IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三井化学株式会社の特許一覧 ▶ 山本化成株式会社の特許一覧

特許7254167光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ
<図1>
  • 特許-光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ 図1
  • 特許-光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ 図2
  • 特許-光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ 図3
  • 特許-光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ 図4
  • 特許-光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ 図5
  • 特許-光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ 図6
  • 特許-光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ 図7
  • 特許-光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ 図8
  • 特許-光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ 図9
  • 特許-光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ 図10
  • 特許-光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ 図11
  • 特許-光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ 図12
  • 特許-光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-30
(45)【発行日】2023-04-07
(54)【発明の名称】光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ
(51)【国際特許分類】
   G02B 5/22 20060101AFI20230331BHJP
   G02C 7/10 20060101ALI20230331BHJP
   C08K 5/3415 20060101ALI20230331BHJP
   C08L 75/04 20060101ALI20230331BHJP
【FI】
G02B5/22
G02C7/10
C08K5/3415
C08L75/04
【請求項の数】 33
(21)【出願番号】P 2021516329
(86)(22)【出願日】2020-04-27
(86)【国際出願番号】 JP2020018016
(87)【国際公開番号】W WO2020218614
(87)【国際公開日】2020-10-29
【審査請求日】2021-07-08
(31)【優先権主張番号】P 2019086155
(32)【優先日】2019-04-26
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000005887
【氏名又は名称】三井化学株式会社
(73)【特許権者】
【識別番号】000179904
【氏名又は名称】山本化成株式会社
(74)【代理人】
【識別番号】110001519
【氏名又は名称】弁理士法人太陽国際特許事務所
(72)【発明者】
【氏名】松井 勇輔
(72)【発明者】
【氏名】伊藤 伸介
(72)【発明者】
【氏名】戸谷 由之
(72)【発明者】
【氏名】佐々木 浩之
【審査官】小久保 州洋
(56)【参考文献】
【文献】特表2004-525802(JP,A)
【文献】特表2004-529007(JP,A)
【文献】特開昭63-270765(JP,A)
【文献】国際公開第2018/082946(WO,A1)
【文献】特開平08-176101(JP,A)
【文献】特開昭64-011153(JP,A)
【文献】特開2018-055091(JP,A)
【文献】特開2019-044109(JP,A)
【文献】特開2014-210872(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
IPC G02B 5/22
G02C 7/10
C08K 5/3415
C08L 75/04
DB名 CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
ポリカーボネート樹脂、(チオ)ウレタン樹脂及びエピスルフィド樹脂からなる群から選択される少なくとも1種である樹脂と、
近赤外線吸収剤と、
を含み、
厚さ2mmで測定したCIE1976(L*,a*,b*)色空間において、a*が-30以上0以下であり、L*が80以上であり、
前記近赤外線吸収剤が、フタロシアニン化合物を含み、
前記フタロシアニン化合物が、一般式(I)~一般式(III)で表される化合物を少なくとも1種含み、
厚さ2mmにおける全光線透過率が70%以上である光学材料。
【化1】


(一般式(I)中、R及びRは、それぞれ独立に、総炭素数3~18である、置換又は未置換のアルコキシ基を表し、酸素原子に結合していないアルキレン基は酸素原子に置き代わっていてもよい。R及びRは、それぞれ独立に、水素原子又はハロゲン原子を表す。Mは、Pd又はVOを表す。ただし、RとR、及びRとRは入れ替わってもよい。)
【化2】


(一般式(II)中、R、R、R、R、R、R、R及びRは、直鎖又は分岐のアルキル基、アルコキシアルキル基もしくはジアルキルアミノアルキル基を示し、X、X、X、X、X、X、X、Xは、硫黄原子又は>NRを示し、X=(X及びXのいずれか一方)=(X及びXのいずれか一方)=(X及びXのいずれか一方)=硫黄原子であり、かつX=(X及びXのもう一方)=(X及びXのもう一方)=(X及びXのもう一方)=>NRである。Rは水素原子又はアルキル基を示し、Mは、Pd又はVOを示す。)
【化3】


(一般式(III)中、R~Rは、それぞれ独立に、アルキル基又はアルコキシアルキル基を示し、Xはハロゲン原子、アルキルチオ基、置換基を有してもよいフェニルチオ基又は置換基を有してもよいナフチルチオ基を示し、Mは、Pd又はVOを示す。)
【請求項2】
厚さ2mmにおける波長700nm~750nmの分光透過率が0.05%以上70%以下である請求項1に記載の光学材料。
【請求項3】
厚さ2mmにおける波長825nm~875nmの分光透過率が4%以上70%以下である請求項1に記載の光学材料。
【請求項4】
厚さ2mmにおける波長1000nm~1100nmの分光透過率が4%以上70%以下である請求項1に記載の光学材料。
【請求項5】
前記近赤外線吸収剤は、(1)分光透過率曲線における700nm~750nmの波長領域、(2)分光透過率曲線における825nm~875nmの波長領域、及び(3)分光透過率曲線における1000nm~1100nmの波長領域の少なくとも1つの範囲内に、分光透過率50%未満の極小値を有する請求項1~請求項4のいずれか一項に記載の光学材料。
【請求項6】
前記フタロシアニン化合物が、トルエン溶液で測定された可視光吸収分光スペクトルにおいて、700nm~1100nmの間に主吸収ピーク(P)を有し、上記ピーク(P)のピーク頂点(Pmax:ピーク中で最大吸光係数を示す点)の吸光係数(ml/g・cm)が30000以上であり、上記ピーク(P)の(Pmax)の吸光度の1/4の吸光度におけるピーク幅が360nm以下であり、かつ上記ピーク(P)の(Pmax)の吸光度の1/2の吸光度におけるピーク幅が130nm以下であり、かつ上記ピーク(P)の(Pmax)の吸光度の2/3の吸光度におけるピーク幅が90nm以下の範囲である、請求項1~請求項5のいずれか一項に記載の光学材料。
【請求項7】
厚さ2mmにおける波長700nm~750nmの分光透過率が0.05%以上70%以下であり、前記近赤外線吸収剤は、(1)分光透過率曲線における700nm~750nmの波長領域の範囲内に分光透過率50%未満の極小値を有する請求項1~請求項6のいずれか一項に記載の光学材料。
【請求項8】
前記フタロシアニン化合物が、一般式(I)で表される化合物を含む請求項7に記載の光学材料。
【請求項9】
厚さ2mmにおける波長825nm~875nmの分光透過率が4%以上70%以下であり、前記近赤外線吸収剤は、(2)分光透過率曲線における825nm~875nmの波長領域の範囲内に分光透過率50%未満の極小値を有する請求項1~請求項6のいずれか一項に記載の光学材料。
【請求項10】
前記フタロシアニン化合物が、一般式(II)で表される化合物を含む請求項9に記載の光学材料。
【請求項11】
厚さ2mmにおける波長1000nm~1100nmの分光透過率が4%以上70%以下であり、前記近赤外線吸収剤は、(3)分光透過率曲線における1000nm~1100nmの波長領域の範囲内に分光透過率50%未満の極小値を有する請求項1~請求項6のいずれか一項に記載の光学材料。
【請求項12】
前記フタロシアニン化合物が、一般式(III)で表される化合物を含む請求項11に記載の光学材料。
【請求項13】
前記近赤外線吸収剤を3ppm以上80ppm以下含む請求項1~請求項12のいずれか一項に記載の光学材料。
【請求項14】
前記近赤外線吸収剤は、異なる構造を有する複数のフタロシアニン化合物を組み合わせて含む請求項1~請求項13のいずれか一項に記載の光学材料。
【請求項15】
前記(チオ)ウレタン樹脂は、ポリイソシアネート化合物由来の構成単位とポリチオール化合物由来の構成単位及びポリオール化合物由来の構成単位の少なくとも一方とからなり、
前記ポリイソシアネート化合物由来の構成単位は、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、m-キシリレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、イソホロンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、及び1,5-ペンタメチレンジイソシアネートから選択される少なくとも一種由来の構成単位であり、
前記ポリチオール化合物由来の構成単位は、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(メルカプトエチル)スルフィド、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、及び2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタンから選択される少なくとも一種由来の構成単位であり、
前記ポリオール化合物由来の構成単位は、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、及び1,4-シクロヘキサンジオールから選択される少なくとも一種由来の構成単位である請求項1~請求項14のいずれか一項に記載の光学材料。
【請求項16】
前記エピスルフィド樹脂は、エピスルフィド化合物由来の構成単位、又はエピスルフィド化合物由来の構成単位とポリチオール化合物由来の構成単位とからなり、
前記エピスルフィド化合物由来の構成単位は、ビス(2,3-エピチオプロピル)スルフィド、ビス(2,3-エピチオプロピル)ジスルフィド、ビス(1,2-エピチオエチル)スルフィド、ビス(1,2-エピチオエチル)ジスルフィド、及び、ビス(2,3-エピチオプロピルチオ)メタンから選択される少なくとも一種由来の構成単位であり、
前記ポリオール化合物由来の構成単位は、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(メルカプトエチル)スルフィド、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、及び2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタンから選択される少なくとも一種由来の構成単位である請求項1~請求項14のいずれか一項に記載の光学材料。
【請求項17】
請求項1~請求項16のいずれか一項に記載の光学材料の製造に用いられる重合性組成物であって、
ポリイソシアネート化合物とポリチオール化合物及びポリオール化合物の少なくとも一方との組み合わせ、エピスルフィド化合物、又はエピスルフィド化合物とポリチオール化合物との組み合わせからなる重合性化合物と、
(1)分光透過率曲線における700nm~750nmの波長領域、(2)分光透過率曲線における825nm~875nmの波長領域、及び(3)分光透過率曲線における1000nm~1100nmの波長領域の少なくとも1つの範囲内に、分光透過率50%未満の極小値を有する近赤外線吸収剤と、
を含む光学材料用重合性組成物。
【請求項18】
前記近赤外線吸収剤が、フタロシアニン化合物を含む請求項17に記載の光学材料用重合性組成物。
【請求項19】
前記フタロシアニン化合物が、トルエン溶液で測定された可視光吸収分光スペクトルにおいて、700nm~1100nmの間に主吸収ピーク(P)を有し、上記ピーク(P)のピーク頂点(Pmax:ピーク中で最大吸光係数を示す点)の吸光係数(ml/g・cm)が30000以上であり、上記ピーク(P)の(Pmax)の吸光度の1/4の吸光度におけるピーク幅が360nm以下であり、かつ上記ピーク(P)の(Pmax)の吸光度の1/2の吸光度におけるピーク幅が130nm以下であり、かつ上記ピーク(P)の(Pmax)の吸光度の2/3の吸光度におけるピーク幅が90nm以下の範囲である請求項18に記載の光学材料用重合性組成物。
【請求項20】
前記フタロシアニン化合物が、一般式(I)~一般式(III)で表される化合物を少なくとも1種含む請求項18又は請求項19に記載の光学材料用重合性組成物。
【化4】


(一般式(I)中、R及びRは、それぞれ独立に、総炭素数3~18である、置換又は未置換のアルコキシ基を表し、酸素原子に結合していないアルキレン基は酸素原子に置き代わっていてもよい。R及びRは、それぞれ独立に、水素原子又はハロゲン原子を表す。Mは、Pd又はVOを表す。ただし、RとR、及びRとRは入れ替わってもよい。)
【化5】


(一般式(II)中、R、R、R、R、R、R、R及びRは、直鎖又は分岐のアルキル基、アルコキシアルキル基もしくはジアルキルアミノアルキル基を示し、X、X、X、X、X、X、X、Xは、硫黄原子又は-NRを示し、X=(X及びXのいずれか一方)=(X及びXのいずれか一方)=(X及びXのいずれか一方)=硫黄原子であり、かつX=(X及びXのもう一方)=(X及びXのもう一方)=(X及びXのもう一方)=-NRである。Rは水素原子又はアルキル基を示し、Mは、Pd又はVOを示す。)
【化6】


(一般式(III)中、R~Rは、それぞれ独立に、アルキル基又はアルコキシアルキル基を示し、Xはハロゲン原子、アルキルチオ基、置換基を有してもよいフェニルチオ基又は置換基を有してもよいナフチルチオ基を示し、Mは、Pd又はVOを示す。)
【請求項21】
厚さ2mmにおける波長700nm~750nmの分光透過率が0.05%以上70%以下である光学材料の製造に用いられる重合性組成物であって、
前記近赤外線吸収剤は、(1)分光透過率曲線における700nm~750nmの波長領域の範囲内に分光透過率50%未満の極小値を有する請求項20に記載の光学材料用重合性組成物。
【請求項22】
前記フタロシアニン化合物が、一般式(I)で表される化合物を含む請求項21に記載の光学材料用重合性組成物。
【請求項23】
厚さ2mmにおける波長825nm~875nmの分光透過率が4%以上70%以下である光学材料の製造に用いられる重合性組成物であって、
前記近赤外線吸収剤は、(2)分光透過率曲線における825nm~875nmの波長領域の範囲内に分光透過率50%未満の極小値を有する請求項20に記載の光学材料用重合性組成物。
【請求項24】
前記フタロシアニン化合物が、一般式(II)で表される化合物を含む請求項23に記載の光学材料用重合性組成物。
【請求項25】
厚さ2mmにおける波長1000nm~1100nmの分光透過率が4%以上70%以下である光学材料の製造に用いられる重合性組成物であって、
前記近赤外線吸収剤は、(3)分光透過率曲線における1000nm~1100nmの波長領域の範囲内に分光透過率50%未満の極小値を有する請求項20に記載の光学材料用重合性組成物。
【請求項26】
前記フタロシアニン化合物が、一般式(III)で表される化合物を含む請求項25に記載の光学材料用重合性組成物。
【請求項27】
前記近赤外線吸収剤を3ppm以上80ppm以下含む請求項17~請求項26のいずれか一項に記載の光学材料用重合性組成物。
【請求項28】
前記近赤外線吸収剤は、異なる構造を有する複数のフタロシアニン化合物を組み合わせて含む請求項17~請求項27のいずれか一項に記載の光学材料用重合性組成物。
【請求項29】
前記ポリイソシアネート化合物は、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、m-キシリレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、イソホロンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、及び1,5-ペンタメチレンジイソシアネートから選択される少なくとも一種であり、
前記ポリチオール化合物は、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(メルカプトエチル)スルフィド、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、及び2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタンから選択される少なくとも一種であり、
前記ポリオール化合物は、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、及び1,4-シクロヘキサンジオールから選択される少なくとも一種である請求項17~請求項28のいずれか一項に記載の光学材料用重合性組成物。
【請求項30】
前記エピスルフィド化合物は、ビス(2,3-エピチオプロピル)スルフィド、ビス(2,3-エピチオプロピル)ジスルフィド、ビス(1,2-エピチオエチル)スルフィド、ビス(1,2-エピチオエチル)ジスルフィド、及び、ビス(2,3-エピチオプロピルチオ)メタンから選択される少なくとも一種である請求項17~請求項28のいずれか一項に記載の光学材料用重合性組成物。
【請求項31】
請求項1~請求項16のいずれか一項に記載の光学材料からなるプラスチックレンズ。
【請求項32】
請求項31に記載のプラスチックレンズを備えるアイウェア。
【請求項33】
請求項31に記載のプラスチックレンズを備える赤外線センサー又は赤外線カメラ。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、近赤外線吸収剤を含む光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラに関する。
【背景技術】
【0002】
従来から、特定の波長域をカットするレンズが開発されている。
【0003】
特許文献1には、環状オレフィン系樹脂とガラスフィラーとを含む透明基板の少なくとも一方の面に、屈折率が異なる2つの誘電体層を交互に積層してなる近赤外線反射膜を有する近赤外線カットフィルターが開示されている。
【0004】
特許文献2には、複数の波長範囲の光を所定の透過率とする近赤外線カットフィルターが開示されている。この近赤外線カットフィルターは、環状オレフィン系樹脂等の透明樹脂とフタロシアニン系化合物等の近赤外線吸収剤とを含むことが記載されている。
【0005】
特許文献3~特許文献7には、所定のフタロシアニン色素と樹脂とを含む樹脂組成物等が開示されている。特許文献7には、当該樹脂組成物から保護眼鏡用レンズを得ることができると記載されている。
特許文献8及び特許文献9には、フタロシアニン色素とウレタン樹脂又はポリチオウレタン樹脂とからなる遠赤外線カットレンズが開示されている。
【0006】
特許文献1:特開2009-258362号公報
特許文献2:特開2011-100084号公報
特許文献3:特開平11-48612号公報
特許文献4:特開2000-313788号公報
特許文献5:特開2006-282646号公報
特許文献6:国際公開第2014/208484号
特許文献7:特開平8-60008号公報
特許文献8:特表2017-529415号公報
特許文献9:特表2018-529829号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献に記載の従来の技術においては以下の点に改善の余地があった。
【0008】
特許文献1及び特許文献2に記載の近赤外線カットフィルターは、近赤外線をカットすることができるものの、当該フィルターに濁りが生じて透明性が低下する場合があった。
【0009】
そこで、樹脂に近赤外線吸収剤を添加した光学材料の検討を進めたところ、近赤外線吸収剤が樹脂に溶解しなかったり、添加量を増やすと光学材料に濁りが生じて透明性が低下したり、あるいは着色により色味(意匠性)が悪くなる傾向があった。このように、近赤外線吸収剤を用いた光学材料においては、近赤外線カット効果と意匠性とはトレードオフの関係にあった。
【0010】
本開示の一実施形態が解決しようとする課題は、近赤外線カット率が高く、さらに意匠性にも優れた光学材料を提供することである。
【課題を解決するための手段】
【0011】
本発明者らは鋭意検討の結果、近赤外線吸収剤と所定の樹脂とを含有し、かつCIE1976色空間においてL*,a*を特定の範囲とすることにより、高い近赤外線カット率と意匠性とを両立させることができることを見出し、本開示の発明を完成させた。
すなわち、本開示は、以下に示すことができる。
【0012】
<1> ポリカーボネート樹脂、(チオ)ウレタン樹脂及びエピスルフィド樹脂からなる群から選択される少なくとも1種である樹脂と、近赤外線吸収剤と、を含み、厚さ2mmで測定したCIE1976(L*,a*,b*)色空間において、a*が-30以上0以下であり、L*が80以上である光学材料。
<2> 厚さ2mmにおける波長700nm~750nmの分光透過率が0.05%以上70%以下である<1>に記載の光学材料。
<3> 厚さ2mmにおける波長825nm~875nmの分光透過率が4%以上70%以下である<1>に記載の光学材料。
<4> 厚さ2mmにおける波長1000nm~1100nmの分光透過率が4%以上70%以下である<1>に記載の光学材料。
<5> 厚さ2mmにおける視感透過率が70%以上である<1>~<4>のいずれか一つに記載の光学材料。
<6> 前記近赤外線吸収剤は、(1)分光透過率曲線における700nm~750nmの波長領域、(2)分光透過率曲線における825nm~875nmの波長領域、及び(3)分光透過率曲線における1000nm~1100nmの波長領域の少なくとも1つの範囲内に、分光透過率50%未満の極小値を有する<1>~<5>のいずれか一つに記載の光学材料。
<7> 前記近赤外線吸収剤が、フタロシアニン化合物を含む<1>~<6>のいずれか一つに記載の光学材料。
<8> 前記フタロシアニン化合物が、トルエン溶液で測定された可視光吸収分光スペクトルにおいて、700nm~1100nmの間に主吸収ピーク(P)を有し、上記ピーク(P)のピーク頂点(Pmax:ピーク中で最大吸光係数を示す点)の吸光係数(ml/g・cm)が30000以上であり、上記ピーク(P)の(Pmax)の吸光度の1/4の吸光度におけるピーク幅が360nm以下であり、かつ上記ピーク(P)の(Pmax)の吸光度の1/2の吸光度におけるピーク幅が130nm以下であり、かつ上記ピーク(P)の(Pmax)の吸光度の2/3の吸光度におけるピーク幅が90nm以下の範囲である、<7>に記載の光学材料。
<9> 前記フタロシアニン化合物が、一般式(I)~一般式(III)で表される化合物を少なくとも1種含む<7>又は<8>に記載の光学材料。
【0013】
【化1】
【0014】
(一般式(I)中、R及びRは、それぞれ独立に、総炭素数3~18である、置換又は未置換のアルコキシ基を表し、酸素原子に結合していないアルキレン基は酸素原子に置き代わっていてもよい。R及びRは、それぞれ独立に、水素原子又はハロゲン原子を表す。Mは、2個の水素原子、2価の金属、金属の酸化物又はハロゲン化物を表す。ただし、RとR、及びRとRは入れ替わってもよい。)
【0015】
【化2】
【0016】
(一般式(II)中、R、R、R、R、R、R、R及びRは、直鎖又は分岐のアルキル基、アルコキシアルキル基もしくはジアルキルアミノアルキル基を示し、X、X、X、X、X、X、X、Xは、硫黄原子又は>NRを示し、X=(X及びXのいずれか一方)=(X及びXのいずれか一方)=(X及びXのいずれか一方)=硫黄原子であり、かつX=(X及びXのもう一方)=(X及びXのもう一方)=(X及びXのもう一方)=>NRである。Rは水素原子又はアルキル基を示し、Mは、2個の水素原子、2価の金属又は3価又は4価の金属誘導体を示す。)
【0017】
【化3】
【0018】
(一般式(III)中、R~Rは、それぞれ独立に、アルキル基又はアルコキシアルキル基を示し、Xはハロゲン原子、アルキルチオ基、置換基を有してもよいフェニルチオ基又は置換基を有してもよいナフチルチオ基を示し、Mは、2個の水素原子、2価の金属又は3価もしくは4価の金属の誘導体を示す。)
<10> 厚さ2mmにおける波長700nm~750nmの分光透過率が0.05%以上70%以下であり、前記近赤外線吸収剤は、(1)分光透過率曲線における700nm~750nmの波長領域の範囲内に分光透過率50%未満の極小値を有する<9>に記載の光学材料。
<11> 前記フタロシアニン化合物が、一般式(I)で表される化合物を含む<10>に記載の光学材料。
<12> 厚さ2mmにおける波長825nm~875nmの分光透過率が4%以上70%以下であり、前記近赤外線吸収剤は、(2)分光透過率曲線における825nm~875nmの波長領域の範囲内に分光透過率50%未満の極小値を有する<9>に記載の光学材料。
<13> 前記フタロシアニン化合物が、一般式(II)で表される化合物を含む<12>に記載の光学材料。
<14> 厚さ2mmにおける波長1000nm~1100nmの分光透過率が4%以上70%以下であり、前記近赤外線吸収剤は、(3)分光透過率曲線における1000nm~1100nmの波長領域の範囲内に分光透過率50%未満の極小値を有する<9>に記載の光学材料。
<15> 前記フタロシアニン化合物が、一般式(III)で表される化合物を含む<14>に記載の光学材料。
<16> 前記近赤外線吸収剤を3ppm以上80ppm以下含む<1>~<15>のいずれか一つに記載の光学材料。
<17> 前記近赤外線吸収剤は、異なる構造を有する複数のフタロシアニン化合物を組み合わせて含む<1>~<16>のいずれか一つに記載の光学材料。
<18> 前記(チオ)ウレタン樹脂は、ポリイソシアネート化合物由来の構成単位とポリチオール化合物由来の構成単位及びポリオール化合物由来の構成単位の少なくとも一方とからなり、
前記ポリイソシアネート化合物由来の構成単位は、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、m-キシリレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、イソホロンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、及び1,5-ペンタメチレンジイソシアネートから選択される少なくとも一種由来の構成単位であり、
前記ポリチオール化合物由来の構成単位は、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(メルカプトエチル)スルフィド、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、及び2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタンから選択される少なくとも一種由来の構成単位であり、
前記ポリオール化合物由来の構成単位は、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、及び1,4-シクロヘキサンジオールから選択される少なくとも一種由来の構成単位である<1>~<17>のいずれか一つに記載の光学材料。
<19> 前記エピスルフィド樹脂は、エピスルフィド化合物由来の構成単位、又はエピスルフィド化合物由来の構成単位とポリチオール化合物由来の構成単位とからなり、
前記エピスルフィド化合物由来の構成単位は、ビス(2,3-エピチオプロピル)スルフィド、ビス(2,3-エピチオプロピル)ジスルフィド、ビス(1,2-エピチオエチル)スルフィド、ビス(1,2-エピチオエチル)ジスルフィド、及び、ビス(2,3-エピチオプロピルチオ)メタンから選択される少なくとも一種由来の構成単位であり、
前記ポリオール化合物由来の構成単位は、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(メルカプトエチル)スルフィド、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、及び2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタンから選択される少なくとも一種由来の構成単位である<1>~<17>のいずれか一つに記載の光学材料。
<20> <1>~<19>のいずれか一つに記載の光学材料の製造に用いられる重合性組成物であって、
ポリイソシアネート化合物とポリチオール化合物及びポリオール化合物の少なくとも一方との組み合わせ、エピスルフィド化合物、又はエピスルフィド化合物とポリチオール化合物との組み合わせからなる重合性化合物と、
(1)分光透過率曲線における700nm~750nmの波長領域、(2)分光透過率曲線における825nm~875nmの波長領域、及び(3)分光透過率曲線における1000nm~1100nmの波長領域の少なくとも1つの範囲内に、分光透過率50%未満の極小値を有する近赤外線吸収剤と、
を含む光学材料用重合性組成物。
<21> 前記近赤外線吸収剤が、フタロシアニン化合物を含む<20>に記載の光学材料用重合性組成物。
<22> 前記フタロシアニン化合物が、トルエン溶液で測定された可視光吸収分光スペクトルにおいて、700nm~1100nmの間に主吸収ピーク(P)を有し、上記ピーク(P)のピーク頂点(Pmax:ピーク中で最大吸光係数を示す点)の吸光係数(ml/g・cm)が30000以上であり、上記ピーク(P)の(Pmax)の吸光度の1/4の吸光度におけるピーク幅が360nm以下であり、かつ上記ピーク(P)の(Pmax)の吸光度の1/2の吸光度におけるピーク幅が130nm以下であり、かつ上記ピーク(P)の(Pmax)の吸光度の2/3の吸光度におけるピーク幅が90nm以下の範囲である<21>に記載の光学材料用重合性組成物。
<23> 前記フタロシアニン化合物が、一般式(I)~一般式(III)で表される化合物を少なくとも1種含む<21>又は<22>に記載の光学材料用重合性組成物。
【0019】
【化4】
【0020】
(一般式(I)中、R及びRは、それぞれ独立に、総炭素数3~18である、置換又は未置換のアルコキシ基を表し、酸素原子に結合していないアルキレン基は酸素原子に置き代わっていてもよい。R及びRは、それぞれ独立に、水素原子又はハロゲン原子を表す。Mは、2個の水素原子、2価の金属、金属の酸化物又はハロゲン化物を表す。ただし、RとR、及びRとRは入れ替わってもよい。)
【0021】
【化5】
【0022】
(一般式(II)中、R、R、R、R、R、R、R及びRは、直鎖又は分岐のアルキル基、アルコキシアルキル基もしくはジアルキルアミノアルキル基を示し、X、X、X、X、X、X、X及びXは、硫黄原子又は-NRを示し、X=(X及びXのいずれか一方)=(X及びXのいずれか一方)=(X及びXのいずれか一方)=硫黄原子であり、かつX=(X及びXのもう一方)=(X及びXのもう一方)=(X及びXのもう一方)=-NRである。Rは水素原子又はアルキル基を示し、Mは、2個の水素原子、2価の金属又は3価又は4価の金属誘導体を示す。)
【0023】
【化6】
【0024】
(一般式(III)中、R~Rは、それぞれ独立に、アルキル基又はアルコキシアルキル基を示し、Xはハロゲン原子、アルキルチオ基、置換基を有してもよいフェニルチオ基又は置換基を有してもよいナフチルチオ基を示し、Mは、2個の水素原子、2価の金属又は3価もしくは4価の金属の誘導体を示す。)
<24> 厚さ2mmにおける波長700nm~750nmの分光透過率が0.05%以上70%以下である光学材料の製造に用いられる重合性組成物であって、前記近赤外線吸収剤は、(1)分光透過率曲線における700nm~750nmの波長領域の範囲内に分光透過率50%未満の極小値を有する<23>に記載の光学材料用重合性組成物。
<25> 前記フタロシアニン化合物が、一般式(I)で表される化合物を含む<24>に記載の光学材料用重合性組成物。
<26> 厚さ2mmにおける波長825nm~875nmの分光透過率が4%以上70%以下である光学材料の製造に用いられる重合性組成物であって、前記近赤外線吸収剤は、(2)分光透過率曲線における825nm~875nmの波長領域の範囲内に分光透過率50%未満の極小値を有する<23>に記載の光学材料用重合性組成物。
<27> 前記フタロシアニン化合物が、一般式(II)で表される化合物を含む<26>に記載の光学材料用重合性組成物。
<28> 厚さ2mmにおける波長1000nm~1100nmの分光透過率が4%以上70%以下である光学材料の製造に用いられる重合性組成物であって、前記近赤外線吸収剤は、(3)分光透過率曲線における1000nm~1100nmの波長領域の範囲内に分光透過率50%未満の極小値を有する<23>に記載の光学材料用重合性組成物。
<29> 前記フタロシアニン化合物が、一般式(III)で表される化合物を含む<28>に記載の光学材料用重合性組成物。
<30> 前記近赤外線吸収剤を3ppm以上80ppm以下含む<20>~<29>のいずれか一つに記載の光学材料用重合性組成物。
<31> 前記近赤外線吸収剤は、異なる構造を有する複数のフタロシアニン化合物を組み合わせて含む<20>~<30>のいずれか一つに記載の光学材料用重合性組成物。
<32> 前記ポリイソシアネート化合物は、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、m-キシリレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、イソホロンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、及び1,5-ペンタメチレンジイソシアネートから選択される少なくとも一種であり、
前記ポリチオール化合物は、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(メルカプトエチル)スルフィド、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、及び2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタンから選択される少なくとも一種であり、
前記ポリオール化合物は、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、及び1,4-シクロヘキサンジオールから選択される少なくとも一種である<20>~<31>のいずれか一つに記載の光学材料用重合性組成物。
<33> 前記エピスルフィド化合物は、ビス(2,3-エピチオプロピル)スルフィド、ビス(2,3-エピチオプロピル)ジスルフィド、ビス(1,2-エピチオエチル)スルフィド、ビス(1,2-エピチオエチル)ジスルフィド、及び、ビス(2,3-エピチオプロピルチオ)メタンから選択される少なくとも一種である<20>~<31>のいずれか一つに記載の光学材料用重合性組成物。
<34> <1>~<19>のいずれか一つに記載の光学材料からなるプラスチックレンズ。
<35> <34>に記載のプラスチックレンズを備えるアイウェア。
<36> <34>に記載のプラスチックレンズを備える赤外線センサー又は赤外線カメラ。
【発明の効果】
【0025】
本開示によれば、近赤外線カット率が高く、さらに意匠性にも優れた光学材料を提供することができる。
【図面の簡単な説明】
【0026】
図1】実施例3で得られた平板レンズの分光透過率曲線を示す。
図2】実施例10で得られた平板レンズの分光透過率曲線を示す。
図3】実施例13で得られた平板レンズの分光透過率曲線を示す。
図4】実施例16で得られた平板レンズの分光透過率曲線を示す。
図5】実施例22で得られた平板レンズの分光透過率曲線を示す。
図6】実施例24で得られた平板レンズの分光透過率曲線を示す。
図7】比較例8で得られた平板レンズの分光透過率曲線を示す。
図8】実施例26で得られた平板レンズの分光透過率曲線を示す。
図9】実施例30で得られた平板レンズの分光透過率曲線を示す。
図10】実施例32で得られた平板レンズの分光透過率曲線を示す。
図11】実施例35で得られた平板レンズの分光透過率曲線を示す。
図12】実施例41で得られた平板レンズの分光透過率曲線を示す。
図13】実施例43で得られた平板レンズの分光透過率曲線を示す。
【発明を実施するための形態】
【0027】
本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
以下、本開示の実施形態について具体的に説明する。
【0028】
≪光学材料≫
本実施形態の光学材料は、ポリカーボネート樹脂、(チオ)ウレタン樹脂及びエピスルフィド樹脂からなる群から選択される少なくとも1種である樹脂と、近赤外線吸収剤と、を含み、厚さ2mmで測定したCIE1976(L*,a*,b*)色空間において、a*が-30以上0以下であり、L*が80以上である。
【0029】
本実施形態の光学材料は、厚さ2mmで測定したCIE1976(L*,a*,b*)色空間において、a*が-30以上0以下、L*が80以上、好ましくはa*が-20以上0以下、L*が82以上、さらに好ましくはa*が-15以上0以下、L*が85以上,特に好ましくはa*が-10以上0以下、L*が88以上である。
【0030】
本実施形態においては、近赤外線吸収剤と、ポリカーボネート樹脂、(チオ)ウレタン樹脂及びエピスルフィド樹脂からなる群から選択される少なくとも1種である樹脂とを含有し、かつCIE1976色空間においてL*,a*を上記範囲とすることにより、高い近赤外線カット率と意匠性とを両立させることができる。
【0031】
本実施形態の光学材料は、本発明の効果の観点から、厚さ2mmにおける波長700nm~750nmの分光透過率、波長825nm~875nmの分光透過率、及び波長1000nm~1100nmの分光透過率の少なくとも1つが以下の範囲を満たすことが好ましい。
【0032】
厚さ2mmにおける波長700nm~750nmの分光透過率:0.05%以上70%以下、好ましくは3%以上50%以下、さらに好ましくは5%以上40%以下
厚さ2mmにおける波長825nm~875nmの分光透過率:4%以上70%以下、好ましくは6%以上50%以下、さらに好ましくは8%以上40%以下
厚さ2mmにおける波長1000nm~1100nmの分光透過率:4%以上70%以下、好ましくは6%以上50%以下、さらに好ましくは8%以上40%以下
【0033】
本実施形態の光学材料は、濁りや着色が抑制されており意匠性に優れることから、厚さ2mmにおける全光線透過率を70%以上とすることができ、さらに視感透過率を70%以上、好ましくは75%以上とすることができる。
【0034】
[近赤外線吸収剤]
本実施形態における近赤外線吸収剤は、本開示における効果を得ることができればその構造は特に限定されず、従来公知の近赤外線吸収剤から選択して用いることができる。
【0035】
本実施形態における近赤外線吸収剤としては、例えば、高い近赤外線カット率を実現するために、(1)分光透過率曲線における700nm~750nmの波長領域の範囲内に分光透過率50%未満の極小値を有するもの、(2)分光透過率曲線における825nm~875nmの波長領域の範囲内に分光透過率50%未満の極小値を有するもの、及び(3)分光透過率曲線における1000nm~1100nmの波長領域の少なくとも1つの範囲内に、分光透過率50%未満の極小値を有するものを用いることができる。
広い近赤外線領域において高いカット率を実現するために、前記(1)~(3)の特性を有する近赤外線吸収剤を組み合わせて用いることができる
前記近赤外線吸収剤は、特に限定はないが、フタロシアニン化合物を含むことが好ましい。
【0036】
前記フタロシアニン化合物としては、トルエン溶液で測定された可視光吸収分光スペクトルにおいて、700nm~1100nmの間に主吸収ピーク(P)を有し、上記ピーク(P)のピーク頂点(Pmax:ピーク中で最大吸光係数を示す点)の吸光係数(ml/g・cm)が30000以上であり、上記ピーク(P)の(Pmax)の吸光度の1/4の吸光度におけるピーク幅が360nm以下であり、かつ上記ピーク(P)の(Pmax)の吸光度の1/2の吸光度におけるピーク幅が130nm以下であり、かつ上記ピーク(P)の(Pmax)の吸光度の2/3の吸光度におけるピーク幅が90nm以下の範囲である化合物を用いることができる。
なお、可視光吸収分光スペクトルは、光路長10mmにて、トルエン溶液を用いて測定する。トルエン溶液の濃度は、適宜調整すればよく、例えば、3.3質量ppm~36.5質量ppmとしてもよい。
【0037】
上記ピーク(P)のピーク頂点(Pmax:ピーク中で最大吸光係数を示す点)の吸光係数(ml/g・cm)は、50000以上が好ましく、70000以上がより好ましい。
【0038】
前記フタロシアニン化合物としては、一般式(I)~一般式(III)で表される化合物を挙げることができ、一般式(I)~一般式(III)で表される化合物を少なくとも1種含むことが好ましい。
【0039】
【化7】
【0040】
一般式(I)中、R及びRは、それぞれ独立に、総炭素数3~18である、置換又は未置換のアルコキシ基を表し、酸素原子に結合していないアルキレン基は酸素原子に置き代わっていてもよい。R及びRは、それぞれ独立に、水素原子又はハロゲン原子を表す。Mは、2個の水素原子、2価の金属、金属の酸化物またはハロゲン化物を表す。ただし、RとR、及びRとRは入れ替わってもよい。
【0041】
一般式(I)で表されるフタロシアニン色素に於けるMの具体例としては、Cu、Pd、Ni、Mg、Zn、Pb、Cd等の2価の金属、VO等の金属酸化物やAlCl等の金属のハロゲン化物等が挙げられる。
【0042】
及びRにおける、総炭素数3~18である、置換又は未置換のアルコキシ基は、直鎖であってもよく、分枝であってもよく、環状であってもよい。
及びRにおける、総炭素数3~18である、置換又は未置換のアルコキシ基としては、例えば、置換基を有していてもよい、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、アリルオキシ基、シクロヘキシルオキシ基、ベンジルオキシ基、フェノキシ基、ナフチルオキシ基等が挙げられる。
置換基としては、例えば、ヒドロキシ基、カルボキシ基、ニトリル基、ホルミル基、アミノ基、ニトロ基、ハロゲン基、スルホ基、アルコキシ基、ベンゾイル基、チオール基、アリール基、エステル基、アミド基、アルキル基等が挙げられる。
【0043】
好ましいフタロシアニン色素の具体例としては、例えば特開平3-62878号公報、特開平3-141582号公報、特開平3-215466号公報に記載されている。特に好ましくは、後述する化学式(I-1)で表される化合物である。
【0044】
【化8】
【0045】
一般式(II)中、R、R、R、R、R、R、R及びRは、直鎖または分岐のアルキル基、アルコキシアルキル基もしくはジアルキルアミノアルキル基を示し、X、X、X、X、X、X、X及びXは、硫黄原子又は-NRを示し、X=(X及びXのいずれか一方)=(X及びXのいずれか一方)=(X及びXのいずれか一方)=硫黄原子であり、かつX=(X及びXのもう一方)=(X及びXのもう一方)=(X及びXのもう一方)=
-NRである。Rは水素原子又はアルキル基を示し、Mは、2個の水素原子、2価の金属または3価または4価の金属誘導体を示す。
【0046】
一般式(II)で表されるフタロシアニン化合物において、R、R、R、R、R、R、R及びRがアルキル基である場合は、特に限定されるものではないが入手性等の点から炭素数1~12の直鎖又は分岐のアルキル基が好ましく、炭素数1~8の直鎖又は分岐のアルキル基が特に好ましい。例としてはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘプチル基、イソヘプチル基、sec-ヘプチル基、n-オクチル基、2-エチルヘキシル基が挙げられる。
【0047】
~Rがアルコキシアルキル基である場合は、炭素数3~6のものが好ましい。例としてメトキシエチル基、メトキシプロピル基、メトキシブチル基、エトキシエチル基、エトキシプロピル基、エトキシブチル基、n-プロポキシエチル基、iso-プロポキシエチル基が挙げられる。
~Rがジアルキルアミノアルキル基である場合は炭素数3~12のものが好ましく、特に一般式(II-a)で表される基が好ましい。
【0048】
【化9】
【0049】
式(II-a)中、R12は炭素数1~4のアルキレン基を示し、R13及びR14はそれぞれ個別に炭素数1~4のアルキル基を示す。)例としてはジメチルアミノエチル基、ジメチルアミノプロピル基、ジメチルアミノブチル基、ジエチルアミノエチル基、ジエチルアミノプロピル基、ジエチルアミノブチル基、ジプロピルアミノエチル基、ジプロピルアミノプロピル基、ジプロピルアミノブチル基、ジブチルアミノエチル基、ジブチルアミノプロピル基、ジブチルアミノブチル基が挙げられる。
【0050】
本実施形態においてR~Rの置換基の種類に関しては、R=(R及びRのいずれか一方)=(R及びRのいずれか一方)=(R及びRのいずれか一方)であり、かつR=(R及びRのもう一方)=(R及びRのもう一方)=(R及びRのもう一方)であるものが特に好ましい。又、R~Rの全てが同一の置換基であるものも好ましい。
【0051】
がアルキル基である場合は炭素数1~6のものが好ましい。例としてはメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基が挙げられる。
【0052】
Mが2価金属であるものとしては、Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn、Sn又はPbが好ましく、3価または4価の金属誘導体としては、AlCl、AlOH、InCl、FeCl、MnOH、SiCl、SnCl、GeCl、Si(OH)、Sn(OH)、Ge(OH)、VO又はTiOが好ましい。特にCu、Ni、Co、FeCl、Zn、VO、Pd又はMnOHが好ましい。
一般式(II)で表されるフタロシアニン色素の具体例は、特開平8-60008号公報の表1に記載されている。特に好ましくは、後述する化学式(II-1)で表される化合物である。
【0053】
【化10】
【0054】
一般式(III)中、R~Rは、それぞれ独立に、アルキル基又はアルコキシアルキル基を示し、Xはハロゲン原子、アルキルチオ基、置換基を有してもよいフェニルチオ基又は置換基を有してもよいナフチルチオ基を示し、Mは、2個の水素原子、2価の金属又は3価もしくは4価の金属の誘導体を示す。
【0055】
~Rがアルキル基である場合は、炭素数1~12の直鎖又は分岐のアルキル基が好ましく、炭素数1~8の直鎖又は分岐のアルキル基が特に好ましい。例としてはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘプチル基、イソヘプチル基、sec-ヘプチル基、n-オクチル基、2-エチルヘキシル基が挙げられる。
【0056】
~Rがアルコキシアルキル基である場合は、総炭素数2~6のものが好ましい。
例としてメトキシエチル基、メトキシプロピル基、メトキシブチル基、エトキシエチル基、エトキシプロピル基、エトキシブチル基、n-プロポキシエチル基、iso-プロポキシエチル基が挙げられる。Xはハロゲン原子、アルキルチオ基、置換基を有してもよいフェニルチオ基又は置換基を有してもよいナフチルチオ基であるが、Xがハロゲン原子であるものとしては、塩素原子、臭素原子、又はフッ素原子が好ましく、特に塩素原子が好ましい。
【0057】
Xがアルキルチオ基である場合としては炭素数1~12のアルキルチオ基が好ましい。具体例としてはメチルチオ基、エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、n-ブチルチオ基、sec-ブチルチオ基、tert-ブチルチオ基、n-ペンチルチオ基、イソペンチルチオ基、ネオペンチルチオ基、n-ヘキシルチオ基、イソヘキシルチオ基、sec-ヘキシルチオ基、シクロヘキシルチオ基、n-ヘプチルチオ基、イソヘプチルチオ基、sec-ヘプチルチオ基、n-オクチルチオ基、2-エチルヘキシルチオ基、n-ノニルチオ基、n-デシルチオ基、n-ウンデシルチオ基、n-ドデシルチオ基等が挙げられる。
【0058】
Xが置換基を有してもよいフェニルチオ基である場合は、この様な置換基としては炭素数1~8のアルキル基、炭素数1~8のアルコキシ基、更にアルキル基で置換されてもよいアミノ基、ハロゲン原子等が挙げられる。
【0059】
このような置換基を有してもよいフェニルチオ基の具体例としてはフェニルチオ基、p-メチルフェニルチオ基、p-エチルフェニルチオ基、p-n-ブチルフェニルチオ基、p-n-プロピルフェニルチオ基、p-tert-ブチルフェニルチオ基、p-n-オクチルフェニルチオ基、p-メトキシフェニルチオ基、p-エトキシフェニルチオ基、p-n-プロポキシフェニルチオ基、p-iso-プロポキシフェニルチオ基、p-n-ブトキシフェニルチオ基、p-iso-ブトキシフェニルチオ基、p-sec-ブトキシフェニルチオ基、p-n-ペントキシフェニルチオ基、p-n-オクチルフェニルチオ基、2,4-ジメチルフェニルチオ基、p-ジメチルアミノフェニルチオ基、p-ジエチルアミノフェニルチオ基、p-ジ-n-ブチルアミノフェニルチオ基、p-クロロフェニルチオ基、p-ブロモフェニルチオ基、p-フロロフェニルチオ基、2,4-ジクロロフェニルチオ基等が挙げられる。
【0060】
特にフェニルチオ基、置換基として炭素数1~8のアルキル基、炭素数1~8のアルコキシ基、炭素数1~8のジアルキルアミノ基又はハロゲン原子を有するフェニルチオ基が好ましい。
【0061】
Xが置換基を有してもよいナフチルチオ基である場合は、この様な置換基としては炭素数1~4のアルキル基、ハロゲン原子等が挙げられる。この様な置換基を有してもよいナフチルチオ基の具体例としては、ナフチルチオ基、メチルナフチルチオ基、n-プロピルナフチルチオ基、iso-プロピルナフチルチオ基、n-ブチルナフチルチオ基、tert-ブチルナフチルチオ基、クロロナフチルチオ基、ブロモナフチルチオ基、フロロナフチルチオ基等が挙げられる。特にナフチルチオ基、炭素数1~4のアルキル基を有するナフチルチオ基が好ましい。
【0062】
Mが2価の金属であるものとしては、Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn又はSnが好ましく、3価又は4価の金属の誘導体であるものとしては、AlCl、AlOH、InCl、FeCl、MnOH、SiCl、SnCl、GeCl、Si(OH)、Sn(OH)、Ge(OH)、VO又はTiOが好ましい。Mとしては特にCu、Ni、Co、FeCl、Zn、VO、Pd又はMnOHが好ましい。
一般式(III)で表されるフタロシアニン色素の具体例は、特開2000-313788号公報の表1に記載されている。特に好ましくは、後述する化学式(III-1)で表される化合物である。
【0063】
一般式(I)~一般式(III)で表されるフタロシアニン化合物は、本発明の効果の観点から、中心金属Mを除く重量平均分子量が、900以上5000以下であることが好ましく、1200以上2000以下であることがより好ましい。
【0064】
本実施形態における前記近赤外線吸収剤は、異なる構造を有する複数のフタロシアニン化合物を組み合わせて含むことが好ましい。これにより、広い領域で近赤外線を効率よくカットすることができる。
【0065】
本実施形態の光学材料は、本開示における効果の観点から、前記近赤外線吸収剤を3ppm以上80ppm以下、好ましくは5ppm以上65ppm以下、さらに好ましくは10ppm以上50ppm以下含むことができる。
【0066】
本実施形態の光学材料の好ましい態様としては、本開示における効果の観点から、以下の態様A~態様Cが挙げられる。
【0067】
~態様A~
態様Aに係る光学材料は、厚さ2mmにおける波長700nm~750nmの分光透過率が、0.05%以上70%以下である。
態様Aにおける厚さ2mmにおける波長700nm~750nmの分光透過率としては、3%以上50%以下であることが好ましく、5%以上40%以下であることがより好ましい。
【0068】
(近赤外線吸収剤)
態様Aにおける近赤外線吸収剤としては、例えば、高い近赤外線カット率を実現するために、(1)分光透過率曲線における700nm~750nmの波長領域の範囲内に分光透過率50%未満の極小値を有する近赤外線吸収剤が好ましい。
(1)を満たす近赤外線吸収剤を用いることで、厚さ2mmにおける波長700nm~750nmの分光透過率を上述の範囲とすることが容易となる。
【0069】
(1)を満たす近赤外線吸収剤としては、例えば、上述の一般式(I)で表される化合物が挙げられる。
【0070】
~態様B~
態様Bに係る光学材料は、厚さ2mmにおける波長825nm~875nmの分光透過率が、4%以上70%以下である。
態様Bにおける厚さ2mmにおける波長825nm~875nmの分光透過率としては、6%以上50%以下であることが好ましく、8%以上40%以下であることがより好ましい。
【0071】
(近赤外線吸収剤)
態様Bにおける近赤外線吸収剤としては、例えば、高い近赤外線カット率を実現するために、(2)分光透過率曲線における825nm~875nmの波長領域の範囲内に分光透過率50%未満の極小値を有する近赤外線吸収剤も好ましい。
(2)を満たす近赤外線吸収剤を用いることで、厚さ2mmにおける波長825nm~875nmの分光透過率を上述の範囲とすることが容易となる。
【0072】
(2)を満たす近赤外線吸収剤としては、例えば、上述の一般式(II)で表される化合物が挙げられる。
【0073】
~態様C~
態様Cに係る光学材料は、厚さ2mmにおける波長1000nm~1100nmの分光透過率が、4%以上70%以下である。
態様Cにおける厚さ2mmにおける波長1000nm~1100nmの分光透過率としては、6%以上50%以下であることが好ましく、8%以上40%以下であることがより好ましい。
【0074】
(近赤外線吸収剤)
態様Cにおける近赤外線吸収剤としては、例えば、高い近赤外線カット率を実現するために、(3)分光透過率曲線における1000nm~1100nmの波長領域の範囲内に分光透過率0%未満の極小値を有する近赤外線吸収剤も好ましい。
(3)を満たす近赤外線吸収剤を用いることで、厚さ2mmにおける波長1000nm~1100nmの分光透過率を上述の範囲とすることが容易となる。
【0075】
(3)を満たす近赤外線吸収剤としては、例えば、上述の一般式(III)で表される化合物が挙げられる。
【0076】
<樹脂>
本実施形態の光学材料は、ポリカーボネート樹脂、(チオ)ウレタン樹脂及びエピスルフィド樹脂からなる群から選択される少なくとも1種である樹脂を含む。
【0077】
ポリカーボネート樹脂は、ジヒドロキシジアリール化合物類とホスゲンとを反応させるホスゲン法、ジヒドロキシジアリール化合物類とジフェニルカーボネートなどの炭酸エステル類とを反応させるエステル交換法等によって製造してもよい。
【0078】
ポリカーボネート樹脂としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールAとも呼ばれる)から製造されたポリカーボネート樹脂、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンから製造されたポリカーボネート樹脂、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンから製造されたポリカーボネート樹脂、9,9-ビス(4-ヒドロキシフェニル)フルオレンから製造されたポリカーボネート樹脂、9,9-ビス〔4-(2-ヒドロキシエチルオキシ)フェニル〕フルオレンから製造されたポリカーボネート樹脂、ジヒドロキシジアリール化合物類の混合物から製造された共重合ポリカーボネート樹脂であってもよく、上記で挙げた各ポリカーボネート樹脂の混合物であってもよい。
【0079】
ジヒドロキシジアリール化合物類としては、ビスフェノールAの他に、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(4-ヒドロキシフェニル)フェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-第三ブチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-第三ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3、5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3、5-ジクロロフェニル)プロパンのような(ヒドロキシアリール)アルカン類、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンのような(ヒドロキシアリール)シクロアルカン類、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3、3’-ジメチルジフェニルエーテルのようなジヒドロキシジアリールエーテル類、4,4’-ジヒドロキシジフェニルスルフィドのようなジヒドロキシジアリールスルフィド類、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシドのようなジヒドロキシジアリールスルホキシド類、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホンのようなジヒドロキシジアリールスルホン類などが挙げられる。
これらは単独又は2種類以上から選択されて使用されてもよい。
【0080】
ジヒドロキシジアリール化合物類は、ピペラジン、ジピペリジルハイドロキノン、レゾルシン、4,4’-ジヒドロキシジフェニル等と併用して使用してもよい。
なお、ポリカーボネート樹脂の粘度平均分子量は通常10000~100000、好ましくは10000~400000である。
【0081】
ジヒドロキシジアリール化合物類は、以下に示すような3価以上のフェノール化合物を併用して使用してもよい。3価以上のフェノールとしては、フロログルシン、1、3、5-トリ-(4-ヒドロキシフェニル)-ベンゾール、1、1、1-トリ-(4-ヒドロキシフェニル)-エタンなどが挙げられる。
また、ポリカーボネート樹脂としては、市販品を用いてもよく、例えば、パンライト(帝人株式会社製)、ユーピロン(三菱エンジニアリングプラスチックス株式会社製)、ノバレックス(三菱エンジニアリングプラスチックス株式会社製)、SDポリカ(住友ポリカーボネート株式会社製)等が挙げられる。
【0082】
(チオ)ウレタン樹脂は、ポリイソシアネート化合物由来の構成単位とポリチオール化合物由来の構成単位及びポリオール化合物由来の構成単位の少なくとも一方とからなる。
エピスルフィド樹脂は、エピスルフィド化合物由来の構成単位、又はエピスルフィド化合物由来の構成単位とポリチオール化合物由来の構成単位とからなる。
これらの化合物については、以下の光学材料用重合性組成物の項にて詳細に説明する。
【0083】
<光学材料用重合性組成物>
本実施形態の光学材料用重合性組成物は、本開示の光学材料の製造に用いられる重合性組成物であって、ポリイソシアネート化合物とポリチオール化合物及びポリオール化合物の少なくとも一方との組み合わせ、エピスルフィド化合物、又はエピスルフィド化合物とポリチオール化合物との組み合わせからなる重合性化合物と、(1)分光透過率曲線における700nm~750nmの波長領域、(2)分光透過率曲線における825nm~875nmの波長領域、及び(3)分光透過率曲線における1000nm~1100nmの波長領域の少なくとも1つの範囲内に、分光透過率50%未満の極小値を有する近赤外線吸収剤と、を含む。
【0084】
近赤外線吸収剤は、上述のものを用いることができ、重合性組成物中に3ppm以上80ppm以下、好ましくは5ppm以上65ppm以下、さらに好ましくは10ppm以上50ppm以下の量で含まれる。
【0085】
上述の通り、本実施形態の光学材料の好ましい態様としては、本開示における効果の観点から、上述の態様A~態様Cが挙げられる。
態様Aに係る光学材料の製造に用いられる重合性組成物としては、態様Aの項に記載の近赤外線吸収剤を用いることが好ましい。
【0086】
態様Bに係る光学材料の製造に用いられる重合性組成物としては、態様Bの項に記載の近赤外線吸収剤を用いることが好ましい。
【0087】
態様Cに係る光学材料の製造に用いられる重合性組成物としては、態様Cの項に記載の近赤外線吸収剤を用いることが好ましい。
【0088】
(ポリイソシアネート化合物)
前記ポリイソシアネート化合物としては、脂肪族イソシアネート化合物、脂環族イソシアネート化合物、芳香族イソシアネート化合物、複素環イソシアネート化合物、芳香脂肪族イソシアネート化合物等が挙げられ、1種又は2種以上混合して用いられる。これらのイソシアネート化合物は、二量体、三量体、プレポリマーを含んでもよい。これらのイソシアネート化合物としては、WO2011/055540号に例示された化合物を挙げることができる。
【0089】
本実施形態において、本開示における効果の観点から、前記ポリイソシアネート化合物は、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、m-キシリレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、イソホロンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、及び1,5-ペンタメチレンジイソシアネートから選択される少なくとも一種であることが好ましく、
2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、m-キシリレンジイソシアネート、及び1,3-ビス(イソシアナトメチル)シクロヘキサンから選択される少なくとも一種であることがより好ましい。
【0090】
(ポリチオール化合物)
前記ポリチオール化合物は、2以上のメルカプト基を有する化合物であり、WO2016/125736号に例示された化合物を挙げることができる。
本実施形態において、本開示における効果の観点から、前記ポリチオール化合物は、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(メルカプトエチル)スルフィド、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、及び2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタンからなる群から選択される少なくとも一種であることが好ましく、
4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、及びペンタエリスリトールテトラキス(2-メルカプトアセテート)からなる群から選択される少なくとも一種であることがより好ましい。
【0091】
前記ポリオール化合物は、1種以上の脂肪族又は脂環族アルコールであり、具体的には、直鎖又は分枝鎖の脂肪族アルコール、脂環族アルコール、これらアルコールとエチレンオキサイド、プロピレンオキサイド、ε-カプロラクトンを付加させたアルコール等
が挙げられ、具体的にはWO2016/125736号に例示された化合物を用いることができる。
【0092】
前記ポリオール化合物は、好ましくは、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、及び1,4-シクロヘキサンジオールからなる群から選択される少なくとも一種である。
【0093】
(エピスルフィド化合物)
前記エピスルフィド化合物としては、エピチオエチルチオ化合物、鎖状脂肪族の2,3-エピチオプロピルチオ化合物、環状脂肪族の2,3-エピチオプロピルチオ化合物、芳香族の2,3-エピチオプロピルチオ化合物、鎖状脂肪族の2,3-エピチオプロピルオキシ化合物、環状脂肪族の2,3-エピチオプロピルオキシ化合物、芳香族の2,3-エピチオプロピルオキシ化合物等が挙げられ、1種又は2種以上混合して用いられる。これらのエピスルフィド化合物としては、WO2015/137401号に例示された化合物を挙げることができる。
前記エピスルフィド化合物は、好ましくはビス(2,3-エピチオプロピル)スルフィド、ビス(2,3-エピチオプロピル)ジスルフィド、ビス(1,2-エピチオエチル)スルフィド、ビス(1,2-エピチオエチル)ジスルフィド、及び、ビス(2,3-エピチオプロピルチオ)メタンからなる群から選択される少なくとも一種である。
【0094】
任意の添加剤として、重合触媒、内部離型剤、ブルーイング剤、紫外線吸収剤などを挙げることができる。本実施形態において、ポリウレタン及びポリチオウレタンを得る際には、重合触媒を用いても良いし、用いなくてもよい。
【0095】
内部離型剤としては、酸性リン酸エステルが挙げられる。酸性リン酸エステルとしては、リン酸モノエステル、リン酸ジエステルを挙げることができ、それぞれ単独又は2種類以上混合して使用することできる。ブルーイング剤としては、可視光領域のうち橙色から黄色の波長域に吸収帯を有し、樹脂からなる光学材料の色相を調整する機能を有するものが挙げられる。ブルーイング剤は、さらに具体的には、青色から紫色を示す物質を含む。
【0096】
用いられる紫外線吸収剤としては、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-アクリロイルオキシベンゾフェノン、2-ヒドロキシ-4-アクリロイルオキシ-5-tert-ブチルベンゾフェノン、2-ヒドロキシ-4-アクリロイルオキシ-2’,4’-ジクロロベンゾフェノン等のベンゾフェノン系紫外線吸収剤、
【0097】
2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-(2’-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-4-ブチルオキシフェニル)-6-(2,4-ビス-ブチルオキシフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン等のトリアジン系紫外線吸収剤、
【0098】
2-(2H-ベンゾトリアゾール-2-イル)-4-メチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-メチル-6-tert-ブチルフェノール、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-2,4-tert-ブチルフェノール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール]等のベンゾトリアゾール系紫外線吸収剤などが挙げられるが、好ましくは2-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノールや2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-メチル-6-tert-ブチルフェノールのベンゾトリアゾール系紫外線吸収剤が挙げられる。これらの紫外線吸収剤は単独でも2種以上を併用することもできる。
光学材料用組成物は、上記の成分を所定の方法で混合することにより得ることができる。
組成物中の各成分の混合順序や混合方法は、各成分を均一に混合することができれば特に限定されず、公知の方法で行うことができる。
【0099】
[光学材料]
本実施形態の光学材料は、本実施形態の光学材料用組成物を重合硬化して得ることができる。
光学材料としては、プラスチック眼鏡レンズ、ゴーグル、視力矯正用眼鏡レンズ、撮像機器用レンズ、液晶プロジェクター用フレネルレンズ、レンチキュラーレンズ、コンタクトレンズ、赤外線センサー用レンズ、赤外線カメラ用レンズ、サングラスやファッションレンズ等のアイウェアなどの各種プラスチックレンズ、発光ダイオード(LED)用封止材、光導波路、光学レンズや光導波路の接合に用いる光学用接着剤、光学レンズなどに用いる近赤外線吸収膜、液晶表示装置部材(基板、導光板、フィルム、シートなど)に用いる透明性コーティング又は車のフロントガラスやバイクのヘルメットの風防、透明性基板等を挙げることができる。なお、本実施形態の光学材料は、紫外線吸収剤を含むことができる。光学材料としては、プラスチックレンズ、赤外線センサー用レンズ、赤外線カメラ用レンズ、アイウェア、これらの光学レンズなどに用いる近赤外線吸収膜などが好ましい。
以下、光学材料の好ましい態様であるプラスチックレンズについて詳細に説明する。
【0100】
[プラスチックレンズ]
プラスチックレンズとしては、以下の構成を挙げることができる。
(a)本実施形態の光学材料用組成物からなるレンズ基材を備えるプラスチックレンズ
(b)レンズ基材(ただし、本実施形態の光学材料用組成物から得られるレンズ基材を除く)表面の少なくとも一方の面上に、本実施形態の光学材料用組成物からなるフィルム又はコーティング層を備えるプラスチックレンズ
(c)本実施形態の光学材料用組成物からなるフィルムの両面上に、レンズ基材(ただし、本実施形態の光学材料用組成物から得られるレンズ基材を除く)が積層されているプラスチックレンズ
本実施形態においては、これらのプラスチックレンズを好適に用いることができる。
以下、それぞれの実施形態について説明する。
【0101】
(実施形態a)
本実施形態の光学材料用組成物からなるレンズ基材を備えるプラスチックレンズを製造する方法は、特に限定されないが、好ましい製造方法としてレンズ注型用鋳型を用いた注型重合が挙げられる。レンズ基材は、ポリウレタン樹脂、ポリチオウレタン樹脂、エピスルフィド樹脂から構成することができ、近赤外線吸収剤と、これらの樹脂のモノマー(光学材料用樹脂モノマー)とを含む本実施形態の光学材料用組成物を用いることができる。
【0102】
具体的には、ガスケット又はテープ等で保持された成型モールドのキャビティ内に光学材料用組成物を注入する。この時、得られるプラスチックレンズに要求される物性によっては、必要に応じて、減圧下での脱泡処理や加圧、減圧等の濾過処理等を行うことが好ましい場合が多い。
【0103】
そして、組成物が注入された後、レンズ注型用鋳型をオーブン中又は水中等の加熱可能装置内で所定の温度プログラムにて加熱して硬化成型する。樹脂成形体は、必要に応じて、アニール等の処理を行ってもよい。
【0104】
本実施形態において、樹脂を成形する際には、上記「任意の添加剤」に加えて、目的に応じて公知の成形法と同様に、鎖延長剤、架橋剤、光安定剤、酸化防止剤、油溶染料、充填剤、密着性向上剤などの種々の添加剤を加えてもよい。
【0105】
また、本実施形態におけるプラスチックレンズは、その目的や用途に合わせて、本実施形態の光学材料用組成物からなるレンズ基材上に種々のコーティング層を有していてもよい。コーティング層には近赤外線吸収剤を含むことができる。近赤外線吸収剤を含むコーティング層は、近赤外線吸収剤を含むコーティング材料(組成物)を用いて調製することができ、又はコーティング層を形成した後、近赤外線吸収剤を水又は溶媒中に分散させて得られた分散液に、コーティング層付きプラスチックレンズを浸漬して近赤外線吸収剤をコーティング層中に含浸させることにより調製することができる。
【0106】
(実施形態b)
本実施形態におけるプラスチックレンズは、レンズ基材表面の少なくとも一方の面上に、本実施形態の光学材料用組成物からなるフィルム又は層を備えてもよい。レンズ基材は、本実施形態の光学材料用組成物から形成されたものでなくてもよく、種々のレンズ基材を用いることができる。
【0107】
本実施形態におけるプラスチックレンズの製造方法としては、例えば、(b-1)レンズ基材を製造し、次いで当該レンズ基材の少なくとも一方の面上に、本実施形態の光学材料用組成物からなるフィルム又はシートを貼り合わせる方法、(b-2)後述のようなガスケット又はテープ等で保持された成型モールドのキャビティ内において、本実施形態の光学材料用組成物からなるフィルム又はシートをモールドの一方の内壁に沿って配置し、次いでキャビティ内に光学材料用組成物を注入し、硬化させる方法等を挙げることができる。
【0108】
前記(b-1)の方法において用いられる、本実施形態の光学材料用組成物からなるフィルム又はシートは、特に限定されず、公知の成形方法により得ることができる。
レンズ基材は、公知の光学用樹脂から得ることができ、光学用樹脂としては種々のものを用いることができる。
本実施形態の光学材料用組成物からなるフィルム又はシートを、レンズ基材の面上に貼り合わせる方法は公知の方法を用いることができる。
【0109】
前記(b-2)の方法における注型重合は、実施形態aにおけるプラスチックレンズの方法と同様に行うことができ、注型重合に用いる組成物としては、光学材料用樹脂モノマーを含む組成物(近赤外線吸収剤を含まない)を挙げることができる。
【0110】
また、本実施形態におけるプラスチックレンズは、その目的や用途に合わせて、光学材料用組成物からなるレンズ基材上又は「フィルム又は層」上に種々のコーティング層を有していてもよい。実施形態aにおけるプラスチックレンズと同様に、コーティング層には近赤外線吸収剤を含むことができる。
【0111】
(実施形態c)
本実施形態におけるプラスチックレンズは、本実施形態の光学材料用組成物からなるフィルムの両面上に、レンズ基材(本実施形態の光学材料用組成物から得られるレンズ基材を除く)が積層されてもよい。
【0112】
本実施形態におけるプラスチックレンズの製造方法としては、例えば、(c-1)レンズ基材を製造し、本実施形態の光学材料用組成物からなるフィルム又はシートの両面上に貼り合わせる方法、(c-2)ガスケット又はテープ等で保持された成型モールドのキャビティ内において、本実施形態の光学材料用組成物からなるフィルム又はシートを、モールドの内壁から離間した状態で配置し、次いでキャビティ内に光学材料用組成物を注入し、硬化させる方法等を挙げることができる。
【0113】
前記(c-1)の方法において用いられる、本実施形態の光学材料用組成物からなるフィルム又はシート、及びレンズ基材は、実施形態bにおけるプラスチックレンズの(b-1)の方法と同様のものを用いることができる。
本実施形態の光学材料用組成物からなるフィルム又はシートを、レンズ基材の面上に貼り合わせる方法は公知の方法を用いることができる。
前記(c-2)の方法は具体的に以下のように行うことができる。
【0114】
実施形態aにおけるプラスチックレンズの製造方法で用いた、レンズ注型用鋳型の空間内に、本実施形態の光学材料用組成物からなるフィルム又はシートを、この両面が、対向するフロント側のモールド内面と並行となるように設置する。
【0115】
次いで、レンズ注型用鋳型の空間内において、モールドと偏光フィルムとの間の2つの空隙部に、所定の注入手段により、光学材料用樹脂モノマーを含む組成物(近赤外線吸収剤を含まない)を注入する。
【0116】
そして、組成物が注入された後、レンズ注型用鋳型をオーブン中又は水中等の加熱可能装置内で所定の温度プログラムにて加熱して硬化成型する。樹脂成形体は、必要に応じて、アニール等の処理を行ってもよい。
【0117】
また、本実施形態におけるプラスチックレンズは、その目的や用途に合わせて、レンズ基材上に種々のコーティング層を有していてもよい。実施形態aにおけるプラスチックレンズと同様に、コーティング層には近赤外線吸収剤を含むことができる。
【0118】
[プラスチック眼鏡レンズ]
本実施形態のプラスチックレンズを用いて、プラスチック眼鏡レンズを得ることができる。なお、必要に応じて、片面又は両面にコーティング層を施して用いてもよい。
【0119】
コーティング層として、具体的には、プライマー層、ハードコート層、反射防止層、防曇コート層、防汚染層、撥水層等が挙げられる。これらのコーティング層はそれぞれ単独で用いることも複数のコーティング層を多層化して使用することもできる。両面にコーティング層を施す場合、それぞれの面に同様なコーティング層を施しても、異なるコーティング層を施してもよい。
【0120】
これらのコーティング層はそれぞれ、本実施形態において用いられる近赤外線吸収剤、赤外線から目を守る目的で赤外線吸収剤、レンズの耐候性を向上する目的で光安定剤や酸化防止剤、レンズのファッション性を高める目的で染料や顔料、さらにフォトクロミック染料やフォトクロミック顔料、帯電防止剤、その他、レンズの性能を高めるための公知の添加剤を併用してもよい。塗布によるコーティングを行う層に関しては塗布性の改善を目的とした各種レベリング剤を使用してもよい。
【0121】
プライマー層は通常、後述するハードコート層とレンズとの間に形成される。プライマー層は、その上に形成するハードコート層とレンズとの密着性を向上させることを目的とするコーティング層であり、場合により耐衝撃性を向上させることも可能である。プライマー層には得られたレンズに対する密着性の高いものであればいかなる素材でも使用できるが、通常、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、メラミン系樹脂、ポリビニルアセタールを主成分とするプライマー組成物などが使用される。プライマー組成物は組成物の粘度を調整する目的でレンズに影響を及ぼさない適当な溶剤を用いてもよい。無論、無溶剤で使用してもよい。
【0122】
プライマー層は塗布法、乾式法のいずれの方法によっても形成することができる。塗布法を用いる場合、プライマー組成物を、スピンコート、ディップコートなど公知の塗布方法でレンズに塗布した後、固化することによりプライマー層が形成される。乾式法で行う場合は、CVD法や真空蒸着法などの公知の乾式法で形成される。プライマー層を形成するに際し、密着性の向上を目的として、必要に応じてレンズの表面は、アルカリ処理、プラズマ処理、紫外線処理などの前処理を行っておいてもよい。
ハードコート層は、レンズ表面に耐擦傷性、耐摩耗性、耐湿性、耐温水性、耐熱性、耐候性等機能を与えることを目的としたコーティング層である。
【0123】
ハードコート層は、一般的には硬化性を有する有機ケイ素化合物と、Si,Al,Sn,Sb,Ta,Ce,La,Fe,Zn,W,Zr,In及びTiの元素群から選ばれる元素の酸化物微粒子の1種以上、及び、これら元素群から選ばれる2種以上の元素の複合酸化物から構成される微粒子の1種以上の少なくとも一方と、を含むハードコート組成物が使用される。
【0124】
ハードコート組成物には上記成分以外にアミン類、アミノ酸類、金属アセチルアセトネート錯体、有機酸金属塩、過塩素酸類、過塩素酸類の塩、酸類、金属塩化物及び多官能性エポキシ化合物の少なくともいずれかを含むことが好ましい。ハードコート組成物にはレンズに影響を及ぼさない適当な溶剤を用いてもよいし、無溶剤で用いてもよい。
【0125】
ハードコート層は、通常、ハードコート組成物をスピンコート、ディップコートなど公知の塗布方法で塗布した後、硬化して形成される。硬化方法としては、熱硬化、紫外線や可視光線などのエネルギー線照射による硬化方法等が挙げられる。干渉縞の発生を抑制するため、ハードコート層の屈折率は、レンズとの屈折率の差が±0.1の範囲にあるのが好ましい。
【0126】
反射防止層は、通常、必要に応じて前記ハードコート層の上に形成される。反射防止層には無機系及び有機系があり、無機系の場合、SiO、TiO等の無機酸化物を用い、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビ-ムアシスト法、CVD法などの乾式法により形成される。有機系の場合、有機ケイ素化合物と、内部空洞を有するシリカ系微粒子とを含む組成物を用い、湿式により形成される。
【0127】
反射防止層は単層及び多層があり、単層で用いる場合はハードコート層の屈折率よりも屈折率が少なくとも0.1以上低くなることが好ましい。効果的に反射防止機能を発現するには多層膜反射防止膜とすることが好ましく、その場合、低屈折率膜と高屈折率膜とを交互に積層する。この場合も低屈折率膜と高屈折率膜との屈折率差は0.1以上であることが好ましい。高屈折率膜としては、ZnO、TiO、CeO、Sb、SnO、ZrO、Ta等の膜があり、低屈折率膜としては、SiO膜等が挙げられる。
【0128】
反射防止層の上には、必要に応じて防曇層、防汚染層、撥水層を形成させてもよい。防曇層、防汚染層、撥水層を形成する方法としては、反射防止機能に悪影響をもたらすものでなければ、その処理方法、処理材料等については特に限定されずに、公知の防曇処理方法、防汚染処理方法、撥水処理方法、材料を使用することができる。例えば、防曇処理方法、防汚染処理方法では、表面を界面活性剤で覆う方法、表面に親水性の膜を付加して吸水性にする方法、表面を微細な凹凸で覆い吸水性を高める方法、光触媒活性を利用して吸水性にする方法、超撥水性処理を施して水滴の付着を防ぐ方法などが挙げられる。また、撥水処理方法では、フッ素含有シラン化合物等を蒸着やスパッタによって撥水処理層を形成する方法や、フッ素含有シラン化合物を溶媒に溶解したあと、コーティングして撥水処理層を形成する方法等が挙げられる。
【0129】
以上、本開示の実施形態について述べたが、これらは本開示の例示であり、本開示における効果を損なわない範囲で、上記以外の様々な構成を採用することができる。
【実施例
【0130】
以下に、実施例により本開示を更に詳細に説明するが、本開示はこれらに限定されるものではない。なお、本開示の実施例において用いた評価方法、材料は以下の通りである。
【0131】
[分光透過率、及び視感透過率の測定方法]
測定機器として、島津製作所製 島津分光光度計 UV-1800を使用し、2mm厚の平板レンズを用いて紫外-可視光スペクトルを測定し、分光透過率曲線を得た。得られた分光透過率をもとに視感透過率を算出した。
【0132】
[L*,a*,b*の測定方法]
分光測色計(コニカミノルタ社製CM-5)を用いて、下記測定条件にて、2mm厚の平板レンズのCIE1976(L*,a*,b*)表色系におけるL*,a*,b*を測定した。
~測定条件~
光源:C光源
測定方法:透過測定
測定面積:直径30mmの円形
視角:2°視野
【0133】
[YIの測定方法]
2mm厚の平板レンズをコニカミノルタ社製の分光測色計CM-5でYIを測定した。
【0134】
[ヘイズ、及び全光線透過率の測定方法]
2mm厚の平板レンズを日本電色工業社製のHazeMeter NDH2000でヘイズ、全光線透過率を測定した。
【0135】
実施例においては以下に示される近赤外線吸収剤を用いた。
【0136】
・近赤外線吸収剤A
【化11】

化学式(I-1)で表される近赤外線吸収剤Aの3.7質量ppmのトルエン溶液で、光路長10mmにて、測定された可視光吸収分光スペクトルにおいて、720nmに主吸収ピーク(P)を有し、上記ピーク(P)のピーク頂点(Pmax:ピーク中で最大吸光係数を示す点)の吸光係数(ml/g・cm)が1.57×10であり、上記ピーク(P)の(Pmax)の吸光度の1/4の吸光度におけるピーク幅が43nmであり、かつ上記ピーク(P)の(Pmax)の吸光度の1/2の吸光度におけるピーク幅が28nmであり、かつ上記ピーク(P)の(Pmax)の吸光度の2/3の吸光度におけるピーク幅が20nmであった。
【0137】
・近赤外線吸収剤B
【化12】

化学式(II-1)で表される近赤外線吸収剤Bの5.2質量ppmのトルエン溶液で、光路長10mmにて、測定された可視光吸収分光スペクトルにおいて、830nmに主吸収ピーク(P)を有し、上記ピーク(P)のピーク頂点(Pmax:ピーク中で最大吸光係数を示す点)の吸光係数(ml/g・cm)が1.11×10であり、上記ピーク(P)の(Pmax)の吸光度の1/4の吸光度におけるピーク幅が80nmであり、かつ上記ピーク(P)の(Pmax)の吸光度の1/2の吸光度におけるピーク幅が47nmであり、かつ上記ピーク(P)の(Pmax)の吸光度の2/3の吸光度におけるピーク幅が35nmであった。
【0138】
・近赤外線吸収剤C
【化13】

化学式(III-1)で表される近赤外線吸収剤Cの8.0質量ppmのトルエン溶液で、光路長10mmにて、測定された可視光吸収分光スペクトルにおいて、1005nmに主吸収ピーク(P)を有し、上記ピーク(P)のピーク頂点(Pmax:ピーク中で最大吸光係数を示す点)の吸光係数(ml/g・cm)が7.22×10であり、上記ピーク(P)の(Pmax)の吸光度の1/4の吸光度におけるピーク幅が250nmであり、かつ上記ピーク(P)の(Pmax)の吸光度の1/2の吸光度におけるピーク幅が112nmであり、かつ上記ピーク(P)の(Pmax)の吸光度の2/3の吸光度におけるピーク幅が81nmであった。
【0139】
・近赤外線吸収剤D
【化14】

近赤外線吸収剤Dの3.3質量ppmのトルエン溶液で、光路長10mmにて、測定された可視光吸収分光スペクトルにおいて、780nmに主吸収ピーク(P)を有し、上記ピーク(P)のピーク頂点(Pmax:ピーク中で最大吸光係数を示す点)の吸光係数(ml/g・cm)が1.75×10であり、上記ピーク(P)の(Pmax)の吸光度の1/4の吸光度におけるピーク幅が37nmであり、かつ上記ピーク(P)の(Pmax)の吸光度の1/2の吸光度におけるピーク幅が24nmであり、かつ上記ピーク(P)の(Pmax)の吸光度の2/3の吸光度におけるピーク幅が17nmであった。
【0140】
・近赤外線吸収剤E
【化15】

近赤外線吸収剤Eの36.5質量ppmのトルエン溶液で、光路長10mmにて、測定された可視光吸収分光スペクトルにおいて、935nmに主吸収ピーク(P)を有し、上記ピーク(P)のピーク頂点(Pmax:ピーク中で最大吸光係数を示す点)の吸光係数(ml/g・cm)が1.58×10であり、かつ上記ピーク(P)の(Pmax)の吸光度の1/2の吸光度におけるピーク幅が379nmであり、かつ上記ピーク(P)の(Pmax)の吸光度の2/3の吸光度におけるピーク幅が252nmであった。なお、上記ピーク(P)の(Pmax)の吸光度の1/4の吸光度におけるピーク幅は、上記ピーク(P)の(Pmax)の吸光度の1/4となる値が存在しなかったことから測定することができなかった。
【0141】
[実施例1]
ジブチル錫(II)ジクロリドを0.015重量部、三井化学社製MR用内部離型剤を0.1重量部、紫外線吸収剤Tinuvin329を0.15重量部、m-キシリレンジイソシアネートを52重量部、近赤外線吸収剤Aを0.00042重量部仕込んで混合溶液を作製した。この混合溶液を25℃で1時間攪拌して完全に溶解させた。その後、この調合液に、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを48重量部仕込み、これを25℃で30分攪拌し、均一溶液とした。この溶液を400Paにて1時間脱泡を行い、1μmPTFEフィルターにて濾過を行った後、中心厚2mm、直径77mmの平板用ガラスモールドに注入した。このガラスモールドを25℃から120℃まで、16時間かけて昇温した。室温まで冷却させて、ガラスモールドから外し、平板レンズを得た。得られた平板レンズを更に120℃で2時間アニールを行った。
このアニール処理を行った平板レンズについて物性を測定した。結果を表1に示す。
【0142】
[実施例2~7]
近赤外線吸収剤Aの添加量を表1に記載の量とした以外は実施例1と同様に平板レンズを得た。得られた平板レンズの物性の測定結果を表1に示す。また、実施例3の平板レンズの分光透過率曲線を図1に示す。
【0143】
[実施例8~10、比較例1]
近赤外線吸収剤Aを近赤外線吸収剤Bに変更し、その添加量を表1に記載の量とした以外は実施例1と同様に平板レンズを得た。得られた平板レンズの物性の測定結果を表1に示す。また、実施例10の平板レンズの分光透過率曲線を図2に示す。
【0144】
[実施例11~13、比較例2]
近赤外線吸収剤Aを近赤外線吸収剤Cに変更し、その添加量を表1に記載の量とした以外は実施例1と同様に平板レンズを得た。得られた平板レンズの物性の測定結果を表1に示す。また、実施例13の平板レンズの分光透過率曲線を図3に示す。
【0145】
[比較例3]
近赤外線吸収剤Aを近赤外線吸収剤Dに変更し、その添加量を0.00165重量部とした以外は実施例1と同様にして、25℃で1時間攪拌した。しかしながら、近赤外線吸収剤Dは溶解しなかった。
【0146】
[比較例4]
近赤外線吸収剤Aを近赤外線吸収剤Eに変更し、その添加量を0.01825重量部とした以外は実施例1と同様にして、25℃で1時間攪拌した。しかしながら、近赤外線吸収剤Eは溶解しなかった。
【0147】
[実施例14]
ジブチル錫(II)ジクロリドを0.035重量部、三井化学社製MR用内部離型剤を0.1重量部、紫外線吸収剤Tinuvin329を1.5重量部、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンと2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンとの混合物を50.6重量部、近赤外線吸収剤Aを0.00042重量部仕込んで混合溶液を作製した。この混合溶液を25℃で1時間攪拌して完全に溶解させた。その後、この調合液に、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを25.5重量部と、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)を23.9重量部仕込み、これを25℃で30分攪拌し、均一溶液とした。この溶液を400Paにて1時間脱泡を行い、1μmPTFEフィルターにて濾過を行った後、中心厚2mm、直径77mmの平板用ガラスモールドに注入した。このガラスモールドを25℃から120℃まで、16時間かけて昇温した。室温まで冷却させて、ガラスモールドから外し、平板レンズを得た。得られた平板レンズを更に120℃で2時間アニールを行った。
このアニール処理を行った平板レンズについて物性を測定した。結果を表2に示す。
【0148】
[実施例15~20]
近赤外線吸収剤Aの添加量を表2に記載の量とした以外は実施例14と同様に平板レンズを得た。得られた平板レンズの物性の測定結果を表2に示す。また、実施例16の平板レンズの分光透過率曲線を図4に示す。
【0149】
[実施例21~22、比較例5]
近赤外線吸収剤Aを近赤外線吸収剤Bに変更し、その添加量を表2に記載の量とした以外は実施例14と同様に平板レンズを得た。得られた平板レンズの物性の測定結果を表2に示す。また、実施例22の平板レンズの分光透過率曲線を図5に示す。
【0150】
[実施例23~24、比較例6]
近赤外線吸収剤Aを近赤外線吸収剤Cに変更し、その添加量を表2に記載の量とした以外は実施例14と同様に平板レンズを得た。得られた平板レンズの物性の測定結果を表2に示す。また、実施例24の平板レンズの分光透過率曲線を図6に示す。
【0151】
[比較例7]
近赤外線吸収剤Aを近赤外線吸収剤Dに変更し、その添加量を0.00165重量部とした以外は実施例14と同様にして、25℃で1時間攪拌した。しかしながら、近赤外線吸収剤Dは溶解しなかった。
【0152】
[比較例8]
近赤外線吸収剤Aを近赤外線吸収剤Eに変更し、その添加量を表2に記載の量とした以外は実施例14と同様に平板レンズを得た。得られた平板レンズの物性の測定結果を表2に示す。また、比較例8の平板レンズの分光透過率曲線を図7に示す。
【0153】
[実施例25]
ジメチル錫(II)ジクロリドを0.008重量部、三井化学社製MR用内部離型剤を0.1重量部、紫外線吸収剤Tinuvin329とSeesorb709とをそれぞれ0.6重量部、m-キシリレンジイソシアネートを50.7重量部、近赤外線吸収剤A を0.00042重量部仕込んで混合溶液を作製した。この混合溶液を25℃で1時間攪拌して完全に溶解させた。その後、この調合液に、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物を49.3重量部仕込み、これを25℃で30分攪拌し、均一溶液とした。この溶液を400Paにて1時間脱泡を行い、1μmPTFEフィルターにて濾過を行った後、中心厚2mm、直径77mmの平板用ガラスモールドに注入した。このガラスモールドを25℃から120℃まで、20時間かけて昇温した。室温まで冷却させて、ガラスモールドから外し、平板レンズを得た。得られた平板レンズを更に120℃で2時間アニールを行った。
このアニール処理を行った平板レンズについて物性を測定した。結果を表3に示す。
【0154】
[実施例26~28]
近赤外線吸収剤Aの添加量を表3に記載の量とした以外は実施例25と同様に平板レンズを得た。得られた平板レンズの物性の測定結果を表3に示す。また、実施例26の平板レンズの分光透過率曲線を図8に示す。
【0155】
[実施例29~30、比較例9]
近赤外線吸収剤Aを近赤外線吸収剤Bに変え、その添加量を表3に記載の量とした以外は実施例25と同様に平板レンズを得た。得られた平板レンズの物性の測定結果を表3に示す。また、実施例30の平板レンズの分光透過率曲線を図9に示す。
【0156】
[実施例31~32、比較例10]
近赤外線吸収剤Aを近赤外線吸収剤Cに変え、その添加量を表3に記載の量とした以外は実施例25と同様に平板レンズを得た。得られた平板レンズの物性の測定結果を表3に示す。また、実施例32の平板レンズの分光透過率曲線を図10に示す。
【0157】
[比較例11]
近赤外線吸収剤Aを近赤外線吸収剤Dに変え、その添加量を0.00165重量部とした以外は実施例25と同様にして、25℃で1時間攪拌した。しかしながら、近赤外線吸収剤Dは溶解しなかった。
【0158】
[比較例12]
近赤外線吸収剤Aを近赤外線吸収剤Eに変え、その添加量を0.01825重量部とした以外は実施例25と同様にして、25℃で30分攪拌した。しかしながら、近赤外線吸収剤Eは溶解しなかった。
【0159】
[実施例33]
N,N-ジメチルシクロヘキシルアミンを0.012重量部、N,N-ジシクロヘキシルメチルアミンを0.092重量部、紫外線吸収剤TinuvinPSを1重量部、ビス(2,3-エピチオプロピル)ジスルフィドを90.92重量部、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物を9.08重量部、近赤外線吸収剤Aを0.00042重量部仕込み、窒素雰囲気下25℃で30分撹拌して混合溶解させた。
この混合液を400Paにて1時間脱泡を行い、1μmPTFEフィルターにて濾過を行った後、中心厚2mm、直径77mmの平板用ガラスモールドに注入した。このガラスモールドを25℃から120℃まで、20時間かけて昇温した。室温まで冷却させて、ガラスモールドから外し、平板レンズを得た。得られた平板レンズを更に120℃で2時間アニールを行った。
このアニール処理を行った平板レンズについて物性を測定した。結果を表4に示す。
【0160】
[実施例34~39]
近赤外線吸収剤Aの添加量を表4に記載の量とした以外は実施例33と同様に平板レンズを得た。得られた平板レンズの物性の測定結果を表4に示す。また、実施例35の平板レンズの分光透過率曲線を図11に示す。
【0161】
[実施例40~41、比較例13]
近赤外線吸収剤Aを近赤外線吸収剤Bに変え、その添加量を表4に記載の量とした以外は実施例33と同様に平板レンズを得た。得られた平板レンズの物性の測定結果を表4に示す。また、実施例41の平板レンズの分光透過率曲線を図12に示す。
【0162】
[実施例42~43、比較例14]
近赤外線吸収剤Aを近赤外線吸収剤Cに変え、その添加量を表4に記載の量とした以外は実施例33と同様に平板レンズを得た。得られた平板レンズの物性の測定結果を表4に示す。また、実施例43の平板レンズの分光透過率曲線を図13に示す。
【0163】
[比較例15]
近赤外線吸収剤Aを近赤外線吸収剤Dに変え、その添加量を0.00165重量部とした以外は実施例33と同様にして、25℃で1時間攪拌した。しかしながら、近赤外線吸収剤Dは溶解しなかった。
【0164】
[比較例16]
近赤外線吸収剤Aを近赤外線吸収剤Eに変え、その添加量を0.01825重量部とした以外は実施例33と同様にして、25℃で1時間攪拌した。しかしながら、近赤外線吸収剤Eは溶解しなかった。
【0165】
[実施例44]
ジメチル錫(II)ジクロリドを0.452重量部、城北化学工業社製JP-506Hを0.18重量部、紫外線吸収剤Tinuvin329を1重量部、1,3-ビス(イソシアネートメチル)シクロヘキサンを48重量部、近赤外線吸収剤Aを0.00184重量部仕込んで混合溶液を作製した。この混合溶液を25℃で1時間攪拌して完全に溶解させた。その後、この調合液に、ペンタエリスリトールテトラキス(2-メルカプトアセテート)を26.7重量部と、2,5-ビス(メルカプトメチル)-1,4-ジチアンを26.24重量部仕込み、これを25℃で30分攪拌し、均一溶液とした。この溶液を400Paにて1時間脱泡を行い、1μmPTFEフィルターにて濾過を行った後、中心厚2mm、直径77mmの平板用ガラスモールドに注入した。このガラスモールドを25℃から120℃まで、16時間かけて昇温した。室温まで冷却させて、ガラスモールドから外し、平板レンズを得た。得られた平板レンズを更に120℃で2時間アニールを行った。
このアニール処理を行った平板レンズについて物性を測定した。結果を表5に示す。
【0166】
[実施例45]
近赤外線吸収剤Aを近赤外線吸収剤Bに変更し、その添加量を0.0026重量部とした以外は実施例44と同様に平板レンズを得た。得られた平板レンズの物性の測定結果を表5に示す。
【0167】
[実施例46]
近赤外線吸収剤Aを近赤外線吸収剤Cに変更し、その添加量を0.00399重量部とした以外は実施例44と同様に平板レンズを得た。得られた平板レンズの物性の測定結果を表5に示す。
【0168】
[比較例17]
近赤外線吸収剤Aを近赤外線吸収剤Dに変更し、その添加量を0.00165重量部とした以外は実施例44と同様にして、25℃で1時間攪拌した。しかしながら、近赤外線吸収剤Dは溶解しなかった。
【0169】
[比較例18]
近赤外線吸収剤Aを近赤外線吸収剤Eに変更し、その添加量を0.01825重量部とした以外は実施例44と同様に平板レンズを得た。得られた平板レンズの物性の測定結果を表5に示す。
【0170】
[実施例101及び実施例102]
ポリカーボネート樹脂(帝人株式会社製パンライトL-1225WP)と表6に記載の近赤外線吸収剤とを、近赤外線吸収剤の含有量が表6に記載の含有量となる量にて、タンブラーによって20分混合した後、単軸押出機によって、シリンダー設定温度280℃、スクリュー回転数56rpm(revolutions per minute)の条件下にて、溶融及び混練してペレット(樹脂組成物)を作製した。
作製したペレットを原料として、射出成形機にて、シリンダー温度280℃、金型温度80℃、成形サイクル60秒の条件下にて、外形150mm×300mm、厚さ2mmの平板レンズを成形した。得られた平板レンズの物性の測定結果を表6に示す。
【0171】
【表1】
【0172】
【表2】
【0173】
【表3】
【0174】
【表4】
【0175】
【表5】
【0176】
【表6】

【0177】
表1~5に記載のモノマー種は以下のとおりである。
a1:m-キシリレンジイソシアネート
a2:2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンと2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンとの混合物
a3:1,3-ビス(イソシアナトメチル)シクロヘキサン
b1:4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン
b2:ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)
b3:5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物
b4:ペンタエリスリトールテトラキス(2-メルカプトアセテート)
b5:2,5-ビス(メルカプトメチル)-1,4-ジチアン
c1:ビス(2,3-エピチオプロピル)ジスルフィド
【0178】
2019年4月26日に出願された日本国特許出願2019-086155号の開示は、その全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13