IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人 筑波大学の特許一覧

特許7251772磁気特性測定装置および磁気特性測定方法
<>
  • 特許-磁気特性測定装置および磁気特性測定方法 図1
  • 特許-磁気特性測定装置および磁気特性測定方法 図2
  • 特許-磁気特性測定装置および磁気特性測定方法 図3
  • 特許-磁気特性測定装置および磁気特性測定方法 図4
  • 特許-磁気特性測定装置および磁気特性測定方法 図5
  • 特許-磁気特性測定装置および磁気特性測定方法 図6
  • 特許-磁気特性測定装置および磁気特性測定方法 図7
  • 特許-磁気特性測定装置および磁気特性測定方法 図8
  • 特許-磁気特性測定装置および磁気特性測定方法 図9
  • 特許-磁気特性測定装置および磁気特性測定方法 図10
  • 特許-磁気特性測定装置および磁気特性測定方法 図11
  • 特許-磁気特性測定装置および磁気特性測定方法 図12
  • 特許-磁気特性測定装置および磁気特性測定方法 図13
  • 特許-磁気特性測定装置および磁気特性測定方法 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-27
(45)【発行日】2023-04-04
(54)【発明の名称】磁気特性測定装置および磁気特性測定方法
(51)【国際特許分類】
   G01R 33/02 20060101AFI20230328BHJP
   G01R 33/12 20060101ALI20230328BHJP
   G01N 27/72 20060101ALI20230328BHJP
【FI】
G01R33/02 B
G01R33/12
G01N27/72
【請求項の数】 11
(21)【出願番号】P 2019033070
(22)【出願日】2019-02-26
(65)【公開番号】P2020139744
(43)【公開日】2020-09-03
【審査請求日】2022-01-25
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成29年度、国立研究開発法人科学技術振興機構、研究成果展開事業「高速スイッチング電源用パワーインダクタ開発のための高周波磁気測定装置の開発」委託研究、産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】504171134
【氏名又は名称】国立大学法人 筑波大学
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【弁理士】
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100114018
【弁理士】
【氏名又は名称】南山 知広
(74)【代理人】
【氏名又は名称】伊坪 公一
(72)【発明者】
【氏名】柳原 英人
(72)【発明者】
【氏名】磯部 高範
(72)【発明者】
【氏名】喜多 英治
(72)【発明者】
【氏名】吉田 宏一
【審査官】永井 皓喜
(56)【参考文献】
【文献】特開平11-101863(JP,A)
【文献】特開2013-120110(JP,A)
【文献】特開2015-109756(JP,A)
【文献】特開2000-208327(JP,A)
【文献】特開平5-172923(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 33/02
G01N 27/72
(57)【特許請求の範囲】
【請求項1】
測定試料の磁気特性を測定する測定エリア、導電パターンがそれぞれ形成された複数の基板を積層した積層基板、前記導電パターンにより高周波磁界を発生して前記測定エリアに印加する励磁コイル、および、前記測定エリアにおける前記測定試料の磁気特性を検出するピックアップコイルを含む磁気特性測定部と、
前記励磁コイルに対して電力を供給する電源装置を制御すると共に、前記励磁コイルを流れる電流および前記ピックアップコイルの出力電圧に基づいて、前記測定試料の磁気特性を演算する制御演算部と、を備え、
前記励磁コイルとして使用する複数の前記導電パターンは、コンデンサと直列接続されて直列共振回路を構成し、
前記ピックアップコイルは、
前記測定エリアの中心軸に対して第1回転方向となるように接続され、前記積層基板における中央の基板に形成された第1導電パターンと、
前記測定エリアの中心軸に対して前記第1回転方向とは反対の第2回転方向となるように接続され、前記積層基板における一端の基板に形成された第2導電パターンと、
前記測定エリアの中心軸に対して前記第2回転方向となるように接続され、前記積層基板における他端の基板に形成された第3導電パターンと、を含む、
ことを特徴とする磁気特性測定装置。
【請求項2】
前記励磁コイルは、同数の前記導電パターンで構成された第1励磁コイルおよび第2励磁コイルを含み、
前記第1励磁コイルは、前記第1導電パターンと前記第2導電パターンの間に配置され、
前記第2励磁コイルは、前記第1導電パターンと前記第3導電パターンの間に配置される、
ことを特徴とする請求項に記載の磁気特性測定装置。
【請求項3】
測定試料の磁気特性を測定する測定エリア、導電パターンがそれぞれ形成された複数の基板を積層した積層基板、前記導電パターンにより高周波磁界を発生して前記測定エリアに印加する励磁コイル、および、前記測定エリアにおける前記測定試料の磁気特性を検出するピックアップコイルを含む磁気特性測定部と、
前記励磁コイルに対して電力を供給する電源装置を制御すると共に、前記励磁コイルを流れる電流および前記ピックアップコイルの出力電圧に基づいて、前記測定試料の磁気特性を演算する制御演算部と、を備え、
前記励磁コイルとして使用する複数の前記導電パターンは、コンデンサと直列接続されて直列共振回路を構成し、
前記ピックアップコイルは、
前記測定エリアの中心軸に対して第1回転方向となるように接続され、前記積層基板の隣接する2つの基板に形成された第4および第5導電パターンと、
前記測定エリアの中心軸に対して前記第1回転方向とは反対の第2回転方向となるように接続され、前記隣接する2つの基板と前記積層基板の一端の基板の間の基板に形成された第6導電パターンと、
前記測定エリアの中心軸に対して前記第2回転方向となるように接続され、前記隣接する2つの基板と前記積層基板の他端の基板の間の基板に形成された第7導電パターンと、を含む、
ことを特徴とする磁気特性測定装置。
【請求項4】
前記隣接する2つの基板と前記第6導電パターンが形成された基板との間の基板数は、前記隣接する2つの基板と前記第7導電パターンが形成された基板との間の基板数に等しい、
ことを特徴とする請求項に記載の磁気特性測定装置。
【請求項5】
前記第4および第5導電パターン、並びに、前記第6および第7導電パターンは、前記励磁コイルにより発生した高周波磁界が安定して印加される前記積層基板の中央近傍の基板に形成される、
ことを特徴とする請求項に記載の磁気特性測定装置。
【請求項6】
前記コンデンサは、前記積層基板を貫く導電ホールを介して前記積層基板の両面の少なくとも一方に設けられている、
ことを特徴とする請求項1乃至請求項5のいずれか1項に記載の磁気特性測定装置。
【請求項7】
前記コンデンサの値は、前記測定試料の磁気特性を測定する周波数に基づいて規定される、
ことを特徴とする請求項に記載の磁気特性測定装置。
【請求項8】
前記ピックアップコイルおよび前記励磁コイルは、前記積層基板のそれぞれの基板に形成された実質的に同じ形状の導電パターンにより形成され、
前記ピックアップコイルは、前記励磁コイルとして使用しない基板の導電パターンにより形成される、
ことを特徴とする請求項乃至請求項のいずれか1項に記載の磁気特性測定装置。
【請求項9】
前記ピックアップコイルおよび前記励磁コイルは、異なる形状の導電パターンにより形成され、
前記ピックアップコイルは、前記励磁コイルとして使用する導電パターンの内側に形成された導電パターンにより形成される、
ことを特徴とする請求項乃至請求項のいずれか1項に記載の磁気特性測定装置。
【請求項10】
積層基板のそれぞれの基板による複数の導電パターンにより励磁コイルを構成し、前記励磁コイルとして使用する複数の前記導電パターンをコンデンサと直列接続して直列共振回路を構成し、高周波磁界を発生して測定試料の磁気特性を測定する測定エリアに印加し、
前記高周波磁界が印加された前記測定エリアにおいて、ピックアップコイルにより前記測定試料の磁気特性を検出する磁気特性測定方法であって、
前記コンデンサの値を、前記測定試料の磁気特性を測定する周波数に基づいて規定し、
前記測定試料を、前記ピックアップコイルの所定位置に配置し、
前記直列共振回路を流れる電流と、前記ピックアップコイルの出力電圧に基づいて、前記測定試料の磁気特性を測定し、
前記ピックアップコイルは、
前記測定エリアの中心軸に対して第1回転方向となるように接続され、前記積層基板における中央の基板に形成された第1導電パターンと、
前記測定エリアの中心軸に対して前記第1回転方向とは反対の第2回転方向となるように接続され、前記積層基板における一端の基板に形成された第2導電パターンと、
前記測定エリアの中心軸に対して前記第2回転方向となるように接続され、前記積層基板における他端の基板に形成された第3導電パターンと、を含み、
前記励磁コイルは、同数の前記導電パターンで構成された第1励磁コイルおよび第2励磁コイルを含み、
前記第1励磁コイルは、前記第1導電パターンと前記第2導電パターンの間に配置され、
前記第2励磁コイルは、前記第1導電パターンと前記第3導電パターンの間に配置される、
ことを特徴とする磁気特性測定方法。
【請求項11】
積層基板のそれぞれの基板による複数の導電パターンにより励磁コイルを構成し、前記励磁コイルとして使用する複数の前記導電パターンをコンデンサと直列接続して直列共振回路を構成し、高周波磁界を発生して測定試料の磁気特性を測定する測定エリアに印加し、
前記高周波磁界が印加された前記測定エリアにおいて、ピックアップコイルにより前記測定試料の磁気特性を検出する磁気特性測定方法であって、
前記コンデンサの値を、前記測定試料の磁気特性を測定する周波数に基づいて規定し、
前記測定試料を、前記ピックアップコイルの所定位置に配置し、
前記直列共振回路を流れる電流と、前記ピックアップコイルの出力電圧に基づいて、前記測定試料の磁気特性を測定し、
前記ピックアップコイルは、
前記測定エリアの中心軸に対して第1回転方向となるように接続され、前記積層基板の隣接する2つの基板に形成された第4および第5導電パターンと、
前記測定エリアの中心軸に対して前記第1回転方向とは反対の第2回転方向となるように接続され、前記隣接する2つの基板と前記積層基板の一端の基板の間の基板に形成された第6導電パターンと、
前記測定エリアの中心軸に対して前記第2回転方向となるように接続され、前記隣接する2つの基板と前記積層基板の他端の基板の間の基板に形成された第7導電パターンと、を含み、
前記隣接する2つの基板と前記第6導電パターンが形成された基板との間の基板数は、前記隣接する2つの基板と前記第7導電パターンが形成された基板との間の基板数に等しく、
前記第4および第5導電パターン、並びに、前記第6および第7導電パターンは、前記励磁コイルにより発生した高周波磁界が安定して印加される前記積層基板の中央近傍の基板に形成される、
ことを特徴とする磁気特性測定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気特性測定装置および磁気特性測定方法に関する。
【背景技術】
【0002】
近年、SiC(シリコンカーバイド)やGaN(ガリウムナイトライド)等の次世代半導体デバイスが注目されている。例えば、パワーエレクトロニクス分野において、次世代半導体デバイス(次世代パワー半導体)を適用すると、スイッチング速度の高速化が可能となり、それに伴って、インダクタやコンデンサ等の受動素子を小型化することができる。このようなデバイスの小型化は、パワー密度の上昇に直結するため、例えば、最適な受動素子の設計には、損失の正確な評価が不可欠となる。
【0003】
例えば、インダクタにおける損失評価としては、スタインメッツ式やロスマップ法といった手法が用いられる。これらの手法では、例えば、異なる周波数ごとに磁場の直流バイアス成分や磁束密度のリプル成分をパラメータとして損失(マイナーループ)を計算する。
【0004】
そのため、例えば、上述した次世代の半導体デバイスを適用した動作周波数における磁化曲線の正確な測定方法の確立が求められている。すなわち、例えば、新たな磁性材料を開発する場合、例えば、数MHzやそれ以上の動作周波数における磁性材料(測定試料)の磁気特性(磁化特性)を正確に求めることが必要となる。
【0005】
ところで、従来、測定試料の磁気特性を測定する磁気特性測定技術としては、様々な提案がなされている。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2018-173331号公報
【文献】特開2000-208327号公報
【非特許文献】
【0007】
【文献】Y. Han, et al., "Evaluation of Magnetic Materials for Very High Frequency Power Applications," IEEE Power Electronics Specialists Conference, pp.4270-4276, June 2008
【発明の概要】
【発明が解決しようとする課題】
【0008】
前述したように、測定試料の磁気特性を測定するものとしては、様々な手法が提案されているが、例えば、パワーエレクトロニクス分野において、高機能なトランス材料やインダクタ材料を評価する場合、一般的に、BHループトレーサが使用されている。
【0009】
図1は、BHループトレーサの一例を説明するための図である。図1において、参照符号5はリング状に形成された測定試料、61は測定試料5の一方の側に巻回された一次巻線、そして、62は測定試料5の他方の側に巻回された二次巻線を示す。
【0010】
図1に示されるように、BHループトレーサでは、例えば、リング状に形成された測定試料5の一次巻線61に電流i(t)を流し、その時に二次巻線62を流れる電流eを測定し、磁界H(t)および磁束密度B(t)を求める。なお、図1におけるe,H(t)およびB(t)を求める式において、φ(t)は磁束、N1は一次巻線61の巻数(ターン数)、N2は二次巻線62のターン数、そして、Sは巻線61,62が巻回される測定試料5の断面積を示す。
【0011】
このように、BHループトレーサを使用して測定試料(例えば、新たに開発した磁性材料)の磁気特性を測定する場合、磁気回路を組めるように測定試料5の形状を、予めリング状や井桁状となるように加工し、さらに、加工した測定試料5に対して、一次巻線61および二次巻線62を巻回する作業が必要となる。
【0012】
従って、例えば、測定試料5の磁気特性を測定して評価するためには、その測定試料をリング形状や井桁形状に加工するための所定量が必要となり、材料によっては加工が困難なこともある。また、例えば、リング状に加工した測定試料5に対して、巻線61,62を巻回するのは作業が面倒であり、新たに磁性材料を開発して評価する上での大きな阻害要因となっている。さらに、測定試料(磁性材料)5を高い周波数(例えば、数MHz以上)で高磁場(大きな振幅の磁場)を印加して(高周波・高磁場で)測定するのは困難なため、磁気特性を測定するための磁気回路の限界となっている。
【0013】
なお、本発明に係る磁気特性測定装置および磁気特性測定方法の適用は、例えば、パワーエレクトロニクス用に開発した磁性材料の磁気特性を測定する場合に、少量の試料(測定試料)で短時間に磁気特性を測定することが可能であるが、広く一般的な物質の磁気特性を測定可能なのはいうまでもない。
【0014】
本発明は、上述した課題にかんがみ、磁性材料の磁気特性を高周波・高磁場で測定することができる磁気特性測定装置および磁気特性測定方法の提供を目的とする。さらに、本発明は、少量の測定試料で短時間に磁気特性を測定することができる磁気特性測定装置および磁気特性測定方法の提供も目的とする。
【課題を解決するための手段】
【0015】
第1実施形態によれば、測定試料の磁気特性を測定する測定エリア、導電パターンがそれぞれ形成された複数の基板を積層した積層基板、前記導電パターンにより高周波磁界を発生して前記測定エリアに印加する励磁コイル、および、前記測定エリアにおける前記測定試料の磁気特性を検出するピックアップコイルを含む磁気特性測定部と、前記励磁コイルに対して電力を供給する電源装置を制御すると共に、前記励磁コイルを流れる電流および前記ピックアップコイルの出力電圧に基づいて、前記測定試料の磁気特性を演算する制御演算部と、を備え、前記励磁コイルとして使用する複数の前記導電パターンは、コンデンサと直列接続されて直列共振回路を構成する磁気特性測定装置が提供される。
【0016】
第2実施形態によれば、積層基板のそれぞれの基板による複数の導電パターンにより励磁コイルを構成し、前記励磁コイルとして使用する複数の前記導電パターンをコンデンサと直列接続して直列共振回路を構成し、高周波磁界を発生して測定試料の磁気特性を測定する測定エリアに印加し、前記高周波磁界が印加された前記測定エリアにおいて、ピックアップコイルにより前記測定試料の磁気特性を検出する磁気特性測定方法であって、前記コンデンサの値を、前記測定試料の磁気特性を測定する周波数に基づいて規定し、前記測定試料を、前記ピックアップコイルの所定位置に配置し、前記直列共振回路を流れる電流と、前記ピックアップコイルの出力電圧に基づいて、前記測定試料の磁気特性を測定する磁気特性測定方法が提供される。
【発明の効果】
【0017】
本実施形態の磁気特性測定装置および磁気特性測定方法によれば、磁性材料の磁気特性を高周波・高磁場で測定することができるという格別の効果を奏する。さらに、本実施形態の磁気特性測定装置および磁気特性測定方法によれば、少量の測定試料で短時間に磁気特性を測定することができるという効果も奏する。
【図面の簡単な説明】
【0018】
図1図1は、BHループトレーサの一例を説明するための図である。
図2図2は、本発明に係る一実施例の磁気特性測定装置を模式的に示す図である。
図3図3は、図2に示す磁気特性測定部における励磁コイルを説明するための回路図である。
図4図4は、図3に示す励磁コイルの一例を模式的に示す図である。
図5図5は、図4に示す励磁コイルの一部におけるコンデンサの配置を説明するための図である。
図6図6は、図2に示す磁気特性測定部における励磁コイルおよびピックアップコイルの一例を説明するための図である。
図7図7は、図2に示す磁気特性測定部における励磁コイルおよびピックアップコイルの他の例を説明するための図である。
図8図8は、ピックアップコイルおよび励磁コイルの導電パターンの例を説明するための図である。
図9図9は、図2に示す制御演算部の動作の一例を説明するための機能ブロック図である。
図10図10は、保磁力と飽和磁化の関係を説明するための図である。
図11図11は、実験を行った励磁コイルの一例を説明するための図である。
図12図12は、図11に示す励磁コイルを電源装置と共に示す等価回路図である。
図13図13は、図11に示す励磁コイルによる測定結果を示す図(その1)である。
図14図14は、図11に示す励磁コイルによる測定結果を示す図(その2)である。
【発明を実施するための形態】
【0019】
以下、本発明に係る磁気特性測定装置および磁気特性測定方法の実施例を、添付図面を参照して詳述する。図2は、本発明に係る一実施例の磁気特性測定装置を模式的に示す図である。図2に示す磁気特性測定装置は、例えば、パワーエレクトロニクス用の磁性材料(測定試料)の磁気特性を測定するのに好適なものであるが、測定試料は、特に限定されるものではない。
【0020】
図2に示されるように、本実施例の磁気特性測定装置は、電源装置1、磁気特性測定部2、制御演算部3、電圧計41、電流計42、および、デジタルオシロスコープ43を備える。電源装置1は、例えば、1~50MHzのインバータ電源を適用することができ、出力する周波数や電力等は、制御演算部3により制御される。
【0021】
制御演算部3は、例えば、所定のプログラムが動作するコンピュータにより構成され、コンピュータ本体31、ディスプレイ32、キーボード33およびマウス34等を備える。制御演算部(コンピュータ)3は、ピックアップコイル23による電圧を検出する電圧計41の出力、および、励磁コイル24を流れる電流を検出する電流計42の出力を、デジタルオシロスコープ43を介して受け取り、測定試料50の磁気特性を求める。なお、励磁コイル24は、図11図14を参照して詳述するように、例えば、極小ソレノイドとして構成することにより、測定試料5を高周波・高磁場で測定することが可能となり、さらに、少量の測定試料で短時間に磁気特性を測定することができる。
【0022】
磁気特性測定部2は、それぞれに導電パターンが形成された複数の基板(プリント基板)2a,2b,2c,…を積層した多層基板(積層基板、多相プリント回路板)であり、例えば、100層、或いは、それ以上の層を積層して構成することができる。磁気特性測定部2には、測定試料50の磁気特性を測定するための測定エリア20が設けられている。なお、後に詳述するが、測定試料50は、例えば、測定エリア20のほぼ中央の位置(励磁コイル24による磁界(磁場)が安定している領域)に配置され、ピックアップコイル23による検出が行われる。
【0023】
すなわち、制御演算部3は、電流計42による励磁コイル24を流れる電流に基いて、励磁コイル24(共振回路)による共振周波数、測定エリア20に印加される磁界等を演算(検出)すると共に、ピックアップコイル23の出力電圧(誘導起電力)に基いて、印加磁界により測定試料50の誘導起電力および保磁力等を検出し、測定試料50の磁化M,保磁力Hcおよび飽和磁化Msといった磁気特性を算出する。
【0024】
ここで、磁気特性測定部2に設けられた測定エリア20は、例えば、直径および深さ(高さ)が数mm程度の円筒形状とすることができ、測定に使用する磁性材料(測定試料50)は、例えば、図1を参照して説明したものに対して、極めて少量でよい。また、この測定試料50は、例えば、粒状やブロック状といった任意の形状とすることができ、測定に要する手間や時間を大幅に低減することが可能である。
【0025】
さらに、後に、図11図14を参照して説明する実験例のように、本実施例の磁気特性測定装置は、高い周波数(共振周波数:例えば、数MHz~数十MHz)で強い磁場(最大磁束密度:例えば、数テスラ(T))を印加した状態において、測定試料50の磁気特性を測定することができるため、例えば、次世代の半導体デバイスを適用した動作周波数における新たな磁性材料の磁気特性の測定に対応することが可能となる。
【0026】
ここで、励磁コイル24は、直列共振回路(直列LC共振回路)として構成され、例えば、積層基板とされた磁気特性測定部2の中空の測定エリア20に対して、安定した周波数(共振周波数)の磁場(磁界)を発生させるためのものである。また、ピックアップコイル23は、励磁コイル24による磁場中における測定試料50の磁気特性を測定するためのものであり、その詳細は、後に詳述する。
【0027】
なお、本実施例の磁気特性測定装置により測定(演算)される測定試料50の磁気特性としては、例えば、測定試料の磁化(M)、保磁力(Hc)および飽和磁化(Ms)等であるが、他の磁気特性を求めるように構成することができるのはいうまでもない。
【0028】
図3は、図2に示す磁気特性測定部における励磁コイルを説明するための回路図であり、図4は、図3に示す励磁コイルの一例を模式的に示す図である。図5は、図4に示す励磁コイルの一部におけるコンデンサの配置を説明するための図であり、磁気特性測定部2を上方から見た平面図である。
【0029】
図3に示されるように、励磁コイル24は、複数層分のコイル21(21a,21b,…)およびコンデンサ22(22a,22b,…)を直列接続した直列LC共振回路として構成される。すなわち、一層目のプリント基板2aにおけるコイル21aおよびコンデンサ22a、二層目のプリント基板2bにおけるコイル21bおよびコンデンサ22b、…、k層目のプリント基板2kにおけるコイル21kおよびコンデンサ22k、…により、LC直列共振回路が構成される。
【0030】
磁気特性測定部2を構成する複数のプリント基板2a,2b,2c,…のそれぞれのプリント基板(例えば、k層目のプリント基板2k)には、導電パターンによるコイル21kおよびコンデンサ22kを形成し、それらコイル21kおよびコンデンサ22kを直列接続して一層分のプリント基板による共振回路を形成し、その各層による共振回路を直列接続して、励磁コイル24を構成する。
【0031】
ここで、コンデンサ22kは、それぞれのプリント基板2kにおいて、或いは、隣接するプリント基板2k+1の導電パターンも利用して各プリント基板2kに形成してもよいが、正確な容量値のコンデンサを使用するために、例えば、積層基板を貫く導電ホール(貫通ビア26)を介して積層基板の一方または両面に設けることもできる。
【0032】
図4および図5に示されるように、励磁コイル24は、磁気特性測定部(積層基板)2に設けられた測定エリア20を囲む複数の導電パターン(コイル)21kと、そのコイル21kに対応するコンデンサ22kを、貫通ビア26により複数直列接続して構成されている。すなわち、励磁コイル24は、積層基板もそれぞれの基板の導電パターン(21)およびコンデンサ(22)を直列接続した直列共振回路による共振周波数の高周波磁界を発生して測定エリア20に印加する。
【0033】
なお、例えば、k層における導電パターン21kは、1巻(ターン)分のコイルとして形成されているが、例えば、2巻分、或いは、複数巻分のコイルとして形成してもよい。また、k層のコンデンサ22kは、例えば、貫通ビア26を介して、積層基板の一方の面、すなわち、磁気特性測定部2の上面に設けられているが、積層基板の両面(上面および下面)に設けることもできる。
【0034】
また、図5に示されるように、各層のコイル21k,21k+1,21k+2,…に対応するコンデンサ22k,22k+1,22k+2,…は、測定エリア20の中心軸CPから等距離となる円周状に設けられている。これは、コンデンサ22として、例えば、正確な容量値を有するチップコンデンサを適用する場合に好適なものである。
【0035】
さらに、例えば、磁気特性測定部2を構成する基板の数が非常に多い(例えば、百層を超える)場合には、一層の導電パターン(コイル)ごとにコンデンサを設けると、積層基板の両面を使用しても、多数のコンデンサを配置するのが難しくなる。このような場合には、一層のコイルごとにコンデンサを設けるのではなく、複数層のコイル(例えば、三層または五層のコイル)に対して1つのコンデンサを設けるようにしてもよい。
【0036】
図6は、図2に示す磁気特性測定部における励磁コイルおよびピックアップコイルの一例を説明するための図である。なお、図6において、励磁コイル24(24α,24β)は、それぞれの基板に形成された導電パターン21によるコイルのみを示し、コンデンサ22は省略されている。
【0037】
図6に示されるように、ピックアップコイル23は、測定試料50の磁気特性を測定するためのもので、例えば、磁気特性測定部(積層基板)2における中央の基板に形成された導電パターン(第1導電パターン)による中央部コイル23γ、最上部の基板(2a)に形成された導電パターン(第2導電パターン)による最上部コイル23α、および、最下部の基板に形成された導電パターン(第3導電パターン)による最下部コイル23βを備える。
【0038】
ここで、中央部コイル23γは、測定エリア20において、測定試料50を配置する試料配置部25に対応する位置の基板(中央の基板)に形成された導電パターンが使用される。また、最上部コイル23αおよび最下部コイル23βは、測定エリア20の中心軸CPに対して第1回転方向(例えば、反時計回り方向)となるように接続され、中央部コイル23γは、測定エリア20の中心軸CPに対して第1回転方向とは反対の第2回転方向(例えば、時計回り方向)となるように接続される。
【0039】
なお、測定試料50は、例えば、粉体として測定エリア20内を移動可能な形状(測定エリア20の内径よりも少し小さい内径の円筒状または球状)の測定容器内に入れて測定し、或いは、測定エリア20よりも小さい形状の個体の測定試料50を測定用冶具に取り付け、知られている様々な位置決めの手法を適用して、測定試料50を試料配置部25に対応した位置に配置することができる。
【0040】
励磁コイル24は、同数の導電パターンで構成された第1励磁コイル24αおよび第2励磁コイル24βを含む。第1励磁コイル24αは、中央部コイル23γ(第1導電パターン)と最上部コイル23α(第2導電パターン)の間に配置され、第2励磁コイル24βは、中央部コイル23γと最下部コイル23β(第3導電パターン)の間に配置されている。ここで、有限ソレノイド(励磁コイル24:第1励磁コイル24αおよび第2励磁コイル24β)の面端(最上部コイル23αおよび最下部コイル23β)における磁場は等しい。
【0041】
これにより、図6に示すピックアップコイル23は、励磁コイル24の磁界により、最上部コイル23αと最下部コイル23βで生じる誘導起電力(電圧)の和が、中央部コイル23γにより生じる誘電起電力により相殺され、試料配置部25の測定試料50による影響のみが中央部コイル23γにより検出されることになる。この場合、ピックアップコイル23は、励磁コイル24(ソレノイド)の中央の中央部コイル23γと、両端の最上部コイル23αおよび最下部コイル23βで構成することができるため、ソレノイドの長さ(図6における励磁コイル24(24α,24β)の高さ)を短縮することが可能となる。
【0042】
図7は、図2に示す磁気特性測定部における励磁コイルおよびピックアップコイルの他の例を説明するための図である。図7に示されるように、ピックアップコイル23’は、測定エリア20において、励磁コイル24により発生した高周波磁界が安定して印加される積層基板2の中央近傍の基板に形成されるコイル(第4~第7導電パターン)を含む。
【0043】
ここで、第4導電パターン23γ1'および第5導電パターン23γ2'は、測定エリア20の中心軸CPに対して第1回転方向(例えば、反時計回り方向)となるように接続され、積層基板2の隣接する2つの基板に形成される。また、第6導電パターン23α'および第7導電パターン23β'は、測定エリア20の中心軸CPに対して第1回転方向とは反対の第2回転方向(例えば、時計回り方向)となるように接続される。
【0044】
第6導電パターン23α'は、隣接する2つの基板(23γ1',23γ2')と積層基板(2)の一端の基板(最上部の基板)の間の基板に形成され、第7導電パターン23β'は、隣接する2つの基板と積層基板(2)の他端の基板(最下部の基板)の間の基板に形成される。なお、隣接する2つの基板と第6導電パターン23α'が形成された基板との間の基板数(コイル数:距離)は、隣接する2つの基板と第7導電パターン23β'が形成された基板との間の基板数と等しくなっている。また、第4および第5導電パターン(2巻分のコイル)23γ1',23γ2'は、測定試料50を配置する試料配置部25に対応する位置における隣接する2つの基板に形成される。
【0045】
これにより、図7に示すピックアップコイル23'は、励磁コイル24の磁界により、第6および第7導電パターン23α',23β'で生じる誘導起電力の和が、第4および第5導電パターン23γ1',23γ2'により生じる誘電起電力により相殺され、試料配置部25の測定試料50による影響のみが第4および第5導電パターン23γ1',23γ2'により検出されることになる。
【0046】
この場合、前述したように、第4~第7導電パターン23γ1',23γ2',23α',23β'は、すべて励磁コイル24により発生する磁界が安定している領域に配置されるのが好ましい。さらに、第4および第5導電パターン23γ1',23γ2'のみが測定試料50(試料配置部25)に位置し、第6および第7導電パターン23α',23β'は、試料配置部25から離れて測定試料50による磁界変化の影響を受けない位置に配置されるのが好ましい。なお、本実施例の磁気特性測定装置に適用するピックアップコイルは、上述した図6および図7に示すピックアップコイル23,23'に限定されないのはもちろんである。
【0047】
図8は、ピックアップコイルおよび励磁コイルの導電パターンの例を説明するための図である。ここで、図8(a)は、積層基板(磁気特性測定部)2のすべての基板(プリント基板)2nに対して、同一の導電パターン21nを形成し、例えば、図6に示すピックアップコイル23における最上部コイル23αとして使用する最上部の基板(2a)に形成された導電パターン(第3導電パターン)等は、励磁コイル24を構成するコイルとしては使用しない場合を示す。
【0048】
すなわち、図8(a)は、励磁コイル24を構成するコイル21として使用する導電パターンと、ピックアップコイル23におけるコイル23α,23β,23γ、および、ピックアップコイル23'におけるコイル23α',23β',23γ1',23γ2'として使用する導電パターンを同じ形状とし、ピックアップコイル23,23’は、励磁コイル24として使用しない基板の導電パターンにより形成する例を示す。
【0049】
また、図8(b)は、積層基板2を構成するすべての基板2nに対して、励磁コイル24として使用する導電パターン21n(21)を形成し、さらに、図6に示すピックアップコイル23における最上部コイル23αとして使用する最上部の基板(2a)に対しては、導電パターン21nの内側に、ピックアップコイル23用の導電パターン27を形成する場合を示す。
【0050】
すなわち、図8(b)において、励磁コイル24は、積層基板2のすべての基板21nに形成された導電パターン21n(21)により構成され、ピックアップコイル23におけるコイル23α,23β,23γ、および、ピックアップコイル23'におけるコイル23α',23β',23γ1',23γ2'は、励磁コイル24に使用する導電パターン21nの内側に形成された導電パターン27により構成される例を示す。
【0051】
ここで、ピックアップコイル23に使用する導電パターン27は、励磁コイル24に使用する導電パターン21とは異なり、大きな電流が流れない(大電力を扱わない)ため、その導電パターン27の耐圧(例えば、金属パターンの幅や厚さ)は大きくしなくてもよい。
【0052】
図9は、図2に示す制御演算部の動作の一例を説明するための機能ブロック図である。図9に示されるように、制御演算部3は、コンピュータにより構成することができ、電源装置1の出力電圧および周波数等を制御する電源装置の制御機能311、励磁コイル24を流れる電流を検出する電流計42の出力を、デジタルオシロスコープ43を介して受け取り、励磁コイル24にり発生される磁界の共振周波数を検出する共振周波数の検出機能312、および、測定エリア20に印加される印加磁界お演算する印加磁界の演算機能314を有する。
【0053】
さらに、制御演算部3は、ピックアップコイル23(23')による電圧(誘導起電力)を検出する電圧計41の出力を、デジタルオシロスコープ43を介して受け取り、測定試料50による誘導起電力を検出する印加磁界の誘導起電力検出機能313を有する。
【0054】
また、制御演算部3は、電流計42による励磁コイル24を流れる電流およびピックアップコイル23の出力電圧に基いて、測定試料50の磁化(M)を演算する磁化の演算機能315、測定試料50の保磁力(Hc)を検出する保磁力検出機能316、並びに、測定試料50の飽和磁化(Ms)を検出する飽和磁化の検出機能317を有する。さらに、制御演算部3は、測定試料50の他の様々な磁気特性等のその他の機能318も有する。
【0055】
なお、前述したように、制御演算部3(コンピュータ)は、コンピュータ本体31の他に、例えば、データや指示を入力するためのキーボード33およびマウス34、並びに、演算された出力データ(例えば、図10に示すようなヒステリシス曲線)等を表示するディスプレイ32を備えるが、知られている様々な変形および変更を適用することができるのはいうまでもない。
【0056】
図10は、保磁力と飽和磁化の関係を説明するための図である。上述したように、例えば、本実施例の磁気特性測定装置により、測定試料(磁性材料)50の磁化M、保磁力Hcおよび飽和磁化Msといった磁気特性を測定することができ、これらの測定結果により、例えば、図10に示されるような、保磁力と飽和磁化の関係を示すヒステリシス曲線を得ることができる。
【0057】
ここで、本実施例の磁気特性測定装置は、例えば、以下に説明する励磁コイルの作製および実験例のように、例えば、数MHz~数十MHzといった高い周波数(共振周波数)、並びに、数Tといった強い磁場において、測定試料(磁性材料)の磁気特性を測定することができ、その結果、次世代の半導体デバイスを適用した動作周波数における新たな磁性材料の磁気特性の測定に対応することも可能となる。
【0058】
次に、図11図14を参照して、励磁コイル(励磁用ソレノイドコイル)の作製、および、その実験結果を説明する。図11は、実験を行った励磁コイルの一例を説明するための図であり、図12は、図11に示す励磁コイルを電源装置と共に示す等価回路図である。
【0059】
ここで、図11(a)は、磁気特性測定部(積層基板)2を上方から見た平面図であり、前述した図5に相当し、図11(b)は、16層の積層基板2におけるそれぞれの基板に形成した導電パターン21を模式的に示す図であり、前述した図4において、コンデンサ22および貫通ビア26等を省略したものに相当する。また、図11(c)は、前述した図3に相当するもので、16層の積層基板による励磁コイル24を説明するための回路図である。なお、図12において、インバータ電源1は、それぞれ2つの電圧Vinの電圧源、容量Ccdのコンデンサ、および、スイッチSWにより、例えば、周波数が5MHz程度の矩形波電圧を発生し、励磁コイル24に印加するようになっている。
【0060】
まず、作製および実験を行った励磁コイル24は、16層の基板(プリント基板)を積層した積層基板に対して、内径が2mmで長さ(深さ)が2mmの測定エリア20を形成した。なお、励磁コイル24の仕様としては、インダクタンスを0.45μH(1ターンにつき0.028μH)、キャパシタンスを2.25nF(1ターンにつき36nF)、そして、共振周波数を5MHz付近とした。
【0061】
また、電源装置1は、容易に入手可能なインバータ電源を用いることとし、そのため励磁コイル24のLC共振回路の共振周波数は5MHz付近となるように市販のコンデンサを選定するようにして設計した。ここで、コンデンサ22としては、静電容量の電圧依存性の小さい積層セラミックコンデンサを用いた。
【0062】
ここで、仮に、励磁コイル24に2Tの磁場を発生させる場合、280A(max)を流す必要があり、このとき励磁コイル24の両端には7kVもの電圧がかかることになる。そこで、図11(a)~図11(c)に示されるように、16層プリント基板を用いて1ターンのコイル(導電パターン21)ごとに円周状に配置した1つのコンデンサ22を実装し、16段のLC直列共振回路として設計した。この際、測定には数μs程度の動作で十分なので、励磁コイル24の発熱は問題にならず、また、インバータ電源1も定常の定格を大きく超える電流で使用することが可能である。
【0063】
すなわち、図12に示されるように、インバータ電源1および励磁コイル24において、励磁コイル24は、Lcoil=0.45μH,Ccoil=2.25nFとされ、励磁コイル24は、インバータ電源(ハーフブリッジインバータ)1に接続されて、矩形波電圧が印加されることで正弦波状の電流が発生する。なお、Rcoilは、励磁コイル24のインピーダンスを示し、icoilは、励磁コイル24を流れる電流(電流計42により検出される電流に相当)、そして、vcoilは、励磁コイル24の両端の電圧を示す。
【0064】
図13および図14は、図11に示す励磁コイルによる測定結果を示す図である。ここで、図13(a)および図13(b)は、励磁コイル24単体をLCRメータに接続して測定したもので、図13(a)は、励磁コイル24の周波数とインピーダンスの測定結果を示し、図13(b)は、励磁コイル24の周波数と交流抵抗の測定結果を示す。図14(a)は、図12に示すインバータ電源1のVin=40[V]としたとき、励磁コイル24に流れる電流値の測定結果を示す。図14(b)は、励磁コイル24における1ターンごとに印加される電圧を測定した結果を示す図である。
【0065】
図13(a)に示されるように、励磁コイル24の共振周波数は、設計値の5MHz付近(fR=4.7MHz)であり、その時のインピーダンスは1.39Ωであった。共振周波数時のインピーダンスから、2Tの磁場を発生させるには400V程度の電源電圧が必要であることがわかる。
【0066】
図14(a)に示されるように、共振が立ち上がるまでの時間は約2μsであることがわかる。この結果は、実測値を用いた実測値シミュレーションの結果とよく一致し、共振が立ち上がった後、電流が安定してから50回程度磁場を振って測定試料50の磁気特性を測定するのに、全体として10μs程度の時間で済むことになる。
【0067】
すなわち、測定試料50の磁気特性を測定する場合、励磁コイル24に対して電流を流す時間を10μs程度といった短時間とすることができるため、励磁コイル24の破損(例えば、プリント基板に形成した導電パターンの溶融や焼断等)を防止することができる。また、今回の実験において、励磁コイル24には最大32A(max)の電流を流すことができ、これは0.23Tの磁場に相当するが、励磁後に、励磁コイル24の断線等の劣化は認められなかったことから、より大きな電流が通電可能であると考えられる。
【0068】
さらに、図14(b)に示されるように、励磁コイル24を貫く磁束は、コイルに印加される電圧に比例することから、各ターンの鎖交磁束が異なる。励磁コイル24は、全ターン同じ断面積なので、鎖交磁束が異なるということは、コイル内に磁場の分布があると言える。磁場が一様に発生している区間(安定領域)は、6層目から11層目まで、コイル長2mm中0.71mm程度であると考えられる。従って、例えば、図7を参照して説明したピックアップコイル23'は、第4~第7導電パターン(23γ1',23γ2',23α',23β')のすべてを安定領域に配置するのが好ましいが、例えば、図6を参照して説明したピックアップコイル23は、第1導電パターン(23γ)のみが安定領域に配置されればよいため、ソレノイドの長さ(積層基板の厚み(層数))を低減することができる。
【0069】
以上、実施形態を説明したが、ここに記載したすべての例や条件は、発明および技術に適用する発明の概念の理解を助ける目的で記載されたものであり、特に記載された例や条件は発明の範囲を制限することを意図するものではない。また、明細書のそのような記載は、発明の利点および欠点を示すものでもない。発明の実施形態を詳細に記載したが、各種の変更、置き換え、変形が発明の精神および範囲を逸脱することなく行えることが理解されるべきである。
【符号の説明】
【0070】
1 電源装置(インバータ電源)
2 磁気特性測定部(積層基板)
2a,2b,2c,… 基板(プリント基板)
3 コンピュータ(制御演算部)
5,50 測定試料(磁性材料)
21,21k,21k+1,21k+2,…,23α,23β,23γ,23α',23β',23γ',23γ1',23γ2' 導電パターン(コイル)
22,22k,22k+1,22k+2,… コンデンサ
23,23' ピックアップコイル
24、24α,24β 励磁コイル
25 試料配置部
31 コンピュータ本体
32 ディスプレイ
33 キーボード
34 マウス
41 電圧計
42 電流計
43 デジタルオシロスコープ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14