(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-06
(45)【発行日】2023-04-14
(54)【発明の名称】蒸気圧計器係数を使用する蒸気圧の決定
(51)【国際特許分類】
G01F 1/84 20060101AFI20230407BHJP
【FI】
G01F1/84
(21)【出願番号】P 2021559033
(86)(22)【出願日】2019-04-03
(86)【国際出願番号】 US2019025537
(87)【国際公開番号】W WO2020204921
(87)【国際公開日】2020-10-08
【審査請求日】2021-11-30
(73)【特許権者】
【識別番号】500205770
【氏名又は名称】マイクロ モーション インコーポレイテッド
(74)【代理人】
【識別番号】110000556
【氏名又は名称】弁理士法人有古特許事務所
(72)【発明者】
【氏名】ワインスタイン, ジョエル
(72)【発明者】
【氏名】モレット, ディヴィッド マルティネス
【審査官】森 雅之
(56)【参考文献】
【文献】特許第5797333(JP,B2)
【文献】特許第5315360(JP,B2)
【文献】米国特許出願公開第2011/0220213(US,A1)
【文献】特公昭61-4045(JP,B2)
【文献】特公平4-22209(JP,B2)
【文献】特公昭60-34683(JP,B2)
(58)【調査した分野】(Int.Cl.,DB名)
G01F
(57)【特許請求の範囲】
【請求項1】
蒸気圧計器係数を使用して蒸気圧を決定するためのメーター電子機器(20)であって、
メーターアセンブリ(10)に通信可能に結合された処理システム(200)であって、
流体を有する前記メーターアセンブリ(10)に駆動信号を供給し、
前記メーターアセンブリ(10)に供給された前記駆動信号の駆動ゲインを測定し、
微量のガスを検出するようにガスが検出される駆動ゲインと真の蒸気圧との差を考慮する前記駆動ゲインと基準気液比との間の予め決定された関係に基づいて前記流体の蒸気圧を決定する
ように構成されている処理システム(200)
を備えている、メーター電子機器(20)。
【請求項2】
前記メーター電子機器(20)が、前記駆動ゲインが測定されると同時に、前記メーターアセンブリ(10)内の流体の静圧を決定するように、さらに構成されている、請求項1に記載のメーター電子機器(20)。
【請求項3】
前記蒸気圧が、前記測定された駆動ゲイン、および前記駆動ゲインと前記基準気液比との間の前記予め決定された関係を使用して決定される、請求項1または2に記載のメーター電子機器(20)。
【請求項4】
前記駆動ゲインと前記基準気液比との間の前記予め決定された関係が、100パーセントの駆動ゲインと真の蒸気圧駆動ゲインとを関連付ける一次関数である、請求項1から3のいずれか一項に記載のメーター電子機器(20)。
【請求項5】
前記基準気液比、および前記測定された駆動ゲインの少なくとも一方が、流体の相変化を検出するための所定の閾値と関連している、請求項1から4のいずれか一項に記載のメーター電子機器(20)。
【請求項6】
前記決定された蒸気圧が、真の蒸気圧である、請求項1から5のいずれか一項に記載のメーター電子機器(20)。
【請求項7】
前記真の蒸気圧を使用してリード蒸気圧を決定するように、さらに構成されている、請求項6に記載のメーター電子機器(20)。
【請求項8】
蒸気圧計器係数を使用して蒸気圧を決定する方法であって、
流体を有するメーターアセンブリに駆動信号を供給するステップと、
前記メーターアセンブリに供給された前記駆動信号の駆動ゲインを測定するステップと、
微量のガスを検出するようにガスが検出される駆動ゲインと真の蒸気圧との差を考慮する前記駆動ゲインと基準気液比との間の予め決定された関係に基づいて前記流体の蒸気圧を決定するステップと
を含む、方法。
【請求項9】
前記駆動ゲインが測定されると同時に、前記メーターアセンブリ内の流体の静圧を決定するステップをさらに含む、請求項8に記載の方法。
【請求項10】
前記蒸気圧が、前記測定された駆動ゲイン、および前記駆動ゲインと前記基準気液比との間の前記予め決定された関係を使用して決定される、請求項8または9に記載の方法。
【請求項11】
前記駆動ゲインと前記基準気液比との間の前記予め決定された関係が、100パーセントの駆動ゲインと真の蒸気圧駆動ゲインとを関連付ける一次関数である、請求項8から10のいずれか一項に記載の方法。
【請求項12】
前記基準気液比、および前記測定された駆動ゲインの少なくとも一方が、流体の相変化を検出するための所定の閾値と関連している、請求項8から11のいずれか一項に記載の方法。
【請求項13】
前記決定された蒸気圧が、真の蒸気圧である、請求項8から12のいずれか一項に記載の方法。
【請求項14】
前記真の蒸気圧を使用してリード蒸気圧を決定するステップをさらに含む、請求項13に記載の方法。
【請求項15】
蒸気圧を決定するための蒸気圧計器係数を決定する方法であって、
メーターアセンブリ内の流体の静圧を決定するステップと、
前記流体の前記静圧と真の蒸気圧との間の差を決定するステップと
、
微量のガスを検出するようにガスが検出される駆動ゲインと真の蒸気圧との差を考慮するために駆動信号の駆動ゲインを測定するステップと
を含む、方法。
【請求項16】
前記メーターアセンブリに
前記駆動信号を供給するステップと、
前記メーターアセンブリ内の前記流体の前記静圧を前記駆動ゲインに関連付けるステップと
をさらに含む、請求項15に記載の方法。
【請求項17】
前記流体内の相変化を検出するための駆動ゲイン閾値を測定された駆動ゲインに関連付けるステップと、
前記差を前記駆動ゲイン閾値に関連付けるステップと
をさらに含む、請求項15または16に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
以下で説明される実施形態は、蒸気圧の決定および、より詳細には、蒸気圧計器係数を使用する蒸気圧の決定に関する。
【背景技術】
【0002】
例えば、振動式密度計およびコリオリ流量計などの振動式センサが一般的に知られており、流量計の導管を通って流れる物質の質量流量および他の情報を測定するために使用される。例示的なコリオリ流量計が、いずれもJ.E.Smithらの米国特許第4,109,524号明細書、米国特許第4,491,025号明細書、および再発行特許第31,450号明細書に開示されている。これらの流量計は、直線的な構成または湾曲した構成の1つ以上の導管を有する。コリオリ質量流量計の各々の導管の構成は、例えば、単純な曲げ、ねじり、または結合型であってもよい一連の固有振動モードを有する。各々の導管を、好ましいモードで振動するように駆動することができる。
【0003】
物質は、流量計の入口側の接続されたパイプラインから流量計に流入し、導管を通って導かれ、流量計の出口側を通って流量計を出る。振動系の固有振動モードは、部分的には、導管と導管内を流れる物質との合成質量によって定まる。
【0004】
流量計を通る流れが存在しない場合、導管へと加えられる駆動力により、導管に沿ったすべての点が同一の位相で振動し、あるいは、流れがゼロであるときに測定される時間遅延である小さな「ゼロオフセット」で振動する。物質が流量計を通って流れ始めると、コリオリ力により、導管に沿った各点が異なる位相を有する。例えば、流量計の入口端における位相は、中央のドライバ位置における位相よりも遅れる一方で、出口における位相は、中央のドライバ位置の位相よりも進む。導管のピックオフが、導管の運動を表す正弦波信号を生成する。ピックオフから出力された信号は、ピックオフ間の時間遅延を割り出すために処理される。2つ以上のピックオフ間の時間遅延は、導管を通って流れる物質の質量流量に比例する。
【0005】
ドライバに接続されたメーター電子機器が、ドライバを動作させるための駆動信号を生成し、ピックオフから受信した信号から物質の質量流量および他の特性を割り出す。ドライバは、多数の周知の構成のうちの1つを備えることができるが、磁石および対向する駆動コイルが、流量計の業界において大きな成功を収めている。所望の流通管の振幅および周波数で導管を振動させるために、駆動コイルに交流電流が流れされる。ピックオフを、ドライバの構成にきわめてよく似た磁石とコイルとからなる構成として設けることも知られている。しかしながら、ドライバが、運動を引き起こす電流を受け取る一方で、ピックオフは、ドライバがもたらす運動を使用して電圧を生じさせることができる。
【0006】
蒸気圧が、ガソリン、液体天然ガス、および液体石油ガスなどの揮発性流体の流れおよび貯蔵を取り扱う用途において重要な特性である。蒸気圧は、取り扱い中に揮発性液体がどのように振る舞う可能性があるかについての指標をもたらし、気泡が生成され、圧力が高まる可能性が高い条件をさらに知らせる。したがって、揮発性流体の蒸気圧の測定は、安全性を高め、輸送容器およびインフラストラクチャへの損傷を防止する。例えば、流体の蒸気圧が高すぎる場合、ポンプおよび移送の作業時にキャビテーションが発生する可能性がある。さらに、容器またはプロセスラインの蒸気圧が、温度変化に起因して、安全レベルを超えて上昇する可能性がある。したがって、貯蔵および輸送の前に蒸気圧を知ることがしばしば必要とされる。
【0007】
典型的には、蒸気圧は、サンプルを捕獲し、サンプルから値を決定するための試験用に実験室へと運ぶことによって決定される。これは、最終結果の取得の遅れ、実験室の維持コスト、ならびにサンプルの取り扱いに関連する安全性と法的証拠としての弱さゆえに、規制上の燃料品質基準の執行に関して困難な問題を引き起こす。したがって、プロセス条件下で継続的に、リアルタイムなやり方で、メーターアセンブリ内の流体の蒸気圧を決定することができるインラインの装置またはシステムについて、ニーズが存在する。これが、本実施形態によって提供され、当該技術分野の進歩が達成される。現場での測定は、定期的なサンプル採取の必要性をなくし、サンプル収集時と実験室でのアッセイ時との間で流体特性が変化する恐れを完全に排除するため、より信頼性が高い。さらに、不安全な状態を直ちに矯正できるため、リアルタイムの測定によって、安全性が改善される。さらに、規制の執行を、簡単な現場での検査を介して行うことができるため、資金が節約され、検査および執行の決定を、わずかな遅延またはプロセス停止で行うことができる。これらの利点は、蒸気圧を正確に決定することによって強化され得る。
【先行技術文献】
【特許文献】
【0008】
【文献】米国特許第4,109,524号
【文献】米国特許第4,491,025号
【文献】再発行特許第31,450号
【発明の概要】
【0009】
蒸気圧計器係数を使用して蒸気圧を決定するためのメーター電子機器が提供される。一実施形態によれば、メーター電子機器は、メーターアセンブリに通信可能に結合した処理システムを備えている。処理システムは、流体を有するメーターアセンブリに駆動信号を供給し、メーターアセンブリに供給された駆動信号の駆動ゲインを測定し、駆動ゲインと基準気液比との間の予め決定された関係に基づいて流体の蒸気圧を決定するように構成される。
【0010】
蒸気圧計器係数を使用して蒸気圧を決定する方法が提供される。一実施形態によれば、本方法は、流体を有するメーターアセンブリに駆動信号を供給するステップと、メーターアセンブリに供給された駆動信号の駆動ゲインを測定するステップと、駆動ゲインと基準気液比との間の予め決定された関係に基づいて流体の蒸気圧を決定するステップとを含む。
蒸気圧を決定するための蒸気圧計器係数を決定する方法が提供される。一実施形態によれば、本方法は、メーターアセンブリ内の流体の静圧を決定するステップと、流体の静圧と真の蒸気圧との間の差を決定するステップとを含む。
【0011】
[態様]
一態様によれば、蒸気圧計器係数を使用して蒸気圧を決定するためのメーター電子機器(20)は、メーターアセンブリ(10)に通信可能に結合した処理システム(200)を備えている。処理システム(203)は、流体を有するメーターアセンブリ(10)に駆動信号を供給し、メーターアセンブリ(10)に供給された駆動信号の駆動ゲインを測定し、駆動ゲインと基準気液比との間の予め決定された関係に基づいて流体の蒸気圧を決定するように構成される。
【0012】
好ましくは、メーター電子機器(20)は、駆動ゲインが測定されると同時に、メーターアセンブリ(10)内の流体の静圧を決定するように、さらに構成される。
【0013】
好ましくは、蒸気圧は、測定された駆動ゲイン、および駆動ゲインと基準気液比との間の予め決定された関係を使用して決定される。
【0014】
好ましくは、駆動ゲインと基準気液比との間の予め決定された関係は、100パーセントの駆動ゲインおよび真の蒸気圧駆動ゲインに関する一次関数である。
【0015】
好ましくは、基準気液比、および測定された駆動ゲインの少なくとも一方は、流体の相の変化を検出するための所定の閾値と関連している。
【0016】
好ましくは、決定された蒸気圧は、真の蒸気圧である。
【0017】
好ましくは、メーター電子機器(20)は、真の蒸気圧を使用してリード蒸気圧を決定するように、さらに構成される。
【0018】
一態様によれば、蒸気圧計器係数を使用して蒸気圧を決定する方法は、流体を有するメーターアセンブリに駆動信号を供給するステップと、メーターアセンブリに供給された駆動信号の駆動ゲインを測定するステップと、駆動ゲインと基準気液比との間の予め決定された関係に基づいて流体の蒸気圧を決定するステップとを含む。
【0019】
好ましくは、本方法は、駆動ゲインが測定されると同時に、メーターアセンブリ内の流体の静圧を決定するステップをさらに含む。
【0020】
好ましくは、蒸気圧は、測定された駆動ゲイン、および駆動ゲインと基準気液比との間の予め決定された関係を使用して決定される。
【0021】
好ましくは、駆動ゲインと基準気液比との間の予め決定された関係は、100パーセントの駆動ゲインおよび真の蒸気圧駆動ゲインに関する一次関数である。
【0022】
好ましくは、基準気液比、および測定された駆動ゲインの少なくとも一方は、流体の相変化を検出するための所定の閾値と関連している。
【0023】
好ましくは、決定された蒸気圧は、真の蒸気圧である。
【0024】
好ましくは、本方法は、真の蒸気圧を使用してリード蒸気圧を決定するステップをさらに含む。
【0025】
一態様によれば、蒸気圧を決定するための蒸気圧計器係数を決定する方法は、メーターアセンブリ内の流体の静圧を決定するステップと、流体の静圧と真の蒸気圧との間の差を決定するステップとを含む
【0026】
。
好ましくは、本方法は、メーターアセンブリに駆動信号を供給するステップと、メーターアセンブリに供給された駆動信号の駆動ゲインを測定するステップと、メーターアセンブリ内の流体の静圧を駆動ゲインに関連付けるステップとをさらに含む。
【0027】
好ましくは、本方法は、流体中の相変化を検出するための駆動ゲイン閾値を測定された駆動ゲインに関連付けるステップと、その差を駆動ゲイン閾値に関連付けるステップとをさらに含む。
【図面の簡単な説明】
【0028】
同じ参照番号は、すべての図において同じ要素を表している。図面が、必ずしも比例尺ではないことを理解すべきである。
【
図2】振動式計器5のメーター電子機器20のブロック図である。
【
図3】蒸気圧計器係数を使用して蒸気圧を決定するために使用することができる、駆動ゲインと気液比との関係を示すグラフ300を示す図である。
【
図4】振動式計器内の流体の静圧をどのように使用して蒸気圧を決定することができるかを説明するグラフ400を示す図である。
【
図5】流体の蒸気圧を決定するためのシステム500を示す図である。
【
図6】蒸気圧計器係数を使用して蒸気圧を決定する方法600を示す図である。
【
図7】蒸気圧を決定するための蒸気圧計器係数を決定する方法700を示す図である。
【発明を実施するための形態】
【0029】
図1から
図7および以下の説明に、蒸気圧計器係数を使用して蒸気圧を決定する最良の態様を作成および使用する方法を当業者に教示するための具体的な例が示される。本発明の原理を教示する目的において、一部の従来からの態様は簡略化され、あるいは省略されている。当業者であれば、本明細書の範囲に含まれるこれらの例からの変形を理解できるであろう。当業者であれば、以下で説明される特徴をさまざまなやり方で組み合わせて、蒸気圧計器係数を使用して蒸気圧を決定する多数の変種を形成できることを理解できるであろう。結果として、以下で説明される実施形態は、以下で説明される具体的な例に限定されるものではなく、特許請求の範囲およびそれらの均等物によってのみ限定される。
【0030】
図1が、振動式計器5を示している。
図1に示されるように、振動式計器5は、メーターアセンブリ10およびメーター電子機器20を備える。メーターアセンブリ10は、プロセス物質の質量流量および密度に応答する。メーター電子機器20は、経路26による密度、質量流量、温度の情報および/ならびに他の情報をもたらすために、リード線100によってメーターアセンブリ10に接続される
【0031】
。
メーターアセンブリ10は、1対のマニホールド150および150’と、フランジ首部110および110’を有するフランジ103および103’ と、1対の平行な導管130および130’ と、ドライバ180と、抵抗式温度検出器(RTD)190と、1対のピックオフセンサ170lおよび170rとを含む。導管130および130’は、導管取り付けブロック120および120’においてお互いに向かって収束する2つの本質的にまっすぐな入口レグ131、131’および出口レグ134、134’を有する。導管130、130’は、それらの長さに沿った2つの対称位置において曲がり、それらの長さ全体にわたって本質的に平行である。補強バー140および140’が、各々の導管130、130’の振動の中心軸WおよびW’を定めるように機能する。導管130、130’のレグ131、131’および134、134’は、導管取り付けブロック120および120’に堅固に取り付けられ、次いでこれらのブロックは、マニホールド150および150’に堅固に取り付けられる。これは、メーターアセンブリ10を通る連続的な閉じた物質経路をもたらす。
【0032】
穴102および102’を有しているフランジ103および103’が、測定対象のプロセス物質を運ぶプロセス配管(図示せず)へと入口端104および出口端104’を介して接続されると、物質は、フランジ103のオリフィス101を通ってメーターの入口端104に進入し、マニホールド150を通り、表面121を有している導管取り付けブロック120に導かれる。マニホールド150において、物質は分割され、導管130、130’を通って送られる。導管130、130’を出ると、プロセス物質は、表面121’ を有する取り付けブロック120’およびマニホールド150’において再び合流して単一の流れとなり、その後に、穴102’有するフランジ103’によって、プロセス配管(図示せず)へと接続された出口端104’へと送られる。
【0033】
導管130、130’は、それぞれの曲げ軸W-WおよびW’-W’の周りの質量分布、慣性モーメントおよびヤング率が実質的に同じであるように選択され、導管取り付けブロック120、120’に適切に取り付けられる。これらの曲げ軸は、補強バー140、140’を通過する。導管のヤング率が温度とともに変化し、この変化が流量および密度の計算に影響を及ぼすため、RTD190が導管130’に取り付けられ、導管130’の温度を継続的に測定する。導管130’の温度、したがって、RTD190を通過する所与の電流においてRTD190の両端に現れる電圧は、導管130’を通過する物質の温度によって支配される。RTD190の両端に現れる温度依存性の電圧は、導管の温度の変化に起因する導管130、130’の弾性率の変化を補償するために、メーター電子機器20によって周知の方法で使用される。RTD190は、リード線195によってメーター電子機器20へと接続される。
【0034】
両方の導管130、130’が、ドライバ180によって、それぞれの曲げ軸WおよびW’を中心として反対の方向に、いわゆる流量計の第1の逆位相曲げモードで駆動される。このドライバ180は、導管130’に取り付けられた磁石、および導管130に取り付けられ、両方の導管130、130’を振動させるために交流が通される対向するコイルなど、多数の周知の構成のうちの任意の1つを備えることができる。適切な駆動信号が、メーター電子機器20によって、リード線185を介してドライバ180に印加される。
【0035】
メーター電子機器20は、リード線195上のRTD温度信号と、左右のセンサ信号165l、165rをそれぞれ運ぶリード線100上に現れる左右のセンサ信号とを受信する。メーター電子機器20は、ドライバ180へのリード線185上に現れる駆動信号を生成し、導管130、130’を振動させる。メーター電子機器20は、左右のセンサ信号およびRTD信号を処理して、メーターアセンブリ10を通過する物質の質量流量および密度を計算する。この情報は、他の情報とともに、信号として経路26を介してメーター電子機器20によって印加される。
【0036】
質量流量の測定値m’は、式
【数1】
に従って生成することができる。
Δt項は、時間遅延が振動式計器5を通る質量流量に関連するコリオリ効果に起因する場合などに、ピックオフセンサ信号間に存在する時間遅延を含む、操作により導出された(すなわち、測定された)時間遅延値を含む。測定されたΔt項は、最終的に、振動式計器5を通って流れるときの流動物質の質量流量を決定する。Δt
0項は、ゼロ流量較正定数における時間遅延を含む。Δt
0項は、典型的には、工場で決定され、振動式計器5にプログラムされる。ゼロ流量における時間遅延のΔt
0項は、流れの条件が変化している場合でも変化しない。流量較正係数FCFは、振動式計器5の剛性に比例する。
【0037】
[振動式計器における流体の圧力]
定常条件下での非圧縮性の液体を仮定すると、入口において制御容積(例えば、管)に進入する質量の流量(m’1)は、出口における質量が出る速度(m’3)に等しい。入口での質量の流量(m’1)が出口において出て行く流量(m’3)に等しくなければならないというこの原理は、以下の式[2]によって示される。入口から出口へと移動するとき、質量流量は管に沿った各点において保存される。しかしながら、入口と出口との間の途中において流れの面積の減少が存在し得る。流れの面積のこの減少は、同じ質量流量を維持し、質量保存の法則に従うために、流体の速度の増加(vup)を必要とする。
【0038】
【数2】
ここで、
m’は、流体の質量流量であり、
vは、平均流速であり、
ρは、流体の密度であり、
Aは、総断面積であり、
下付き文字1は、入口を表し、
下付き文字3は、出口を表し、
下付き文字2は、入口と出口との中間を示す。
【0039】
さらに、流れの系における全圧は、動圧および静圧の両方の合計に等しい:
【数3】
【0040】
動圧P
dynamicは、以下のように定義することができる。
【数4】
ここで、項ρとvは、式[2]に関して上記で定義されている。
【0041】
定常、非圧縮性、非粘性、かつ非回転の流れであると仮定すると、ベルヌーイ式によって
【数5】
となり、
ここで、Pは、静圧を指し、ρgz項は、高さの変化に起因する静水ヘッドを補償する。より具体的には、gは重力定数であり、zは高さである。圧力低下の粘性部分は、ベルヌーイ式において別個の損失項で扱うことができる。
【0042】
【数6】
ここで、
fは、摩擦係数であり、
Lは、管の長さであり、
Dは、管の直径である。
【0043】
以下の式[7]は、管を通っての移動に関連する摩擦損失を補償するベルヌーイ式の一変形である。流体が管を通って移動するとき、流体は、エネルギーを失い、圧力が管の所与の長さにわたって低下する。この圧力の損失は、流体からのエネルギーが摩擦損失によって消費されているため、回復不可能である。したがって、この損失を以下の式で考慮することができる。
【数7】
【0044】
この関係を、式[2]に関して上述した例示的なパイプに適用することができる。流体が入口から入口と出口との中間に移動するとき、質量流量を維持するために速度が変化する。したがって、式[7]に示される関係の維持において、動圧ρv2/2が上昇し、静圧が低下する。流体が入口と出口との間の中間から出口へと移動するとき、静圧は同じ原理によって回復する。すなわち、入口と出口との間の中間から出口へと移動するとき、流れの面積が大きくなり、したがって、流速が低下し、動圧が低下する一方で、初期の静圧の一部が回復される。しかしながら、出口における静圧は、回復不可能な粘性損失のために低くなる。
【0045】
これにより、入口および出口における静圧は、流体の蒸気圧よりも大きいが入口と出口との間における静圧が流体の蒸気圧よりも小さくなる可能性がある。結果として、入口および出口における静圧が、どちらも流体の蒸気圧よりも大きいにもかかわらず、依然として管内でフラッシングまたは脱気が発生する可能性がある。さらに、コリオリメーターなどの振動式計器は、振動式計器の1つ以上の導管の直径とは異なる直径を有するパイプラインに挿入される可能性がある。結果として、振動式計器において脱気が検出されるとき、パイプラインにおいて測定される圧力は、振動式計器内の流体の蒸気圧にならない可能性がある。
【0046】
[メーター電子機器-駆動ゲイン]
図2が、振動式計器5のメーター電子機器20のブロック図である。動作において、振動式計器5は、質量流量、体積流量、個々の流れ成分の質量流量および体積流量、ならびに例えば個々の流れ成分の体積流量および質量流量の両方を含む総流量の測定値または平均値のうちの1つ以上など、出力可能なさまざまな測定値をもたらす。
【0047】
振動式計器5は、振動応答を生じる。振動応答は、メーター電子機器20によって受信および処理されて1つ以上の流体測定値を生成する。値を監視し、記録し、保存し、合計し、さらには/あるいは出力することができる。メーター電子機器20は、インターフェース201と、インターフェース201と通信する処理システム203と、処理システム203と通信する記憶システム204とを含む。これらの構成要素が、別個のブロックとして示されているが、メーター電子機器20を、統合された構成要素および/または別個の構成要素のさまざまな組み合わせを備えることができることを理解すべきである。
【0048】
インターフェース201は、振動式計器5のメーターアセンブリ10と通信するように構成される。インターフェース201を、例えば、リード線100(
図1を参照)に結合し、ドライバ180、ピックオフセンサ170lおよび170r、ならびにRTD190と信号を交換するように構成することができる。さらに、インターフェース201を、通信経路26を介して外部の装置などと通信するように構成することができる。
【0049】
処理システム203は、任意の様相の処理システムを備えることができる。処理システム203は、振動式計器5を動作させるために、格納されたルーチンを取り出して、実行するように構成される。記憶システム204は、流量計ルーチン205、弁制御ルーチン211、駆動ゲインルーチン213、および蒸気圧ルーチン215を含むルーチンを格納することができる。記憶システム204は、測定値、受信値、作業値、および他の情報を格納することができる。いくつかの実施形態において、記憶システムは、質量流量(m)221、密度(ρ)225、密度閾値226、粘度(μ)223、温度(T)224、圧力209、駆動ゲイン306、駆動ゲイン閾値302、ガス混入閾値244、ガス混入率248、および技術的に知られた任意の他の変数を格納する。ルーチン205、211、213、215は、上述の任意の信号および技術的に知られた他の変数を含むことができる。他の測定/処理ルーチンも考えられ、本明細書および特許請求の技術的範囲の範囲に含まれる。
【0050】
理解できるとおり、より多数またはより少数の値が、記憶システム204に格納されてよい。例えば、粘度223を用いずに蒸気圧を決定してもよい。例えば、圧力降下または流量の関数としての摩擦に基づいて、粘度を推定する。しかしながら、粘度223を使用してレイノルズ数を計算することができ、次いでレイノルズ数を使用して摩擦係数を決定することができる。レイノルズ数および摩擦係数を使用して、
図1を参照して上述した導管130、130’などの導管内の粘性圧力低下を決定することができる。理解できるとおり、必ずしもレイノルズ数を使用する必要はない。
【0051】
流量計ルーチン205は、流体の定量化並びに流量の測定値の生成および格納をすることができる。これらの値は、実質的に瞬時の測定値を含むことができ、あるいは、合計値または累積値を含むことができる。例えば、流量計ルーチン205は、質量流量測定値を生成し、例えば、記憶システム204の質量流量221のストレージに格納することができる。例えば、流量計ルーチン205は、密度225の測定値を生成し、密度225のストレージに格納することができる。質量流量221および密度225の値は、前述のように、技術的に知られているとおりに、振動応答から決定される。質量流量および他の測定値は、実質的に瞬時の値を含むことができ、サンプルを含むことができ、或る時間区画にわたる平均値を含むことができ、あるいは或る時間区画にわたる累積値を含むことができる。時間区画を、例えば液体のみの流体状態または液体と同伴ガスとを含む流体状態などの特定の流体状態が検出されている時間ブロックに対応するように選択することができる。さらに、他の質量流量および体積流量ならびに関連する定量化も考えられ、本明細書および特許請求の技術的範囲の範囲に含まれる。
【0052】
駆動ゲイン閾値302を使用して、流れの期間と、流れのない期間と、単相/二相の境界(流体の相の変化が生じる)の期間と、ガス混入/混合相の流れの期間とを区別することができる。同様に、密度の読み取り値225に適用される密度閾値226を、駆動ゲイン306とは別個に、または駆動ゲイン306と一緒に使用して、ガス混入/混合相の流れを区別することも可能である。駆動ゲイン306を、例えば、限定されないが、液相およびガス相などの異なる密度の流体の存在に対する振動式計器5の導管振動の感度のための測定基準として利用されてもよい。
【0053】
本明細書において使用される場合、「駆動ゲイン」という用語は、流管を特定の振幅まで駆動させるのに必要な電力量の基準を指しているが、任意の適切な定義が使用されてもよい。例えば、駆動ゲインという用語は、いくつかの実施形態では、駆動電流、ピックオフ電圧、または流導管130、130’を特定の振幅で駆動させるために必要な電力量を示す測定または導出された任意の信号を指してもよい。駆動ゲインは、例えば、信号のノイズレベル、標準偏差、減衰関連測定値、および混合相流を検出するために当該技術分野で知られている他の任意の手段などの駆動ゲインの特性を利用することによって、多相流を検出するために使用されてもよい。これらの測定基準は、混合相流を検出するために、ピックオフセンサ170lと170rとの間で比較されてもよい。
【0054】
[流体の相変化の検出]
図3は、駆動ゲインと、蒸気圧計器係数を使用して蒸気圧を決定するために使用することができる気液比との関係を示すグラフ300を示している。
図3に示されるように、グラフ300は、平均空隙率の軸310および駆動ゲイン軸320を含む。平均空隙率の軸310および駆動ゲイン軸320は、パーセンテージで増加しているが、任意の適切な単位および/または比率が使用されてもよい。
【0055】
グラフ300は、さまざまな流量について駆動ゲインと気液比との間の関係であるプロット330を含む。示されるように、気液比は、プロット330の平均空隙率の値であるが、ガス体積率(「GVF」)またはガス混入率などの任意の適切な気液比が使用されてもよく、体積、断面積などに基づいてもよい。理解できるとおり、プロット330は、さまざまな流量と関連しているにもかかわらず、類似している。また、約0.20パーセントの平均空隙率でプロット330と交差する駆動ゲイン閾値線340が示されており、これは、40パーセントの駆動ゲインに対応する基準平均空隙率330aであり得る。約10パーセントである真の蒸気圧駆動ゲイン332も示されている。真の蒸気圧駆動ゲイン332は、流体の相変化が生じる静圧およびゼロの気液比を有するメーターアセンブリ内の流体に対応する。
【0056】
図から分かるように、プロット330は、0.00パーセントから約0.60パーセントまでの平均空隙率の範囲にわたって、約10パーセントの駆動ゲインから約100パーセントの駆動ゲインまで変化する。理解できるとおり、平均空隙率の比較的小さな変化は、駆動ゲインの有意な変化をもたらす。この比較的小さな変化は、駆動ゲインで蒸気生成の開始を正確に検出できることを保証することができる。
【0057】
40パーセントの駆動ゲインは、0.20パーセントの平均空隙率に対応するとして示されているが、この対応は、あるプロセスに特異的であり得る。例えば、40パーセントの駆動ゲインは、他のプロセス流体および状態の他の平均空隙率に対応し得る。異なる流体は、異なる蒸気圧を有し得るため、流体の蒸気生成は異なる流量で生じ得る。すなわち、比較的低い蒸気圧を有する流体は、より高い流量で気化し、比較的高い蒸気圧を有する流体は、より低い流量で気化するであろう。
【0058】
また理解できるとおり、駆動ゲイン閾値線340は、別/他の駆動ゲインであってもよい。しかしながら、また蒸気生成の開始が正確に検出されることを保証する一方で、同伴/混合相流の誤検出をなくすために40パーセントの駆動ゲインを有することは有益であり得る。
【0059】
また、プロット330は、駆動ゲインを使用しているが、測定された密度などの他の信号が使用されてもよい。測定された密度は、流体中の空隙の存在により増減することがある。例えば、測定された密度は、音速効果のために、比較的高い周波数の振動式計器内の空隙により、直感に反して増加することがある。比較的低い周波数のメーターでは、空隙の密度が流体よりも小さいため、測定された密度が低下することがある。これら、および他の信号は、メーターアセンブリ内の蒸気の存在を検出するために単独で、または組み合わせて使用されてもよい。
【0060】
上記のように、0.20パーセントの平均空隙率の値は、40パーセントの駆動ゲイン値に対応する基準平均空隙率330aであってもよく、これは、駆動ゲイン閾値線340が駆動ゲイン軸320と交差する場合であってもよい。したがって、測定された駆動ゲインが、上記のメーターアセンブリ10などのメーターアセンブリ内の流体に対して40パーセントである場合、流体の平均空隙率は、約0.20パーセントであり得る。約0.20パーセントの空隙率は、流体中に存在するガスによる流体の圧力に対応し得る。例えば、約0.20パーセントの空隙率は、例えば静圧値に対応し得る。
【0061】
駆動ゲイン、または密度などの他の信号と、基準気液比であり得る基準平均空隙率330aとの間の予め決定された関係のため、蒸気圧は、蒸気圧計器係数と関連し得る。例えば、流体の相変化が検出されるまで、静圧が増減する間、メーターアセンブリを振動させることができる。次に、
図4を参照して以下でより詳細に説明されるように、蒸気圧値は、静圧から決定されてもよい。決定された蒸気圧値は、例えば、駆動ゲイン閾値線340の静圧に対応し得る。この決定された蒸気圧値は、相変化が生じるか、または単相/2相境界が発生する真の蒸気圧駆動ゲイン332に対応するように、蒸気圧計器係数によって調整することができる。したがって、流体中のガスの存在が、流体の真の蒸気圧とは異なる静圧で検出されてもよいが、それでもなお、真の蒸気圧を決定することができる。
【0062】
一例として、基準平均空隙率330aを使用すると、駆動ゲインが40パーセントに達するまで、メーターアセンブリ内の静圧を低下させることができ、これにより、メーターアセンブリ内の流体が0.20パーセントの平均空隙率を有することが示される。上記の処理システム203などの処理システムは、流体が、例えば、40パーセントの駆動ゲインに対応する静圧よりも比例して高い静圧で気化し始めたと判断することができる。例えば、真の蒸気圧は、約10パーセントの駆動ゲインと関連し得る。理解できるとおり、静圧の計算に関与する不確実性(例えば、圧力センサに由来する誤差、流量測定誤差など)のため、真の蒸気圧は、40パーセントの駆動ゲインと関連する計算された静圧よりも比例して小さい可能性がある。真の蒸気圧は、流体の相変化が生じるが気液比がゼロである流体の静圧に対応している。
【0063】
したがって、測定された駆動ゲインは、ガスを検出するために使用することができ、それでもなお高精度の真の蒸気圧をもたらすことができる。より特別には、最初にガス放出が生じ、少数の小さな気泡が存在する瞬間に、駆動ゲインは、検出するための駆動ゲイン閾値線340を越えて増加しない可能性がある。動圧は、例えば、駆動ゲインが駆動ゲイン閾値線340を越えるように、静圧が低下するまで流量を高め続けるポンプによって高められてもよい。用途に応じて、この計算された静圧(例えば、未補正の蒸気圧)は、流体の相変化の検出における遅延を考慮して、例えば1psiの蒸気圧計器係数によって補正(例えば、調整-増減)することができる。すなわち、蒸気圧計器係数は、微量のガスを検出するように、ガスが検出される駆動ゲインと真の蒸気圧との差を考慮するために、駆動ゲインの関数として決定され、未補正の蒸気圧測定値に適用することができる。
【0064】
例として、
図3を参照すると、40パーセントの測定された駆動ゲインは、メーターアセンブリ内の流体の静圧、すなわち、例えば、真の蒸気圧と関連する駆動ゲインに対応する静圧よりも1psi小さい静圧に対応し得る。したがって、振動式計器5、またはメーター電子機器20、または任意の適切な電子機器は、蒸気圧計器係数が1psiであると判断し、この値を、40パーセントの駆動ゲインと関連する静圧に加算することができる。結果として、振動式計器5は、流体の相変化を正確に検出することができるため、駆動ゲインを使用して流体の蒸気圧を正確に決定することもできる。
【0065】
しかしながら、駆動ゲインを使用しない、相変化を検出する他の手段が使用されてもよい。例えば、相変化は、音響測定、X線ベースの測定、光学測定などによって検出されてもよい。上記の実施の組み合わせも考慮することができる。例えば、音響および/または光学測定値が垂直に分布するループ内で垂直に延びているバイパスラインは、ガスが最初に抜ける場所を判断するためである。この高さは、以下に説明するように、振動式計器5内の流体の蒸気圧を計算するのに必要な入力を提供するであろう。
【0066】
[振動式計器内の圧力降下]
図4は、振動式計器内の流体の静圧を使用して蒸気圧を決定することができる方法を示すグラフ400を示している。
図4に示されるように、グラフ400は、位置軸410および静圧軸420を含む。位置軸410は、なにも特定の長さの単位を用いて示されておらず、インチの単位であり得るが、任意の適切な単位が使用されてもよい。静圧軸420は、ポンド毎平方インチ(psi)の単位であるが、任意の適切な単位が使用されてもよい。位置軸410は、振動式計器の入口(「IN」)から出口(「OUT」)までの範囲である。
【0067】
したがって、INからOUTまでの位置は、例えば、
図1に示されるメーターアセンブリ10内の流体に対応し得る。この例では、INからAの周りまでの領域は、フランジ103と導管取り付けブロック120との間のメーターアセンブリ10の一部に対応し得る。Aの周りからGの周りまでの領域は、取り付けブロック120、120’間の導管130、130’に対応し得る。GからOUTまでの領域は、取り付けブロック120’からフランジ103’までのメーターアセンブリ10の一部に対応し得る。したがって、メーターアセンブリ10内の流体(例えば、INからOUTまでの範囲の位置の)は、例えば、メーターアセンブリ10が挿入されるパイプライン内の流体を含まない可能性がある。メーターアセンブリ10内の流体は、導管130、130’内の流体であってもよい。
【0068】
グラフ400はまた、ゼロ動圧プロット430および動圧変化プロット440を含む。ゼロ動圧プロット430は、動圧の変化を示さない-圧力は、振動式計器の入口から出口まで直線的に低下すると仮定される。動圧変化プロット440は、振動式計器の1つ以上の導管の直径がパイプラインの直径よりも小さいパイプラインに挿入された振動式計器内の実際の圧力を表し得る。例示的な振動式計器5が
図1に示されているが、任意の適切な振動式計器が使用されてもよい。したがって、上記のメーターアセンブリ10などのメーターアセンブリ内の流体は、動圧の上昇による低下した静圧を有し得る。また、振動式計器内の流体の蒸気圧を表す蒸気圧線450も示されている。
【0069】
動圧変化プロット440は、静圧降下部440aと、粘性損失部440bと、静圧上昇部440cとを含む。動圧変化プロット440は、最小静圧440dも含む。静圧降下部440aは、振動式計器のこの部分の動圧の対応する上昇を引き起こす流速の上昇による可能性がある。粘性損失部440bは、振動式計器内の1つ以上の導管の一定直径部に対応し得る。したがって、粘性損失部440bは、流速の上昇を反映しない可能性があるため、動圧の上昇を反映しない可能性がある。静圧上昇部440cは、流速の低下によるため、静圧降下部440a中の静圧低下は回復され得る。静圧降下部440aおよび静圧上昇部440cは、メーターアセンブリ内の静圧変化であり得る。
【0070】
最小静圧440dを含む、蒸気圧線450より低い動圧変化プロット440の一部は、上記のメーターアセンブリ10などのメーターアセンブリ内の流体において流体の相変化が生じる位置(例えば、位置Eの周りから位置Gのわずかに後まで)に対応し得る。
図4で見て取ることができるように、最小静圧440dは、蒸気圧線450の下にある。これは、動圧変化プロット440が、メーターアセンブリ内の流体の静圧を高めることによって、上向きに移動し得ることを示している。しかしながら、最小静圧440dが蒸気圧線450にかかるまで動圧変化プロット440を上に移動するように、静圧を約5psiだけ高めると、流体の相変化が検出され得る。静圧が高まるため、メーターアセンブリ内の流体中のガスまたは蒸気が液体になることがある。逆に、動圧変化プロット440が蒸気圧線450の上にあり、最小静圧440dが蒸気圧線にかかるまでメーターアセンブリ内の流体の静圧が低下すると、流体の相変化により、流体中にガスまたは蒸気が生成し得る。
【0071】
図4で見て取ることができるように、粘性損失部440bは、位置Aの約68psiの静圧から位置Gの約55psiの静圧まで低下する。理解できるとおり、位置Gの約55psiの静圧は、約58psiである蒸気圧線450より小さい。結果として、入口および出口の静圧が蒸気圧線450より大きいにもかかわらず、振動式計器内の流体は、依然として勢いよく流れるか、または抜ける可能性がある。
【0072】
したがって、入口および出口の静圧は、流体の蒸気圧に直接対応しない。すなわち、流体の蒸気圧は、パイプライン内またはメーターアセンブリの外部の流体の静圧から直接決定されない可能性がある。メーターアセンブリ10または、より具体的には、導管130、130’内の静圧は、例えば、入口および出口の圧力測定値を使用し、振動式計器5の寸法(例えば、導管130、130’の直径および長さ)を入力することによって、正確に決定することができる。しかしながら、蒸気圧を正確に決定するためには、振動式計器5内の流体の相変化を誘導する必要があり得、これは、振動式計器5内の流体の静圧を変化させることによって引き起こされ得る。
【0073】
[流体の静圧の変化]
図5は、流体の蒸気圧を決定するためのシステム500を示している。
図5に示されるように、システム500は、パイプライン501に結合されているバイパス入口およびバイパス出口を含むバイパスである。システム500は、コリオリメーターとして示されている振動式計器5の出口と流体連通しているポンプ510およびバイパス出口を含む。入口圧力センサ520は、振動式計器5の入口およびバイパス入口と流体連通している。出口圧力センサ530は、振動式計器5の出口とポンプ510との間に配置され、振動式計器5の出口の流体の静圧を決定するように構成されている。弁として示されている流量制御装置540は、バイパス入口と入口圧力センサ520との間に配置されている。
【0074】
ポンプ510は、例えば、振動式計器5内の流体の速度を高めることができる任意の適切なポンプであってもよい。ポンプ510は、例えば、可変周波数駆動装置を含んでもよい。可変周波数駆動装置は、ポンプ510が、システム500内の流体の流速を制御するのを可能にしてもよい。例えば、可変周波数駆動装置は、振動式計器5を通る流体の流速を高めることができるが、任意の適切なポンプによって流速を高めてもよい。ポンプ510は、流速を高めることによって、振動式計器5内の流体の動圧を高めることができる。
【0075】
したがって、振動式計器5内の流体の静圧が低下することがある。例として、
図4を参照すると、ポンプ510は、動圧変化プロット440を下向きに移動させることがある。したがって、
図4には示されていないが、動圧変化プロット440が蒸気圧線450の上にあるならば、ポンプ510は、動圧変化プロット440を下向きに移動させることによって、フラッシングまたはガス放出を誘導することができる。同様に、動圧変化プロット440を蒸気圧線450以上に移動させることによって、流体中のガスまたは蒸気が液体になり得る。
【0076】
入口圧力センサ520および出口圧力センサ530は、流体のあらゆる圧力を決定するように構成されている任意の適切な圧力センサであってもよい。例えば、入口圧力センサ520および出口圧力センサ530は、システム500内の流体の静圧を決定してもよい。これに加え、あるいはこれに代えて、入口圧力センサ520および出口圧力センサ530は、システム500内の流体の全圧を決定してもよい。一例では、流体の動圧は、上記の式[3]に従って、システム500内の流体の全圧と静圧との間の差を取ることによって決定されてもよい。例えば、入口圧力センサ520は、振動式計器5の入口に近接して、または入口において、流体の全圧および静圧を決定してもよい。振動式計器5内の入口圧力センサ520および/またはメーター電子機器20は、振動式計器5の入口の動圧を決定してもよい。
【0077】
流量制御装置540は、流量制御装置540の位置が、部分的閉鎖位置から完全開放位置まで移動されると、システム500内の流体の流速を高めることができる。例えば、振動式計器5の入口におけるシステム500の流量制限を減少させることによって、流体の速度は、上記の式[2]に従って上昇し得る。これは、フラッシングまたはガス放出を誘導するように、動圧変化プロット440を下に移動させることができる。逆に、流量制御装置540は、システム500内の流体の流速を低下させ、これにより、動圧変化プロット440を上に移動させ、これにより、ガスまたは蒸気を凝縮させることができる。
【0078】
流量制御装置540が開放されると、流速は高まるが、振動式計器5の入口の静圧も高まり、逆もまた同様である。流量制御装置540のポンプ510との組み合わせは、好ましくは、より低い静圧および、より高い速度を得るために、流量制御装置540を部分的に閉鎖し(例えば、流量制御装置540の下流の流れを制限し、圧力を低下させるために)、ポンプ速度を高める(例えば、流量を高める)ことによって、好ましいプロセス条件を提供することができる。
【0079】
振動式計器5、または、より具体的には、振動式計器5のメーターアセンブリ10内の流体の静圧は、ポンプ510もしくは流量制御装置540、または両方の組み合わせを使用することによって変化させることができるが、静圧を変化させる上記の他の手段が使用されてもよい。例えば、振動式計器5の高さzを変化させてもよい。振動式計器5内の流体の静圧を低下させるために、高さzを高くしてもよい。振動式計器5内の流体の静圧を高めるために、高さzを低下させてもよい。振動式計器5の高さzは、振動式計器5とパイプライン501との間の電動リフト、および、振動式計器5と、例えば、流量制御装置540およびポンプ510との間の蛇腹などの任意の適切な手段によって変化させてもよい。他の手段、ならびにさまざまな手段(例えば、ポンプ510、流量制御装置540および/または電動リフト)の組み合わせが使用されてもよい。
【0080】
例えば、バイパスを通る流量が十分であると、必ずしもポンプが使用されなくてもよい。流量制御装置540のみが使用されてもよい。流量制御装置540は、振動式計器5の下流などの他の位置に取り付けられてもよい。代替的に、ポンプ510および/または電動リフトが使用される場所などでは、流量制御装置540が使用されなくてもよい。別の代替例では、メーターをバイパスではなくて本線に取り付けてもよい。追加的または代替的に、単一の圧力センサのみが使用されてもよい。例えば、出口圧力センサ530のみが使用されてもよい。入口および/または出口圧力センサ520、530は、代替位置に配置されてもよい。出口圧力センサ530およびその位置は、メーターアセンブリ10内の流体が蒸気圧であると、出口圧力センサ530の位置の静圧が、流速に対して実質的に安定し得るため、有益であり得る。すなわち、流速のあらゆる追加上昇も、出口圧力センサ530によって決定される静圧の実質的低下を引き起こさないことがある。
【0081】
[真の蒸気圧とリード蒸気圧]
上述したように、コリオリ流量計ベースのシステムは、0:1の気液比で真の蒸気圧を提供することができ、これは、工学的計算にとって有用なパラメーターとなり得る。さらに、コリオリベースシステムは、「生きているサンプル」を測定することがあり、これは依然として低い蒸気圧の成分(「軽留分」)を有し得る。これは、サンプリング中に軽留分が気化し、失われる「死んだサンプル」を使用して測定する方法と比べて、潜在的な利点であり得る。さらに、研究室での分析のための蒸気に満ちているサンプル容器の輸送の必要性をなくす安全上の利点が実現され得る。
【0082】
他の蒸気圧測定値に関しては、メーター電子機器20は、4:1または他の何らかのV/L比のリード蒸気圧を、他の相関関係を使用して逆算するように構成することができる。例えば、ガソリンの真の蒸気圧測定値からリード蒸気圧を得るには、以下の式を使用することができる:
【数8】
【0083】
同様に、原油の真の蒸気圧測定値からリード蒸気圧を得るには、以下の式を使用することができる:
【数9】
ここで、
Tは、温度(℃)であり、
TVPは、真の蒸気圧(kPa)であり、
RVPは、リード蒸気圧(kPa)であり、
A
1、A
2、A
3、B
1、B
2、B
3、およびCは、リード蒸気圧と真の蒸気圧との間で変換するためのパラメーターであり、流体の組成に依存する。
【0084】
例として、変換パラメーターA
1、A
2、A
3、B
1、B
2、B
3、およびCは、(SI単位系について)以下の値を有し得る:
【表1】
【0085】
ゼロに近い気液比で蒸気圧を決定することの利点の一例は、原油の鉄道輸送で見ることができる。ほとんどの蒸気圧試験法は、4:1の気液比および37.8℃の測定温度を必要とする。しかしながら、原油は、80℃および0:1に近い気液比で輸送することができる。これらの条件下では、「死んだ」原油でも軽留分が気化し始め、指数関数的な圧力上昇を伴うガス状混合物を生成し得る。4:1の気液比および37.8℃の温度で蒸気圧を決定すると、これは予見することができない。安全性の計算のためには、パイプライン内でプロセス温度および0:1に近い気液比で輸送される蒸気圧を決定することが重要であり得、これは、そのうちの例示的なものが以下に記載の
図6の説明と一致する方法を使用して達成することができる。
【0086】
[蒸気圧計器係数の使用]
図6は、蒸気圧計器係数を使用して蒸気圧を決定する方法600を示している。
図6に示されるように、方法600は、流体を有するメーターアセンブリに駆動信号を供給するステップ610で始まる。方法600によって使用されるメーターアセンブリは、上記のメーターアセンブリ10であってもよいが、任意の適切なメーターアセンブリが使用されてもよい。ステップ620では、メーターアセンブリに供給された駆動信号の駆動ゲインが測定される。ステップ630では、流体の蒸気圧は、駆動ゲインと基準気液比との間の予め決定された関係に基づいて決定される。
【0087】
方法600は、追加のステップを含んでもよい。例えば、駆動ゲインが測定されると、静圧を決定することができる。例えば、駆動ゲインが測定されると同時に静圧を決定することができる。
図3を参照して上記のように、測定された駆動ゲインは、駆動ゲイン閾値線340などの相変化を検出するための駆動ゲイン閾値と関連し得る。駆動ゲインが駆動ゲイン閾値で測定される場合、方法600は、また、メーターアセンブリ内の流体の静圧を決定してもよい。したがって、決定された静圧は、未補正蒸気圧であってもよい。この未補正蒸気圧は、真の蒸気圧を決定するために、蒸気圧計器係数を使用して調整することができる。
【0088】
ステップ610では、駆動信号は、上記のメーター電子機器20によって供給することができるが、任意の適切な電子機器が使用されてもよい。流体は、例えば、同伴ガス、気泡、スラグ流などのガスまたは蒸気を有していても有していなくてもよい。流体の速度は、例えば、振動式計器5に沿ったポンプにより変化してもよいが、任意の適切な構成が使用されてもよい。メーターアセンブリ内の流体の速度を変化させることによって、メーターアセンブリ内の流体の静圧が増減し得る。例えば、流体の速度を高めることは、メーターアセンブリ内の流体の静圧を低下させ得る。
【0089】
駆動ゲインと基準気液比との間の予め決定された関係は、直接的な関係または間接的な関係であってもよい。例えば、駆動ゲインと基準気液比との間の直接的な予め決定された関係は、ある範囲にわたって駆動ゲインを気液比に関連付ける線形関係であってもよい。範囲は、真の蒸気圧に関連する駆動ゲインから100パーセントの駆動ゲインまでであってもよい。一例では、真の蒸気圧に関連する駆動ゲインは、約10パーセントであり得るが、任意の適当な値が使用されてもよい。
【0090】
例示的な間接的な関係では、基準気液比は、蒸気圧計器係数によって差し引かれる静圧と関連し得る。したがって、蒸気圧計器係数は、未補正蒸気圧と関連する駆動ゲイン閾値と関連し得る。したがって、気液比の値は、真の蒸気圧などの蒸気圧を計算するために必ずしも使用されなくてもよいが、それでもなお、駆動ゲインと気液比との間の予め決定された関係は、蒸気圧を決定するための基礎であり得る。
【0091】
図7は、蒸気圧を決定するための蒸気圧計器係数を決定する方法700を示している。
図7に示されるように、方法700は、ステップ710では、メーターアセンブリ内の流体の静圧を決定する。ステップ720では、方法700は、流体の静圧と真の蒸気圧との間の差を決定する。
【0092】
方法700は、さらに、メーターアセンブリに信号を供給するステップと、メーターアセンブリに供給された駆動信号の駆動ゲインを測定するステップと、および/またはメーターアセンブリ内の流体の静圧を駆動ゲインに関連付けるステップとを含んでもよい。追加的または代替的に、方法700は、流体内の相変化を検出するための駆動ゲイン閾値を測定された駆動ゲインに関連付けるステップと、その差を駆動ゲイン閾値に関連付けるステップとを含んでもよい。
【0093】
上記は、振動式計器5、特に、メーター電子機器20、および蒸気圧計器係数を使用して蒸気圧を決定する方法600を説明している。蒸気圧計器係数を使用することによって、駆動ゲイン閾値線340などの閾値を説明することができる。より具体的には、駆動ゲイン閾値線340と関連する蒸気圧値は、真の蒸気圧値を得るために、蒸気圧計器係数によって補正されてもよい。真の蒸気圧値は、流体中の相変化が生じる場所に対応し得るが、流体中には蒸気はない。したがって、決定された蒸気圧は、より正確であり得る。結果として、振動式計器5およびメーター電子機器20によって提供される値がより正確であるため、振動式計器5およびメーター電子機器20の動作が改善される。蒸気圧の決定の技術分野におけるより正確な決定は、例えば、流体プロセス制御などの他の技術分野を改善することができる。
【0094】
上記実施形態の詳細な説明は、本明細書の範囲内であると本発明者らが考えるすべての実施形態の網羅的な説明ではない。実際、当業者は、上記実施形態の特定の要素を種々組み合わせて、または省略して、さらなる実施形態を作成することができ、このような、さらなる実施形態は、本明細書の範囲および教示に入ることを認識するであろう。また、上記実施形態を全体的または部分的に組み合わせて、本明細書の範囲および教示内に追加の実施形態を作成することができることは、当業者に明らかであろう。
【0095】
したがって、関連技術の当業者が認識するように、特定の実施形態が例示の目的で本明細書に記載されているが、本明細書の範囲内でさまざまな同等の修正が可能である。本明細書で提供される教示は、上記および添付図に示される実施形態に限らず、蒸気圧計器係数を使用して蒸気圧を決定する他の方法に適用することができる。したがって、上記の実施形態の範囲は、以下の特許請求の範囲から決定されるべきである。