IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 大同特殊鋼株式会社の特許一覧

特許7251053RFeB系磁石及びRFeB系磁石の製造方法
<>
  • 特許-RFeB系磁石及びRFeB系磁石の製造方法 図1
  • 特許-RFeB系磁石及びRFeB系磁石の製造方法 図2
  • 特許-RFeB系磁石及びRFeB系磁石の製造方法 図3
  • 特許-RFeB系磁石及びRFeB系磁石の製造方法 図4
  • 特許-RFeB系磁石及びRFeB系磁石の製造方法 図5
  • 特許-RFeB系磁石及びRFeB系磁石の製造方法 図6
  • 特許-RFeB系磁石及びRFeB系磁石の製造方法 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-27
(45)【発行日】2023-04-04
(54)【発明の名称】RFeB系磁石及びRFeB系磁石の製造方法
(51)【国際特許分類】
   H01F 41/02 20060101AFI20230328BHJP
   H01F 1/057 20060101ALI20230328BHJP
   B22F 3/00 20210101ALI20230328BHJP
   C22C 9/00 20060101ALI20230328BHJP
   C22C 28/00 20060101ALI20230328BHJP
   C22C 30/02 20060101ALI20230328BHJP
   C22C 33/02 20060101ALI20230328BHJP
   C22C 38/00 20060101ALI20230328BHJP
   C23C 10/28 20060101ALI20230328BHJP
【FI】
H01F41/02 G
H01F1/057 170
B22F3/00 F
C22C9/00
C22C28/00
C22C30/02
C22C33/02 J
C22C33/02 K
C22C38/00 303A
C23C10/28
【請求項の数】 3
(21)【出願番号】P 2018092254
(22)【出願日】2018-05-11
(65)【公開番号】P2019009421
(43)【公開日】2019-01-17
【審査請求日】2021-03-16
(31)【優先権主張番号】P 2017124954
(32)【優先日】2017-06-27
(33)【優先権主張国・地域又は機関】JP
【前置審査】
(73)【特許権者】
【識別番号】000003713
【氏名又は名称】大同特殊鋼株式会社
(74)【代理人】
【識別番号】110001069
【氏名又は名称】弁理士法人京都国際特許事務所
(72)【発明者】
【氏名】日南田 純平
(72)【発明者】
【氏名】橋野 早人
(72)【発明者】
【氏名】北西 史弥
(72)【発明者】
【氏名】五味 和也
(72)【発明者】
【氏名】藤村 和正
【審査官】久保田 昌晴
(56)【参考文献】
【文献】特開2010-114200(JP,A)
【文献】国際公開第2006/112403(WO,A1)
【文献】国際公開第2008/032667(WO,A1)
【文献】特開2011-114335(JP,A)
【文献】国際公開第2013/100008(WO,A1)
【文献】特開2013-191849(JP,A)
【文献】特開2011-199180(JP,A)
【文献】特開2014-192460(JP,A)
【文献】米国特許出願公開第2017/0037504(US,A1)
【文献】国際公開第2012/013086(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01F 1/057、41/02
B22F 3/00
C22C 9/00、28/00、30/02、33/02、38/00
C23C 10/28
(57)【特許請求の範囲】
【請求項1】
Tb、Cu及びAlから成りDyを含有しない合金であって、Tb、Cu及びAlを頂点とする三元組成図における8点の座標(Tbat%, Cuat%, Alat%)=(50, 40, 10)、(58, 30, 12)、(58, 20, 22)、(48, 20, 32)、(33, 24, 43)、(17, 50, 33)、(17, 60, 23)及び(33, 58, 9)を頂点とする八角形内又は該八角形の辺上の点で表される組成を有するTbCuAl合金を含有する付着物を準備する付着物準備工程と、
前記付着物を、1種又は2種の軽希土類元素RLから成る含有軽希土類RC L、Fe及びBを含有するRLFeB系焼結磁石体から成る基材の表面に付着させる付着物付着工程と、
前記付着物を付着させた前記基材を700~1000℃の範囲内の所定温度に加熱する加熱工程と
を有することを特徴とするRFeB系磁石の製造方法。
【請求項2】
前記TbCuAl合金が、前記三元組成図における6点の座標(Tbat%, Cuat%, Alat%)=(50, 40, 10)、(50, 32, 18)、(33, 24, 43)、(17, 50, 33)、(17, 60, 23)及び(33, 58, 9)を頂点とする六角形内又は該六角形の辺上の点で表される組成を有することを特徴とする請求項1に記載のRFeB系磁石の製造方法。
【請求項3】
1種又は2種の軽希土類元素RLから成る含有軽希土類RC L、Tb、Fe及びBを含有し、略平行に対向する2つの表面を有するRFeB系焼結磁石であって、
Tbの含有率が結晶粒の粒内よりも粒界においてより高く、
前記RFeB系焼結磁石内の前記2つの表面から等距離にある面内において、粒界におけるTbの含有率から結晶粒内におけるTbの含有率を減じた値が0.73~1.25質量%であり、
粒界におけるCuの含有率が3.9~14.0質量%、Alの含有率が0.09~1.00質量%
であることを特徴とするRFeB系焼結磁石。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、R(希土類元素)、Fe(鉄)及びB(硼素)を含有するRFeB系磁石の製造方法に関する。ここで「希土類元素」は周期表3A族に属する17種の元素の総称であるが、本発明ではそれら17種の元素のうち、Nd(ネオジム)及びPr(プラセオジム)の2種の元素を総称した軽希土類元素RL、並びにTb(テルビウム), Dy(ジスプロシウム)及びHo(ホルミウム)の3種の元素を総称した重希土類元素RHを対象とする。本発明は特に、軽希土類元素RL、Fe及びBを含有するRLFeB系合金の粉末から成る原料粉末中の結晶粒を磁界中で配向した後に焼結したRLFeB系焼結磁石や、同様の原料粉末に対して熱間プレス加工を行った後に熱間塑性加工を行うことで原料粉末中の結晶粒を配向したRLFeB系熱間塑性加工磁石(非特許文献1参照)から成る基材内に、重希土類元素RHの原子を拡散させる処理(粒界拡散処理)がなされたRFeB系磁石、及びRFeB系磁石の製造方法に関する。
【背景技術】
【0002】
RFeB系磁石は、1982年に佐川眞人らによって見出されたものであり、残留磁束密度等の多くの磁気特性がそれまでの永久磁石よりもはるかに高いという特長を有する。そのため、RFeB系磁石はハイブリッド自動車や電気自動車の駆動用モータ、電動補助型自転車用モータ、産業用モータ、ハードディスク等のボイスコイルモータ、スピーカー、ヘッドホン、永久磁石式磁気共鳴診断装置等、様々な製品に使用されている。
【0003】
初期のRFeB系磁石は種々の磁気特性のうち保磁力HcJが比較的低いという欠点を有していたが、その後、RFeB系磁石の内部に重希土類元素RHを存在させることにより、保磁力が向上することが明らかになった。保磁力は磁化の向きとは逆向きの磁界が磁石に印加されたときに磁化が反転することに耐える力であるが、重希土類元素RHはこの磁化反転を妨げることにより、保磁力を増大させる効果を持つと考えられている。
【0004】
一方、RFeB系磁石中の重希土類元素RHの含有量が増加すると、残留磁束密度Brが低下し、それにより最大エネルギー積(BH)maxも低下する、という問題が生じる。また、重希土類元素RHが資源として高価・希少であり、且つ産出される地域が偏在していることから、RFeB系磁石を安価且つ安定的に市場に供給するという点からも、重希土類元素RHの含有量を増加させることは望ましくない。
【0005】
そこで、重希土類元素RHの含有量を抑えつつ、保磁力を高くするために、粒界拡散処理が行われている(例えば特許文献1、2参照)。粒界拡散処理では、希土類元素として軽希土類元素RLを含有するRLFeB系焼結磁石又はRLFeB系熱間塑性加工磁石の表面に、重希土類元素RHを含有するRH含有物を付着させたうえで加熱することにより、粒界を通して重希土類元素RHの原子を磁石の内部まで侵入させ、各結晶粒内のうち表面近傍のみに重希土類元素RHを拡散させる。以下、粒界拡散処理を行う前のRLFeB系焼結磁石又はRLFeB系熱間塑性加工磁石を「基材」と呼ぶ。保磁力の低下は、磁化反転が結晶粒内のうち表面近傍で生じた後に結晶粒全体に拡がってゆくことで生じることから、このように結晶粒内のうち表面近傍における重希土類元素RHの濃度を高くすることによって磁化反転を抑え、保磁力を高くすることができる。一方、重希土類元素RHは各結晶粒の表面(粒界)近傍のみに偏在するため、全体としての含有量を抑えることができ、それにより残留磁束密度及び最大エネルギー積の低下を抑えることができると共に、RFeB系磁石を安価且つ安定的に市場に供給することができる。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2011-159983号公報
【文献】国際公開WO2014/148353号
【文献】特開2006-019521号公報
【非特許文献】
【0007】
【文献】日置敬子、服部篤 著、「超急冷粉末を原料とした省Dy型Nd-Fe-B系熱間加工磁石の開発」、素形材 第52巻第8号第19~24頁、一般財団法人素形材センター、2011年8月発行
【文献】L.G. Zhang 他6名、"Thermodynamic assessment of Al-Cu-Dy system"(Al-Cu-Dy系の熱力学的評価)、Journal of Alloys and Compounds、Elsevier社、(オランダ)、第480巻、第403-408頁、2009年7月8日
【発明の概要】
【発明が解決しようとする課題】
【0008】
特許文献1に記載の発明では、基材の表面に付着させる材料として、1種又は複数種の重希土類元素RHと他の1種又は複数種の金属元素Mから成る種々の合金が列挙されている。同文献には、この合金中の重希土類元素RHの質量に対する他の金属元素Mの質量の比(「M/RH比」とする)は、1/100~5/1(1~500%)とすることが望ましく、1/20~2/1(5~200%)とすることがより望ましい、と記載されている。しかし、M/RH比が数%の場合と数百%の場合では、基材の粒界を通して内部の結晶粒の表面近傍に到達する重希土類元素RHの量が全く異なる。さらに、特許文献1には、RH含有物中の金属元素が粒界に拡散することによって、粒界中に存在する、結晶粒よりも希土類元素の含有率が高い希土類リッチ相が溶融し易くなり、重希土類元素RHを粒界に拡散させやすくなると記載されているが、この粒界中の希土類リッチ相の溶融のしやすさは、RH含有物のM/RH比や金属元素Mの種類によって異なる。このように、内部の結晶粒の表面近傍に到達する重希土類元素RHの量は、単にM/RH比の大小だけではなく複雑な要因で定まるため、特許文献1に記載の要件では、他のRH含有物を用いた場合よりも保磁力を増加させることができるとは限らない。
【0009】
一方、特許文献2には、基材の表面に付着させるRH含有物の材料として、RH、Ni及びAlを質量比で約92:4:4で含有するRHNiAl合金を使用することが記載されている。Ni及びAlを用いる理由は、これらの元素には希土類リッチ相の融点を低下させる作用により、粒界拡散処理時に粒界中の希土類リッチ相が融解するため、該粒界を通して重希土類元素RHを基材内に拡散させやすくすることができることにある。しかし、RHNiAl合金が粒界拡散処理に用いるRH含有物に最適な材料であるとは限らず、より適した材料が求められている。
【0010】
本発明が解決しようとする課題は、従来よりも適した材料から成るRH含有物を用いて効率よく粒界拡散処理を行うことができ、それにより確実に、保磁力が高いRFeB系磁石及び該RFeB系磁石を製造する方法を提供することである。
【課題を解決するための手段】
【0011】
上記課題を解決するために成された本発明に係るRFeB系磁石の製造方法は、
1種又は複数種の重希土類元素RHから成る含有重希土類RC H、Cu及びAlから成り、RC H、Cu及びAlを頂点とする三元組成図における8点の座標(RC H at%, Cuat%, Alat%)=(50, 40, 10)、(58, 30, 12)、(58, 20, 22)、(48, 20, 32)、(33, 24, 43)、(17, 50, 33)、(17, 60, 23)及び(33, 58, 9)を頂点とする八角形内又は該八角形の辺上の点で表される組成を有するRHCuAl合金を含有する付着物を準備する付着物準備工程と、
前記付着物を、1種又は2種の軽希土類元素RLから成る含有軽希土類RC L、Fe及びBを含有するRLFeB系焼結磁石体又はRLFeB系熱間塑性加工磁石体から成る基材の表面に付着させる付着物付着工程と、
前記付着物を付着させた前記基材を、該付着物内の含有重希土類RC Hの原子が該基材の粒界を通して該基材内に拡散する所定温度に加熱する加熱工程と
を有することを特徴とする。
【0012】
前記RHCuAl合金は、前記三元組成図における6点の座標(RC H at%, Cuat%, Alat%)=(50, 40, 10)、(50, 32, 18)、(33, 24, 43)、(17, 50, 33)、(17, 60, 23)及び(33, 58, 9)を頂点とする六角形内又は該六角形の辺上の点で表される組成を有することが好ましい。
【0013】
本発明に係るRFeB系磁石の製造方法では、特許文献2に記載のRHNiAl合金におけるNiの代わりにCuを用いたRHCuAl合金を用いる。ここでRHCuAl合金に含まれる含有重希土類RC Hは、1種又は複数種の重希土類元素RH、すなわちTb, Dy及びHoのうちの1種、2種又は3種の元素である。また、特許文献2のRHNiAl合金ではNiの含有率が約4質量%、すなわち約9原子%であるのに対して、このRHCuAl合金では、Cuの含有率は最低でも20原子%である。このような特許文献2のRHNiAl合金との相違を有するRHCuAl合金を含有する付着物(RHCuAl合金含有物)を用いることにより、RLFeB系焼結磁石体又はRLFeB系熱間塑性加工磁石体から成る基材の粒界が溶融し易くなる。これにより、RHCuAl合金に含まれる含有重希土類RC Hの原子をより効率的に結晶粒の表面近傍に到達させることができ、残留磁束密度及び最大エネルギー積の低下を抑えつつ保磁力が高いRFeB系焼結磁石やRFeB系熱間塑性加工磁石を得ることができる。
【0014】
一方、RHCuAl合金中では一般に、RH、Cu及びAlの組成比が異なる複数種のRHCuAl相(RHCuAl、RHCu4Al8、RH 2Cu17Al17、RHCu5Al5、RHCuAl3、RH 4Cu4Al11、RHCu3Al3等)や、Alを含有しないRHCu相、あるいはCuを含有しないRHAl相が混合した状態となる。そして、RHCuAl合金全体におけるRH、Cu及びAlの含有率により、それらの各相のうちのどの相が含まれるかが定まる。RFeB系焼結磁石やRFeB系熱間塑性加工磁石の保磁力を高くするためには、上記の各RHCuAl相のうちRHの組成比が最も高いRHCuAl相(RH、Cu、Alが1:1:1)が含まれていることが望ましい。そこで、RHCuAl相が含まれる合金である、三元組成図において6点の座標(RC H at%, Cuat%, Alat%)=(50, 40, 10)、(50, 32, 18)、(33, 24, 43)、(17, 50, 33)、(17, 60, 23)及び(33, 58, 9)を頂点とする六角形内又は該六角形の辺上の点で表される組成を有するRHCuAl合金(非特許文献2参照)を用いることが望ましい。
【0015】
さらに、本発明者が実験を行ったところ、RH、Cu、Alの三元組成図において前記六角形に接する領域である、座標(RC H at%, Cuat%, Alat%)=(50, 40, 10)、(58, 30, 12)、(58, 20, 22)、(48, 20, 32)、(33, 24, 43)及び(50, 32, 18)を頂点(うち、(50, 40, 10)、(33, 24, 43)及び(50, 32, 18)は前記六角形の頂点と共通)とする第2の六角形内又は該第2の六角形の辺上の点で表される組成を有するRHCuAl合金を用いる場合にも同様の効果を奏することが確認された。従って、これら六角形及び第2の六角形を合わせた領域である前記八角形内又は該八角形の辺上の点で表される組成を有するRHCuAl合金を含有する付着物を用いて粒界拡散処理を行うことにより、残留磁束密度及び最大エネルギー積の低下を抑えつつ保磁力が高いRFeB系焼結磁石やRFeB系熱間塑性加工磁石を得ることができる。
【0016】
また、本発明に係るRFeB系磁石の製造方法により、RFeB系焼結磁石やRFeB系熱間塑性加工磁石の粒界にCuが拡散することで、RHNiAl合金を使用した場合よりもRFeB系磁石の耐食性が向上するという効果も奏する。
【0017】
本発明に係るRFeB系磁石の製造方法により、以下の構成を有するRFeB系磁石が得られる。本発明に係るRFeB系磁石は、1種又は2種の軽希土類元素RLから成る含有軽希土類RC L、1種又は複数種の重希土類元素RHから成る含有重希土類RC H、Fe及びBを含有し、略平行に対向する2つの表面を有するRFeB系焼結磁石又はRFeB系熱間塑性加工磁石であって、
含有重希土類RC Hの含有率が結晶粒の粒内よりも粒界においてより高く、
前記RFeB系磁石内の前記2つの表面から等距離にある面内において、粒界における含有重希土類RC Hの含有率が0.40~1.25質量%、Cuの含有率が3.9~14.0質量%、Alの含有率が0.09~1.00質量%
であることを特徴とする。
【0018】
なお、本発明に係るRFeB系磁石の製造方法のRHCuAl合金におけるRC H、Cu及びAlの含有率は原子百分率で示したが、本発明に係るRFeB系磁石の粒界におけるRC H、Cu及びAlの含有率は実測値に基づいて質量百分率で示した。粒界には、RHCuAl合金に由来するRC H、Cu及びAlの他に、基材の粒界に存在していたRC L、Fe、B等が含まれている。
【0019】
保磁力は、粒界における含有重希土類RC Hの含有率が比較的小さい範囲内では該含有率が大きくなるほど高くなる。しかし、後述の実測値によれば、略平行に対向する2つの表面を有する基材のそれら表面に前記付着物を付着させたうえで粒界拡散処理を行った場合に、RFeB系磁石内の該2つの表面から等距離にある面内において、含有重希土類RC Hの含有率が1.25質量%を超えると、該含有率を大きくしても保磁力が高くならない。従って、粒界における含有重希土類RC Hの含有率が1.25質量%を超えても含有重希土類RC Hが無駄となる。そのため、本発明に係るRFeB系磁石では粒界における含有重希土類RC Hの含有率の上限値を1.25質量%とした。一方、粒界における含有重希土類RC Hの含有率が0.40を下回ると十分な保磁力を得ることができないため、本発明に係るRFeB系磁石では粒界における含有重希土類RC Hの含有率の下限値を0.40質量%とした。粒界におけるCu及びAlの含有率の範囲は、本発明に係るRFeB系磁石の製造方法で規定した範囲内の組成を有するRHCuAl合金を使用して、粒界における含有重希土類RC Hの含有率が0.40~1.25質量%となるように粒界拡散処理を行った場合に、Cu及びAlの粒界における含有率を実測することにより求めた。
【0020】
保磁力をさらに高くする必要があり、且つ残留磁束密度の値がやや低下することが許容される場合には、基材に重希土類元素RHを含有させることがある。本発明に係るRFeB系磁石の製造方法において用いる基材が重希土類元素RHを含有する場合には、それによって製造されるRFeB系磁石では、粒界における含有重希土類RC Hの含有率と共に、結晶粒内においても含有重希土類RC Hの含有率が0ではない値を有する。このように重希土類元素RHを含有し、略平行に対向する2つの表面を有する基材のそれら表面に前記付着物を付着させたうえで粒界拡散処理を行った場合には、RFeB系磁石内の該2つの表面から等距離にある面内において、粒界における含有重希土類RC Hの含有率から結晶粒内における含有重希土類RC Hの含有率を減じた値が、0.40~1.25質量%となる。一方、Cu及びAlは、基材に含有させる量は微量である。そのため、本発明に係る方法で基材に重希土類元素RHを含有させて製造されるRFeB系磁石における前記面内での粒界中のCu及びAlの含有量は、上記と同様にCuでは3.9~14.0質量%、Alでは0.09~1.00質量%となる。
【発明の効果】
【0021】
本発明により、従来よりも適した材料から成るRH含有物を用いて効率よく粒界拡散処理を行うことができ、それにより確実に残留磁束密度及び最大エネルギー積の低下を抑えつつ保磁力が高いRFeB系磁石、及びRFeB系磁石の製造方法が得られる。
【図面の簡単な説明】
【0022】
図1】本発明に係るRFeB系磁石の製造方法において使用するRHCuAl合金の組成を示す三元組成図。
図2】本実施形態のRFeB系磁石の製造方法の工程を示す概略図。
図3】EPMA装置で得られた試料の像に基づいて、組成分析を行う箇所を指定した例を示す図。
図4】本実施例のRFeB系磁石の製造方法で作製したRFeB系磁石につき、保磁力iHcを測定した結果を示すグラフ。
図5】本実施例のRFeB系磁石の製造方法で作製したRFeB系磁石につき、粒界中のTbの含有率を測定した結果を示すグラフ。
図6】本発明に係るRFeB系磁石の製造方法において使用する、他のRHCuAl合金の組成を示す三元組成図。
図7】本実施例及び比較例のRFeB系磁石につき、耐食性試験を行った結果を示すグラフ。
【発明を実施するための形態】
【0023】
図1図7を用いて、本発明に係るRFeB系磁石及びその製造方法の実施形態を説明する。
【0024】
(1) 本発明に係るRFeB系磁石の製造方法の実施形態
(1-1) 基材
本実施形態のRFeB系磁石の製造方法において使用する基材は、1種又は2種の軽希土類元素RL、すなわちNd又は/及びPr、Fe並びにBを含有するRLFeB系焼結磁石体又はRLFeB系熱間塑性加工磁石体から成る。このうちRLFeB系焼結磁石体は、原料のRLFeB系合金粉末を磁界により配向させながらプレス成形を行った後に焼結するプレス法で作製してもよいし、特許文献3に記載のようにRLFeB系合金粉末をプレス成形することなくモールド中で磁界により配向させたうえでそのまま焼結するPLP(Press-less process)法で作製してもよい。保磁力をより高くすることができるという点、及び機械加工をすることなく複雑な形状のRLFeB系焼結磁石体を作製することができるという点で、PLP法の方が好ましい。RLFeB系熱間塑性加工磁石体は、非特許文献1に記載の方法で作製することができる。
【0025】
(1-2) RHCuAl合金
図1に、本実施形態のRFeB系磁石の製造方法において使用するRHCuAl合金の組成を示す。この図は一般に、三元組成図と呼ばれる図であり、図中の1つの点は3種の元素RC H、Cu及びAlの含有率を示している。ここでRC Hは、Tb、Dy及びHoのいずれであってもよい。この図では、RC Hは1種類の元素(すなわちTb、Dy及びHoのうちのいずれか1種)を想定しているが、実際のRHCuAl合金では、Tb、Dy及びHoのうちの2種又は3種の元素の原子が混合していてもよい。
【0026】
RC Hの含有率は、図1中に「RC H」と記載した三角形の頂点が100原子%、該頂点の対辺が0原子%である。例えば図1中で、点3から該対辺に平行な直線を延ばして「RC Hの含有率」と記載した辺と交差するところの数値である「33」が、点3におけるRC Hの含有率が33原子%であることを示している。同様に、点3における、Cuの含有率は24原子%、Alの含有率は43原子%である。
【0027】
図1中の点1~9におけるRC H、Cu及びAlの各原子の含有率は表1の通りである。表1には、原子含有率の他に、RC HがDyである場合及びTbである場合についてそれぞれ質量含有率を併せて示す。
【表1】
【0028】
本実施形態のRFeB系磁石の製造方法では、後述の粒界拡散処理において、図1に太実線で示した、点1~点6を頂点とする第1の六角形(同図中に左上から右下に向かう斜線を付して示したもの)内又は該六角形の辺上の点が示す、RC H、Cu及びAlの各原子の含有率を有するRHCuAl合金を用いることができる。このような含有率を有するRHCuAl合金では、他の相よりもRC Hの組成比が大きい三元系であるRHCuAl相(RC H、Cu、Alの組成比が1:1:1)が存在するため、RFeB系焼結磁石やRFeB系熱間塑性加工磁石の保磁力を高くすることができる。なお、ここで挙げたRHCuAl相が存在する範囲は、非特許文献2に示された573K(300℃)における三元組成図に基づいている。
【0029】
また、本実施形態のRFeB系磁石の製造方法では、後述の粒界拡散処理において、図1に太破線で示した、点1、7、8、9、3、2を頂点とする第2の六角形(同図中に右上から左下に向かう斜線を付して示したもの)内又は該六角形の辺上の点が示す、RC H、Cu及びAlの各原子の含有率を有するRHCuAl合金を用いることもできる。これらの含有率を有するRHCuAl合金は、後述の実験によって、第1の六角形で含有率が示されたRHCuAl合金と同等の作用を奏することが示されたものである。
【0030】
従って、本実施形態のRFeB系磁石の製造方法では、これら第1の六角形と第2の六角形を合わせた、点1、7、8、9、3、4、5、6を頂点とする八角形内又は該八角形の辺上の点が示す、RC H、Cu及びAlの各原子の含有率を有するRHCuAl合金を用いる。
【0031】
(1-3) 付着物(RHCuAl合金含有物)、付着物準備工程
本実施形態のRFeB系磁石の製造方法において使用する付着物は、上記RHCuAl合金を含有している。付着物は、RHCuAl合金の粉末や箔等、RHCuAl合金のみから成るものであってもよいが、以下のようにRHCuAl合金の粉末とそれ以外の物を混合したものであってもよい。RHCuAl合金の粉末と混合する物として、典型的には有機溶剤が挙げられる。有機溶剤を用いることにより、付着物を基材の表面に付着させ易くすることができる。有機溶剤のうち、特にシリコーングリースやシリコーンオイル、あるいはそれらを混合したものから成るシリコーン系の有機溶剤を好適に用いることができる。このようなシリコーン系の有機溶剤を用いることにより、基材への付着物の密着性がより高くなり、粒界拡散処理の際にRC Hの原子を基材の粒界に移動させやすくなるため、RFeB系磁石の保磁力をより一層高めることができる。シリコーングリースとシリコーンオイルを適宜の比で混合することにより、付着物の粘度を調整することができる。
【0032】
(1-4) 粒界拡散処理
以上のように用意した基材及び付着物を用いて、以下のように粒界拡散処理を行う。まず、基材11の表面に付着物12を付着させる(図2(a)、付着物(RHCuAl合金含有物)付着工程)。付着物12は、基材11の表面の全体に付着させてもよいし、該表面の一部にのみ付着させてもよい。例えば、板状の基材11の2つの板面に、シリコーン系の有機溶剤を混合した付着物12を塗布により付着させることができる。この場合、基材11の側面に付着物12は塗布しない。
【0033】
次に、付着物12が塗布された基材11を所定温度に加熱する(図2(b)、加熱工程)。ここで所定温度は、付着物12内の含有重希土類RC Hの原子が基材11の粒界を通して該基材11内に拡散する温度であって、典型的には700~1000℃である。この加熱工程により、付着物12内の含有重希土類RC Hの原子が基材11の粒界を通して該基材11内に拡散し、それにより基材11内の主に結晶粒の表面付近においてRC Hの濃度が高くなる。一方、含有重希土類RC Hの原子は結晶粒内には侵入し難い。そのため、この加熱工程により、含有重希土類RC Hの含有率が結晶粒の粒内よりも粒界においてより高いRFeB系磁石(RFeB系焼結磁石又はRFeB系熱間塑性加工磁石)が得られる。その後、必要に応じて、時効処理(500℃程度の比較的低温で加熱する処理)や基材11の表面に残留した付着物12の残渣を除去するための研削処理、磁石の成形処理を行うことにより、最終製品であるRFeB系磁石が得られる。
【0034】
得られたRFeB系磁石の粒界における含有重希土類RC Hの含有率は、RHCuAl合金における含有重希土類RC Hの含有率及び基材11の含有軽希土類RC Lの種類にも依るが、質量百分率で0.45~1.25質量%となる。また、得られたRFeB系磁石の粒界におけるCuの含有率は3.9~14.0質量%、Alの含有率は0.09~1.00質量%となる。
【0035】
(2) 本発明に係るRFeB系磁石の製造方法の実施例、及び本発明に係るRFeB系磁石の実施形態
次に、本実施形態のRFeB系磁石の製造方法によりRFeB系磁石を作製し、得られたRFeB系磁石の粒界における組成分析を行った実施例を説明すると共に、当該実施例の実験結果に基づいて、本発明に係るRFeB系磁石の実施形態について説明する。
【0036】
実施例1では、基材には、RHを含有せず、Cu及びAlを少量(Cu:0.1質量%、Al:0.2質量%)含有する、厚さ5mmの板状のRLFeB系焼結磁石体を用いた。RHCuAl合金には、RC HがTbであって、Tbの含有率が46.00原子%(74.53質量%)、Cuの含有率が30.00原子%(19.01質量%)、Alの含有率が24.00原子%(6.46質量%)であるものを、ストリップキャスト法により作製した。このRHCuAl合金の各元素の含有量は、図1中に三角印を付した点に対応する。付着物は、このRHCuAl合金を水素解砕法により粉砕した後に水素を除去することにより得られたRHCuAl合金粉末と、シリコーングリースを混合することにより作製した。基材に付着させる付着物の量は基材の質量に対する付着物中のTbの質量が0.2~1.4%の範囲内となるようにし、該付着物の量が異なる複数の実験を行った。付着物は、板状の基材の2つの板面の全体に付着させ、4つの側面には付着させなかった。得られたRFeB系磁石の粒界中の組成分析は、EPMA装置(日本電子株式会社製、JXA-8500F)を用いて行った。この分析では、基材の表面に相当する位置から深さ2.5mm(すなわち、基材の両表面から等距離の位置)において粒界中の位置を無作為に、互いに異なる粒界三重点から1箇所ずつ合計7箇所指定し、Tbの含有率が最大及び最小である2箇所を除いた5箇所における平均値で求めた。図3に、EPMA装置で得られた試料の反射電子像に基づいて、7箇所の粒界三重点中の位置(i)~(vii)を指定した例を示す。
【0037】
得られたRFeB系磁石につき、保磁力iHcを測定した結果を図4に示し、粒界中のTbの含有率を測定した結果を図5に示す。図4より、基材の質量に対する付着物中のTbの質量が0.2~1.2質量%の範囲内では、付着物中のTbの質量が増加するのに伴って保磁力が増加しているのに対して、基材の質量に対する付着物中のTbの質量が1.2質量%を超えると、そのような保磁力の増加が認められない。このように保磁力の増加の効果が認められた、基材の質量に対する付着物中のTbの質量が0.2~1.2質量%の範囲内では、図5に示すように、粒界中のTbの含有率は0.40~1.25質量%である。
【0038】
そこでさらに、表1に示した、図1中の点1~6に対応する6種類の組成を有するTbCuAl合金について、基材の質量に対する付着物中のTbの質量を0.2質量%とした場合と、1.2質量%とした場合でそれぞれ、使用するTbCuAl合金以外は実施例1と同じ条件でRFeB系磁石を作製し、粒界中のTb、Cu及びAlの含有率を測定した。また、表1に示した、図1中の点7~9に対応する3種類の組成を有するTbCuAl合金、並びに図6中の点A~F及び表2に示す6種類の組成を有するTbCuAl合金について、基材の質量に対する付着物中のTbの質量を1.0質量%とした場合でそれぞれ、使用するTbCuAl合金以外は実施例1と同じ条件でRFeB系磁石を作製し、粒界中のTb、Cu及びAlの含有率を測定した(以上、実施例2)。ここで図6中の点A~Fはいずれも、上述の八角形内に存在する。
【表2】
【0039】
実施例2の結果を表3に示す。
【表3】
【0040】
表3より、各試料の粒界におけるTbの含有率は、実施例1の場合とほぼ同じ値となった。また、粒界におけるCuの含有率は3.9~14.0質量%、Alの含有率は0.09~1.00質量%となった。
【0041】
次に、表4に示す組成を有する合金を含有する付着物を用いて、実施例1及び2と同様の方法で比較例1~6のRFeB系焼結磁石を作製した。付着物中の合金は、比較例1~3ではCuの代わりにNi又はCoを含有する合金を用い、比較例4~6ではTbとCu, Ni, Coのうちの1つから成る(Alを含有しない)2元系の合金を用いた。各例の付着物の量は、基材に付着させた付着物中のTbが全ての例で同じ量になるように調整した。こうして作製した実施例1及び2並びに比較例1~6のRFeB系焼結磁石につき、基材の2つの板面からそれぞれ0.15mmずつ研磨した試料を作製し、それらの試料中のTbの量を測定した。ここでこのような研磨を行った理由は、実際のRFeB系焼結磁石の製品においても仕上げ加工として表面の研磨を行うことと、基材の表面付近には基材内に拡散することなく残留した無駄なTbが存在することから、粒界拡散処理の効率を確認するために無駄なTbを除去することにある。各試料中のTbの量を、基材に付着させた付着物中のTbの量に対する比として表4中に示す。なお、表4中の「実施例2-X」(Xは、7~9及びA~Fのうちのいずれか)は、使用したTbCuAl合金の組成を表す、表1及び表2並びに図1及び図6に示した記号である。
【表4】
【0042】
この実験の結果より、比較例1~6よりも実施例1及び2の方が、試料中のTbの量が多く、Tbをより効率よく基材中に拡散させることができることが確認された。
【0043】
次に、実施例1及び比較例1の試料につき、耐食性試験を行った結果を図7に示す。この試験では、試料の質量を測定したうえで、温度120℃、湿度100%、圧力2気圧(飽和水蒸気圧)の高温・高湿条件で試料を400~1000時間維持し、その後の試料の質量を測定することにより、試料の質量の減少率を求めた。質量の減少率の絶対値が小さいほど、耐食性が高いことを意味している。図7より、比較例1では高温・高湿条件に維持する時間が長くなるに従って質量の減少率の絶対値が大きくなるのに対して、実施例1では高温・高湿条件に1000時間維持しても質量の減少率がほぼ0であった。この耐食性試験より、比較例1よりも本実施例1の試料の方が、耐食性が高いことが確認された。これは、実施例において粒界にCuが存在することで、粒界における電位が引き上げられ、希土類リッチ(Ndリッチ)粒界相の溶出及びRFeB(NdFeB)粒子の脱落が抑制されたものと考えられる。
【0044】
次に、本発明に係るRFeB系磁石の製造方法の実施形態として、RHを含有する基材に対してRHCuAl合金を用いて粒界拡散処理を行った結果を示す。本実施形態では、RHとしてTbをそれぞれ0.20質量%、4.40質量%、及び10.0質量%含有し、Cu及びAlを実施例1と同じ量(Cu:0.1質量%、Al:0.2質量%)だけ含有する3種類のRFeB系焼結磁石の基材と、RHCuAl合金としてそれぞれ図6中の点8、B及びFで示される組成を有するTbCuAl合金である付着物を用いた。付着物の量は、基材に対する付着物中のTbの含有率が0.20質量%又は1.00質量%となるように調整した。これら3種類の基材、3種類の付着物の組成、及び2種類の付着物中のTbの含有率を組み合わせた18種類の試料につき、実施例1及び2と同じ条件で粒界中のTb, Cu及びAlの含有率を測定した。また、粒界中のTb等の含有率を測定したところと同じ基材表面からの深さにある結晶粒内のTbの含有率もEPMAにより測定した。結晶粒内でTbの含有率を測定する位置は、互いに異なる結晶粒から1箇所ずつ合計7箇所指定し、Tbの含有率が最大及び最小である2箇所を除いた5箇所における平均値で求めた。図3に、EPMA装置で得られた試料の反射電子像に基づいて、7箇所の結晶粒中の位置(A)~(G)を指定した例を示す。
【表5】
【0045】
表5より、粒界中のTbの含有率は、基材におけるTbの含有率に依存して0.67~11.06質量%という広い範囲に亘るものの、粒界中のTbの含有率と粒内のTbの含有率の差は、基材におけるTbの含有率に関わらず、0.40~1.25質量%の範囲内に収まることがわかる。この範囲は、粒界拡散処理による保磁力向上の効果に過不足無く粒界に供給されるTb(RH)量である。
【符号の説明】
【0046】
11…基材
12…付着物(RHCuAl合金含有物)
図1
図2
図3
図4
図5
図6
図7