(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-28
(45)【発行日】2023-04-05
(54)【発明の名称】単結晶X線構造解析試料の吸蔵装置及び吸蔵方法
(51)【国際特許分類】
G01N 23/20025 20180101AFI20230329BHJP
【FI】
G01N23/20025
(21)【出願番号】P 2020557647
(86)(22)【出願日】2019-11-21
(86)【国際出願番号】 JP2019045692
(87)【国際公開番号】W WO2020105723
(87)【国際公開日】2020-05-28
【審査請求日】2022-06-01
(31)【優先権主張番号】P 2018219809
(32)【優先日】2018-11-23
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000250339
【氏名又は名称】株式会社リガク
(74)【代理人】
【識別番号】100114258
【氏名又は名称】福地 武雄
(74)【代理人】
【識別番号】100125391
【氏名又は名称】白川 洋一
(72)【発明者】
【氏名】佐藤 孝
【審査官】田中 洋介
(56)【参考文献】
【文献】国際公開第2011/115223(WO,A1)
【文献】特開2008-137961(JP,A)
【文献】特開平05-060665(JP,A)
【文献】特開2006-329775(JP,A)
【文献】猪熊泰英,結晶スポンジ法による極小量化合物のX線結晶構造解析,ファルマシア,2014年,Vol.50 No.8,pp.756-761
【文献】INOKUMA, Yasuhide,X-ray analysis on the nanogram to microgram scale using porous complexes,nature,2013年03月28日,Vol.495,pp.461-466
(58)【調査した分野】(Int.Cl.,DB名)
G01N 23/00-23/2276
G01N 1/28
C30B 29/58
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
試料を吸蔵させる吸蔵装置であって、
前記試料を、細孔性錯体結晶を保持した試料ホルダが挿入されたアプリケータの内部に供給する供給部と、
前記アプリケータの温度を制御する温度調整部と、
前記試料ホルダが挿入された前記アプリケータの内部から前記試料を搬出する排出部と、
前記供給部と前記温度調整部と前記排出部とを制御する制御部と、を備えることを特徴とする吸蔵装置。
【請求項2】
請求項1記載の吸蔵装置であって、
前記供給部は、注入パイプを備え、
前記供給部は、前記試料ホルダに形成された第1の貫通穴を通して前記アプリケータに挿入された前記注入パイプを介して、前記アプリケータの内部に前記試料を供給することを特徴とする吸蔵装置。
【請求項3】
請求項1又は2に記載の吸蔵装置であって、
前記排出部は、排出パイプを備え、
前記排出部は、前記試料ホルダに形成された第2の貫通穴を通して前記アプリケータに挿入された前記排出パイプを介して、前記アプリケータの内部から前記試料を搬出することを特徴とする吸蔵装置。
【請求項4】
請求項1記載の吸蔵装置であって、
前記供給部は、
外部から供給された前記試料の圧力または流量を調整する供給側第1アクチュエータと、
前記供給側第1アクチュエータで調整された前記試料を分析する供給側分析部と、
前記供給側分析部で分析された前記試料の圧力または流量を調整する供給側第2アクチュエータと、
前記試料ホルダに形成された第1の貫通穴を通して前記アプリケータに挿入され、前記供給側第2アクチュエータで調整された前記試料を前記アプリケータの内部に供給する注入パイプと、を備えることを特徴とする吸蔵装置。
【請求項5】
請求項1又は4に記載の吸蔵装置であって、
前記排出部は、
前記試料ホルダに形成された第2の貫通穴を通して前記アプリケータに挿入される排出パイプと、
前記排出パイプを介して前記アプリケータの内部から前記試料を排出する排出側第1アクチュエータと、
前記排出側第1アクチュエータに排出された前記試料の成分を分析する排出側分析部と、
前記排出側分析部で成分が分析された前記試料の圧力又は流量又は濃度を調整して排出する排出側第2アクチュエータと、を備えることを特徴とする吸蔵装置。
【請求項6】
請求項1記載の吸蔵装置であって、
前記供給部は、
外部から供給された前記試料の圧力または流量を調整する供給側第1アクチュエータと、
前記供給側第1アクチュエータで調整された前記試料を分析する供給側分析部と、
前記供給側分析部で分析された前記試料の圧力または流量を調整する供給側第2アクチュエータと、
前記試料ホルダに形成された第1の貫通穴を通して前記アプリケータに挿入され、前記供給側第2アクチュエータで調整された前記試料を前記アプリケータの内部に供給する注入パイプと、
前記試料ホルダに形成された第2の貫通穴を通して前記アプリケータに挿入される排出パイプと、
前記排出パイプを介して前記アプリケータの内部から前記試料を排出する排出側第1アクチュエータと、
前記排出側第1アクチュエータに排出された前記試料の成分を分析する排出側分析部と、
前記排出側分析部で成分が分析された前記試料の圧力又は流量又は濃度を調整して排出する排出側第2アクチュエータと、を備え、
前記排出側第2アクチュエータに排出された前記試料は、前記供給側第1アクチュエータに戻されることを特徴とする吸蔵装置。
【請求項7】
請求項1~6の何れか一項に記載の吸蔵装置であって、
前記制御部は、前記供給部と前記温度調整部と前記排出部とを制御して、前記試料ホルダに保持させた前記細孔性錯体結晶に前記試料を吸蔵させるための吸蔵条件を制御することを特徴とする吸蔵装置。
【請求項8】
請求項1~7の何れか一項に記載の吸蔵装置であって、
前記試料ホルダまたは前記アプリケータに備えられた情報保持部に保持された情報を読み取る読取部を備え、
前記制御部は、前記読取部が読み取った情報を記憶することを特徴とする吸蔵装置。
【請求項9】
請求項8記載の吸蔵装置であって、
前記制御部は、前記読取部が読み取った情報に基づいて、前記供給部から前記アプリケータに供給される前記試料の種類に応じて前記供給部と前記温度調整部と前記排出部とを制御することを特徴とする吸蔵装置。
【請求項10】
試料を吸蔵させる吸蔵方法であって、
前記試料を、細孔性錯体結晶を保持した試料ホルダが挿入されたアプリケータに吸蔵装置から、供給する工程と、
前記吸蔵装置により前記アプリケータの内部から前記アプリケータに供給された前記試料を排出する工程と、を含み、
前記供給する工程または前記排出する工程の少なくとも一方は、前記試料の濃度、圧力、温度又は時間の何れかを含む吸蔵条件を制御した状態で行なわれることを特徴とする吸蔵方法。
【請求項11】
請求項10記載の吸蔵方法であって、
前記試料を供給する工程は、前記試料ホルダに形成された第1の貫通穴を通して前記アプリケータに挿入された注入パイプを介して供給することを特徴とする吸蔵方法。
【請求項12】
請求項10または11に記載の吸蔵方法であって、
前記試料を排出する工程は、前記試料ホルダに形成された第2の貫通穴を通して前記アプリケータに挿入された排出パイプを介して前記試料を搬出することにより行うことを特徴とする吸蔵方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、単結晶X線構造解析で使用する解析試料を準備するための装置及び方法に係り、特に、試料を結晶スポンジに吸蔵させるのに適した単結晶X線構造解析試料の吸蔵装置及び吸蔵方法に関する。
【背景技術】
【0002】
新たなデバイスや材料の研究開発では、日常的に材料の合成、材料の評価、それに基づいた次の研究方針の決定が行なわれている。短期間に材料開発を行うためのX線回折を用いた物質の構造解析では、目的の材料の機能・物性を実現する物質構造を効率良く探索するために、構造解析を効率的に行うことを可能とする物質の構造解析を中心とした物質構造の探索方法とそれに用いるX線構造解析は必要不可欠である。
【0003】
しかし、当該手法で得られた結果に基づいて構造解析を行うことは、X線の専門家でなければ難しかった。そのため、X線の専門家でなくても構造解析を行うことができるX線構造解析システムが求められていた。その中でも、特に、以下の特許文献1にも知られるように、単結晶X線構造解析は、正確で精度の高い分子の立体構造を得ることができる手法として注目されている。
【0004】
他方、この単結晶X線構造解析には、試料を結晶化して単結晶を用意しなければならないという大きな制約があった。しかしながら、以下の非特許文献1や2、更には、特許文献2にも知られるように、「結晶スポンジ」と呼ばれる材料(例えば、直径0.5nmから1nmの細孔が無数に開いた細孔性錯体結晶)の開発によって、結晶化しない液体状化合物や結晶化を行うに足る量を確保できない試料なども含め、単結晶X線構造解析を広く適用することが可能となっている。
【0005】
単結晶X線構造解析の分野において、単結晶サンプルを単結晶X線構造解析装置で解析して単結晶の結晶構造を求める場合、分析対象の単結晶サンプルを作成することが難しく、さらに、この分析対象の単結晶サンプルを単結晶X線構造解析装置で解析して得られたデータから単結晶の結晶構造を求めるには経験と勘などの熟練度が必要になり、ごく限られた人しか操作することができなかった。
【0006】
一方、近年、単結晶X線構造解析装置の技術開発が進み、単結晶サンプルさえ手に入れられれば、結晶構造解析技術に熟練していない人でも単結晶サンプルを単結晶X線構造解析装置で解析できて、単結晶サンプルの結晶構造を比較的容易に求めることができるようになってきた。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2007-3394号公報
【文献】再公表特許WO2016/017770号公報
【非特許文献】
【0008】
【文献】Makoto Fujita; X-ray analysis on the nanogram to microgram scale using porous complexes; Nature 495, 461-466; 28 March 2013
【文献】Hoshino et al. (2016), The updated crystalline sponge method IUCrJ, 3, 139-151
【発明の概要】
【発明が解決しようとする課題】
【0009】
従来技術では、非特許文献1に記載されているように、微細な孔が多数形成されている極微小で脆弱(fragile)な結晶スポンジを形成して、この結晶スポンジの微細な孔の内部に試料を吸蔵し、これを単結晶X線構造解析装置で解析することにより、単結晶の結晶構造を比較的容易に求めることができる。
【0010】
この結晶スポンジを用いて単結晶X線構造解析装置で解析するには、結晶スポンジの微細な孔の内部に吸蔵させて形成した単結晶化した試料を、単結晶X線構造解析装置で分析するために使用される試料用ホルダの一部(ゴニオヘッドピンの先端)に確実に装着させることが必要になる。しかしながら、上述した従来技術には、極微小で脆弱(fragile)な結晶スポンジに吸蔵して形成した試料を確実に試料ホルダに搭載する方法については開示されていない。
【0011】
本発明は、上記した従来技術の課題を解決して、単結晶X線構造解析装置の試料ホルダに解析試料を単結晶化するための極微小で脆弱(fragile)な結晶スポンジを保持した状態で、この結晶スポンジに解析試料を供給して確実に吸蔵させることを可能にする単結晶X線構造解析試料の吸蔵装置及び吸蔵方法を提供するものである。
【課題を解決するための手段】
【0012】
(1)上記の目的を達成するため、本発明の吸蔵装置は、試料を吸蔵させる吸蔵装置であって、前記試料を、細孔性錯体結晶を保持した試料ホルダが挿入されたアプリケータの内部に供給する供給部と、前記アプリケータの温度を制御する温度調整部と、前記試料ホルダが挿入された前記アプリケータの内部から前記試料を搬出する排出部と、前記供給部と前記温度調整部と前記排出部とを制御する制御部と、を備えることを特徴としている。
【0013】
(2)また、本発明の吸蔵装置において、前記供給部は、注入パイプを備え、前記供給部は、前記試料ホルダに形成された第1の貫通穴を通して前記アプリケータに挿入された前記注入パイプを介して、前記アプリケータの内部に前記試料を供給することを特徴としている。
【0014】
(3)また、本発明の吸蔵装置において、前記排出部は、排出パイプを備え、前記排出部は、前記試料ホルダに形成された第2の貫通穴を通して前記アプリケータに挿入された前記排出パイプを介して、前記アプリケータの内部から前記試料を搬出することを特徴としている。
【0015】
(4)また、本発明の吸蔵装置において、前記供給部は、外部から供給された前記試料の圧力または流量を調整する供給側第1アクチュエータと、前記供給側第1アクチュエータで調整された前記試料を分析する供給側分析部と、前記供給側分析部で分析された前記試料の圧力または流量を調整する供給側第2アクチュエータと、前記試料ホルダに形成された第1の貫通穴を通して前記アプリケータに挿入され、前記供給側第2アクチュエータで調整された前記試料を前記アプリケータの内部に供給する注入パイプと、を備えることを特徴としている。
【0016】
(5)また、本発明の吸蔵装置において、前記排出部は、前記試料ホルダに形成された第2の貫通穴を通して前記アプリケータに挿入される排出パイプと、前記排出パイプを介して前記アプリケータの内部から前記試料を排出する排出側第1アクチュエータと、前記排出側第1アクチュエータに排出された前記試料の成分を分析する排出側分析部と、前記排出側分析部で成分が分析された前記試料の圧力又は流量又は濃度を調整して排出する排出側第2アクチュエータと、を備えることを特徴としている。
【0017】
(6)また、本発明の吸蔵装置において、前記供給部は、外部から供給された前記試料の圧力または流量を調整する供給側第1アクチュエータと、前記供給側第1アクチュエータで調整された前記試料を分析する供給側分析部と、前記供給側分析部で分析された前記試料の圧力または流量を調整する供給側第2アクチュエータと、前記試料ホルダに形成された第1の貫通穴を通して前記アプリケータに挿入され、前記供給側第2アクチュエータで調整された前記試料を前記アプリケータの内部に供給する注入パイプと、前記試料ホルダに形成された第2の貫通穴を通して前記アプリケータに挿入される排出パイプと、前記排出パイプを介して前記アプリケータの内部から前記試料を排出する排出側第1アクチュエータと、前記排出側第1アクチュエータに排出された前記試料の成分を分析する排出側分析部と、前記排出側分析部で成分が分析された前記試料の圧力又は流量又は濃度を調整して排出する排出側第2アクチュエータと、を備え、前記排出側第2アクチュエータに排出された前記試料は、前記供給側第1アクチュエータに戻されることを特徴としている。
【0018】
(7)また、本発明の吸蔵装置において、前記制御部は、前記供給部と前記温度調整部と前記排出部とを制御して、前記試料ホルダに保持させた前記細孔性錯体結晶に前記試料を吸蔵させるための吸蔵条件を制御することを特徴としている。
【0019】
(8)また、本発明の吸蔵装置において、前記試料ホルダまたは前記アプリケータに備えられた情報保持部に保持された情報を読み取る読取部を備え、前記制御部は、前記読取部が読み取った情報を記憶することを特徴としている。
【0020】
(9)また、本発明の吸蔵装置において、前記制御部は、前記読取部が読み取った情報に基づいて、前記供給部から前記アプリケータに供給される前記試料の種類に応じて前記供給部と前記温度調整部と前記排出部とを制御することを特徴としている。
【0021】
(10)また、本発明の吸蔵方法は、試料を吸蔵させる吸蔵方法であって、前記試料を、細孔性錯体結晶を保持した試料ホルダが挿入されたアプリケータに吸蔵装置から、供給する工程と、前記吸蔵装置により前記アプリケータの内部から前記アプリケータに供給された前記試料を排出する工程と、を含み、前記供給する工程または前記排出する工程の少なくとも一方は、前記試料の濃度、圧力、温度又は時間の何れかを含む吸蔵条件を制御した状態で行なわれることを特徴としている。
【0022】
(11)また、本発明の吸蔵方法において、前記試料を供給する工程は、前記試料ホルダに形成された第1の貫通穴を通して前記アプリケータに挿入された注入パイプを介して供給することを特徴としている。
【0023】
(12)また、本発明の吸蔵方法において、前記試料を排出する工程は、前記試料ホルダに形成された第2の貫通穴を通して前記アプリケータに挿入された排出パイプを介して前記試料を搬出することにより行うことを特徴としている。
【発明の効果】
【0024】
本発明の吸蔵装置によれば、単結晶X線構造解析装置の試料ホルダに解析試料を単結晶化するための極微小で脆弱(fragile)な細孔性錯体結晶である結晶スポンジを保持した状態で、この細孔性錯体結晶に解析試料を供給して確実に吸蔵させることを可能にした。
【図面の簡単な説明】
【0025】
【
図1】本発明の第一の実施例に係る単結晶X線構造解析装置を備えた単結晶X線構造解析システム全体の概略の構成を示すブロック図である。
【
図2】本発明の第一の実施例に係る単結晶X線構造解析装置の構成を示す斜視図である。
【
図3】本発明の第一の実施例に係る単結晶X線構造解析装置の測定部の構成を示す斜視図である。
【
図4】(a)は、本発明の第一の実施例に係る単結晶X線構造解析装置の電気的な内部構成の詳細の一例を示すブロック図であり、(b)は、本発明の第一の実施例に係る単結晶X線構造解析装置の電気的な内部構成の詳細の一例として、データファイル内に複数の測定データを記憶するためのファイル管理方法を示すデータファイルのブロック図である。
【
図5】本発明の第一の実施例に係る単結晶X線構造解析装置で観察するXRDSパターンのイメージを示す図である。
【
図6】(a)は、本発明の第一の実施例に係る単結晶X線構造解析装置の測定用アプリケーションソフトの実行画面の図であり、(b)は、本発明の第一の実施例に係る単結晶X線構造解析装置の測定用アプリケーションソフトの別の実行画面の図である。
【
図7】本発明の第一の実施例に係る単結晶X線構造解析装置の構造解析プログラムを用いて作成した分子モデルを表示した画面の図である。
【
図8】本発明の第一の実施例に係る吸蔵装置の構成を示すブロック図である。
【
図9】本発明の第一の実施例に係る吸蔵装置における供給側のセンサの出力波形の一例を示すグラフである。
【
図10】本発明の第一の実施例に係る吸蔵装置における排出側のセンサの出力波形の一例を示すグラフを含む図である。
【
図11】本発明の第一の実施例に係る吸蔵装置の試料ホルダの断面図である。
【
図12】本発明の第一の実施例に係る吸蔵装置の試料ホルダの斜視図である。
【
図13】本発明の第一の実施例に係る吸蔵装置の試料ホルダを収納するアプリケータの斜視図である。
【
図14】本発明の第一の実施例に係る吸蔵装置の試料ホルダを収納するアプリケータの断面図である。
【
図15】本発明の第一の実施例に係る吸蔵装置の試料ホルダをアプリケータに収納した状態を示す断面図である。
【
図16】本発明の第一の実施例に係る吸蔵装置で先端部分に試料を吸蔵した試料ホルダを装着したアプリケータを複数個収納したサンプルトレイの斜視図である。
【
図17】本発明の第二の実施例に係る吸蔵装置の試料ホルダの断面図である。
【
図18】本発明の第三の実施例に係る吸蔵装置の構成を示すブロック図である。
【発明を実施するための形態】
【0026】
以下に、本発明による、解析試料をスポンジ状の材料(結晶スポンジ、又は、細孔性錯体結晶)内に吸蔵させ、単結晶X線構造解析装置の試料ホルダとして確実に供給することを可能にする単結晶X線構造解析装置用の単結晶構造解析試料の吸蔵装置及び吸蔵方法について、図面を用いて説明する。なお、本出願において「AまたはB」の表現は、「AおよびBの少なくとも一方」を意味し、AおよびBがありえないという特段の事情がない限り「AおよびB」を含む。
【0027】
図1に、本実施例に係る単結晶X線構造解析装置を備えた単結晶X線構造解析システム100全体の概略構成を示す。本実施例に係る単結晶X線構造解析システム100は、気体や液体などの試料の中から分析対象の試料を抽出するクロマトグラフィ装置200、クロマトグラフィ装置200で抽出した試料から単結晶X線構造解析用の試料を作成する単結晶X線構造解析装置用吸蔵装置300(以下、単に吸蔵装置300とも記す)、吸蔵装置300で作成した単結晶X線構造解析用の試料を収納するサンプルトレイ410、サンプルトレイ410に収納された試料をX線を用いて分析する単結晶X線構造解析装置500を備えて構成されている。なお、サンプルトレイ410を用いずに、試料を単品で吸蔵装置300から単結晶X線構造解析装置500へ移動させるようにしてもよい。
【0028】
添付の
図2には、本発明の一実施の形態になる、単結晶X線回折装置を含む単結晶X線構造解析装置の全体外観構成が示されており、図からも明らかなように、単結晶X線構造解析装置500は、冷却装置やX線発生電源部を格納した基台504と、その基台504の上に載置された防X線カバー506とを有する。
【0029】
防X線カバー506は、単結晶X線回折装置509を包囲するケーシング507及びそのケーシング507の前面に設けられた扉等を有する。ケーシング507の前面に設けられた扉は開くことができ、この開いた状態で内部の単結晶X線回折装置509に対して種々の操作を行うことができる。なお、図に示す本実施形態は、後にも述べる結晶スポンジを利用して物質の構造解析を行う単結晶X線回折装置509を含んだ単結晶X線構造解析装置500である。
【0030】
単結晶X線回折装置509は、
図3にも示すように、X線管511及びゴニオメータ512を有する。X線管511は、ここでは図示しないが、フィラメントと、フィラメントに対向して配置されたターゲット(「対陰極」とも言う)と、それらを気密に格納するケーシングとを有し、このフィラメントは、
図2の基台504に格納されたX線発生電源部によって通電されて発熱して熱電子を放出する。
【0031】
また、フィラメントとターゲットとの間にはX線発生電源部によって高電圧が印加され、フィラメントから放出された熱電子が高電圧によって加速されてターゲットに衝突する。この衝突領域がX線焦点を形成し、このX線焦点からX線が発生して発散する。より詳細には、このX線管511は、ここでは図示しないが、マイクロフォーカス管と多層膜集光ミラー等の光学素子を含んで構成されており、より高い輝度のビームを照射することが可能であり、また、Cu、MoやAgなどの線源から選択可能となっている。上記に例示するように、フィラメントと、フィラメントに対向して配置されたターゲットと、それらを気密に格納するケーシングが、X線源として機能し、マイクロフォーカス管と多層膜集光ミラー等の光学素子を含むX線照射のための構成がX線照射部として機能する。
【0032】
また、ゴニオメータ512は、解析すべき試料Sを支持すると共に、試料SのX線入射点を通る試料軸線ωを中心として回転可能とするθ回転台516と、θ回転台のまわりに配置されて試料軸線ωを中心として回転可能な2θ回転台517とを有する。ゴニオメータ512には、試料Sを搭載するゴニオメータヘッド514を備えている。なお、試料Sは、本実施形態の場合、後にも詳述する試料ホルダ513の一部に予め取り付けられた結晶スポンジの内部に吸蔵されている。
【0033】
ゴニオメータ512の基台518の内部には、上述したθ回転台516及び2θ回転台517を駆動するための駆動装置(図示せず)が格納されており、これらの駆動装置によって駆動されて、θ回転台516は所定の角速度で間欠的又は連続的に回転し、いわゆるθ回転する。また、これらの駆動装置によって駆動されて2θ回転台517は間欠的又は連続的に回転し、いわゆる2θ回転する。上記の駆動装置は任意の構造によって構成できるが、例えば、ウォームとウォームホイールとを含んで構成される動力伝達構造によって構成できる。
【0034】
ゴニオメータ512の外周の一部にはX線検出器522が載置されており、このX線検出器522は、例えば、CCD型やCMOS型の2次元ピクセル検出器、ハイブリッド型ピクセル検出器などによって構成される。なお、X線検出測定部は、試料により回折又は散乱されたX線を検出して測定する構成を指し、X線検出器22およびこれを制御する制御部を含む。
【0035】
単結晶X線回折装置509は、以上のように構成されているので、試料Sは、ゴニオメータ512のθ回転台516のθ回転によって試料軸線ωを中心としてθ回転する。この試料Sがθ回転する間、X線管511内のX線焦点から発生して試料Sへ向けられるX線は所定の角度で試料Sに入射して回折・発散する。即ち、試料Sへ入射するX線の入射角度は試料Sのθ回転に応じて変化する。
【0036】
試料Sに入射するX線の入射角度と結晶格子面との間でブラッグの回折条件が満足されると、その試料Sから回折X線が発生する。この回折X線はX線検出器522に受光されてそのX線強度が測定される。以上により、入射X線に対するX線検出器522の角度、すなわち回折角度に対応する回折X線の強度が測定され、この測定結果から試料Sに関する結晶構造等が解析される。
【0037】
続いて、
図4(a)は、上記単結晶X線構造解析装置500における制御部550を構成する電気的な内部構成の詳細の一例を示す。なお、本発明が以下に述べる実施形態に限定されるものでないことは、もちろんである。
【0038】
この単結晶X線構造解析装置500は、上述した内部構成を含んでおり、更に、適宜の物質を試料として測定を行う測定装置562と、キーボード、マウス等によって構成される入力装置563と、表示手段としての画像表示装置564と、解析結果を印刷して出力するための手段としてのプリンタ566と、CPU(Central Processing Unit)557と、RAM(Random Access Memory)558と、ROM(Read Only Memory)559と、外部記憶媒体としてのハードディスクなどを有する。これらの要素はバス552によって相互につながれている。
【0039】
画像表示装置564は、CRTディスプレイ、液晶ディスプレイ等といった画像表示機器によって構成されており、画像制御回路553によって生成される画像信号に従って画面上に画像を表示する。画像制御回路553はこれに入力される画像データに基づいて画像信号を生成する。画像制御回路553に入力される画像データは、CPU557、RAM558、ROM559及びハードディスクを備えた解析部551を含んで構成されるコンピュータによって実現される各種の演算手段の働きによって形成される。
【0040】
プリンタ566は、インクプロッタ、ドットプリンタ、インクジェットプリンタ、静電転写プリンタ、その他任意の構造の印刷用機器を用いることができる。なお、解析部551は、ハードディスクのほかに、光磁気ディスク、半導体メモリ、その他、任意の構造の記憶媒体によって構成することもできる。
【0041】
ハードディスクを備えて単結晶の構造解析処理を行う解析部551の内部には、単結晶X線構造解析装置500の全般的な動作を司る分析用アプリケーションソフト5511と、測定装置562を用いた測定処理の動作を司る測定用アプリケーションソフト5512と、画像表示装置564を用いた表示処理の動作を司る表示用アプリケーションソフト5513とが格納されている。これらのアプリケーションソフトは、必要に応じて解析部551のハードディスクから読み出されてRAM558へ転送された後に所定の機能を実現する。
【0042】
この単結晶X線構造解析装置500は、更に、上記測定装置562によって得られた測定データを含めた各種の測定結果を記憶するための、例えば、クラウド領域に置かれたデータベースも含んでいる。図の例では、後にも説明するが、上記の測定装置562によって得られたXRDSイメージデータを格納するXRDS情報データベース571、顕微鏡により得られた実測イメージを格納する顕微鏡イメージデータベース572、更には、例えば、XRFやラマン光線等、X線以外の分析により得られた測定結果や、物性情報を格納するその他分析データベース573が示されている。なお、これらのデータベースは、必ずしも、単結晶X線構造解析装置500の内部に搭載される必要はなく、例えば、外部に設けられてネットワーク580等を介して相互に通信可能に接続されてもよい。
【0043】
データファイル内に複数の測定データを記憶するためのファイル管理方法としては、個々の測定データを個別のファイル内に格納する方法も考えられるが、本実施形態では、
図4(b)に示すように、複数の測定データを1つのデータファイル内に連続して格納することとしている。なお、
図4(b)において「条件」と記載された記憶領域は、測定データが得られたときの装置情報および測定条件を含む各種の情報を記憶するための領域である。
【0044】
このような測定条件としては、(1)測定対象物質名、(2)測定装置の種類、(3)測定温度範囲、(4)測定開始時刻、(5)測定終了時刻、(6)測定角度範囲、(7)走査移動系の移動速度、(8)走査条件、(9)試料に入射するX線の種類、(10)試料高温装置等といったアタッチメントを使ったか否か、その他、各種の条件が考えられる。
【0045】
なお、クラウド経由で吸蔵に必要な情報を取得してもよいし、吸蔵装置の制御部内の記憶から吸蔵に必要な情報を取得してもよい。例えば、試料ホルダ、又は、アプリケータの固有情報を基にしてクラウド構造を介して提供される吸蔵のための条件等を検索すれば、必要な吸蔵条件を容易に入手し、その入力/設定を自動的に実行することもできる。
【0046】
このことから、その後の構造解析処理により得られるデータを一元的に管理することが可能となる。更には、測定/解析後における試料の保管や検証や管理も、より容易に行うことができる。
【0047】
上記の例ではクラウドに情報を保持するが、必ずしもこれに限定されず単結晶X線構造解析装置の装置内または装置外のメモリ(HDD)に保持してもよい。また、測定する試料の順番が予め決まっている場合は、試料ホルダやアプリケータから固有情報を取得する構成とせず、予め固有情報をメモリ内に保存しておき、それを順次読み出して、対応する情報を取得しても良い。
【0048】
XRDS(X-ray Diffraction and Scattering)パターン又はイメージ(
図5を参照)は、上記測定装置562を構成するX線検出器522の2次元空間である平面上で受け取られたX線を、当該検出器を構成する平面状に配列された画素毎(例えば、CCD等)に受光/蓄積して、その強度を測定することにより得られるものである。例えば、X線検出器522の各画素毎に、積分によって受光したX線の強度を検出することによれば、rとθの2次元空間上のパターン又はイメージが得られる。
【0049】
<測定用アプリケーションソフト>
照射されるX線に対する対象材料によるX線の回折や散乱によって得られる観測空間上のXRDSパターン又はイメージは、対象材料の実空間における電子密度分布の情報を反映している。しかしながら、XRDSパターンは、rとθの2次元空間であり、3次元空間である対象材料の実空間における対称性を直接的に表現するものではない。そのため、一般的に、現存のXRDSイメージだけでは、材料を構成する原子や分子の(空間)配列を特定することは困難であり、X線構造解析の専門知識を必要とする。そのため、本実施例では、上述した測定用アプリケーションソフトを採用して自動化を図っている。
【0050】
その一例として、
図6(a)及び(b)にその実行画面を示すように、単結晶構造解析のためのプラットフォームである「CrysAlis
Pro」と呼ばれるX線回折データ測定・処理ソフトウェアを搭載し、予備測定、測定条件の設定、本測定、データ処理などを実行する。更には、「AutoChem」と呼ばれる自動構造解析プラグインを搭載することにより、X線回折データ収集と並行して、構造解析および構造の精密化を実行する。そして、
図7にも示す「Olex
2」と呼ばれる構造解析プログラムにより、空間群決定から位相決定、分子モデルの構築と修正、構造の精密化、最終レポート、CIFファイルの作成を行う。
【0051】
以上、単結晶X線構造解析装置500の全体構造やその機能について述べたが、以下には、特に、本発明に係る結晶スポンジと、それに関連する装置や器具について、添付の図面を参照しながら詳細に述べる。
【0052】
<結晶スポンジ>
上述したように、内部に直径0.5nmから1nmの細孔が無数に開いた、寸法が数10μm~数100μm程度の極微小で脆弱(fragile)な細孔性錯体結晶である「結晶スポンジ」と呼ばれる材料の開発によって、単結晶X線構造解析は、結晶化しない液体状化合物や、或いは、結晶化を行うに足る量が確保できない数ng~数μgの極微量の試料なども含め、広く適用することが可能となっている。
【0053】
しかしながら、現状においては、上述した結晶スポンジの骨格内への試料の結晶化である吸蔵(post-crystallization)を行うためには、各種の前処理(分離)装置によって分離された数ng~数μg程度の極微量の試料を、既に述べたように、容器内において、シクロヘキサン等の保存溶媒(キャリア)に含浸して提供される外径100μm程度の極微小で脆弱(fragile)な結晶スポンジの骨格内に吸蔵させる工程が必要となる。保存溶媒(キャリア)には、液体と、気体(ガス)と、その中間にあたる超臨界流体が含まれる。更には、その後、この試料を吸蔵した極微小で脆弱(fragile)な取り扱い難い結晶スポンジを、迅速に(結晶スポンジが乾燥により破壊されない程度の短い時間で)、容器から取り出し、回折装置内のX線照射位置に、より具体的には、ゴニオメータ512の試料軸(所謂、ゴニオヘッドピン)の先端部に、センタリングを行いながら正確に搭載する工程を必要とする。
【0054】
これらの工程は、X線構造解析の専門知識の有無に関わらず、作業者に非常に緻密な作業を要求する繊細で、かつ、迅速性をも要求される作業であり、結晶スポンジに吸蔵した後の試料の測定結果に多大な影響を及ぼすこととなる。即ち、これらの作業が極微小な結晶スポンジを利用した単結晶X線構造解析を歩留まりの悪いものとしており、このことが、結晶スポンジを利用した単結晶X線構造解析が広く利用されることから阻害されることの一因ともなっている。
【0055】
本発明は、上述したような発明者の知見に基づいて達成されたものであり、極微小で脆弱(fragile)な結晶スポンジによる単結晶X線構造解析を、以下に述べる試料ホルダ(単に、試料ホルダともいう)を用いることにより、確実にかつ容易に行うことを可能とするものであり、換言すれば、歩留まり良くかつ効率的で、汎用性に優れ、かつ、ユーザーフレンドリな単結晶X線構造解析装置を実現するものである。
【0056】
即ち、本発明に係る次世代の単結晶X線構造解析装置では、極微量な試料Sを吸蔵した極微小で脆弱(fragile)な結晶スポンジを用意すると共に、更には、当該試料S(結晶スポンジ)を吸蔵容器から取り出して、ゴニオータの先端部の所定位置に、正確かつ迅速に取り付けなければならないという、大きな制約があるが、特に、汎用性に優れたユーザーフレンドリな装置を実現するためには、かかる作業を、高度な専門知識や作業の精密(緻密)性を必要とせずに、迅速かつ容易に実行可能なものとする必要がある。
【0057】
本発明は、かかる課題を解消し、即ち、極微小で脆弱(fragile)な取り扱い難い結晶スポンジを使用しながらも、誰でも、迅速かつ確実かつ容易に、歩留まり良く効率的で、ユーザーフレンドリに行うことが可能で、かつ、汎用性にも優れた単結晶X線構造解析を行うための装置や方法、更には、そのための器具である試料ホルダを提供するものであり、以下に詳述する。
【実施例1】
【0058】
図1に示した本発明の第一の実施例に係る単結晶X線構造解析装置500を備えた単結晶X線構造解析システム100の構成における、結晶スポンジに分析対象試料を吸蔵させる吸蔵装置300の構成を、
図8乃至
図14を用いて説明する。
【0059】
図8は、本発明の第1の実施例に係る単結晶X線構造解析装置500用の吸蔵装置300の構成を示すブロック図である。本実施例に係る吸蔵装置300は、供給側配管301、供給側第1アクチュエータ302、供給側分析部303、供給側第2アクチュエータ304、供給側配管305、注入針(注入パイプ)306、試料ホルダ310(
図3の試料ホルダ513に相当)を装着したアプリケータ311、温度調節器(調温器)320、排出針(排出パイプ)331、排出管332、排出側第1アクチュエータ333、排出側分析部334、排出側第2アクチュエータ335、排出側配管336、制御部340および読取部350を備えている。
【0060】
吸蔵装置300は、分離装置(例えばガスクロマトグラフィ又は液体クロマトグラフィなど)200から供給された分析対象の試料(気体、液体または超臨界流体など)を含む担体又は溶媒(以下、これらを含めて試料と記す)が供給側配管301を通して供給され、供給側第1アクチュエータ302で試料の流量や圧力などが調整される。
【0061】
次に、分析対象試料は、供給側分析部303に送られ、そこで、圧力、濃度、温度が調整された試料の成分が分析される。
図9にその分析した結果の一例を示す。
図9のグラフでは、分離装置200から送られてきた試料が、ある特定の成分での信号強度にピーク901を持っていることを示している。
【0062】
供給側分析部303で分析された試料は、供給側配管305から、先端部分がアプリケータ311に装着された試料ホルダ310の内部に差し込まれている注入針306に送られ、注入針306の先端部分からアプリケータ311の内部の試料ホルダ310に供給される。このとき、試料のみ、または試料と保存溶媒(キャリア)とが混合された溶液が、供給側の試料導入管254内を流れ供給される。注入針306は、図示していない駆動手段で駆動されて、アプリケータ311の内部に装着された試料ホルダ310の内部へ差し込まれる。
【0063】
この状態で、温度調節器320は、制御部340で制御されて、試料ホルダ310を含むアプリケータ311が所望の温度になるように、アプリケータ311を加熱または冷却する。
【0064】
吸蔵装置300を用いる場合、温度調節器320により温度がコントロールされたアプリケータ311内に装着された試料ホルダ310の内部に注入針306から試料が注入された状態で所定の時間が経過した後、排出側第1アクチュエータ333が作動して、先端部分がアプリケータ311に装着された試料ホルダ310の内部に差し込まれた排出針331から、排出管332を介して過剰な試料、または試料と保存溶媒(キャリア)とが混合された溶液が排出される。すなわち、過剰な試料とは、排出針331の長さに応じて排出される試料を指す。排出針331は、図示していない駆動手段で駆動されて試料ホルダ310の内部へ差し込まれる。吸蔵装置300を用いない場合、不要な保存溶媒(キャリア)または溶液が排出側の試料導入管254内を流れ排出される。したがって、排出側の試料導入管254には、試料が流れない場合がありうる。なお、気体や超臨界流体をキャリアとした場合には、試料を含んだキャリアが排出される。
【0065】
排出側第1アクチュエータ333によりアプリケータ311の内部から排出された試料は、排出側分析部334で成分が分析される。
図10に、その分析した結果の一例を示す。排出側分析部334で成分が分析されたアプリケータ311の内部から排出された試料は、排出側第2アクチュエータ335で圧力、流量、又は濃度が調整されて、排出側配管336から質量分析装置600へ送られて、その質量成分が分析される。
【0066】
ここで、排出側分析部334で分析して得られた
図10のグラフを、供給側分析部303で分析して得られた
図9のグラフと比較すると、
図9で強度のピーク901を示していた成分の信号に対応する
図10のグラフにおける成分のピーク1001のレベルが低下していることがわかる。これは、
図9でピークを示した成分の一部が、アプリケータ311の内部で消費されたことを示している。
【0067】
この
図9に示したようなデータと
図10に示したようなデータとを制御部340で比較して、両者のピーク値の差又は比率が予め設定した値になった時点で、アプリケータ311の内部に装着された試料ホルダ310の先端部分に取り付けた結晶スポンジに、分析対象の試料が吸蔵されたと判定し、一連の操作を終了する。
【0068】
図11には、試料ホルダ310を正面から見た断面図を示す。試料ホルダ310は、取り扱う作業者が把持する根元部分3101の一方の端部に平坦な面3102が形成されている。この平坦な面3102の先端には、外径が根元部分3101よりも細い胴体部3103が形成されており、胴体部3103の先端にはテーパ状に加工された案内面310Dが形成され、その先端部に細いピン3104が形成されている。
【0069】
根元部分3101の他方の端面である図の上面310Aには、当該試料ホルダを単結晶X線構造解析装置500のゴニオメータヘッド514に装着するための位置決め部材である凹部3105が形成されている。また、試料ホルダ310には、根元部分3101から胴体部3103にかけて貫通する注入針用孔3106と排出針用孔3107が形成されている。注入針用孔3106と排出針用孔3107には、それぞれその凹部3105側の端面に、テーパ状に加工されたテーパ部310Bと310Cが形成されている。テーパ部310Bと310Cとは、注入針306および排出針331を挿入するときのガイド面となる。
【0070】
試料ホルダ310の全体、または、その一部である根元部分3101の凹部3105は、ゴニオメータヘッド514の先端部分の磁性体と磁気的に結合させるため、磁性体で形成されている。
【0071】
ピン3104の先端部分には、分析する試料を吸蔵するための結晶スポンジ380が付着(接着)されている。この結晶スポンジ380は、分析する対象試料の種類に応じて異なる成分で形成される。
【0072】
図12に、試料ホルダ310の外観を斜視図で示す。根元部分3101の外周面には、ピン3104の先端部分に付着(接着)させた結晶スポンジ380に関する情報(結晶スポンジ380の種類、ロット番号などの情報)を記憶する、情報記憶部3108が形成されている。情報記憶部3108は、例えば、バーコード、QRコード(登録商標)、ICチップなどで形成される。
【0073】
この情報記憶部3108に記憶された情報は、
図8に示した読取部350で読み取られ、制御部340内に記憶される。制御部340は、読取部350で読み取った情報記憶部3108に記憶された情報に基づいて、供給側第1アクチュエータ302、供給側分析部303、供給側第2アクチュエータ304、温度調節器320、排出側第1アクチュエータ333、排出側分析部334、排出側第2アクチュエータ335を制御して、試料ホルダ310のピン3104の先端部分に付着(接着)させた結晶スポンジ380に対して注入針306から分析対象の試料を供給し、結晶スポンジ380に試料を収蔵させる。
【0074】
制御部340は、アプリケータ311の内部でこの結晶スポンジ380に試料を吸蔵させたときの吸蔵条件(試料ホルダ310の内部に供給した試料の温度、圧力、濃度、処理時間などのいずれかを含む条件)を記憶する。この制御部340に記憶された吸蔵条件は、図示していない通信回線を解して、他の処理手段へ転送することができる。
【0075】
図13には、試料ホルダ310を装着するためのアプリケータ311の外観を斜視図で示す。アプリケータ311の外観は直方体の形状をしている。また、アプリケータ311は樹脂で形成され、内部に装着する試料ホルダ310のピン3104の先端部分に付着させる結晶スポンジ380の種類に応じて、色分けされている。これにより、アプリケータ311に試料ホルダ310を装着した状態で、試料ホルダ310のピン3104の先端に付着させた結晶スポンジ380の種類を、アプリケータ311の色から判断することができる。
【0076】
図13におけるアプリケータ311の、A-A断面を
図14に示す。アプリケータ311には、試料ホルダ310の根元部分3101が挿入される部分3111、試料ホルダ310の胴体部3103が挿入される筒状の部分3112、試料ホルダ310のピン3104が挿入される先端部分3113が形成されている。ピン3104が挿入される先端部分3113は、先に行くほど径が小さくなる、円錐状の形状をしている。また、アプリケータ311が試料ホルダ310の根元部分3101の平坦な面3102と当接する内面3114には、Oリング溝3115が形成されている。
【0077】
図15には、試料ホルダ310をアプリケータ311に装着し、さらに、注入針306と排出針331とがアプリケータ311の内部に挿入され、かつ、試料ホルダ310のピン3104の先端部分に結晶スポンジ380が付着されている状態を示す。注入針306は、ピン3104の先端部分に取り付けた結晶スポンジ380の近傍に試料を供給するので、排出針331よりも深くなるようにアプリケータ311の内部に挿入されている。
【0078】
この状態において、試料ホルダ310は、図示していない押圧手段によりアプリケータ311に押し付けられて、試料ホルダ310の根元部分3101の平坦な面3102がアプリケータ311の内面3114に形成されたOリング溝3115に装着されたOリング3116を押圧してOリング3116を変形させる。また、注入針306と注入針用孔3106との間、及び排出針331と排出針用孔3107との間は、それぞれ図示していないシール手段によりシールされている。このような構成とすることにより、試料ホルダ310が装着されたアプリケータ311の筒状の部分3112とその先端の円錐状の先端部分3113とは、外部に対して気密な状態を保つことができる。
【0079】
この状態で、
図8に示した制御部340は、供給側第1アクチュエータ302、供給側分析部303、供給側第2アクチュエータ304および温度調節器320を制御して、クロマトグラフィ装置200から送り出された試料を注入針306からアプリケータ311の筒状の部分3112とその先端部分3113に供給する。
【0080】
また、制御部340は、排出側第1アクチュエータ333、排出側分析部334、排出側第2アクチュエータ335を制御して、排出針331からアプリケータ311の筒状の部分3112の内部に供給された試料のうち過剰な試料を排出する。
【0081】
試料を、アプリケータ311の筒状の部分3112とその先端部分3113に供給した状態で、ある時間保持することにより、結晶スポンジ380の内部に試料が吸蔵される。この時、制御部340では、供給側第1アクチュエータ302、供給側分析部303、供給側第2アクチュエータ304および温度調節器320を制御して、注入針306からアプリケータ311の筒状の先端部分3113に供給される試料の温度、圧力、濃度、及び処理の時間などを含む、試料を結晶スポンジに吸蔵させるための吸蔵条件を制御する。
【0082】
なお、この
図15に示した状態は、上記の
図8に示した注入針306及び排出針331が試料ホルダ310及びアプリケータ311に差し込まれて状態を示している。
【0083】
なお、上記で説明した
図8に示した構成においては、質量分析装置600を、単結晶X線構造解析装置用吸蔵装置300とは別の構成として説明したが、質量分析装置600を単結晶X線構造解析装置用吸蔵装置300と一体化して、単結晶X線構造解析装置用吸蔵装置300の一部としてもよい。
【0084】
図16は、本実施例に係る単結晶X線構造解析装置用吸蔵装置で先端部分に試料を吸蔵した試料ホルダ310を装着したアプリケータ311を、複数個、トレイ400内に収納した状態を示す、サンプルトレイ(ウェルプレート)410の斜視図である。サンプルトレイ410には試料ホルダ310を内部に装着したアプリケータ311が複数個収納されているが、解析試料を吸蔵した結晶スポンジ380の種類に応じてアプリケータ311の色が区別されているので、色々のアプリケータ311内の結晶スポンジ380に吸蔵された試料の種類は、その色によって容易に判断することができる。
【0085】
本実施例によれば、試料ホルダ310をアプリケータ311内に装着した状態で、試料ホルダ310のピン3104の先端部分に付着させた極微小で脆弱(fragile)な結晶スポンジ380の内部に、試料をより安全に吸蔵させることができる。
【0086】
また、本実施例によれば、制御部340により、供給側第1アクチュエータ302、供給側分析部303、供給側第2アクチュエータ304、および、排出側第1アクチュエータ333、排出側分析部334、排出側第2アクチュエータ335、更に温度調節器320を制御して、結晶スポンジ380の内部に試料を吸蔵させるので、従来の手作業で試料の吸蔵を行っていた場合と比べて、分析対象の試料の吸蔵条件の設定が容易になる。
【0087】
更に、本実施例によれば、制御部340で、供給側分析部303で分析して得られたデータと、排出側分析部334で分析して得られたデータとを比較することにより、結晶スポンジ380の内部に試料の単結晶が形成されたことを、容易に確認することができる。
【実施例2】
【0088】
第1の実施例においては、試料ホルダ310のピン3104の先端部分に結晶スポンジ380を付着させた構成について説明したが、本実施例においては、
図17に示すような構成の試料ホルダ710を用いた場合について説明する。
【0089】
本実施例において、試料ホルダ710以外の構成においては、実施例1において
図8に示した構成と同じであり、アプリケータ311の構成も実施例1において
図13乃至15を用いて説明したアプリケータ311の形状と同じであるので、詳しい説明を省略する。
【0090】
本実施例で用いる試料ホルダ710は、
図17にその断面形状を示すように、試料ホルダ710の胴体部7103の先のテーパ状に加工された案内面710Dの先端部分に形成された凹部710Eに、新たに、パイプ7104が装着され固定されている。パイプ7104の内部には、試料ホルダ710に形成された注入針用孔7106に接続する孔7108が形成されている。このパイプ7104の孔7108の内部には、試料を吸蔵するための結晶スポンジ780が形成(又は、取り付け)されている。
【0091】
試料ホルダ710本体は磁性体の金属で形成されているが、このパイプ7104は、例えば硼珪酸ガラス、石英、カプトンなどのX線を透過する材料で形成されており、案内面710Dの先端部分に形成された凹部710Eに挿入され、更には、接着剤等で固定されている。
【0092】
試料ホルダ710の根元部分7101、根元部分7101の下面7102、根元部分7101の上面710Aの内側の凹部7105については、それぞれ、実施例1で説明した試料ホルダ310の対応する部分の構成と同じであり、その詳細な説明は省略する。
【0093】
本実施例では、このような構成の試料ホルダ710を、実施例1で
図14を用いて説明したアプリケータ311に装着して、注入針用孔7106に注入針306を挿入し、排出針用孔7107に排出針331を挿入する。注入針用孔7106の上側の端部には、注入針306を挿入するときのガイド面となるテーパ部710Bが形成されている。排出針用孔7107の上側の端部には、排出針331を挿入するときのガイド面となるテーパ部710Cが形成されている。
【0094】
上端部にテーパ部710Bが形成された注入針用孔7106に挿入した注入針306から試料を結晶スポンジ780に供給して、排出針331でアプリケータ311の内部の気体または液体を排出する構成については実施例1の場合と同じであるので、説明を省略する。
【0095】
なお、
図17に示した構成においては、パイプ7104に形成した孔7108の径が上から下まで同一な場合について示したが、孔7108は、
図17において下側に行くほど径が大きくなるようなテーパ形状でもよく、あるいは、上側に比べて途中で径が大きくなる段差形状に形成してもよい。
【0096】
本実施例によれば、試料ホルダ710をアプリケータ311に装着した状態で、試料ホルダ710の中心部分でパイプ7104を貫通して形成された注入針用の孔7108の内部に取り付けられた極微小で脆弱(fragile)な結晶スポンジ780の内部に、試料をより安全に吸蔵させることができる。
【0097】
また、本実施例によれば、実施例1の場合と同様に、制御部340では、供給側第1アクチュエータ302、供給側分析部303を、更には、供給側第2アクチュエータ304、および、排出側第1アクチュエータ333、排出側分析部334、排出側第2アクチュエータ335、更に温度調節器320を制御して、極微小で脆弱(fragile)な結晶スポンジ780に試料を吸蔵させるので、従来の手作業で試料を結晶スポンジに吸蔵させていた場合と比べて、試料吸蔵の条件の設定が容易になる。
【0098】
更に、本実施例によれば、実施例1の場合と同様に、制御部340において、供給側分析部303で分析して得られたデータと、排出側分析部334で分析して得られたデータとを比較することにより、結晶スポンジ780の内部に試料が確実に吸蔵されたことを、容易に確認することができる。
【実施例3】
【0099】
実施例1で説明した
図8の吸蔵装置300を備えた構成では、排出針331によりアプリケータ311の内部から排出されたガスまたは試料液は、質量分析装置600に送られて排気されてしまう構成となっている。これに対して本実施例においては、
図18に示すように、質量分析装置600から排出された試料をクロマトグラフィ装置200へ送るための戻りルート360を備えた。
【0100】
この戻りルート360を通って質量分析装置600からクロマトグラフィ装置200へ戻された試料は、再びクロマトグラフィ装置200で所定の成分が抽出されて、吸蔵装置300に供給される。このような構成とすることにより、試料は、クロマトグラフィ装置200から吸蔵装置300を通って質量分析装置600までの間を循環する。吸蔵装置300の動作は実施例1で説明したのと同じである。
【0101】
本実施例では、
図18に示したような構成とすることにより、排出側分析部334で検出したアプリケータ311から排出される成分の分析波形データ(実施例1の
図10に相当)を供給側分析部303で検出した波形データ(実施例1の
図9に相当)と比較して、目的とする試料の結晶スポンジ380への吸蔵がその終点まで達したことを検出できるようにした。
【0102】
すなわち、結晶スポンジ380に目的とする試料を吸蔵している期間は、排出側分析部334で検出される波形データのうちの結晶スポンジ380に吸蔵途中の試料成分の波形のピーク値は、時間とともに減少していく。これに対して、結晶スポンジ380への分析対象の試料の吸蔵が完了すると、目的とする試料に対応する成分の消費がなくなるので、排出側分析部334で検出される波形データの目的とする試料成分に対応する波高値は、供給側分析部303で検出した波形データにおける目的とする試料成分に対応する波高値と同じ値となる。
【0103】
本実施例では、この特性を利用して、
図18に示したような構成により、供給側分析部303で検出した単結晶成分に対応する位置の波形データと排出側分析部334で検出される単結晶成分に対応する位置の波形データとを比較して、そのピークレベルが同じになった時点を終点として検出する。
【0104】
本実施例によれば、クロマトグラフィ装置200から吸蔵装置300を通って質量分析装置600までの間を循環させて試料を用いることができるので、試料の量がごくわずかな時などにおいても、極微小で脆弱(fragile)な結晶スポンジに分析対象の試料が吸蔵されたことを確実に検出することができる。
【0105】
なお、以上には本発明の種々の実施例を説明したが、本発明は上記した実施例に限定されるものではなく様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するためにシステム全体を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、またある実施例の構成に他の実施例の構成を加えることも可能であり、また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能であろう。
【0106】
本発明は、物質構造の探索方法やそれに用いるX線構造解析装置等において広く利用可能である。
【0107】
なお、本国際出願は、2018年11月23日に出願した日本国特許出願第2018-219809号に基づく優先権を主張するものであり、日本国特許出願第2018-219809号の全内容を本国際出願に援用する。
【符号の説明】
【0108】
100…単結晶X線構造解析システム、200…クロマトグラフィ装置、300…単結晶X線構造解析装置用吸蔵装置、302…供給側第1アクチュエータ、303…供給側分析部、304…供給側第2アクチュエータ、306…注入針、310、710…試料ホルダ、311…アプリケータ、320…温度調節器、331…排出針、333…排出側第1アクチュエータ、334…排出側分析部、335…排出側第2アクチュエータ、340…制御部、350…読取部。