IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ スージョウ レキン セミコンダクター カンパニー リミテッドの特許一覧

<>
  • 特許-発光素子パッケージ 図1
  • 特許-発光素子パッケージ 図2
  • 特許-発光素子パッケージ 図3
  • 特許-発光素子パッケージ 図4
  • 特許-発光素子パッケージ 図5
  • 特許-発光素子パッケージ 図6
  • 特許-発光素子パッケージ 図7
  • 特許-発光素子パッケージ 図8
  • 特許-発光素子パッケージ 図9
  • 特許-発光素子パッケージ 図10
  • 特許-発光素子パッケージ 図11
  • 特許-発光素子パッケージ 図12
  • 特許-発光素子パッケージ 図13
  • 特許-発光素子パッケージ 図14
  • 特許-発光素子パッケージ 図15
  • 特許-発光素子パッケージ 図16
  • 特許-発光素子パッケージ 図17
  • 特許-発光素子パッケージ 図18
  • 特許-発光素子パッケージ 図19
  • 特許-発光素子パッケージ 図20
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-28
(45)【発行日】2023-04-05
(54)【発明の名称】発光素子パッケージ
(51)【国際特許分類】
   H01L 33/64 20100101AFI20230329BHJP
   H01L 33/62 20100101ALI20230329BHJP
【FI】
H01L33/64
H01L33/62
【請求項の数】 9
(21)【出願番号】P 2021168120
(22)【出願日】2021-10-13
(62)【分割の表示】P 2019046940の分割
【原出願日】2012-05-07
(65)【公開番号】P2022009093
(43)【公開日】2022-01-14
【審査請求日】2021-10-13
(31)【優先権主張番号】10-2011-0045378
(32)【優先日】2011-05-13
(33)【優先権主張国・地域又は機関】KR
(31)【優先権主張番号】10-2011-0045379
(32)【優先日】2011-05-13
(33)【優先権主張国・地域又は機関】KR
(73)【特許権者】
【識別番号】521268118
【氏名又は名称】スージョウ レキン セミコンダクター カンパニー リミテッド
(74)【代理人】
【識別番号】100166729
【弁理士】
【氏名又は名称】武田 幸子
(72)【発明者】
【氏名】キム・ビョンモク
(72)【発明者】
【氏名】ジョン・スジョン
(72)【発明者】
【氏名】キム・ユドン
(72)【発明者】
【氏名】イ・ゴンキョ
【審査官】右田 昌士
(56)【参考文献】
【文献】特開2007-123482(JP,A)
【文献】特開2010-199547(JP,A)
【文献】特開2011-040498(JP,A)
【文献】特開2006-229151(JP,A)
【文献】米国特許出願公開第2008/0303157(US,A1)
【文献】特開2006-013157(JP,A)
【文献】登録実用新案第3158994(JP,U)
【文献】米国特許出願公開第2011/0089465(US,A1)
【文献】特開2008-085296(JP,A)
【文献】米国特許出願公開第2009/0284932(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 33/00 - 33/64
H01S 5/00 - 5/50
(57)【特許請求の範囲】
【請求項1】
上面と下面とを有する本体であって、前記本体の前記上面から前記本体の前記下面へ向かって凹んだ空洞と、前記空洞の底面から前記本体の前記下面へ向かって凹んだ複数の副空洞と、を含む本体と、
前記本体内であって前記空洞の前記底面と前記本体の前記下面との間に配置され、第1放熱部と第2放熱部とを含む放熱部材と、
前記空洞の前記底面と複数の前記副空洞の底面とに配置された複数の電極と、
前記本体の前記下面に設けられ、複数の前記電極の少なくとも一つと電気的に接続される、少なくとも一つのパッドと、
前記空洞の前記底面に位置する前記電極上に配置され、複数の前記電極と電気的に接続される発光ダイオードと、を含み、
前記第2放熱部が前記第1放熱部の下に配置され、
前記第1放熱部は、上面周りに側面より前記本体の側方向に突出する突起を有し、
前記突起は、複数の前記副空洞の少なくとも一つとの間隔が0.3mmより大きいである、発光素子パッケージ。
【請求項2】
前記放熱部材の上面の面積が前記発光ダイオードの下面の面積より大きい、請求項1に記載の発光素子パッケージ。
【請求項3】
前記少なくとも一つのパッドと前記放熱部材との間にバッファ層が設けられ、前記バッファ層の厚さは前記放熱部材の厚さより薄い、請求項1又は2に記載の発光素子パッケージ。
【請求項4】
前記第1放熱部は、側面に凹部構造を有し、前記凹部構造が前記突起と前記第2放熱部との間に設けられる、請求項1から3の何れか一項に記載の発光素子パッケージ。
【請求項5】
前記少なくとも一つのパッドは、第1パッド、第2パッド及び第3パッドを含み、
前記第2パッドは、前記第1パッドと前記第3パッドとの間に配置される、請求項に記載の発光素子パッケージ。
【請求項6】
前記第2放熱部の下面の面積は、前記第2パッドの頂面の面積より小さい、請求項5に記載の発光素子パッケージ。
【請求項7】
前記バッファ層は、前記放熱部材と前記第2パッドとの間に配置され、前記放熱部材の下面及び前記第2パッドの前記頂面と接触しており、
前記バッファ層の頂面が、前記バッファ層の下面より粗く、
前記バッファ層の幅は、前記放熱部材の下面の幅より広い、請求項6に記載の発光素子パッケージ。
【請求項8】
複数の前記電極は、前記発光ダイオードと前記放熱部材との間に設けられた第1電極を含み、
前記第1電極の下面は、前記放熱部材と接触し、前記放熱部材と前記発光ダイオードを電気的に接続し、
前記第1電極の幅は、前記放熱部材の頂面の幅より広い、請求項1から7の何れか一項に記載の発光素子パッケージ。
【請求項9】
前記空洞の前記底面から複数の前記副空洞の底面までの深さは、前記本体の前記上面から前記空洞の前記底面までの深さの1/4から1/2の範囲にある、請求項1からの何れか一項に記載の発光素子パッケージ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発光素子パッケージ及びこれを備える紫外線ランプに関する。
【背景技術】
【0002】
発光ダイオード(LED:Light Emitting Diode)は、GaAs系、AlGaAs系、GaN系、InGaN系及び、InGaAlP系などの化合物半導体材料を用いて発光源を構成することができる。
【0003】
この発光ダイオードはパッケージ化されて多様な色を放出する発光素子パッケージとして用いられており、発光素子パッケージはカラーを示す点灯表示機、文字表示機及び画像表示機などの多様な分野にかけ光源として採用されている。
【0004】
特に、紫外線発光ダイオード(UV LED)は245nm~405nmの波長帯に分布されている光を発する発光ダイオードである。前記波長帯の中から短波長の場合には殺菌、浄化などに、長波長の場合には露光機または硬化機などに用いることができる。
【0005】
しかし、紫外線発光ダイオードは発光の際に大量の熱が生じて素子不良がもたらして、動作の信頼性に落ち、放熱のためにパッケージのサイズを大型化すると集積度及び経済性に落ちる。
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明に係る一実施形態は、新しい構造を有する発光素子パッケージを提供する。
【0007】
また、本発明の一実施形態は、本体と発光ダイオードとの間に放熱部材を配置した発光素子パッケージを提供する。
【0008】
また、本発明の一実施形態は、本体と放熱部材との間にバッファ層を配置した発光素子パッケージを提供する。
【0009】
また、本発明の一実施形態は、紫外線発光ダイオード及びこれの保護素子を有する紫外線発光素子パッケージを提供する。
【0010】
また、本発明の一実施形態は、空洞(cavity)内に複数の副空洞を有する発光素子パッケージを提供する。
【0011】
また、本発明の一実施形態は、副空洞のうち少なくとも一つに紫外線発光ダイオードを保護する保護素子を搭載した発光素子パッケージを提供する。
【0012】
また、本発明の一実施形態は、紫外線発光素子パッケージを備えた紫外線ランプの信頼性を改良することができる。
【課題を解決するための手段】
【0013】
本発明の一実施形態による発光素子パッケージは、上部が開放の空洞を有してセラミック材質を含む本体と、前記空洞の底面と前記本体の下面との間の領域に配置された放熱部材と、前記空洞の底面に配置された複数の電極と、前記本体の下面に配置されて前記複数の電極と電気的に接続された複数のパッドと、前記空洞の底面に配置された前記複数の電極のうち何れか一つの上に配置され、前記複数の電極と電機的に接続された発光ダイオードと、前記複数のパッドのうち少なくとも一つと前記放熱部材との間に配置され、前記放熱部材の厚さより薄い厚さを有するバッファ層と、を備える。
【0014】
また、本発明の一実施形態による発光素子パッケージは、上部が開放の空洞を有してセラミック材質を含む本体と、前記空洞の底面の第1領域に配置された第1電極、前記空洞の底面の第1電極と離隔された少なくとも一つの第2電極を含む複数の電極と、前記本体の下面に配置され前記第1電極と対応される第1パッド、及び前記第2パッドと電気的に接続された第2パッドを含む複数のパッドと、前記空洞の底面に配置された第1電極の上に配置され、前記複数の電極と電機的に接続された発光ダイオードと、前記本体内に配置され、前記第1電極及び前記第1パッドの間に配置された放熱部材と、前記複数のパッドのうち少なくとも一つと前記放熱部材との間に配置されたバッファ層と、を備え、前記放熱部材は表面に凹凸を含む。
【0015】
また、本発明の一実施形態による紫外線ランプは、発光素子パッケージと、前記発光素子パッケージが配列されたモジュール基板と、を備え、前記発光素子パッケージは、上部が開放された空洞を有してセラミック材質を含む本体と、前記本体内に空洞の底面と前記本体の下面との間の領域に配置された放熱部材と、前記空洞の底面に配置された複数の電極と、前記本体の下面に配置され前記複数の電極と電機的に接続された複数のパッドと、前記空洞の底面に配置された前記複数の電極のうち何れか一つの上に配置され、前記複数の電極と電気的に接続された発光ダイオードと、前記複数のパッドのうち少なくとも一つと前記放熱部材との間に配置され前記放熱部材の厚さより薄い厚さを有するバッファ層と、を備える。
【図面の簡単な説明】
【0016】
図1】第1実施形態による発光素子パッケージの斜視図である。
図2図1に示す発光素子パッケージの平面図である。
図3図1に示す発光素子パッケージの背面図である。
図4図2に示す発光素子パッケージのA-Aから見た断面図である。
図5図4に示す放熱部材の凹凸を示す部分拡大図である。
図6図2に示す発光素子パッケージのB-Bから見た断面図である。
図7図4に示す発光素子パッケージの変更例を示す図である。
図8図4に示す発光素子パッケージの変更例を示す図である。
図9図4に示す発光素子パッケージの変更例を示す図である。
図10】第2実施形態において、図2に示す発光素子パッケージのA-Aから見た断面図である。
図11】第2実施形態において、図2に示す発光素子パッケージのB-Bから見た断面図である。
図12図10に示す発光素子パッケージの変更例を示す図である。
図13図10に示す発光素子パッケージの変更例を示す図である。
図14】第3実施形態による発光素子パッケージを示す図である。
図15】第4実施形態による発光素子パッケージを示す図である。
図16】第5実施形態による発光素子パッケージを示す図である。
図17】第6実施形態による発光素子パッケージの平面図である。
図18】第7実施形態による発光素子パッケージの平面図である。
図19】本発明の一実施形態による発光ダイオードを示す図である。
図20】本発明の一実施形態による発光素子パッケージを有する紫外線ランプを示す斜視図である。
【発明を実施するための形態】
【0017】
以下には、添付図面を参考し、本発明の実施形態に対して、本発明が属する技術分野で通常の知識を持つ者が容易に実施できるように詳しく説明する。しかし、本発明はそれそれ相異なる形態に具現することができ、ここで説明する実施形態に限定されることはない。
【0018】
本明細書全体に如何なる部分がどの構成要素を「含む」、「備える」という際、これは特に反対される記述がない限り他の構成要素を外すことではなく、他の構成要素をさらに含むことであるということを意味する。
【0019】
そして図面から本発明を明らかに説明するために説明と関係ない部分は省略し、複数層及び領域を明らかに表すために厚さを拡大して示しており、本明細書全体を通して類似な部分に対しては類似な部面符号をつけている。
【0020】
層、膜、領域、板などの部分が他の部分の「上に」あるという際、これは他の部分「すぐ上に」あることのみならず、その中間にまた他の部分があることも含める。逆に、どの部分が他の部分「すぐ上に」あるという際には中間に他の部分がないことを意味する。
【0021】
以下では、図1図6を参照して本発明の第1実施形態による発光素子パッケージを述べる。
【0022】
図1は本発明の第1実施形態による発光素子パッケージの斜視図、図2図1に示す発光素子パッケージの平面図、図3図1に示す背面図、図4図2に示すA-Aから見た断面図、図5図4に示す放熱部材の凹凸を示す拡大図、図6図2に示すB-Bから見た断面図である。
【0023】
図1図6を参照すると、発光素子パッケージ100は上部が開放の空洞111を含む本体110、前記空洞111内に複数の副空洞112、113、前記本体110の空洞111内に配置された複数の電極121、123、125、前記複数の電極121、123、125のうち第1電極121の上に配置された発光ダイオード131、前記複数の副空洞112、113のうちいずれか一つに配置された保護素子133を含む。
【0024】
前記本体110は、図4及び図6に示すように、複数の絶縁層L1-L7の積層構造から形成されてもよい。前記複数の絶縁層L1-L7は、前記発光ダイオード131の厚さ方向に積層される。前記複数の絶縁層L1-L7はセラミック素材を含み、前記セラミック素材は同時に塑性を行う低温塑性セラミック(LTCC:low temperature co-fired ceramic)または高温塑性セラミック(HTCC:high temperature co-fired ceramic)を含む。前記本体110内には、任意の絶縁層の上面及び下面のうち少なくとも一つに形成される金属パタ
ーンと、垂直に貫通され前記金属パターンに選択的に接続された接続部材117とを含めてもよい。前記接続部剤117は、ビアまたはビアホールを含み、これに対する限定はない。他の例として、前記複数の絶縁層L1-L7は窒化物または酸化物のような絶縁性部材を含めてもよく、好ましくは、熱伝導率が酸化物または窒化物より高い金属窒化物を含めることができる。前記本体110の材質は、例えば、SiO、Si、Si、Si、SiO、Al、またはAlNであってもよく、熱伝導率が140W/mk以上の金属窒化物からなりうる。
【0025】
前記本体110の各の絶縁層L1-L7の厚さは、同じ厚さであるか少なくとも一つが異なる厚さであってもよく、これに対する限定はない。前記本体110の各の絶縁層L1L7は、製造工程上の積層された個別層であって、塑性仕上げの上に一体に形成されることができる。前記本体110は、絶縁層L1-L7が7つの層に積層された構造に示したが、3つ以上の層で積層されてもよく、これに対する限定はない。
【0026】
前記本体110の上部周りは段差構造115を含む。前記段差構造115は、前記本体110の頂面と前記空洞111との間に配置され、前記段差構造115の上面は前記本体110の頂面より低い上面を有し、前記空洞111の上部周りに配置される。
【0027】
前記空洞111は、前記本体110の上部に前記本体110の上面より低い深さを有し形成され、上部が開放される。ここで、前記空洞111の上部は発光ダイオード131の光が放出される方向になることができる。
【0028】
前記空洞111は多角形状を含み、前記多角形状の空洞111は角部分が面取りされた形状、例えば、曲面形状に形成されうる。他の例として、前記空洞111は円状を含み、これに対する限定はない。ここで、前記空洞111は前記本体110の段差構造115をはずした領域を含む。
【0029】
前記空洞111の下部の幅は、前記空洞111の上部の幅と同じ幅に形成されることがある。また空洞111の側壁116は、前記空洞111のボトムに対して垂直に形成されることがあり、このような構造は同じサイズの空洞の幅を有する絶縁層L1-L7を積層することができて、製造構成の改良に繋がる。他の例としては、前記空洞111の下部の幅と前記上部の幅は異なる幅に形成されることがあり、その構造は前記空洞111にモールディングされるモールド部材との密着力を改良させることができ、水分の浸透を緩和させることができる。
【0030】
前記空洞111の側壁116には選択的に金属層が配置されてもよく、前記金属層は反射率が50%以上の金属や、熱伝導性が高い金属がコーティングされてもよい。前記金属層は前記空洞111内においての光抽出の効率を改善させて放熱特性を改良させることができる。ここで、前記金属層は前記空洞111の側壁116のうち一部の領域に形成されるか、全領域に形成されてもよく、これに対する限定はない。また前記金属層は前記本体110の材質がAlNのようによい熱伝導性の材質である場合、形成しないこともある。また前記金属層は、前記空洞の底面にも形成され、空洞の底面においての光反射効率を改良させることができる。ここで、前記空洞111の底面に形成された金属層は前記空洞111内の電極と回路的にオープンされるように配置されることがある。前述の金属層は80%以上の反射率を有する反射層に定義されることがある。
【0031】
前記空洞111内には、図1及び図2に示すように、複数の副空洞112、113が配置される。前記複数の副空洞112、113間の間隔は前記発光ダイオード131の幅より広めに離隔されることがある。各の前記副空洞112、113の底面は前記空洞111の底面よりさらに低い深さに配置され、各の前記副空洞112、113の深さは少なくとも保護素子133の厚さと同じであるがより深いことがある。前記副空洞112、113の深さは前記保護素子133が前記空洞111の底面へ突出されない深さに形成されてもよく、前記副空洞112、113の深さは例えば略150μm±10μmに形成されてもよく、これに対する限定はない。前記複数の副空洞112、113の深さは、前記空洞111の1/2~1/4の深さに形成されることがある。この副空洞112、113の深さは、発光ダイオード131から放出される光の吸収を最小化させることができる。これによって、光抽出効率の低下を防止し、光の指向角が歪曲されることを防止することができる。前記保護素子133はツェーナダイオードを含む。
【0032】
前記複数の副空洞112、113のうち第1副空洞112は発光ダイオード131の第
1側面と空洞111の一側面との間に配置され、第2副空洞113は前記発光ダイオード131の第2側面と空洞111の他の側面との間に配置される。前記発光ダイオード131の第1側面と第2側面とはお互い反対面であってもよい。前記第1副空洞112と前記第2副空洞113は前記発光ダイオード131の中心を経る斜線方向または対称の位置に配置されてもよく、これに対する限定はない。
【0033】
前記第2副空洞113はダミー空洞に配置されてもよく、前記ダミー空洞内には保護素子が配置されることはない。前記第2副空洞113は前記発光ダイオード131を基に前記第1副空洞112と対称的に配置されて、前記空洞111内において前記発光ダイオード131と対称的に副空洞112、113を配置することによって、前記発光ダイオード131から生じる熱は前記空洞111内で均一に膨張されることができて発光素子パッケージの熱的安定性を改良させることができる。他の例として、前記第1及び第2副空洞112、113は保護素子がないダミー空洞で使用してもよい。
【0034】
前記空洞111及び副空洞112、113には複数の電極121、123、125、127、129が配置され、前記複数の電極121、123、125、127、129は前記発光ダイオード131及び前記保護素子133に選択的に電源を供給を行う。前記複数の電極121、123、125、127、129は金属層、例えば、白金(Pt)、チタン(Ti)、銅(Cu)、ニッケル(Ni)、金(Au)、タンタル(Ta)、アルミニウム(Al)を選択的に含めてることができる。前記各電極121、123、125、127、129のうち少なくとも一つは単層または多層に形成されてもよい。ここで、多層の電極構造は最上層にはよいボンディングの金(Au)材質が、最下層には本体110との接着性がよいチタン(Ti)、クロム(Cr)、タンタル(Ta)の材質が、中間層には白金(Pt)、ニッケル(Ni)、銅(Cu)などが配置されてもよい。この電極の積層構造に限定することはない。
【0035】
前記空洞111には、前記発光ダイオード131搭載の第1電極121と、前記第1電極121と離隔された第2電極123と、第3電極125とを有する。前記第1電極121は空洞111の中央領域に配置され、第2電極123及び前記第3電極125は、前記第1電極121の両側に配置される。前記第2電極123及び第3電極125は前記発光ダイオード131の中央を基にお互い対称の位置に上部が開放された形状を有し配置されることがある。
【0036】
前記第2電極123は前記空洞111の第1角領域に隣接の前記空洞111の底面に配置され、前記第3電極125は前記空洞111の第2角領域に隣接の前記空洞111の底面に配置される。ここで、前記第1角領域と第2角領域は、対角線方向に配置されえる。
【0037】
前記第1副空洞112には第4電極127及び第2副空洞113には第5電極129が各々配置される。前記第2及び第3電極123、125は負極性の電源の供給が行われ、第1、第4及び第5電極121、127、129は正極性の電源の供給が行われる。前記各の電極121、123、125、127、129の極性は、電極パターンや各素子との接続方式に応じて異なることがあり、これに対する限定はない。
【0038】
ここで、前記第1電極121はぜ延期発光ダイオード131の下にパッドまたは伝導性基板が配置されない場合、無極性の金属層または放熱板として用いることもある。また上述の各電極121、123、125、127、129は金属層に定義されてもよく、これに対する限定はない。
【0039】
前記第1電極121の一部121Aは前記本体110の内部に延長され接続部材117を介して前記本体110の下面まで電気的に接続されることがある。
【0040】
前記本体110の下面には図3図6に示すように、複数のパッド141、143、145が配置される。前記複数のパッド141、143、145は少なくとも3つのパッドを含み、例えば、第1パッド141、第2パッド143、第3パッド145を含み、前記第1パッド141は前記本体110の下面一側に配置され、第2パッド143は前記本体110の下面の中央に配置され、第3パッド145は前記本体110の下面の他側に配置されうる。前記第2パッド143は前記第1パッド141と前記第3パッド145との間に配置され、前記第1パッド141または第3パッド145の幅D2より広い幅(D1>D2)を有する。前記各パッド141、143、145の長さは前記本体110の下面長さの70%以上の長さに配置されてもよく、これに対する限定はない。
【0041】
ここで、前記少なくとも3つのパッド141、143,145のうち2つは何れか一つの極性の電源の供給が行われる。例えば、第1及び第2パッド141、143は正極性の電源端に接続され、第3パッド145は負極性の電源端に接続されうる。前記正極性の電源端に2つのパッド141、143を接続することによって、電流経路を分散させることで熱を分散する効果を得られえて、また電流経路を分散することによって電気的な信頼性を確保することができる。
【0042】
前記本体110内には、図4及び図6に示すように、複数の接続部材117が配置される。前記接続部材117は前記複数の電極121、123、125、127、129と前記パッドらを選択的に接続する役割を果たす。例えば、第1電極121、第4及び第5電極127、129と第1及び第2パッド141、143は少なくとも一つの接続部材によって接続されてもよく、第2及び第3電極123、125と第3パッド145とは少なくとも一つの他の接続部材によって接続されてもよく、これに対する限定はない。
【0043】
図4図6に示すように、前記本体110内には放熱部材151が配置される。前記放熱部材151は前記発光ダイオード131の下、すなわち第1電極121の下に配置されてもよい。前記放熱部材151の厚さは前記空洞111の底面と前記本体110の下面との間の厚さより薄い厚さに配置されてもよい。前記放熱部材151は、例えば、150μm以上の厚さに形成されることができる。
【0044】
前記放熱部材151の材質は金属例えば、合金であってもよく、前記合金物質のうちから何れか一つはよい熱伝導性の銅(Cu)のような金属を含む。前記放熱部材151はCuW合金を含む。
【0045】
前記放熱部材151の下部の幅は、上部の幅より広い幅に形成されてもよい。前記放熱部材151の表面形状は円型または多角型であってもよい。前記放熱部材151の上面の面積は前記発光ダイオード131の下面の面積より少なくとも広い面積に形成されてもよく、これに対する限定はない。
【0046】
前記放熱部材151の下には、第1絶縁層L1が配置され、前記第1絶縁層L1はバッファ層として用いる。前記バッファ層は、前記放熱部材151と前記パッド141、143、145との間に配置され、前記放熱部材151の表面の凹凸151に対してバッファの役割を果たし、第2パッド143と接する前記本体110の表面を平らに形成されるようにすることで半田の接着力を改良させることができる。前記放熱部材151の下面凹凸152は10μm(RMS:root mean square)以下、例えば5μm(RMS)以下に形成されることができる。前記第1絶縁層L1の上面は前記放熱部材151の凹凸152によって粗く形成される。これによって、前記第1絶縁層L1の上面は下面よりさらに粗く形成されることができる。
【0047】
前記放熱部材151の上面の上には第1電極121が配置され、前記第1電極121と前記発光ダイオード131との間にはボンディング層が配置される。前記ボンディング層は前記放熱部材151の上面の凹凸を緩和させることができる厚さ、例えば、略5μm厚さに形成されることができる。前記ボンディング層はAuSnのような伝導性接合部剤を含めてもよい。
【0048】
前記空洞111内には発光ダイオード131が配置されてもよい。前記発光ダイオード131は紫外線発光ダイオードとして、245nm~405nm帯の波長を有する紫外線発光ダイオードであってもよい。すなわち、略280nmの短波長の紫外線を放出するか、365nmまたは385nmの長波長の紫外線を放出する発光ダイオードの両方に適用可能である。
【0049】
図2に示すように、発光ダイオード131は第1電極121と伝導性接着剤でボンディングされ、第1接続部材135で第2電極123に接続されてもよい。前記発光ダイオード131は前記第1電極121と第2電極123と電気的に接続されてもよい。前記発光ダイオード131の接続方式は、ワイヤーボンディング、ダイボンディング、フリップチップボンディング方式を選択的に用いて搭載することができ、このボンディング方式はチップの種類及びチップの電極位置に応じて変更されることがある。前記保護素子133は第4電極127へボンディングされて第2接続部材137で第3電極125へ接続されることができ、第3電極125と第4電極127に電気的に接続されてもよい。前記第1及び第2接続部材135、137はワイヤーを含む。
【0050】
発光ダイオード131はIII族とV族元素の化合物半導体、例えばAlInGaN、InGaN、GaN、GaAs、InGaP、AlInGaP、InP、InGaAs系などの半導体を用いて製造された半導体発光素子を選択的に含めることができる。
【0051】
前記空洞111及び副空洞112、113のうち少なくとも一つにはモールド部材が配置されることができ、このモールド部材はシリコンまたはエポキシのような透光性材料を含む。
【0052】
図7は、図4に示す発光素子パッケージの上にガラスフィルムを配置する例を示す図である。
【0053】
図7に示すように、本体110の上には前記空洞111を覆うガラスフィルム161が形成される。前記ガラスフィルム161はガラス系の材質を含み、その上面は平らな面で配置されてもよい。
【0054】
前記ガラスフィルム161は、例えば、LiF、MgF、CaF、BaF、Al、SiOまたは光学ガラス(N-BK7)の透明な物質で形成されることができ、SiOの場合、石英結晶またはUVFusedSilicaであってもよい。また、前記ガラスフィルム161は低鉄ガラスであってもよい。
【0055】
前記本体110の上層部の第6及び第7絶縁層L6、L7と下層部の第5絶縁層L5との間には幅差によって段差構造115が形成され、前記段差構造115の上には前記ガラスフィルム161が安着される。前記ガラスフィルム161は円型または多角型の形状を含めてもよい。前記ガラスフィルム161は前記本体110上に締結手段または/及び接着手段などで結合されてもよい。前記段差構造115には前記ガラスフィルム161を支持及び固定するための別途の構造物がさらに形成されてもよく、これに対する限定はない。
【0056】
前記ガラスフィルム161の厚さは、前記本体110の上層部L6、L7の厚さ以下であってもよく、これに対する限定はない。また前記ガラスフィルム161の厚さは、前記本体110の第6絶縁層L6と第5絶縁層L5との間の幅差の1/2以下であってもよい。
【0057】
前記ガラスフィルム161と前記本体110の段差構造115の上面との間には、接着剤(図示せず)が塗布されていてもよく、前記接着剤としては例えば、Agペースト、UV接着剤、鉛フリーの低温ガラス、アクリル接着剤またはセラミック接着剤などが挙げられる。
【0058】
前記空洞111及び副空洞112、113のうち少なくとも一つにはモールド部材が配置されてもよい。前記空洞111には別途のモールド部材でモールディングしなく、非活性気体で満たすことがある。これは前記空洞111に窒素のような非活性気体が満たすことによって水分及び酸素などのような環境的要因から前記発光ダイオード131を保護できる。ここで、前記副空洞112、113にはモールド部材が満たされてもよく、これに対する限定はない。
【0059】
前記本体110内に放熱部材151を配置さて放熱効率を改良させることによって発光ダイオード131の波長と関係なく同じパッケージ構造を適用可能になることから波長に関係なくパッケージの汎用使用が可能になる。
【0060】
図8は、図4に示す発光素子パッケージの変更例である。
【0061】
図8に示すように、本体110の空洞111の側壁116Aが前記空洞111の底面に対して斜めの構造を有する。前記空洞111は上部の幅が下部の幅より広い形状を含み、例えば、上部に沿うほど段々広がる形状を含む。前記空洞111の側壁116Aはガラスフィルム161と前記空洞111の底面との間の周りに斜めの構造に形成され、光抽出の効率を改良させることができる。
【0062】
図9は、図4に示す発光素子パッケージの変更例である。
【0063】
図9に示すように、発光素子パッケージは、空洞111内にモールド部材170が配置される。前記モールド部材170は前記空洞111及び副空洞112、113とに配置されてもよい。前記モールド部材170は副空洞112、113にモールディングされ、空洞111内には空き空間として配置してもよい。前記モールド部材170はシリコンまたはエポキシのような透光性樹脂材料を含めてもよい。
【0064】
前記空洞111の上には図7に示すようなガラスフィルムが配置されてもよく、これに対する限定はない。また副空洞112、113に形成されたモールド部材と前記空洞111に満たされたモールド部材との材質が異なることもある。
【0065】
放熱部材151Aは前記空洞111の底面と離隔されてもよい。前記第1電極121と前記放熱部材151Aの上面との間には、第3絶縁層L3が配置されてもよく、前記第3絶縁層L3は前記放熱部材151Aの上面の凹凸に対する上部バッファ層として役割を果たしてもよい。
【0066】
図10及び図11は第2実施形態である。図10は、図2に示す発光素子パッケージのA-Aから見た断面図で、図11図2に示す発光素子パッケージのB-Bから見た断面図である。第2実施形態を説明することにおいて、第1実施形態と同部分は第1実施形態を参照する。
【0067】
図10及び図11を参照すると、発光素子パッケージは、空洞111を含む本体110、前記空洞111内に複数の副空洞112、113、前記本体110の空洞111内に配置された複数の電極121、123、125、前記複数の電極121、123、125のうち第1電極121上に配置された発光ダイオード131、前記複数の副空洞112、113のうちいずれか一つに保護素子133を含む。
【0068】
前記本体110は、複数の絶縁層L1-L7の積層構造に形成されてもよい。前記複数の絶縁層L1-L7は、セラミック素材を含み、前記セラミック素材は同時に塑性を行う低温塑性セラミック(LTCC:low temperature co-fired ceramic)または高温塑性セラミック(HTCC:high temperature co-fired ceramic)を含む。前記本体110の材質は、例えば、SiO、Si、Si、Si、SiO、Al、またはAlNであってもよく、好ましくは、窒化アルミニウム(AlN)からなるか、熱伝導率が140W/mk以上の金属窒化物からなってもよい。前記本体110は、複数のセラミック層の積層構造を含めてもよい。
【0069】
前記本体110内には、放熱部材150が配置されている。前記放熱部材150は前記発光ダイオード131と前記本体110の下面との間に配置されている。前記放熱部材150は前記発光ダイオード131の下、すなわち第1電極121の下に接触されてもよい。前記放熱部材150の厚さT1は、前記空洞111の底面と前記本体110の下面との間の厚さ(=T1+T2)より薄い厚さに配置されてもよい。前記放熱部材150は、例えば、150μm以上の厚さに形成されることができる。前記放熱部材150の材質は金属例えば、合金であってもよく、前記合金物質のうちから何れか一つはよい熱伝導性の銅(Cu)のような金属を含む。前記放熱部材150はCuW合金を含む。前記放熱部材150は、前記第1絶縁層L1より厚い、例えば、3倍~8倍の厚さに形成されることができる。
【0070】
前記放熱部材150は第1方向においての下面の幅D3が上面の幅より広い幅に形成されてもよい。前記放熱部材150の表面形状は円状または多角形状であってもよい。前記放熱部材150の第2方向においての下面の幅D6は、前記第1方向においての幅D3より広くてもよく、これは副空洞112、113が配置される領域に応じて変更されうる。
【0071】
前記放熱部材150の上面の面積は前記発光ダイオード131の下面の面積より少なくとも広い面積に形成されてもよく、これに対する限定はない。
【0072】
前記放熱部材150は第1放熱部51及び第2放熱部53を含み、前記第1放熱部51は第1電極121の下に配置されて前記発光ダイオード131と電気的に接続されることができる。前記第2放熱部53は前記第1放熱部51の下に配置されて前記第1放熱部51の幅D5より広い幅を有し配置される。前記第1放熱部51は前記発光ダイオード131から伝導される熱を本体110を介して放熱するか前記第2放熱部53に伝導し、前記第2放熱部53は前記第1放熱部51から伝導された熱を本体110に伝導するか第1絶縁層L1を介して第2パッド143に伝導する。このため、前記第2放熱部53の下面の面積は前記第2パッド143の上面の面積よりは小さくて前記第1放熱部51の上面の面積よりは大きい面積に形成されることができる。
【0073】
また前記放熱部材150と前記第1副空洞112との間の間隔D4は少なくとも0.3mm以上に離隔されることができる。上述の間隔D4より狭い場合、セラミック材質の本体110が割れるか壊れるという問題があるため、前記間隔D4以上に離隔されなければならない。また前記間隔D4は前記発光ダイオード131から放出された光の干渉を減らすことができる。
【0074】
ここで、前記放熱部材150の第1放熱部51の上面周りに前記放熱部材150の側面より突出された突起51Aを含めて、前記突起51Aは前記第1放熱部51から前記空洞111の側方向または前記本体110の側方向に突出される。この突起51A間の間隔は第1電極121の下面の面積よりは小さくて前記発光ダイオード131の下面の面積よりは大きく形成されてもよく、これに従って放熱の効率は改良されることができる。前記第1放熱部51の突起51Aは前記第1副空洞112または第2副空洞113との0.3mm以上の間隔D4に離隔される。この間隔D4は副空洞112、113の周辺領域において前記空洞111の底面が損傷されることを防止できる。
【0075】
また、前記第1放熱部51の周りは突起51A及び前記第2放熱部53より内側に凹む溝形状を有する凹所構造に配置され、前記凹所構造は前記放熱部材51の結合力の効果ができる。
【0076】
前記放熱部材150の下には、第1絶縁層L1が配置され、前記第1絶縁層L1はバッファ層として用いる。前記バッファ層は、前記放熱部材150と前記パッド141、14、145との間に配置され、前記放熱部材150の表面の凹凸に対してバッファの役割を果たし、第2パッド143と接する前記本体110の表面を平らに形成されるようにすることで半田の接着力を改良させることができる。前記第1絶縁層L1の厚さT2は、50μm以下であり、好ましくは、略20~50μmに形成されてもよい。この第1絶縁層L1の厚さT2は、前記放熱部材150の表面凹凸を干渉させえる厚さである。
【0077】
前記空洞111及び副空洞112、113のうち少なくとも一つにはモールド部材が配置されることができ、このモールド部材はシリコンまたはエポキシのような透光性材料を含む。
【0078】
図12は、図10に示す発光素子パッケージの変更例を示す図である。
【0079】
図12に示すように、本体110の上には前記空洞111を覆うガラスフィルム161が形成される。前記ガラスフィルム161は所定の強度を有するガラス系の材質であり、上面が平らな面に配置されることがある。
【0080】
前記ガラスフィルム161は、例えば、LiF、MgF、CaF、BaF、Al、SiOまたは光学ガラス(N-BK7)の透明な物質で形成されてもよく、SiOの場合、石英結晶またはUV Fused Silicaであってもよい。また、前記ガラスフィルム161は低鉄ガラスであってもよい。
【0081】
前記本体110の上層部の第6及び第7絶縁層L6、L7と下層部の第5絶縁層L5との間には幅差D7によって段差構造115が形成され、前記段差構造115は前記本体110の上面S1より低い上面を有する。前記段差構造115の上には前記ガラスフィルム161が安着される。前記ガラスフィルム161は円状または多角の形状を含めてもよい。前記ガラスフィルム161は前記本体110上に締結手段または/及び接着手段などで結合されてもよい。前記段差構造115には前記ガラスフィルム161を支持及び固定するための別途の構造物がさらに形成されてもよく、これに対する限定はない。
【0082】
前記ガラスフィルム161の厚さT3は、前記本体110の上層部L6、L7の厚さT4以下であってもよく、これに対する限定はない。また前記ガラスフィルム161の厚さT3は、前記本体110の第6絶縁層L6と第5絶縁層L5との間の幅差の1/2以下であってもよい。
【0083】
前記ガラスフィルム161と前記本体110の段差構造115の上面との間には、接着剤(図示せず)が塗布されていてもよく、前記接着剤としてはAgペースト、UV接着剤、鉛フリーの低温ガラス、アクリル接着剤またはセラミック接着剤などが挙げられる。
【0084】
前記空洞111及び副空洞112、113のうち少なくとも一つにはモールド部材が配置されてもよい。前記空洞111には別途のモールド部材でモールディングしなく、非活性気体で満たすことがある。すなわち、窒素のような非活性気体で満たされることによって水分及び酸素などのような環境的要因から前記発光ダイオード131を保護できる。ここで、前記副空洞112、113にはモールド部材が満たされてもよく、これに対する限定はない。
【0085】
前記本体110内に放熱部材150を配置さて放熱効率を改良させることによって発光ダイオード131の波長と関係なく同じパッケージ構造を適用可能になることから波長に関係なくパッケージの汎用使用が可能になる。
【0086】
本体110の第1絶縁層L1には複数の伝導性ビア157が形成され、前記複数の伝導性ビア157は前記放熱部材150と前記第1パッド143を電気的に接続する。また、前記複数の伝導性ビア157は放熱経路として用いることもでき、放熱の効率を改良できる。
【0087】
図13は、図10に示す発光素子パッケージの変更例を示す側断面図である。
【0088】
図13に示すように、本体110の空洞111の側壁116Aは斜めの構造を含む。前記空洞111は上部の幅が下部の幅より広い形状を含み、例えば、上部に沿うほど段々広がる形状を含む。前記空洞111の側壁116Aの斜めの構造は光抽出の効率を改良させることができる。
【0089】
前記空洞111内にモールド部材170が配置される。前記モールド部材170は前記空洞111と副空洞112、113とに配置されてもよい。前記モールド部材170は副空洞112、113にモールディングされ、空洞111内には空き空間として配置してもよい。前記モールド部材170はシリコンまたはエポキシのような透光性樹脂材料を含めてもよい。また副空洞112、113に形成されたモールド部材170と前記空洞111に満たされたモールド部材との材質が異なってもよく、これに対する限定はない。
【0090】
前記空洞111の上にはガラスフィルム161が配置されてもよく、これに対する限定はない。
【0091】
図14は、第3実施形態による発光素子パッケージを示す図である。第3実施形態を説明することにおいて、第1実施形態と同部分は第1実施形態を参照する。
【0092】
図14を参照すると、発光素子パッケージは上部が開放の空洞111を含む本体110A、前記本体110Aの空洞111内に配置された複数の電極121、123、125、前記複数の電極121、123、125のうち第1電極121の上に配置された発光ダイオード131を備える。
【0093】
前記本体110Aは複数の絶縁層L2~L7の積層構造に形成されてもよい。前記複数の絶縁層L2~L7は、前記発光ダイオード131の厚さ方向に積層される。前記複数の絶縁層L2~L7は、セラミック素材を含み、前記セラミック素材は同時に塑性を行う低温塑性セラミック(LTCC:low temperature co-fired ceramic)または高温塑性セラミック(HTCC:high temperatur e co-fired ceramic)を含む。前記本体110Aの材質は、例えば、SiO、Si、Si、Si、SiO、Al、またはAlNであってもよい。
【0094】
前記本体110の下面にはバッファ層101が配置され、前記バッファ層101は例えば、SiO、Si、Si、Si、SiO、Al、BN、Si,SiC(SiC-BeO)、BeO,CeO、AlNのようなセラミックであってもよい。前記バッファ層101は、熱伝送性物質のC(ダイアモンド、CNT)の成分のうち何れか一つに形成されることができ、前記本体110Aとお互い異なる材質で形成されてもよい。
【0095】
前記バッファ層101は絶縁層材質を含み、その種類としてはpolyacrylate resin、epoxy resin、phenolic resin、polyamides resin、polyimides rein、unsaturated polyesters resin、polyphenylene ether resin (PPE)、polyphenilene oxide resin (PPO)、polyphenylenesulfides resin、cyanate ester resin、benzocyclobutene (BCB)、polyamido-amine dendrimers (PAMAM)、及びpolypropylene-imine、dendrimers(PPI)及びPAMAM内部構造及び有機シリコンの外面を有するPAMAM-OS(organosilicon)を単独または組合を含む樹脂で構成されてもよい。
【0096】
前記バッファ層101内にはAl、Cr、Si、Ti、Zn、Zrのうち少なくとも一つを有する酸化物、窒化物、フッ化物、硫化物のうち少なくとも一つを加えてもよい。ここで、前記バッファ層101内に加えられた化合物は熱拡散材であってもよく、前記熱拡散材は所定サイズの粉末粒子、粒、フィラ(filler)、添加剤として用いられることができ、以下の説明の便宜上のため熱拡散材とする。ここで、熱拡散材は絶縁性材質または伝導性材質であってもよく、そのサイズは1Å~100,000Åで使用可能で、熱拡散の効率のために1,000Å~50,000Åで形成されてもよい。前記拡散材の粒子形状は矩形または不規則な形状を含めてもよく、これに対する限定はない。
【0097】
前記熱拡散材はセラミック材質を含み、前記セラミック材質は同時に塑性を行う低温塑 性セラミック(LTCC:low temperature co-fired cer amic)、高温塑性セラミック(HTCC:high temperature co-fired ceramic)、アルミナ(alumina)、水晶(quartz)、ジルコン酸カルシウム(calcium zirconate)、フォルステライト(forsterite)、SiC、黒鉛、溶融シリカ(fusedsilica)、ムライト(mullite)、董青石(cordierite)、ジルコニア(zirconia)、ベリリア(beryllia)及び窒化アルミニウム(aluminum n itride)のうち少なくとも一つを含む。
【0098】
前記バッファ層101は、前記本体110Aと前記複数のパッド141、143、145との間に配置されてもよい。前記バッファ層101は前記放熱部材151の下面と接触され、前記放熱部材151の表面凹凸に対するバッファの役割を果たし、前記放熱部材151から伝導される熱を放熱することができる。
【0099】
前記バッファ層101の上面の面積は、前記本体110Aの下面の面積と同じ面積に形成されてもよく、これに対する限定はない。
【0100】
図15は、第4実施形態による発光素子パッケージを示す図である。第4実施形態を説明することにおいて、第1実施形態と同部分は第1実施形態を参照する。
【0101】
図15を参照すると、発光素子パッケージは、本体110の下面と前記発光ダイオード131との間に配置された放熱部材151と、前記放熱部材151と前記第2パッド143との間のバッファ層103とを備える。
【0102】
前記バッファ層103は前記第2パッド143と異なる金属材質で形成されてもよく、例えば、Ti、Cr、Ta、Cr/Au、Cr/Cu、Ti/Au、Ta/Cu、Ta/Ti/Cuのような材質のうちから少なくとも一つを含めてもよい。前記バッファ層103は、前記放熱部材151の凹凸より小さい凹凸を有する金属材質に形成されてもよい。他の例として、前記バッファ層103は金属酸化物を含み、これに対する限定はない。前記バッファ層103の幅は前記放熱部材151の下面の幅以上に形成されてもよく、前記第2パッド143の上面の幅以下に形成されてもよい。
【0103】
前記バッファ層103は、前記放熱部材151の表面凹凸に対するバッファの役割と電気伝導層として用いられる。前記バッファ層103は前記本体110の下に配置される溝102に配置され、前記放熱部材151の下面と前記第2パッド143の上面に接触される。これによって、前記放熱部材151から伝導される熱を前記第2パッド143に伝達し、前記第2パッド143から入力の電源を前記放熱部材151を介して供給を行なうことができる。
【0104】
図16は、第5実施形態による発光素子パッケージを示す図である。第5実施形態を説明することにおいて、第1実施形態と同部分は第1実施形態を参照する。
【0105】
図16を参照すると、発光素子パッケージは、本体110の下面と前記発光ダイオード131との間に配置された放熱部材151と、前記放熱部材151と前記第2パッド143との間のバッファ層104とを備える。
【0106】
前記バッファ層104は第2パッド143と前記放熱部材151との間に配置され、第2パッド143と前記放熱部材151との間に接触される。前記バッファ層104は絶縁性材質であって、熱伝導層としての役割する果たすことができ、例えば、セラミック材質で形成されてもよい。
【0107】
前記バッファ層104は、例えば、SiO、Si、Si、Si、SiO、Al、BN、Si,SiC(SiC-BeO)、BeO,CeO、AlNのようなセラミック系であってもよい。前記熱伝送性物質は、C(ダイアモンド、CNT)の成分のうち何れか一つに形成されてもよい。前記バッファ層104内にはAl、Cr、Si、Ti、Zn、Zrのうち少なくとも一つを有する酸化物、窒化物、フッ化物、硫化物のうち少なくとも一つを加えてもよい。
【0108】
前記バッファ層104は絶縁性材質であって、熱伝導層としての役割することができる。前記バッファ層104は前記本体110の下に配置される溝102に配置され、前記放熱部材151の下面と前記第2パッド143の上面に接触される。これによって、前記放熱部材151から伝導される熱を前記第2パッド143へ伝達する。
【0109】
図17は、第6実施形態による発光素子パッケージを示す平面図である。
【0110】
図17に示すように、発光素子パッケージは第1電極122及び第2電極123は正極性の電源が接続され、第3電極125は負極性の電源が接続されてもよい。前記発光ダイオード131は少なくとも2つの接続部材135、136で第2電極123と第3電極125に各々接続されてもよい。前記接続部材135、137はワイヤーを含む。
【0111】
前記発光ダイオード131は第1電極122とは電気的接続せず、物理的に接続されてもよい。
【0112】
図18は、第7実施形態による発光素子パッケージを示す平面図である。
【0113】
図18に示すように、発光素子パッケージの空洞111内には少なくとも4つの副空洞112、113、113A、113Bが配置され、前記少なくとも4つの副空洞112、113、113A、113Bのうち少なくとも一つには保護素子133が配置されてよい。ここで、副空洞112、113、113A、113Bのうち少なくとも2つには前記発光ダイオード131が複数である場合、各の発光ダイオード131を各々保護する保護素子が搭載されてもよく、これに対する限定はない。
【0114】
前記複数の副空洞112、113、113A、113Bは前記発光ダイオード131の中央を中心にお互い対称に配置される。これによって、空洞111内においての放熱による不均一を改良することができ、本体110の歪みを防止することができ、結果的に発光ダイオード131またはワイヤーがボンディング部分から分離されることを最小化できる。
【0115】
図19は、本発明の一実施形態による紫外線発光ダイオード131の一例を示す図である。
【0116】
図19に示すように、発光ダイオード131は、垂直型電極構造を有する発光素子であって、第1電極層21、第1導電型半導体層23、活性層25、第2導電型半導体層27及び第2電極層29を有する。前記発光ダイオード131は水平型電極構造を有する発光素子に変更されてもよく、これに対する限定はない。
【0117】
前記第1電極層21は伝導性支持基板を含めるか、パッドとして役割を果たしてもよい。前記第1電極層21は化合物半導体が成長する基板として用いてもよい。
【0118】
前記第1電極層21の上には、III族-V族の窒化物半導体層が形成されるのに半導体の成長装備は電子ビーム蒸着機、PVD(physical vapor depos ition)、CVD(chemical vapor deposition)、PL D(plasma laser deposition)、二重型の熱蒸着機(dual-type thermal evaporator)スパッタリング(sputtering)、MOCVD(metal organic chemical vapor deposition)などによって形成されてもよく、この装備に限定はない。
【0119】
第1電極層21の上には第1導電型半導体層23が配置され、前記第1導電型半導体層23はII族-VI族またはIII族-V族化合物半導体、例えば、GaN、InN、A lN、InGaN、AlGaN、InAlGaN、AlInNのうち少なくとも一つで形成されうる。第1導電型半導体層23には第1導電型ドーパントがドーピングされてもよく、第1導電型ドーパントはn型ドーパントであってSi、Ge、Sn、Se、Teなどから一つを加えてもよい。
【0120】
前記第1導電型半導体層23内には所定領域に電流拡散構造を有する。電流拡散構造は、垂直方向への電流拡散速度より水平方向への電流拡散速度が高い半導体層を含む。前記電流拡散構造は、例えば、ドーパントの濃度または伝導性の差を有する複数の半導体層を含めることができる。
【0121】
前記第1導電型半導体層23の上には、活性層25が配置され、前記活性層25は単一量子井戸または多重量子井戸(MQW)構造に形成されてもよい。活性層25のバリヤー層/井戸層の周期は、GaN/InGaN、AlGaN/InGaN、InGaN/InGaN、GaN/AlGaN、AlGaN/GaN、またはInAlGaN/InAlGaNの周期のうち少なくとも一つを含めてもよい。
【0122】
第1導電型半導体層23と活性層25との間には、第1導電型クラッド層(図示せず)が形成されてもよく、前記第2導電型半導体層27と前記活性層25との間には第2導電型クラッド層(図示せず)が配置されてもよい。前記各導電型クラッド層は、前記活性層25の井戸層のエネルギーバンドギャップより高いバンドギャップを有する化合物半導体で形成されることがある。
【0123】
前記活性層25の上には第2導電型半導体層27が形成される。第2導電型半導体層27は第2導電型ドーパントがドーピングされたp型半導体層として具現されえる。p型半導体層は、GaN,InN,AlN,InGaN,AlGaN,InAlGaN,AlInNなどのような化合物半導体のうち何れか一つ以上からなってもよい。第2導電型ドーパンはp型ドーパントであって、Mg、Zn、Ca、Sr、Baを含む。
【0124】
第2導電型半導体層27内には所定領域に電流拡散構造を有する。電流拡散構造は、垂直方向への電流拡散速度より水平方向への電流拡散速度が高い半導体層を含む。
【0125】
また、第1導電型半導体層23はp型半導体層、第2導電型半導体層27はn系半導体層で具現されうる。発光構造物は、n-p接合構造、p-n接合構造、n-p-n接合構造、p-n-p接合構造のうち何れか一つの構造に具現されうる。以下、実施形態の説明のために、半導体層の最上層は、第2導電型半導体層27をその例として説明する。
【0126】
前記第2導電型半導体層27の上には第2電極層29が配置される。前記第2電極層2
9は、p型ペッドまたは/及び電極層を含めてもよい。前記電極層は酸化物または窒化物系の透光層、例えば、ITO(indium tin oxide)、ITON(ind ium tin oxide nitride)、IZO(indium zinc o xide)、IZON(indium zinc oxide nitride)、IZ TO(indium zinc tin oxide) 、 IAZO(indium al uminum zinc oxide) 、 IGZO(indium gallium z inc oxide)、IGTO(indium gallium tin oxide)、AZO(aluminum zinc oxide)、ATO(antimony tin oxide)、GZO(gallium zinc oxide)、IrO、RuOx、NiOの物質中から選択され形成されることができる。
【0127】
前記第2電極層29は電流を拡散する電流拡散層としての役割を果たしえる。また、第2電極層29は反射電極層であってもよく、反射電極層はAg、Ni、Al、Rh、Pd、Ir、Ru、Mg、Zn、Pt、Au、Hf及びこれらの選択的に組み合わせて構成される物質の中から形成されえる。第2電極層29は単層または多層構造の金属層を含めることがある。
【0128】
図20は、本発明の一実施形態による発光素子パッケージを有する紫外線ランプを示す斜視図である。
【0129】
図20に示すように、照明装置1500は、ケース1510と、前記ケース1510に設けられた発光モジュール1530と、前記ケース1510に設けられ外部電源から電源の提供が行われる接続端子1520を備えることができる。
【0130】
前記ケース1510は、放熱特性が良好な材質から形成されることが好ましく、例えば、金属材質又は樹脂材質から形成されることができる。
【0131】
前記発光モジュール1530は、モジュール基板1532と、前記もージュル基板1532に搭載される実施形態による発光素子パッケージ100を含めてもよい。複数の前記発光素子パッケージ100がマットリックス状または所定間隔で離隔されて配列されうる。
【0132】
前記モジュール基板1532は、絶縁体に回路パターンが印刷されたものであってもよく、例えば、一般の印刷回路ボード(PCB:Printed Circuit Board)、メタルコアPCB、フレキシブルPCB、セラミックPCB、FR-4基板などがありうる。
【0133】
また、前記モジュール基板1532は、光を效率的に反射する材質から形成されるか、表面が光の效率的に反射されるカラー、例えば白色、銀色などのコーティング層からなりうる。
【0134】
前記モジュール基板1532上には、前記実施形態に開示の少なくとも一つの発光素子パッケージ100が搭載されうる。前記発光素子パッケージ100の各々は、少なくとも一つの発光ダイオード(LED:Light Emitting Diode)を含めてもよい。前記紫外線発光ダイオードは、245nm~405nm帯の波長を有する紫外線発光ダイオードであってもよい。すなわち、略280nmの短波長の紫外線を放出するか、365nmまたは385nmの長波長の紫外線を放出する発光ダイオードの両方に適用可能である。
【0135】
前記接続端子1520は、前記発光モジュール1530と電気的に接続されて電源を供給できる。前記接続端子1520は、ソケット方式で外部電源にまわし挟まれて結合されるが、これに対して限定しない。例えば、前記接続端子1520は、ピン(pin)状に形成されて外部電源に挿入されるか、配線により外部電源に接続されることもできる。
【0136】
以上に本発明の実施形態に対して詳しく述べたが、本発明の権利範囲はこれに限定されるではなく、後の請求範囲から定義する本発明の基本概念を用いる当業者の如何なる変更及び改良形態または本発明の権利範囲に属する。
【0137】
本発明の一実施形態は、紫外線発光素子パッケージ内に置いてツェーナダイオードのような保護素子を備えて紫外線発光ダイオードを保護できる効果がある。また、本発明の一実施形態は、発光素子パッケージの空洞内において保護素子による光効率の低下を防止でき、発光素子パッケージにおいて保護素子による指向角の歪曲を改良させることができる。また、本発明の一実施形態は、発光素子パッケージ内に放熱部材を配置し、放熱効率を改良させることができる。また、空洞の隅部分を屈曲になるようにすることによって、湿気の浸透を抑制できる効果がある。また、本発明の一実施形態は245nm~405nmの波長帯の紫外線発光ダイオードを全適用可能であることから波長帯別にパッケージを製造せず汎用使用が可能になる。
【0138】
本発明の一実施形態は、発光素子パッケージにおいてパッケージの本体がセラミック材質である場合、本体の空洞内に発光ダイオードに対して対称的に複数の副空洞によってセラミック材質のパッケージ本体内においての熱膨張が均一な分布に行なわれることができる。これによって、セラミック材質のパッケージにおいての熱的安定性は改良できる。また、本発明の一実施形態は、紫外線発光素子パッケージを有する紫外線ランプの信頼性を改良させられることができる。
【0139】
以上で実施形態として説明された特徴、構造、効果などは本発明の少なくとも一つの実施形態に含まれ、必ず一つの実施形態にだけ限定されるものではない。なお、各実施形態にて例示された特徴、構造、効果などは、実施形態が属する分野の通常の知識を有する者により、他の実施形態に対しても組合又は変形されて実施可能である。したがって、このような組合と変形に関係された内容は、本発明の範囲に含まれるものと解析されなければならない。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20