記第一のビーム経路は前記眼科目標物の光軸及び視軸のうちの1つに対応し、前記第二のビーム経路は前記眼科目標物内で前記第一のビーム経路と鋭角で交差する、スキャナと
前記照明光を発するように構成された照明光源であって、前記照明光源は、OCT結像ビーム又はその他の光が前記OCTエンジンへと、又は前記OCTエンジンから通過できるようにする開口の周囲に1つ又は複数の同心円パターンに配置された、複数の照明点光源を含む、照明光源と、
前記OCTエンジンと光学的に整列されたビームスプリッタ、及び、前記ビームスプリッタと光学的に整列されたカメラであって、前記カメラは、前記眼科目標物によりそれぞれの各ビーム経路に沿って反射された照明光を受け取るように構成された、ビームスプリッタ及びカメラと、
プロセッサ及び、メモリ内に記憶された命令であって、前記命令は前記プロセッサにより、
前記眼科目標物の特性を前記眼科目標物によりそれぞれの各ビーム経路に沿って反射され、前記OCTエンジンにより検出されるOCT光に基づいて特定するために
レイトレーシング分析及び前記検出OCT光に基づいて光学的な眼内レンズ(IOL)プロファイルを特定するためであって、前記IOLプロファイルは、パワー、形状、又は前記眼科目標物内の前記IOLの位置を含む、光学的な眼内レンズ(IOL)プロファイルを特定するために、かつ
前記眼科目標物の角膜の特性を、前記眼科目標物によりそれぞれの各ビーム経路に沿って反射された前記照明光に基づいて特定するために、
実行可能である、プロセッサ及び命令と、
を含むマルチビュー診断システム。
【請求項2】
前記命令はさらに、前記眼科目標物の角膜、眼房水、水晶体、又は硝子体液のうちの少なくとも1つの屈折率を、前記眼科目標物によりそれぞれの各ビーム経路に沿って反射された前記検出OCT光に基づいて特定するために実行可能である、請求項1に記載のシステム。
【請求項3】
前記命令はさらに、前記眼科目標物の3次元モデルを前記検出OCT光に基づいて生成するために実行可能である、請求項1に記載のシステム。
【請求項4】
前記複数のビーム経路は、前記眼科目標物内で収束し、交差する少なくとも2つのビーム経路を含む、請求項1に記載のシステム。
【請求項5】
前記命令はさらに、レイトレーシング分析を行うために実行可能であり、前記レイトレーシング分析は、第一又は第二プルキニエ像レイトレーシング分析を含む、請求項1に記載のシステム。
【請求項6】
前記スキャナは、前記OCT結像ビームを選択的に前記ビーム経路のうちの1つに沿って方向付ける1つ又は複数の操作可能ミラーを含む、請求項1に記載のシステム。
【請求項7】
前記角膜の前記特定された特性は角膜前面曲率又は角膜後面曲率を含む、請求項に記載のシステム。
【請求項8】
複数のOCT結像ビームを複数のビーム経路に沿って眼科目標物へ方向付けることであって、各ビーム経路は複数の光学素子により画定され、前記眼科目標物の異なる視野角に対応し、前記OCT結像ビームを複数のビーム経路に沿って方向付けることは、
第一のOCT結像ビームを第一のビーム経路に沿って前記眼科目標物へ方向付けることであって、前記第一のビーム経路は前記眼科目標物の光軸及び視軸のうちの1つに対応する、第一のOCT結像ビームを第一のビーム経路に沿って前記眼科目標物へ方向付けること、及び
第二のOCT結像ビームを静止ミラーの集合により画定される第二のビーム経路に沿って前記眼科目標物へ方向付けることであって、前記第二のビーム経路は前記眼科目標物内で前記第一のビーム経路と鋭角で交差する、第二のOCT結像ビームを静止ミラーの集合により画定される第二のビーム経路に沿って前記眼科目標物へ方向付けること、を含む、前記OCT結像ビームを複数のビーム経路に沿って方向付けることと、
前記ビーム経路の各々に沿って、前記眼科目標物からの反射OCT光を受け取ることと、
複数の照明点光源により、照明光を眼科目標物に向かって発することであって、照明光源は、OCT結像ビーム又はその他の光が前記OCTエンジンへと、又は前記OCTエンジンから通過できるようにする開口の周囲に1つ又は複数の同心円パターンに配置された前記複数の照明点光源を含む、照明光を眼科目標物に向かって発することと、
前記眼科目標物から前記ビーム経路の各々に沿って反射された照明光を受け取ることと、
反射された前記照明光に基づいてレイトレーシング分析を行うことと、
前記OCTエンジンと光学的に整列されたビームスプリッタと、前記ビームスプリッタと光学的に整列されたカメラとを介して、前記眼科目標物によりそれぞれの各ビーム経路に沿って反射された前記照明光を受け取ることと、
前記眼科目標物の1つ又は複数の特性を、前記眼科目標物によりそれぞれの各ビーム経路に沿って反射された前記検出OCT光に基づいて特定することと、
レイトレーシング分析及び前記検出OCT光に基づいて光学的な眼内レンズ(IOL)プロファイルを特定することであって、前記IOLプロファイルは、パワー、形状、又は前記眼科目標物内の前記IOLの位置を含む、光学的な眼内レンズ(IOL)プロファイルを特定することと、
前記眼科目標物の角膜の特性を、前記眼科目標物によりそれぞれの各ビーム経路に沿って反射された前記照明光及び前記レイトレーシング分析に基づいて特定することと、
を含む方法。
【請求項9】
前記眼科目標物の前記特定された特性は角膜前面曲率又は角膜後面曲率を含む、請求項に記載の方法。
【請求項10】
前記レイトレーシング分析を行うことは、第一及び第二プルキニエ像レイトレーシング分析を行うことを含む、請求項8に記載の方法
【請求項11】
前記眼科目標物によりそれぞれの各ビーム経路に沿って反射された前記検出OCT光に基づいて、前記眼科目標物の3次元眼モデルを生成することを含む、請求項8に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は眼科システム、より詳しくはマルチビュー眼科診断システムに関する。
【背景技術】
【0002】
光干渉断層撮影法(OCT:optical coherence tomogaphy)は、眼科学を含む生物医学の分野で広く採用されているイメージング技術である。OCTシステムは、半透明の検体(生物組織等)内の高解像度断層イメージングを、反射光のエコー時間遅延を測定することによって行う。OCTは眼科診断システムにおいて、白内障及び/又は角膜屈折矯正手術の裏付けのための術前診断において、さらには正確な眼の切開及び/又は硝子体液等の眼組織の除去により、眼科手術を行う医師を支援するために使用され得る。
【発明の概要】
【課題を解決するための手段】
【0003】
特定の実施形態において、マルチビュー診断システムは、OCTエンジンと、OCTエンジンと眼科目標物との間に複数のビーム経路を画定する複数の光学素子と、を含み、各ビーム経路は眼科目標物の異なる視野角に対応する。システムはまた、OCTエンジンにより生成されたOCT結像ビームをそれぞれの各ビーム経路に沿って眼科目標物へと向けるように構成されたスキャナも含む。システムは、プロセッサと、メモリ内に記憶された命令と、をさらに含む。命令はプロセッサにより、眼科目標物の特性を、眼科目標物によりそれぞれの各ビーム経路に沿って反射され、OCTエンジンにより検出されるOCT光に基づいて特定するために実行可能である。
【0004】
特定の実施形態において、方法は、複数のOCT結像ビームをそれぞれのビーム経路に沿って眼科目標物へと向けるステップを含み、各ビーム経路は複数の光学素子により画定され、眼科目標物の異なる視野角に対応する。方法は、ビーム経路の各々に沿って眼科目標物から反射されたOCT光を受け取るステップと、眼科目標物によりそれぞれのビーム経路に沿って反射された検出OCT光に基づいて眼科目標物の1つ又は複数の特性を特定するステップと、をさらに含む。
【0005】
特定の実施形態において、マルチビュー診断システムは、ビームスプリッタと眼科目標物との間に複数のビーム経路を画定する複数の光学素子を含み、各ビーム経路は眼科目標物の異なる視野角に対応する。システムはまた、ビームスプリッタと光学的に整列されたOCTイメージングシステムを含む。OCTイメージングシステムは、OCT結像ビームをそれぞれの各ビーム経路に沿って眼科目標物へと向け、眼科目標物によりそれぞれの各ビーム経路に沿って反射されたOCT光を検出するように構成される。システムは、ビームスプリッタと光学的に整列され、眼科目標物によりそれぞれの各ビーム経路に沿って反射された照明光を検出するように構成されたカメラをさらに含む。システムは、プロセッサと、メモリに記憶された命令と、をさらに含む。命令は、プロセッサにより、眼科目標物の角膜、眼房水、水晶体、又は硝子体液のうちの少なくとも1つの屈折率を検出OCT光に基づいて特定し、眼科目標物の曲率を眼科目標物によりそれぞれの各ビーム経路に沿って反射された検出照明光に基づいて特定するために実行可能である。
【0006】
特定の実施形態は、ある例において1つ又は複数の技術的利点を提供し得る。例えば、幾つかの例において、角膜の中央部分のより正確な曲率測定値が得られ得る。それに加えて、幾つかの例において、角膜前部及び後部の形状の測定における全体的な精度向上が得られ得る。さらに、幾つかの例において、眼科目標物の角膜、前眼房、又はその他の部分のin-vivo屈折率の特定を行うことができる。この情報は、眼科目標物の実際の形状を特定するために使用でき、また、より最適な眼内レンズ(IOL:intraocular lens)のプロファイルを得るために使用できる。
【0007】
これら及びその他の利点は、本願の図面と明細書を参照することにより当業者にとって明らかとなるであろう。
【0008】
本開示とその利点をより完全に理解するために、ここで、添付の図面と併せて以下の説明を参照するが、図中、同様の参照番号は同様の特徴を示す。
【図面の簡単な説明】
【0009】
図1A】例示的なマルチビュー眼科診断システムのブロック図を示す。
図1B-1C】図1Aの眼科診断システムにより提供される眼科目標物の異なる視点からの画像を示す。
図2A-2B】OCT結像ビームを使って眼科目標物の屈折率を特定するための例示的なレイトレーシングプロセスに使用される、異なる入射角に応じたOCT信号の光学的遅延の違いを示す。
図3A-3D】マルチビュー眼科診断システムの例示的な構成を示す。
図4】マルチビュー眼科診断システムを使って眼科目標物に対応する特定値を特定する例示的なプロセスを示す。
【発明を実施するための形態】
【0010】
当業者であれば、以下に説明する図面は例示を目的としているにすぎず、出願人の開示の範囲を限定しようとしていないことがわかるであろう。
【0011】
本開示の原理を理解しやすくするために、ここで図面に示される実施形態を参照するが、それを説明するために具体的な文言を使用する。それでも、本開示の範囲を限定することは意図されていないと理解されたい。説明されているシステム、装置、及び方法に対する変更やさらなる改良並びに本開示の原理のその他の何れの応用も、本開示が関係する分野の当業者であれば通常着想するように想定される。特に、1つの実施形態において説明されているシステム、装置、及び/又は方法は本開示の他の実施形態に関して説明されている特徴、構成要素、及び/又はステップと組み合わされてよいことが想定される。しかしながら、簡潔さを期し、これらの組合せの数多くの繰返しを別々に説明することはしない。単純にするために、幾つかの例では、図面全体を通じて、同じ又は同様の部分を説明するために同じ参照番号が使用されている。
【0012】
図1Aは、例示的なマルチビュー眼科診断システム100のブロック図を示す。例示的システム100は、OCTエンジン102、スキャナ104、カメラ106、ビームスプリッタ108、複数のビーム経路112を画定するミラー110、及び複数の照明点光源116を含む照明光源114を含む。本明細書中で説明するように、眼科診断システム100は、眼科目標物、例えば図1Aに示される眼科目標物120に関する診断のための情報を、異なるビーム経路112に沿って反射された光(例えば、OCTエンジンからのOCT光、照明点光源116からの照明光、又はそれらの両方)に基づいて特定するように構成される。眼科目標物120は、眼の1つ又は複数の屈折性組織、例えば角膜、眼房液、水晶体、又は硝子体液等を含んでいてよい。
【0013】
例示的なOCTエンジン102は、OCT結像ビームを生成し、眼科目標物120により反射されたOCT光を受け取るように構成される構成要素を含む。OCTエンジン102は、パルスレーザ光源、干渉計、フォトディテクタ、及び1つ又は複数のその他の光学構成要素(例えば、ミラー、ビームスプリッタ等)を含んでいてよい。幾つかの例において、OCTエンジン102は市販のOCTエンジンであってよい。例示的なスキャナ104は、OCTエンジン102からのOCT結像ビームを受け取り、このビームをシステム100内のビーム経路112の1つに沿って方向付けることのできる操作可能なミラーの集合を含む。スキャナ104は微小電気機械システム(MEMS)、ミラーガルバノメータとして、又はその他の方法で実装できる。OCTエンジン102とスキャナ104は、まとめてOCTイメージングシステムと呼んでもよい。幾つかのケースでは、OCTエンジン102とスキャナ104はシステム100内の異なる装置である(例えば、図1Aに示されているとおり)。他のケースでは、OCTエンジン102とスキャナ104は同じ装置内に格納される。
【0014】
例示的なカメラ106は、照明点光源116により発せられ、眼科目標物120により反射されて異なるビーム経路112を通じて戻される照明光を受けるように構成される高解像度カメラである。幾つかの例において、カメラ106は市販のカメラであってよい。
【0015】
図の例では、3つの異なるビーム経路112A、112B、112Cがある。図1Aに示されるように、ビーム経路112は眼科目標物120の中で収束して交差し得る。他の例は、追加の、又はより少ないビーム経路112を含んでいてもよい。各ビーム経路112はOCTエンジン102又はカメラ106に眼科目標物120の異なる視点を提供し得る。図のように、ビーム経路112Bによれば、OCTエンジン102及びカメラ106による眼科目標物120の正面から見た画像(例えば、眼科目標物120の光軸又は視軸に対応する画像)を得ることができる。ビーム経路112A、112Cは光学素子110により画定され(すなわち、ビーム経路112Aは光学素子110A、110Bにより画定され、ビーム経路112Cは光学素子110C、110Dにより画定される)、図のように眼科目標物120の側方から見た画像を提供する。図の例において、光学素子110は静止ミラーである。光学素子110は、その他の種類の光学素子を含んでいてもよい。後でさらに説明するように、眼科目標物120の複数の異なる視点からの画像により、眼科目標物120の1つ又は複数の特性をより正確に測定することが可能となり得る。
【0016】
例示的なビームスプリッタ108は、入射光の一部分を透過させ、入射光の他の部分を反射するように構成された光学素子であり、入射光を分割する。例えば、図1Aに示される例において、ビームスプリッタ108は、眼科目標物120から反射されたOCT又は照明光の一部分をOCTエンジン102に向かって再び透過させ、反射光の他の部分をカメラ106に向かって反射させるように構成される。ビームスプリッタ108は、透明又は半透明材料(例えば、ガラス)の1つ又は複数の表面の上に堆積された膜(例えば、誘電体膜)により形成されてよい。例えば、ビームスプリッタ108は、誘電体コーティングミラー、金属コーティングミラー、ビームスプリッタキューブとして、又は他の方法により実装されてよい。
【0017】
図の例において、照明光源114はシステム100に連結されている。しかしながら、他の例では、照明光源114はシステム100とは別であってもよい。照明光源114は、複数の照明点光源116を含む。照明点光源116は、OCT結像ビーム又はその他の光がシステム100へと、又はそこから通過できるようにする開口118の周囲に円形に配置できる。図の例において照明点光源は同心円状に配置される。照明点光源116は、発光ダイオード(LED)、有機LED(OLED)、又は他の種類の可視光源として実装されてよい。
【0018】
図の例において、眼科診断システム100はコンピュータシステム130に連結され、これはプロセッサ132、メモリ134、及びインタフェース136を含む。例示的なプロセッサ132は、例えばデータ入力に基づいて出力データを生成するための命令を実行する。命令は、プログラム、コード、スクリプト、又はメモリに記憶されるその他の種類のデータを含むことができる。追加的又は代替的に、命令は、事前プログラム可能な、若しくは再プログラム可能な論理回路として、又はその他の種類のハードウェア若しくはファームウェアコンポーネントとして符号化できる。プロセッサ132は、専用コプロセッサ又はその他の種類のデータ処理装置としての汎用マイクロコンピュータであるか、それを含んでいてもよい。幾つかのケースで、プロセッサ132は、眼科目標物120の1つ又は複数の特性をOCTエンジン102、カメラ106、又はそれらの両方により取得されるデータに基づいて特定するためのソフトウェア、スクリプト、プログラム、機能、実行可能ファイル、又はメモリ134の中に記憶されたその他の命令を実行又は解釈するように構成されてよい。幾つかの例では、プロセッサ132は複数のプロセッサを含む。
【0019】
例示的なメモリ134は、1つ又は複数のコンピュータ可読媒体、例えば揮発性メモリデバイス、不揮発性メモリデバイス、又はそれらの両方を含む。メモリ134は、1つ又は複数のリードオンリメモリデバイス、ランダムアクセスメモリデバイス、バッファメモリデバイス、又はこれらの組合せ及びその他の種類のメモリデバイスを含むことができる。メモリ134は、プロセッサ132により実行可能な命令を記憶してよい。
【0020】
例示的なインタフェース136は、パターン有効性確認システム108及び1つ又は複数のその他のデバイスとの間の通信を提供する。例えば、インタフェース136は、使用者による眼科診断システム100との相互作用が可能となる1つ又は複数のインタフェース、例えばキーボード、マウス、タッチスクリーン、その他を含んでいてよい。
【0021】
特定の実施形態において、コンピュータシステム130は、OCTエンジン102、カメラ106、又はそれらの両方からデータを取得し、このデータを処理して、眼科目標物120の1つ又は複数の特性を特定する。幾つかの実施形態において、コンピュータシステム130はOCT技術並びに第一及び第二プルキニエ像レイトレーシング技術を使って、提供される異なる視点の画像から眼科目標物120のすべての屈折面の曲率及び解剖学的特徴を同時に測定してよい。図1Aに示されるようなマルチビューシステムを使用することにより、角膜の中央部分の、より正確な曲率測定が得られ得、角膜前部又は後部形状の測定における全体的に向上した精度が得られ得、角膜及び前眼房のin-vivo屈折率の特定が行われ得る。例えば、複数の画像により、眼科目標物120の強膜又はその他の部分の3次元モデルを生成できる(1枚のみの画像で入手可能な2次元モデルと異なる)。それに加えて、複数の画像により、カメラ106と眼科目標物120との間の距離の測定が可能となる。それに加えて、複数の画像により、角膜頂点からの反射を検出できる(それに対して、単一画像システムでは検出できない)。角膜頂点の反射により、眼科目標物120をより完全に理解でき、角膜頂点に関する形状情報(例えば、曲率)の取得は、眼科目標物120をモデリングするのに有益であり得る。
【0022】
幾つかの例において、コンピュータシステム130は、OCTデータに基づいて眼科目標物の3次元眼モデルを生成してよい。このモデルは、眼内レンズ(IOL)のプロファイルを特定するレイトレーシングにおいて使用される。IOLプロファイルには、IOLのパワー及び眼科目標物内での位置が含まれていてよい。IOLプロファイルにはまた、IOLの形状、媒質、又は非点収差も含まれていてよい。
【0023】
例えば、角膜前面での照明点光源116の第一プルキニエ反射を検出することにより、コンピュータシステム130は、角膜前面の曲率を効率的に特定できる。それに加えて、角膜後面での第二プルキニエ反射を検出することにより、コンピュータシステム130は角膜後面の曲率の測定値を特定できる。OCTエンジン102は、眼科目標物120の3次元仰角スキャンを実行してよい。第一及び第二プルキニエ像レイトレーシング分析とOCTエンジンにより収集されるOCTデータとの組合せにより、角膜の正確な情報のほか、眼科目標物120の深さに関する情報が得られる。照明光の反射の画像を増やすことにより、全体としての曲率の密度はN倍に高まり、Nはシステム100により提供される異なる視点からの画像の数である。例えば、3画像構成が使用される場合(例えば、図1Aに示されるとおり)、曲率の密度は3倍に増大する。他のマルチビュー構成は図3A~3Cに示されており、これについては後でさらに説明する。
【0024】
例示的なシステム100は、特定の実施形態において、図1Aに示されているものに追加される、それより少ない、又はそれとは異なる構成要素を含んでいてよい。例えば、システム100は、より少ない(例えば2つの)ビーム経路、又は追加のミラーにより画定される追加のビーム経路(例えば、図3B、3Cに示されるとおり)を含むことができる。他の例として、システム100は複数のカメラを含んで眼科目標物の複数の画像を実現でき、これはビーム経路112を使ってカメラ106のための複数の画像を実現する場合と対照的である。
【0025】
図1B及び1Cは、図1Aの眼科診断システムにより提供される、眼科目標物の例示的な異なる視点からの画像である。OCTエンジン102により提供される異なる視点からの画像142、144、146は図1Bに示され、カメラ106により提供される異なる視点からの画像152、154、156は図1Cに示される。図の例において、画像142、152はビーム経路112Aに関連付けられ、画像144、154はビーム経路112Bに関連付けられ、画像146、156はビーム経路112Cに関連付けられる。特定の実施形態において、画像142、144、146は、眼科目標物130の組織のうちの1つ又は複数の屈折率を特定するために使用されてよい。例えば、画像142、144、146は、目標物120のそれぞれの面が一致するように相互に整列されてもよい。画像を整列させることは、目標物120の組織の各々のパラメータ化によりモデルを生成することを含んでいてよく、パラメータは組織のうちの1つ又は複数の屈折率を含む。屈折率は、ベストフィット方式により特定されてよい。例えば、最小二乗法を使って、パラメータ化モデルを整列させ、目標物120の組織のうちの1つ又は複数の屈折率を特定できる。幾つかのケースで、画像152、154、156は目標物120のパラメータ化において使用されてよく、カメラの画像のパラメータ化は、目標物120の組織のうちの1つ又は複数(例えば、角膜、眼房水、水晶体、又は硝子体液)の屈折率の特定において使用されてよい。
【0026】
図2A~2Bは、OCT結像ビームを使って眼科目標物の屈折率を特定するための例示的なレイトレーシングプロセスに使用される、異なる入射角に応じたOCT信号の光学遅延の違いを示す図である。図2Aに示される例において、光ビーム302及び304は、それぞれ異なる入射角α1及びα2で目標物質306に向かって透過させられ、したがって、目標物質306をそれぞれ異なる角度β1及びβ2で横断する(スネルの法則に基づく)。角度β1及びβ2の違いにより、ビーム302及び304は異なる距離にわたって厚さΔxの目標物質306を横切り、それによって目標物質306内に各ビームがとどまる時間量に差が生じる。図2Bに示される例では、ビーム302、304両方に関して例示的なOCT信号が示されており、Δt1,2はそれぞれのビーム202、204に関する目標物質306の前面及び後面におけるOCT信号の到着時間の差を表す。初期条件がわかっている場合(すなわち、α1及びα2)、目標物質306の屈折率を算出できる。
【0027】
図3A~3Dは、マルチビュー眼科診断システムの例示的な構成300を示す略図である。図3Aに示される例示的な構成300Aは2画像構成であり、眼科目標物の中心からずれた視点からの2つの画像が得られる。図3Bに示される例示的な構成は、図1Aのシステム100と同様の3画像構成300Bであり、眼科目標物の3種類の異なる視点からの画像が得られる。図3Cに示される例示的な構成は、5画像構成300Cであり、眼科目標物の5種類の異なる視点からの画像を含み、図3Dに示される例示的な構成は9画像構成300Dであり、眼科目標物の9種類の異なる視点からの画像を含む。幾つかのケースで、9画像構成300Dは、眼科診断システムのカメラの中に正方形に配置されたセンサにより有利であり得る。他のマルチビュー構成も実装されてよい。
【0028】
図4は、マルチビュー眼科診断システムを使って眼科目標物に対応する測定値を特定する例示的なプロセスを示すフロー図である。例示的なプロセス400における動作はデータ処理装置(例えば、図1Aの例示的なコンピュータシステム130のプロセッサ132)により実行されてよい。例示的プロセス400は、追加の、又は異なる動作を含んでいてもよく、動作は示されている順序でも、他の順序でも行われてよい。幾つかのケースで、図4に示される動作のうちの1つ又は複数は、複数の動作、サブプロセス、又はその他の種類のルーチンを含むプロセスとして実装される。幾つかのケースで、動作は組み合わされ、他の順序で行われ、平行して行われ、反復若しくはそれ以外に繰り返され、又はその他の方法で行われることができる。
【0029】
402で、複数のOCT結像ビームがそれぞれのビーム経路に沿って眼科目標物に向けられる。OCT結像ビームはOCTイメージング装置、例えばOCTエンジンにより生成されてよい。例えば、図1Aを参照すると、OCT結像ビームはOCTエンジン102により生成されて、ビーム経路112の各々に沿って方向付けられてよい。幾つかのケースで、OCT結像ビームは、それぞれの各ビーム経路に沿ってOCTスキャンを行ってよい。幾つかのケースで、スキャンは逐次的に行われてよい。例えば、図1Aを再び参照すると、OCT結像ビームはビーム経路112Aに沿った第一のOCTスキャン、ビーム経路112Bに沿った第二のOCTスキャン、及びビーム経路112Cに沿った第三のOCTスキャンを行ってよい。OCT結像ビームは、それぞれの各経路に沿って、1つ又は複数の操作可能ミラーを含むスキャナにより方向付けられてよい。例えば、図1Aを再び参照すると、スキャナ104はOCTエンジン102により生成されたOCT結像ビームを選択的にビーム経路112A、112B、112Cのうちの1つに沿って方向付けてよい。
【0030】
404で、眼科目標物により反射されたOCT光が受け取られる。反射OCT光は初期OCT結像ビームを透過させたOCTイマジン装置(例えば、OCTエンジン)で受け取られてよい。OCT光は402で透過され、眼科目標物により反射して戻されたOCT結像ビームを含んでいてよい。反射OCT光は、初期OCT結像ビームが伝搬したビーム経路に沿って伝搬してよい。例えば、図1Aを参照すると、OCTエンジン102によりビーム経路112Aに沿って透過させられたOCT結像ビームは、眼科目標物120により反射され、再びビーム経路112Aに沿ってビームスプリッタ108へと伝搬してよく、これは反射OCT光の一部分をOCTエンジン102に向かって透過させ、そこでこれが受け取られ、検出される。
【0031】
406で、眼科目標物の測定値は、受け取られたOCT光に基づいて特定される。測定値には、眼科目標物内の組織の厚さ(例えば、角膜厚さ又は水晶体厚さ)、眼科目標物内の組織(例えば、角膜、眼房水、水晶体、又は硝子体液)の屈折率、又は眼科目標物の物理的特性に関係する他の測定値が含まれていてよい。例えば、異なるビーム経路に関連付けられる眼科目標物の画像は、前述のように、各画像の眼科目標物のそれぞれの面がマッチするように整列させることができる。幾つかのケースで、画像を整列させることは、眼科目標物内の組織の各々のパラメータ化によりモデルを生成することが含まれていてもよく、パラメータは組織のうちの1つ又は複数の屈折率を含む。すると、屈折率はベストフィット方式により特定できる。例えば、最小二乗法を使って、パラメータ化モデルを整列させて、眼科目標物の組織のうちの1つ又は複数の屈折率を特定できる。
【0032】
408で、照明光は眼科目標物に向かって発せられる。照明光は、ビーム経路の周囲に円形に配置された複数の照明点光源により発せられてよい。例えば、図1Aを参照すると、照明点光源116は照明光を眼科目標物120に向かって発してよい。
【0033】
410で、眼科目標物により反射された照明光が受け取られる。反射照明光は眼科診断システム内の1つ又は複数のカメラ装置により受け取られてよい。照明光は、408で照明光源により透過させられ、眼科目標物により反射して戻された照明光を含んでいてよい。反射照明光は、OCT結像ビームが通ったビーム経路に沿って伝搬してよい。例えば、図1Aを参照すると、照明点光源116により発せられた照明光は眼科目標物120により反射され、ビーム経路112に沿ってビームスプリッタ108へと戻ってよく、これは反射照明光の一部分をカメラ106に向かって反射させる。
【0034】
412で、眼科目標物の1つ又は複数の曲率が、反射照明光に基づいて特定される。曲率は、角膜前面曲率、角膜後面曲率、又はそれらの両方を含んでいてよい。幾つかの実施形態では、角膜の前面での照明光の第一プルキニエ反射を検出することにより、角膜前面曲率を特定できる。幾つかの実施形態において、角膜後面での第二プルキニエ反射を検出することにより、角膜後面曲率を特定できる。幾つかのケースでは、角膜の中央曲率(単一画像OCT技術を使用して検出不能であり得る)もまた、例えば、反射が角膜の中央領域の中に見える眼科目標物の、軸からずれた視点からの画像(例えば、図1Cの画像152及び156の中央領域のスポット参照)に基づいて角膜表面をパラメータ化することにより特定されてよい。
【0035】
414で、眼科目標物のパラメータ化モデルが選択又は生成される。パラメータ化モデルは、眼科目標物の特性に関連付けられる複数のパラメータを含んでいてよい。例えば、モデルは、眼科目標物内のすべての屈折面及び各種の光学媒質(例えば、角膜、眼房液、水晶体、硝子体液、又はその他の媒質)の屈折率に関するパラメータを含んでいてよい。眼科目標物のモデルは、パラメータに基づく1つ又は複数のシミュレーションによる測定値又は曲率を提供してよい。例えば、モデルは眼科目標物の屈折率のシミュレーションによる測定値又は表面曲率を提供してよい。
【0036】
416で、414で生成されたモデルのパラメータが、ステップ406及び412で収集された特性とデータを使って最適化される。パラメータは、406で特定された測定値、412で特定された曲率、又はそれらの両方に基づいて最適化されてよい。幾つかの実施形態において、パラメータは、観察による測定値又は曲率(406、412から)とシミュレーションによる測定値又は曲率(414で生成されたモデルから)との差を最小化することにより最適化されてよい。最小化は、最小二乗法を使って、又はその他の最小化手法を使って行われてよい。
【0037】
418で、IOLプロファイルが416で特定された最適化後のパラメータに基づいて特定される。IOLプロファイルは、眼科目標物に挿入される予定のIOLの1つ又は複数の特性を含んでいてよい。例えば、特定された特性は、眼の天然の水晶体を置換する白内障手術で使用される置換用IOLを選択又は製作するために使用されてよい。IOLプロファイルには、天然の眼の水晶体のそれに最も近く近似するIOLのパワー又は形状が含まれていてよく、又は眼科目標物内のIOLの相対位置が含まれていてもよい。IOLプロファイルにはまた、眼科目標物内のIOLの媒質若しくは非点収差又はその他のIOLの特性も含まれていてよい。IOLプロファイルは、406で特定された測定値、412で特定された曲率、又はそれらの組合せに基づいて特定されてよい。
【0038】
本明細書に記載されている主旨と動作の幾つかは、デジタル電子回路構造において、又は本明細書において開示される構造及びそれらの構造的均等物を含むコンピュータソフトウェア、ファームウェア、若しくはハードウェアにおいて、又はこれらの1つ若しくは複数の組合せにおいて実装できる。本明細書に記載されている主旨の幾つかは、1つ又は複数のコンピュータプログラム、すなわち、データ処理装置により実行される、又はその動作を制御するためのコンピュータ可読記憶媒体上で符号化されたコンピュータプログラム命令の1つ又は複数のモジュールとして実装できる。コンピュータ可読記憶媒体は、コンピュータ可読記憶装置、コンピュータ可読記憶基板、ランダム若しくはシリアルアクセスメモリアレイ若しくはデバイス、又はこれらの1つ若しくは複数の組合せであるか、又はその中に含めることができる。さらに、コンピュータ可読記憶媒体は伝搬信号ではないが、コンピュータ可読記憶媒体は、人工的に生成された伝搬信号において符号化されるコンピュータプログラム命令の発信源又は送信先とすることができる。コンピュータ可読記憶媒体はまた、1つ又は複数の別々の物理的コンポーネント又は媒体(例えば、複数のCD、ディスク、又はその他の記憶デバイス)であるか、又はその中に含めることができる。
【0039】
本明細書に記載されている動作の幾つかは、1つ又は複数のコンピュータ可読記憶デバイス上に記憶された、又はその他の供給源から受信したデータに対してデータ処理装置により実行される動作として実装できる。「データ処理装置」という用語は、データ処理のためのあらゆる種類の装置、デバイス、及びマシンを包含し、これには例えばプログラム可能プロセッサ、コンピュータ、システムオンチップ、又はそれらのうちの幾つか若しくは組合せが含まれる。装置は特定用途論理回路、例えばFPGA(field programmable gate array)又はASIC(特定用途集積回路)を含むことができる。装置はまた、ハードウェアに加えて、問題のコンピュータプログラムのための実行環境を作るコード、例えばプロセッサファームウェア、プルトコルスタック、データベース管理システム、オペレーティングシステム、クロスプラットフォームランタイム環境、仮想マシン、又はそれらのうちの1つ若しくは複数の組合せを含むこともできる。
【0040】
コンピュータシステムは、1つのコンピューティングデバイス又は、相互に近接して、又は概してリモートで動作し、典型的に通信ネットワークを通じて相互作用する複数のコンピュータを含んでいてよい。通信ネットワークの例には、ローカルエリアネットワーク(「LAN」)、及びワイドエリアネットワーク(「WAN」)、相互接続ネットワーク(例えば、インタネット)、衛星リンクを含むネットワーク、及びピアツーピアネットワーク(例えば、アドホックピアツーピアネットワーク)が含まれる。コンピュータシステムは、1つ又は複数のデータ処理装置により実行され得る1つ又は複数のコンピュータプログラムを記憶するコンピュータ可読媒体に連結された1つ又は複数のデータ処理装置及び他のコンピュータシステムと通信するための1つ又は複数のインタフェースを含んでいてよい。
【0041】
コンピュータプログラム(プログラム、ソフトウェア、ソフトウェアアプリケーション、スクリプト、又はコードとしても知られる)は、コンパイラ型又はインタプリタ型言語、宣言型又は手続型言語を含む何れの形態のプログラミング言語で書くこともでき、また、これは独立プログラムとして、又はモジュール、コンポーネント、サブルーチン、オブジェクト、若しくはコンピュータ環境での使用に適したその他のユニットとして等、何れの形態でも展開できる。コンピュータプログラムは、ファイルシステム内のファイルに対応してもよいが、そうである必要はない。プログラムは、その他のプログラム若しくはデータを保持するファイルの一部分の中(例えば、マークアップ言語文書の中に記憶された1つ又は複数のスクリプト)、そのプログラム専用の単独ファイルの中、又は複数の相互調整されたファイル(例えば、1つ又は複数のモジュール、サブプログラム、若しくはコードの一部を記憶するファイル)の中に記憶できる。コンピュータプログラムは、1つのコンピュータ上で、又は1つのサイトにある、若しくは複数のサイトに分散されて通信ネットワークにより相互接続される複数のコンピュータ上で実行されるように展開できる。
【0042】
本開示の実施形態は、従来のシステム及び方法の限界を克服し得る、眼科目標物に関する診断のための情報を得るためのシステムと方法を提供する。上述及びその他の特徴と機能又はそれらの代替は、本開示にしたがって他の多くの異なるシステム又はアプリケーションへと希望に応じて組み合わせてよいことがわかるであろう。また、現時点で予見不能又は予想不能な各種の代替、改善、変更、又は改良が後に当業者によって行われ得、これらの代替、変更、及び改良もまた、以下の特許請求の範囲に包含されるものであることもわかるであろう。
図1A
図1B
図1C
図2A-2B】
図3A
図3B
図3C
図3D
図4