(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-28
(45)【発行日】2023-04-05
(54)【発明の名称】波長掃引式光干渉断層撮影システム用の収集装置
(51)【国際特許分類】
G01N 21/17 20060101AFI20230329BHJP
【FI】
G01N21/17 625
(21)【出願番号】P 2020560618
(86)(22)【出願日】2018-01-26
(86)【国際出願番号】 IB2018050489
(87)【国際公開番号】W WO2019145754
(87)【国際公開日】2019-08-01
【審査請求日】2021-01-18
(73)【特許権者】
【識別番号】520268562
【氏名又は名称】アキリス・ソシエテ・アノニム
(74)【代理人】
【識別番号】100069556
【氏名又は名称】江崎 光史
(74)【代理人】
【識別番号】100111486
【氏名又は名称】鍛冶澤 實
(74)【代理人】
【識別番号】100191835
【氏名又は名称】中村 真介
(74)【代理人】
【識別番号】100208258
【氏名又は名称】鈴木 友子
(74)【代理人】
【識別番号】100221981
【氏名又は名称】石田 大成
(72)【発明者】
【氏名】エービッシャー・ダニエル
(72)【発明者】
【氏名】メートル・ピエール-フランソワ
(72)【発明者】
【氏名】ブラザー・トビアス
【審査官】小野寺 麻美子
(56)【参考文献】
【文献】特開2013-181790(JP,A)
【文献】特開2017-211192(JP,A)
【文献】特開2016-077666(JP,A)
【文献】特開2014-215056(JP,A)
【文献】米国特許出願公開第2015/0109621(US,A1)
【文献】特開2017-198673(JP,A)
【文献】特開2017-151106(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/00 - G01N 21/01
G01N 21/17 - G01N 21/61
A61B 1/00 - A61B 1/32
A61B 3/00 - A61B 3/18
A61B 5/00 - A61B 5/01
G02B 27/00 - G02B 30/60
(57)【特許請求の範囲】
【請求項1】
波長掃引式光干渉断層撮影システム用の収集装置において、
前記収集装置は、
OCTアナログ信号を受信するように構成された入力部と、
kクロックアナログ信号を受信するように構成された制御入力部と、
合成アナログ信号を出力するように構成された、前記OCTアナログ信号と前記kクロックアナログ信号とを受信するアナログ加算器と、
前記合成アナログ信号をデジタル合成信号に変換するA/D変換器と、
前記デジタル合成信号に基づいて前記OCTアナログ信号から生成された試料の断層プロファイルを特定するデータ処理装置と、を有し、
前記kクロックアナログ信号のスペクトルが、前記OCTアナログ信号のスペクトルと大きく重複しない、又は、前記kクロックアナログ信号のスペクトルと前記OCTアナログ信号のスペクトルとが重複しないように、前記kクロックアナログ信号及び/又は前記OCTアナログ信号とが、低域通過フィルタ及び/又は高域通過フィルタによってフィルタリングされ
、
前記データ処理装置は、前記デジタル合成信号に対する前記OCTアナログ信号の成分を示す前記デジタルOCT信号と、前記デジタル合成信号に対する前記kクロックアナログ信号の成分を示すデジタルkクロック信号とをこのデジタル合成信号から抽出する1つ以上のデジタルフィルタを有し、
前記データ処理装置は、前記デジタルkクロック信号に基づいて前記デジタルOCT信号のサンプリング時間に相当する波数の値を特定する当該収集装置。
【請求項2】
掃引光源のスキャンを起動させるトリガー信号を受信するためのトリガー入力部を有する前記収集装置であって、
前記A/D変換器は、前記デジタル合成信号を、A/Dクロックと同期するサンプリングベクトルとして生成し、トリガーが、前記サンプリングベクトルの既定の位置でかかり、
前記収集装置は、前記A/Dクロックに対する前記トリガー信号のその時の位置を特定し、そして当該位置に基づいて前記デジタルOCT信号のサンプリング時間に相当する前記波数の値を補正するトリガー時間補間装置を有する請求項
1に記載の収集装置。
【請求項3】
前記データ処理装置は、リサンプリングされたデジタルOCT信号を計算し、当該デジタルOCT信号は、均一に離間した波数に対してサンプリングされる請求項1に記載の収集装置。
【請求項4】
追加の少なくとも1つのOCTアナログ信号を取得するための追加の少なくとも1つの入力部を有する請求項1に記載の収集装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数の実施の形態における波長掃引式光干渉断層撮影システム用の収集装置に関する。
【背景技術】
【0002】
光干渉断層撮影(OCT)は、非透過性の構造体中のサブミリメートルレベルの構造体及びマイクロメートルレベルの構造体の空間再構成を可能にする注目の画像処理技術である。この画像処理技術は、眼科学(おそらくは、最も発展した活用事例)、胃腸科学、心臓学、腹腔内手術画像を含む幾つかの生体臨床アプリケーションや非生体アプリケーションを含むその他の多くのアプリケーションで使用されている。
【0003】
OCTは、集約的なデジタル信号処理技術であり、進歩的な光学システムと共に、特別なアーキテクチャと革新的なアルゴリズムとを有する強力な信号処理プラットフォームを必要とする。
【0004】
OCTは、大抵は生物学的な特徴を呈する試料中の表面下の構造を分析するために低コヒーレンスの光源と組み合わせた、例えば従来のマイケルソン構造を成す光学干渉計を使用する。
【0005】
初期のOCTは、機械式の経路長のスキャニングに基づくものであった。時間領域のOCT又はTD-OCTとして公知のシステムでは、干渉パターンが、干渉計の参照アームの、例えばマイケルソン型のミラーを直線状に移動させることによって取得される。その結果、当該参照経路長が、試料中の反射に起因する光路に一致するときに、干渉パターンが得られる。軸分解能が、光源のコヒーレンス長によって決定され、一般にマイクロメートルのオーダーである。
【0006】
フーリエドメイン光コヒーレンストモグラフィ(FD-OCT)では、試料から後方散乱された光が、一定の群遅延で参照光と合成される。当該試料中の異なる深さでの複数の反射が、干渉スペクトル中に振動を生成する。当該振動の周波数が、最初の反射の遅延又は光路に結合される。その結果、当該干渉スペクトルの逆フーリエ変換が、深さスキャン情報を提供する。
【0007】
SD-OCTとしても知られるスペクトラルドメインOCTは、短い時間的コヒーレンスを有する広帯域光源(多くの場合、高輝度発光ダイオード:SLED)と、分光計、例えば回折格子を使用して干渉計の検出アームのスペクトル密度を測定することによる深さとを使用する。多くの場合、スペクトログラムが、ライン光検出器によって収集され、試料の深さ分解構造が、当該スペクトログラムに対するフーリエ変換によって取得され得る。
【0008】
波長掃引型光干渉断層撮影又はSS-OCTとして知られる別の最近の方式では、周波数掃引光源が、広帯域光源の代わりに使用される。当該手段では、信号のスペクトル成分が、時間分解され、干渉計の検出アームが、分光計ではなくて、寸法、速度、性能及びコストにおいて著しく有利な信号検出器と高速アナログ/デジタル変換器とを備える。
【0009】
一般に、OCT用の掃引光源は、高速スキャンを可能にするように特別に設計されているチューナブルなレーザである。現在のSS-OCTの光源は、100kHzの反復率と共に100nmの波長の掃引レンジと、100pmの瞬時線幅とを達成している。掃引サイクルは、試料の軸プロファイルに関する情報を提供するので、当該掃引サイクルは、一般に「Aスキャン」と表記される。その一方で、用語「Bスキャン」及び「Cスキャン」は、試料の分層中の光学密度及び体積を取得するための、試料に対する光ビームの移動を示す。
【0010】
SS-OCTシステムでは、試料中の軸プロファイルが、干渉計の検出アームで検出された信号のスペクトル密度によって取得される。当該スペクトル密度は、デジタル化された信号に対するデジタルフーリエ変換演算処理によって容易に取得され得る。サンプリングされた複数の地点が、光波数k空間内で直線状に離間されている。ほとんどの光源は、一時的な波数kが時間の線形関数である掃引を作り出すことができず、ハードウェア及びソフトウェアによる様々な解決策が、この欠点に対処するために考案されている。多くの場合、当該解決策は、光源の光波数(又は等価な光周波数)と一緒に変化するkクロックと表記される参照信号の生成を含む。Aクロック信号は、干渉計(例えば、マッハチェンダ干渉計)と光検出器とによって、又はその他の公知の技術によって取得されてもよい。
【0011】
OCT信号(OCTアナログ信号)が、kクロックの振動と同期してサンプリングされるように、アナログ/デジタル変換器をクロック動作させるために高周波のkクロック信号(kクロックアナログ信号)を使用することが知られている。その結果、当該OCT信号のサンプリングが、k空間内で均一に離間されることが保証される。しかしながら、当該kクロック信号が、OCT信号中の対象となる最も高い周波数成分の2倍の周波数成分である時間周波数を有することが、この技術の欠点である。
【0012】
その他の知られたシステムは、kクロックとOCT信号との双方を時間的に均一にサンプリングし、したがってk空間内では不均一にサンプリングし、次いで当該kクロック中に含まれた位相情報を使用して、適切なデジタル処理装置による当該不均一にサンプリングされたOCT信号に基づいて深さプロファイルを計算する。多くの場合、この演算処理は、当該kクロック信号の位相変化を抽出することと、OCT信号を当該k空間内の等間隔に離間した位置でデジタル式にリサンプリングすることとを含む。特に、当該システムが、リアルタイムで動作する場合、当該システムは、高速のkクロックを必要としないが、数値計算により特化し、当該kクロック信号用の追加の取得チャネルを必要とする。
【0013】
幾つかの使用事例では、1つよりも多いOCT信号の同時の取得及び処理が要求されるか又は有益である。この状況は、特に、光の2つの偏光成分を検出し処理する偏光を感知する装置と、マルチビーム装置とで発生する。
【0014】
OCT信号が時間的に均一にサンプリングされるSS-OCTシステムによる別の問題点は、サンプリング時間を光源の掃引の開始に対して特定することに関連する。当該掃引の開始は、一般にAスキャントリガー信号によって印付けされる。当該Aスキャントリガー信号は、記憶されるべきOCT信号の対象となる範囲に印付けするために使用される。一般に、当該Aトリガーの正確な特定の時点は、1つの周期、例えば1nsの概算値で知得される。当該概算値は、誤差の無視できない要因である。
【先行技術文献】
【特許文献】
【0015】
【文献】特開2015-198757号
【文献】米国特許出願公開第20150109621号明細書
【文献】米国特許出願公開第20160025478号明細書
【文献】米国特許出願公開第20170241763号明細書
【文献】米国特許出願公開第20170307353号明細書
【発明の概要】
【発明が解決しようとする課題】
【0016】
本発明の課題は、光干渉断層(OCT)撮影装置用の改良されたタイミング特性を有する収集装置を提供することにある。
【課題を解決するための手段】
【0017】
本発明によれば、当該課題は、添付された特許請求の範囲の対象によって解決される。
【0018】
本発明は、図面によって例示され且つ図示された実施の形態の説明によってより良好に理解される。
【図面の簡単な説明】
【0019】
【
図1】本発明の実施の形態による波長掃引型光干渉断層撮影(SS-OCT)システムを概略的に示す。
【
図2】本発明の装置の動作時の入力波形のスペクトルを示す。
【
図3】本発明によるデータ処理システムを示すブロック図である。
【
図4】光干渉断層撮影(OCT)信号を生成する処理を示す。
【発明を実施するための形態】
【0020】
図1は、本発明によるSS-OCTシステムの構成を概略的に示す。光源30は、干渉計50に光学接続された帯域波長掃引光源である。当該分野で知られているように、干渉計50は、試料から後方散乱された光を解析するために使用され、2つ以上の電気OCT信号OCT1,OCT2及びkクロック信号を生成する。当該サンプリング信号は、当該分野で知られているように、制御装置40の監視下で、光学素子44によって集光され、制御されるミラー43によって偏向される。
【0021】
OCT信号OCT1,OCT2及びkクロック信号は、特にOCT信号をデジタル化し処理するために適合された収集装置24に送信される。好ましくは、図示されているように、収集装置24は、光学制御装置80と同様に同じホストシステム20内に含まれているが、当該構成は、本発明の本質的特徴ではない。当該ホストシステムは、パーソナルコンピュータ、産業用PC又はデジタル処理可能なその他のあらゆる装置でもよい。好ましくは、収集装置24は、収集カード24とホスト28との間の通信を保証する通信バスと互換性があるインターフェースを備えるモジュールカードである。PXI、PCI express、USB、Thunderbolt(商標)又はその他のあらゆる適切な接続を含む、適切なあらゆるインターフェースが、本発明の範囲内で採用されてもよい。
【0022】
当該システムは、好ましくは同じ収集装置24内に、デジタル化装置60及びデータ処理装置70を有する。データ処理装置70は、特別にプログラミングされたFPGA、プログラミング可能な信号プロセッサ又は適切なあらゆる演算手段によって実現されてもよい。処理装置70の目的は、スペクトログラム、Aスキャンプロファイル画像又は等価情報をアプリケーション80に提供することである。次いで、この情報は、視覚化装置90上に表示され得るか、さらなる解析のために記憶され得るか、(図示されなかった)別の処理装置に送信され得るか、又はその他のあらゆるものに対して使用される。
【0023】
好ましくは、当該収集装置は、トリガー時間補間モジュール175も有する。このトリガー時間補間モジュール175の機能は、後で説明するように、測定の安定性及び再現性を向上させ、デジタル化された参照時間情報に関連するデジタル信号処理の離散的性質を補うことである。
【0024】
既に説明したように、kクロックは、検査対象の試料10の光学特性に関係ないが、OCT光源30によって放射された光の一時的な波数に固有に関係する。さらに重要なことは、OCT信号OCT1,OCT2とkクロック信号とは、全く異なるスペクトル特徴を有し、OCT1,OCT2信号は、参照アーム(
図1)の長さを変更することによって望ましい周波数帯域にシフトされ得る点である。kクロックスペクトルが、望ましい周波数帯域に限定されるように、kクロック信号を生成する光学装置(例えば、マッハチェンダ干渉計)が選択又は構成されてもよい。本発明の実施の形態によれば、
図2に示されているように、kクロック信号のスペクトルが、当該OCT信号のスペクトルと大きく重複しないように、これらのパラメータは選択される。
【0025】
図2は、OCT信号220よりも低い周波数帯域内のkクロック信号210を示す。しかしながら、本発明は、kクロック信号が当該OCT信号の周波数よりも上の周波数帯域内にある場合も想定している。
【0026】
代わりに又は加えて、kクロック信号の周波数とOCT信号の周波数とが、大きく重複する場合、性能の著しい損失なしに、これらの周波数が重複しないように、これらの信号がフィルタリングされ得る。
【0027】
図3は、本発明による収集カード24の可能な実施の形態を示す。この収集カードは、上記と同様の3つのアナログ信号である干渉計50内の対応する光学検出器からのOCT信号OCT1,OCT2とkクロック信号とを受信する。
【0028】
第1OCT信号OCT1は、アナログ/デジタル変換器67aの入力部に供給される。一般に、アンチエイリアシングフィルタが、当該ADCの前に挿入されるが、このADCは、図面には示されていない。このA/D変換器67aは、デジタルOCT1信号68を生成する。このデジタルOCT1信号68は、予め設定されたサンプリング速度とビット分解能とバッファ深さとでOCT1信号をデジタル式に示すものである。幾つかの実施の形態では、デジタル信号68は、1Gサンプル/秒又は2Gサンプル/秒のサンプリング速度を有してもよく、それぞれのサンプルは、12ビットワード又は14ビットワードと、2048~8192のサンプル深さ値とから成る。しかしながら、これらの値は限定されていない。
【0029】
一方で、第2OCT信号OCT2とkクロックとは、一緒に加算され、第2アナログ/デジタル変換器67bに供給される。好ましくは、低域通過フィルタ120及び/又は高域通過フィルタ125は、kクロック信号のスペクトルとOCT2のスペクトルとが重複しないことを保証する。図示された例は、低域通過フィルタ120をkクロックの入力部に有し、高域通過フィルタ125をOCT2の入力部に有するが、kクロック信号が、OCT信号の上にシフトされているならば、これらのフィルタは、反対の種類のフィルタである。kクロック信号のスペクトルとOCT信号のスペクトルとが重複しないように、当該kクロック信号と当該OCT信号とが、本質的に周波数制限されているならば、フィルタ120及び125は、場合によっては省略されてもよい。
【0030】
アナログ加算器(加算ノード)130が、ミキサーとして使用される50Ωのパッシブスプリッタ又はその他の適切な装置によって実現され得る。第2A/D変換器67bは、OCT2+kクロックをデジタル式に示すものであるデジタル信号69を生成する。好ましくは、デジタル合成信号69のサンプリング速度、ビット分解能及びバッファ深さは、第1デジタル信号68のサンプリング速度、ビット分解能及びバッファ深さと同じであり、この合成信号69の複数のサンプルが、この第1信号68の複数のサンプルと同期する。
【0031】
Aトリガーが、光源30の波長掃引サイクルの開始を信号で知らせ、デジタル信号68,69をこれらのデジタル信号68,69のそれぞれのデータバッファ内に配置するために使用される。当該Aトリガーは、トリガー時間補間モジュール175を介してデータ処理装置70に入手させることもできる。
【0032】
Aトリガーは、スキャンされる光源30によって生成されてもよく、又は好ましくは、光源30によって生成された光が、予め設定された波長を掃引領域内で何時有するかを検出するために配置された光学検出器によって生成されてもよい。このような検出器は、
図5に示されているように、ファイバブラッググレーティング115と、サーキュレータ110と、当該グレーティングから反射された放射線を感知する光センサとを有してもよい。
【0033】
データ処理装置70は、kクロック信号をデジタル合成信号69から抽出するために配置された信号抽出フィルタ150と、場合によっては、OCT2信号を合成信号69から抽出するために配置された第2フィルタ155と、kクロック処理装置77と、試料10の1つ又は複数のプロファイル画像を作成するために配置されているリサンプリング/スペクトル処理装置78とから構成されてもよい。これらの構成要素は、ここでは理解をし易くするために別々に示されているが、これらの構成要素の機能は、公知であり、実施の形態によっては情報源を共有してもよい。もっとも、これらの構成要素は、部分的に又は完全にソフトウェアによって規定され得て、独立した物理的な回路によって実現される必要はない。好適な実施の形態では、当該データ処理装置は、フィールドプログラマブルゲートアレイ(FPGA)を有する。
【0034】
当該図示された例では、kクロック信号の周波数領域が、OCT信号の周波数領域のしたにあるので、信号抽出フィルタ150は、低域通過フィルタであり、第2フィルタ155は、高域通過フィルタである。
【0035】
次いで、データ処理装置70のフローチャートを、
図3及び4を参照して説明する。kクロック信号を処理するブロック77では、当該kクロック信号が、デジタル合成信号69から抽出される(ステップ180)。185で示されたステップは、k空間の較正から成る。当該k空間は、デジタル信号68,69のサンプルインデックスと光源30からの光のその時の波数との間の対応関係を規定するか、又はデジタルkクロック信号に基づいて、デジタルOCT信号のサンプリング時間に対応する波数の値を規定する。
【0036】
波数kを再構成するための可能なアルゴリズムが、例えば、kクロック信号のヒルベルト変換を計算すること、当該kクロック信号の位相に対応する当該kクロック信号の複素数の偏角を選択すること、及び不連続性を除去するために当該偏角をアンラップすることから成る。当該アンラップされた位相は、波数に比例し、適切な較正を適用することによって当該波数に変換され得る。当該波数kの再構成は、それぞれのAスキャンに対してリアルタイムで実行され得るか、又は幾つかのAスキャンの組み合わされた処理から実行され得る。
【0037】
Aスキャントリガーのタイミング情報は、当該トリガーが取得バッファ内の既定の位置でかかるように、A/D変換器66,67(矢印63)を起動させるために使用される。冒頭で言及したように、このことは、1つのサンプリング周期(例えば、1ns)の不確実性を正確なトリガー位置に残す。トリガー時間補間装置175が、当該A/D変換器のサンプリングクロックと当該Aスキャントリガー信号のリーディングエッジとの間の時間オフセットを測定する高速時間デジタル変換器(TDC)を有する。一般に、当該トリガー時間補間装置は、当該トリガーのその時の位置を、当該サンプリング周期よりも遥かに小さい、例えば10分の1未満の不確実性で、又は100ps未満の不確実性で特定できる。
【0038】
当該トリガー時間補間装置は、当該A/D変換器のサンプリングクロックに対する当該トリガーの一時的な位置に基づいて、k空間較正ステップ185に計算された波数の値を補正する(矢印65)。当該補正は、以下の任意の補正又はその他の補正を含んでもよい:
・当該トリガーの位置によって与えられた大きさだけkクロック較正を時間シフトさせること。
・当該トリガーの位置に基づいて(場合によっては一定でない)位相シフトを計算すること。
・その他の任意の適切な補正。
【0039】
本発明では、このような補正が、発生するOCT像の位相安定性を著しく向上させることが発見された。当該位相安定性は、偏光感受型のアプリケーションにとって特に重要である。
【0040】
好適な実施の形態では、その時に均一に離間した地点でA/D変換器によってサンプリングされるデジタル信号68,69が、波数k空間における等間隔に離間した複数の地点でリサンプリングされる(ステップ190)。次いで、発生するベクトルが、ホストシステムによって選択されたウィンドウ関数に基づいてウィンドウ処理されてもよい(ステップ200)。デジタルフーリエ変換が適用される(ステップ210)。発生するスペクトルの振幅と好ましくは位相とが検出される(ステップ220)。好ましくは、データ処理装置が、バックグラウンド除去(ステップ230)及び平均化(ステップ233)も実行する。
【0041】
可能なバリエーションでは、デジタル信号OCT1及びOCT2が、k空間における不均一サンプリングとして取り扱われ、k空間において等間隔にリサンプリングされ、次いで離散フーリエ変換されるのではなくて、適切な不均一離散フーリエ変換演算器によって処理される。
【0042】
いずれにしても、装置78が、スペクトル選択を実行するので、kクロック210の寄与が、対象となる深さ範囲において無視できることを考慮すると、入力高域通過フィルタ155は、場合によっては省略されてもよい。しかしながら、k空間内ではなくて時間サンプリングされるデータ上で動作するプレフィルタ155が有益であるかもしれない。
【0043】
当該処理されたデータは、記憶装置235内に記憶される。ホストシステムが、カードデータインターフェース、例えばPCLeバスを介してこの記憶装置から当該処理されたデータを収集する(ステップ240)。好適な実施の形態では、当該リサンプリングされたOCT信号及び/又は未処理のOCT信号(矢印232)が、複素離散フーリエ変換出力(矢印234)と同様に記憶装置内でアドレス指定可能であり、要求に応じて当該ホストシステムにアップロードされ得る。
【0044】
本発明をデュアルチャネルOCTの重要な使用の場合について説明したが、必ずしもこれに限定されない。実際には、多くの場合、本発明は、OCT信号とkクロック信号とが結合されている合成信号をデジタル化するA/D変換器を有するシングルチャネルOCTシステムに適用され得る。また、本発明は、任意のN個の数のOCTチャネルとN個のA/D変換器とを有するシステムを含む。当該システムでは、少なくとも1つの変換器が、OCT信号とkクロック信号とを結合している合成信号を離散周波数帯域内でデジタル化する。
【符号の説明】
【0045】
10 試料
24 収集カード、収集装置
28 ホストシステム、PC
30 光源
40 光学制御装置
43 ガルバノミラー
44 光学素子
50 干渉計/検出器/サーキュレータ
53 参照アーム
60 デジタル化装置
63 A/D開始
65 トリガー時間補正
66 A/D変換器
67 A/D変換器
68 デジタルOCT1信号(デジタルOCT信号)
69 デジタル合成信号
70 データ処理装置
77 kクロック処理
78 スペクトル処理装置
80 アプリケーションロジック
90 ディスプレイ
110 サーキュレータ
115 ファイバブラッググレーティング
120 低域通過フィルタ
125 高域通過フィルタ
130 アナログ加算器(加算ノード)
150 デジタル低域通過フィルタ
155 デジタル高域通過フィルタ
161 OCT1信号(OCTアナログ信号)
164 OCT2(OCTアナログ信号)+kクロック信号(kクロックアナログ信号)
168 Aスキャントリガー
175 トリガー時間補間
180 クロック抽出
185 k空間の線形化及び較正
190 リサンプル
198 ウィンドウ処理
200 ホストからのパラメータ
210 離散フーリエ変換
220 振幅/位相計算
230 バックグラウンド除去
233 平均化
235 記憶装置
240 ホストへ