(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-07
(45)【発行日】2023-04-17
(54)【発明の名称】冷却可能な熱シールドを有する輸送容器
(51)【国際特許分類】
F17C 1/12 20060101AFI20230410BHJP
【FI】
F17C1/12
(21)【出願番号】P 2020529266
(86)(22)【出願日】2018-12-05
(86)【国際出願番号】 EP2018025308
(87)【国際公開番号】W WO2019110146
(87)【国際公開日】2019-06-13
【審査請求日】2021-10-04
(32)【優先日】2017-12-08
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】519288685
【氏名又は名称】リンデ ゲゼルシャフト ミット ベシュレンクテル ハフツング
【氏名又は名称原語表記】Linde GmbH
【住所又は居所原語表記】Dr.-Carl-von-Linde-Str. 6-14, 82049 Pullach i. Isartal, Germany
(74)【代理人】
【識別番号】110000855
【氏名又は名称】弁理士法人浅村特許事務所
(72)【発明者】
【氏名】ハインツ、ポッセルト
(72)【発明者】
【氏名】ビッヒルメイヤー、ユーゲン
(72)【発明者】
【氏名】トロイヒトリンゲル、ニルス
(72)【発明者】
【氏名】トドロフ、テオドール
【審査官】矢澤 周一郎
(56)【参考文献】
【文献】国際公開第2017/190849(WO,A1)
【文献】特開昭57-154593(JP,A)
【文献】中国特許出願公開第106015921(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
F17C 1/12
(57)【特許請求の範囲】
【請求項1】
ヘリウム(He)用の輸送容器(1)であって、前記ヘリウム(He)を受容するための内側容器(6)と、極低温流体(N2)を受容するための冷媒容器(14)と、前記内側容器(6)及び前記冷媒容器(14)が受容される外側容器(2)と、前記内側容器(6)を受容し前記極低温流体(N2)を使用して能動的に冷却されることができる熱シールド(21)と、を備え、前記熱シールド(21)は、前記冷媒容器(14)に流体接続され、前記極低温流体(N2)を受容して前記熱シールド(21)を能動的に冷却することができる、少なくとも1つの冷却管(26)と、少なくとも1つの戻り管路(34、35)とを有し、前記少なくとも1つの冷却管(26)は、前記戻り管路(34、35)を介して前記冷媒容器(14)に流体接続されて前記極低温流体(N2)を前記冷媒容器(14)に戻
し、前記少なくとも1つの戻り管路(34、35)の内径(d34、d35)が、前記少なくとも1本の冷却管(26)の内径(d26)よりも大きいことを特徴とする、ヘリウム(He)用の輸送容器(1)。
【請求項2】
前記少なくとも1つの冷却管(26)は、前記冷媒容器(14)の液体領域(19)に流体接続され、前記少なくとも1つの戻り管路(34、35)は、前記冷媒容器(14)の気体領域(18)に流体接続されている、請求項1に記載の輸送容器。
【請求項3】
前記少なくとも1つの戻り管路(34、35)は、前記少なくとも1つの冷却管(26)の重力方向(g)に対して上方において前記冷媒容器(14)内に開口する、請求項1又は2に記載の輸送容器。
【請求項4】
前記少なくとも1つの冷却管(26)の最低点は、前記冷媒容器(14)に流体接続されている、請求項1~3のいずれか一項に記載の輸送容器。
【請求項5】
前記少なくとも1つの冷却管(26)の最高点は、前記少なくとも1つの戻り管路(34、35)の助けを借りて前記冷媒容器(14)に流体接続される、請求項1~4のいずれか一項に記載の輸送容器。
【請求項6】
前記少なくとも1つの冷却管(26)の前記内径(d26)は、10ミリメートルよりも大きい、請求項
1に記載の輸送容器。
【請求項7】
前記少なくとも1つの戻り管路(34、35)は、傾斜角(β)で前記冷媒容器(14)の方向に傾斜している、請求項1~
6のいずれか一項に記載の輸送容器。
【請求項8】
前記少なくとも1つの戻り管路(34、35)は、前記熱シールド(21)に接続され、前記熱シールド(21)と前記外側容器(2)との間に配置されている、請求項1~
7のいずれか一項に記載の輸送容器。
【請求項9】
前記輸送容器(1)の稼働中、前記極低温流体(N2)が沸騰して前記少なくとも1つの冷却管(26)内の前記熱シールド(21)を能動的に冷却し、それにより、気相(GN2)にある前記極低温流体(N2)の気泡が前記少なくとも1つの冷却管(26)内で発生し、液相(LN2)にある前記極低温流体(N2)を、前記少なくとも1つの戻り管路(34、35)内に搬送し、その結果、前記気相(GN2)にある前記極低温流体(N2)及び/又は前記液相(LN2)にある前記極低温流体(N2)が前記冷媒容器(14)に戻される、請求項1~
8のいずれか一項に記載の輸送容器。
【請求項10】
第1の戻り管路(34)と第2の戻り管路(35)とが互いに平行に設けられている、請求項1~
9のいずれか一項に記載の輸送容器。
【請求項11】
前記冷媒容器(14)は、気相(GN2)にある前記極低温流体(N2)を前記冷媒容器(14)から取り出すための抽気弁(36)を有する、請求項1~
10のいずれか一項に記載の輸送容器。
【請求項12】
前記内側容器(6)は、前記熱シールド(21)によって完全に囲まれている、請求項1~
11のいずれか一項に記載の輸送容器。
【請求項13】
前記熱シールド(21)は、前記冷媒容器(14)から分離されて、前記内側容器(6)と前記冷媒容器(14)との間に配置されているカバー部(24)を有する、請求項
12に記載の輸送容器。
【請求項14】
前記冷媒容器(14)は、前記熱シールド(21)の外側に配置されている、請求項1~
13のいずれか一項に記載の輸送容器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ヘリウム用の輸送容器に関する。
【0002】
ヘリウムは天然ガスと一緒に抽出される。大量のヘリウムの輸送は、経済的な理由から、液体形態又は超臨界形態においてのみ、すなわち、約4.2~6Kの温度及び1~6バールの圧力でのみ実施可能である。液体の又は超臨界のヘリウムを輸送するためには、ヘリウムの圧力の過度に急速な増加を回避するために複雑なプロセスで断熱された輸送容器が使用される。このような輸送容器は、例えば、液体窒素の助けを借りて冷却することができる。その際には、液体窒素の助けを借りて冷却された熱シールドが提供される。熱シールドは、輸送容器の内側容器をシールドする。液体の又は極低温のヘリウムは、内側容器内に受容される。このような輸送容器内の液体の又は極低温のヘリウムの保持期間は、35~40日であり、これは、この期間の後、内側容器内の圧力が最大値6バールに増加していることを意味する。液体窒素の供給は、約35日間に対して十分である。
【0003】
こうした背景の下で、改善された輸送容器を提供することが本発明の目的である。
【0004】
したがってヘリウム用の輸送容器が提案される。輸送容器は、ヘリウムを受容するための内側容器と、極低温流体を受容するための冷媒容器と、内側容器及び冷媒容器が受容される外側容器と、内側容器を受容し極低温流体の助けを借りて能動的に冷却されることができる熱シールドと、を備え、熱シールドは、冷媒容器に流体接続され、極低温流体を受容して熱シールドを能動的に冷却することができる、少なくとも1つの冷却管と、少なくとも1つの戻り管路とを有し、少なくとも1つの冷却管は、戻り管路の助けを借りて冷媒容器に流体接続されて極低温流体を冷媒容器に戻す。
【0005】
戻り管路が提供されるため、冷却に使用される極低温流体が冷却管から冷媒容器に戻される。戻り管路の助けを借りて、特に、冷却管内での気泡形成のために熱シールドの冷却管から戻り管路内に押し流される液相にある極低温流体、及び気相にある極低温流体を、再び冷媒容器に戻すことができる。液相の同伴作用(entrainment)により、冷却管内は常に極低温流体により充たされる、又は極低温流体が冷却管内の最高点まで存在することを確実にすることができる。気化されない極低温流体は、循環により、特に、自然循環、すなわち自動的な循環により冷媒容器に再循環される。気相もまた、この循環により再び冷媒容器に戻される。
【0006】
それによって、通常、液相にある極低温流体から気相にある極低温流体を分離する相分離器の使用を完全に省くことができる。これにより、輸送容器の製造及び維持のコストが低減される。このような相分離器は、可動部品を含み、したがって、耐用年数が限られる。同様に、冷却管を含む冷却システムに相分離器から伝達される熱は、少なくない。この熱伝達は、相分離器を省くことによって除去される。輸送容器の外側に設けられる取付部品である、このような相分離器は、更に輸送容器の取り扱い時に損傷を受ける可能性がある。相分離器の除去により、このリスクもまた、もはや存在しない。本輸送容器は、それゆえ、相分離器が装備されない、又は相分離器を含まない。
【0007】
前述の自然循環は、好ましくは、超過圧力なし又は少なくとも低い超過圧力で作動する。したがって、冷媒容器内の圧力を1.3baraから1.1baraまで低減することができる。この圧力の低下は、極低温流体の沸騰温度、例えばこの場合は窒素の1.5Kの低下をもたらす。それにより、ヘリウムへの熱の伝達は約5%減少し、したがってヘリウムの保持期間は既知の輸送容器と比較して約3日増加する。
【0008】
内側容器はまた、ヘリウム容器又は内側タンクと呼ぶことができる。輸送容器は、ヘリウム輸送容器とも称され得る。ヘリウムは、液体の又は極低温のヘリウムと呼ぶことができる。ヘリウムは、特に、同じように極低温流体である。輸送容器は、特に、極低温の、又は液体の、又は超臨界の形態でヘリウムを輸送するように設計されている。熱力学において、臨界点は、液相及び気相の密度の均等化によって特徴付けられる物質の熱力学的状態である。この時点では、物の2つの状態の間で差異が存在しなくなる。相図では、臨界点は、蒸気圧曲線の上端を表す。
【0009】
ヘリウムが液体の、又は極低温の形態で内側容器内に導入される。その結果、液体ヘリウムを有する液体領域及び気体ヘリウムを有する気体領域が内側容器内に形成される。こうして、内側容器内に導入された後、ヘリウムは、物質の異なる状態、すなわち液体状態及び気体状態を有する2つの相を有する。これは、液体ヘリウムと気体ヘリウムとの間の相境界が内側容器内に存在することを意味する。特定の時間後、すなわち、内側容器内の圧力が上昇すると、内側容器内に存在するヘリウムは単相となる。その結果、相境界はもはや存在せず、ヘリウムは超臨界である。
【0010】
極低温流体又はクライオジェンは、好ましくは液体窒素である。極低温流体はまた、冷媒と呼ばれることもある。極低温流体は、あるいはまた、例えば、液体水素又は液体酸素であってもよい。熱シールドが能動的に冷却可能又は能動的に冷却されているということは、極低温流体が少なくとも部分的に熱シールドを通って又はその周囲を流れて熱シールドを冷却することを意味するものとして理解されるべきである。このプロセスにおいて極低温流体は沸騰し、したがって、気相にある極低温流体及び液相にある極低温流体が存在する。したがって、極低温流体は、その気相及び液相の両方で冷却管内に受容され得る。極低温流体は、同様に、その気相及び液相の両方で戻り管路内に受容され又は冷媒容器に搬送されて戻ることができる。戻り管路では、液相にある極低温流体は、少なくとも部分的に気化し得る。液相にある極低温流体の気化しなかった部分は、冷媒容器内に戻される。特に、液相では、気相にある極低温流体の助けを借りて搬送される。可動構成要素を有するポンプは省くことができる。輸送容器又は熱シールドの稼働中、液相にある極低温流体は、極低温流体が気化するときに冷却容器から冷却管へと流れ続け、したがって、冷却管は、その全長にわたって常に液相で充たされる。冷媒容器、冷却管、及び戻り管路は、こうして冷却システムを形成する。冷却システムは、極低温流体の循環が可能である閉鎖システムである。
【0011】
特に、熱シールドは、輸送容器の稼働中にのみ、すなわち、内側容器がヘリウムで充たされている場合にのみ能動的に冷却される。極低温流体を使い切ると、熱シールドも冷却されなくてもよい。上述のように、極低温流体は、熱シールドの能動的冷却中に、冷却管内で気化し得るが戻り管路内でも気化し得る。したがって、熱シールドは、極低温流体の沸点にほぼ又は正確に対応する温度を有する。極低温流体の沸点は、液体ヘリウムの沸点よりも高いことが好ましい。熱シールドは、特に、外側容器の内側に配置される。冷媒容器は、好ましくは熱シールドの外側に配置される。冷却管及び戻り管路は、好ましくは2つの別個の構成要素である。これは、冷却管が戻り管路に対応しないことを意味する。
【0012】
内側容器の外側は、好ましくは、内側容器内に貯蔵されたヘリウムの温度にほぼ又は正確に対応する温度を有する。ヘリウムが液体の又は超臨界の形態であるかどうかに応じて、ヘリウムの温度は4.2~6Kである。好ましくは、熱シールドのカバー部は、それぞれの場合に、熱シールドの基部を端面において完全に覆っている。熱シールドの基部は、円形又はほぼ円形の断面を有することができる。外側容器、内側容器、冷媒容器、及び熱シールドは、共通の中心軸又は対称軸に対して回転対称であるように設計することができる。内側容器及び外側容器は、好ましくはステンレス鋼で作製される。内側容器は、好ましくは、湾曲したカバー部によって両側で閉鎖される管状基部を有する。内側容器は、流体密封されている。外側容器は、好ましくは同様に管状基部を有し、管状基部は、カバー部によって両側の端面で閉じられている。内側容器の基部及び/又は外側容器の基部は、円形又はほぼ円形の断面を有することができる。熱シールドは、好ましくは高純度アルミニウム材料から作製されている。熱シールドは、好ましくは流体密封されない。これは、熱シールドが開口部又はボアホールを有することができることを意味する。
【0013】
一実施形態によれば、少なくとも1つの冷却管は、冷媒容器の液体領域に流体接続され、少なくとも1つの戻り管路は、冷媒容器の気体領域に流体接続される。
【0014】
気体領域は、重力方向に対して液体領域の上方に配置される。相境界は、気体領域と液体領域との間に配置される。極低温流体が冷媒容器内に導入されると、それは少なくとも部分的に気化し、液体領域の上方に配置された気体領域が形成される。こうして、冷却管は液体領域に開口し、戻り管路は気体領域に開口する。
【0015】
別の実施形態によれば、少なくとも1つの戻り管路は、少なくとも1つの冷却管の重力方向に対して上方において冷媒容器内に開口する。
【0016】
戻り管路は、特に冷媒容器に直接接続される。冷却管は、接続管を介して冷媒容器に接続されることができる。あるいは、冷却管はまた、冷媒容器に直接接続されることもできる。冷却管は、水平線に対して斜めに配置された部分の助けを借りて互いに接続された、重力方向に延びる2つの垂直部を有し得る。冷却管は更に、前述の接続管が開口し、接続管の助けを借りて冷媒容器に接続される分配器を有することができる。分配器は、冷却管の最低点を表す。冷却管の垂直部及び傾斜部は、それから分配器を離れる。冷却導管の垂直部及び傾斜部は、集合器で再び結合される。集合器は、冷却管の最高点を表す。戻り管路は集合器に接続されている。
【0017】
別の実施形態によれば、少なくとも1つの冷却管の最低点は、冷媒容器に流体接続される。
【0018】
冷却管の最低点は、前述の分配器であってもよく、この分配器は、接続管の助けを借りて冷媒容器に流体接続される。最低点は分配器と呼ばれることもあり、又は分配器は、冷却管の最低点と呼ばれることもある。
【0019】
別の実施形態によれば、少なくとも1つの冷却管の最高点は、少なくとも1つの戻り管路の助けを借りて冷媒容器に流体接続される。
【0020】
冷却管の最高点は、前述の集合器である。戻り管路は集合器を冷媒容器に接続する。最高点をまた、集合器と呼ぶこともでき、又は集合器をまた、冷却管の最高点と呼ぶこともできる。
【0021】
別の実施形態によれば、少なくとも1つの戻り管路の内径は、少なくとも1つの冷却管の内径よりも大きい。
【0022】
これにより、極低温流体が戻り管路内に蓄積することを確実に防止する。それどころか、極低温流体中に形成された気泡は、液相にある極低温流体を冷却管から戻り管路に同伴することができる。例えば、戻り管路の内径は、冷却管の内径よりも10%、20%、30%、又は40%大きくてもよい。
【0023】
別の実施形態によれば、少なくとも1つの冷却管の内径は、10ミリメートル超である。
【0024】
例えば、冷却管の内径は、12、13、14ミリメートル以上とすることができる。
【0025】
別の実施形態によれば、少なくとも1つの戻り管路は、冷媒容器の方向に傾斜する角度で傾斜している。
【0026】
これは、戻り管路が冷媒容器の方向に降下することを意味する。これにより、液相にある極低温流体が冷媒容器内に還流することを確実にする。傾斜角は、水平線又は輸送容器の対称軸に対する戻り管路の傾斜角として定義される。これにより、水平線は対称軸に平行に配置される。
【0027】
別の実施形態によれば、少なくとも1つの戻り管路は熱シールドに接続され、熱シールドと外側容器との間に配置される。
【0028】
戻り管路は、好ましくは、熱シールドの重力方向に対して上部領域に沿って延びる。戻り管路は、熱シールドに熱的及び/又は機械的に結合することができる。例えば、戻り管路は熱シールドに接着されてもよく、又はそれに締付固定されてもよい。戻り管路はまた、熱シールドの外側でなく、熱シールド内に配置されてもよい。
【0029】
別の実施形態によれば、輸送容器の稼働中、極低温流体が沸騰して少なくとも1つの冷却管内の熱シールドを能動的に冷却し、それにより、気相にある極低温流体の気泡が少なくとも1つの冷却管内で発生し、液相にある極低温流体を、少なくとも1つの戻り管路内に搬送し、その結果、気相にある極低温流体及び/又は液相にある極低温流体が冷媒容器に戻される。
【0030】
気泡は、液相にある極低温流体を冷却管から戻り管路へ同伴する。しかしながら、これは、液相にある極低温流体の連続的な搬送ではなく、非連続的な搬送をもたらす。それ故、冷却管及び戻り管路が、気泡ポンプ又はマンモスポンプの形態によるポンプ装置を形成する。このポンプ装置は、極低温流体を、冷媒容器から冷却管を通し及び冷却管から戻り管路を介して冷媒容器に戻すように送り込むのに好適である。
【0031】
別の実施形態によれば、互いに平行に走る第1の戻り管路及び第2の戻り管路が提供される。
【0032】
戻り管路はまた、互いから遠ざかるように延びることもできる。戻り管路の数は任意である。しかしながら、少なくとも1つの戻り管路が提供される。
【0033】
更なる実施形態によれば、冷媒容器は、冷媒容器から気相にある極低温流体を取り出すための抽気弁を有する。
【0034】
このようにして、冷媒容器内の圧力が調節される。取り出された、気相にある極低温流体を、熱シールドと外側容器との間に配置された能動的に冷却可能な断熱要素に供給することができる。気相にある極低温流体がこの断熱要素を通過した後、気相は、もはや極低温ではなく、輸送容器に望ましくない氷結を生じることなく、加熱された気相として環境内に排出され得る。
【0035】
別の実施形態によれば、内側容器は、熱シールドによって完全に囲まれている。
【0036】
これは、熱シールドが内側容器を完全に包み込むことを意味する。これにおいて、熱シールドは流体密封されていないことが好ましい。
【0037】
更なる実施形態によれば、熱シールドは、冷媒容器から分離され、内側容器と冷媒容器との間に配置されたカバー部を有する。
【0038】
熱シールドは、好ましくは、カバー部によって両側で閉じられる管状基部を備える。熱シールドのカバー部のうち1つは、内側容器と冷媒容器との間に配置されている。熱シールドのカバー部は、特に、内側容器と冷媒容器との間に設けられた中間空間に配置される。
【0039】
更なる実施形態によれば、冷媒容器は熱シールドの外側に配置される。
【0040】
冷媒容器は、好ましくは、輸送容器の軸方向において熱シールドに隣接して配置される。冷媒容器と熱シールドとの間に中間空間が設けられる。冷媒容器は、好ましくは熱シールドの一部ではない。
【0041】
輸送容器の更なる可能な実装はまた、例示的な実施形態に関して上記又は下記に記載される特徴又は実施形態の、明示的に言及されていない組み合わせも含む。当業者はまた、それぞれの場合において、輸送容器の基本形態に対する改善又は追加としての個別の態様も追加するであろう。
【0042】
輸送容器の更なる有利な実施形態が、従属クレームの主題であり、以下に記載する輸送容器の例示的な実施形態の主題である。加えて、輸送容器は、添付の図面を参照して、好ましい実施形態に基づき、より詳細に説明される。
【図面の簡単な説明】
【0043】
【
図3】
図2の輸送容器の切断線III-IIIによる概略断面図を示す。
【0044】
図において、同じ又は機能的に同等の要素は、特に指示がない限り、同じ参照記号を割り当てられている。
図1は、液体ヘリウムHe用の輸送容器1の実施形態の高度に簡略化された概略図を示す。
図2は、輸送容器1の更なる高度に簡略化された概略図を示し、
図3は、
図2の切断線III-IIIに沿った輸送容器1の概略断面図を示す。以下、同時に、
図1~
図3を参照する。
【0045】
輸送容器1は、ヘリウム輸送容器とも称することができる。輸送容器1はまた、他の極低温流体にも使用することができる。極低温流体、略してクライオジェンの例は、前述の、液体ヘリウムHe(1baraでの沸点:4.222K=-268.929℃)、液体水素H2(1baraでの沸点:20.268K=-252.882℃)、液体窒素N2(1baraでの沸点:7.35K=195.80℃)又は液体酸素O2(1baraでの沸点:9.18K=182.97℃)である。
【0046】
輸送容器1は、外側容器2を備える。外側容器2は、例えば、ステンレス鋼で作製することができる。外側容器2は、例えば10メートルの長さL2を有することができる。外側容器2は、筒状又は円筒状の基部3を含み、これは、カバー部4、5の助け、特に第1のカバー部4及び第2のカバー部5の助けを借りて両側の端面で閉じられている。基部3は、断面が円形又は略円形の形状を有することができる。カバー部4、5は湾曲している。カバー部4とカバー部5は、カバー部4とカバー部5の両方が基部3に対して外側に湾曲するように反対方向に湾曲している。外側容器2は、流体密封されており、かつ、特に気密性である。外側容器2は、中心軸又は対称軸M1を有する。外側容器2は、中心軸又は対称軸M1に関して回転対称に設計されている。
【0047】
輸送容器1は、ヘリウムHeを受容するための内側容器6を更に備える。内側容器6は、
図2に示されていない。内側容器6は同様に、例えばステンレス鋼で作製される。ヘリウムHeが二相領域にある限り、気化ヘリウムHeを有する気体領域7及び液体ヘリウムHeを有する液体領域8を内側容器6内に設けることができる。内側容器6は流体密封され、特に気密性を有し、制御された圧力低減のための抽気弁を含むことができる。外側容器2と同様に、内側容器6は、管状又は円筒状の基部9を含む。この基部は、カバー部10、11、特に第1のカバー部10及び第2のカバー部11によって両側の端面で閉じられている。基部9は、断面が円形又は略円形の形状を有することができる。外側容器2と同様に、内側容器6は、対称軸M1に対して回転対称であるように設計されている。内側容器6は、外側容器2によって完全に包み込まれる。外側容器2と内側容器6との間には、空にされた間隙又は中間空間12が設けられている。
【0048】
輸送容器1は、冷媒容器14を備える冷却システム13(
図2)を更に備える。中間空間12はまた、冷媒容器14と外側容器2との間にも設けられる。上述したように、中間空間12は空にされている。中間空間12は、内側容器6及び冷媒容器14を完全に包み込む。
【0049】
極低温流体、例えば窒素N2が冷媒容器14内に受容される。したがって、以下、極低温流体を窒素N2と呼ぶ。冷媒容器14は、対称軸M1に対して回転対称であるように設計され得る管状又は円筒状の基部15を含む。基部15は、断面が円形又は略円形の形状を有することができる。基部15は、それぞれの場合においてカバー部16、17、特に第1のカバー部16及び第2のカバー部17によって端面で閉じられている。カバー部16、17は湾曲していてもよい。特に、カバー部16、17は、同じ方向に湾曲している。冷媒容器14はまた、異なる設計を有することもできる。冷媒容器14は、内側容器6の外側かつ外側容器2の内側に配置される。
【0050】
冷媒容器14内において、気化した窒素又は気体窒素GN2を有する気体領域18及び液体窒素LN2を有する液体領域19を提供することができる。重力方向gに見て、気体領域18は液体領域19の上方に配置される。気体窒素GN2をまた、気相にある窒素N2又は気相にある極低温流体と呼ぶ場合もある。液体窒素LN2をまた、液相にある窒素N2又は液相にある極低温流体と呼ぶ場合もある。輸送容器1の軸方向Aに見て、冷媒容器14は、内側容器6に隣接して配置されている。軸方向Aは、対称軸M1に平行に配置される又は対称軸M1と一致する。外側容器2の第1のカバー部4からの軸方向Aは、外側容器2の第2のカバー部5の方向に向かうことができる。間隙又は中間空間20は、中間空間12の一部であり得る。間隙又は中間空間20は、内側容器6、特に内側容器6の第2のカバー部11と冷媒容器14、特に、冷媒容器14の第1のカバー部16との間に設けられている。これは、中間空間20が同様に空にされることを意味する。
【0051】
輸送容器1は、冷却システム13と関連付けられた熱シールド21を更に備える。熱シールド21は、内側容器6と外側容器2との間に設けられた空にされている中間空間12内に配置されている。熱シールド21は、能動的に冷却可能であるか、又は窒素N2の助けを借りて能動的に冷却される。この場合、能動的冷却は、熱シールド21を冷却するための窒素N2が、熱シールドを通して伝導されるか、又はそれに沿って導かれることを意味するものとして理解されるべきである。ここで、熱シールド21は、窒素N2の沸点にほぼ対応する温度まで冷却される。
【0052】
熱シールド21は、円筒状又は管状の基部22を含んでおり、円筒状又は管状の基部22は、カバー部23、24、特に第1のカバー部23及び第2のカバー部24によって両側の端面で閉じられている。基部22及びカバー部23、24の両方は、窒素N2の助けを借りて能動的に冷却される。基部22は、断面が円形又は略円形の形状を有することができる。熱シールド21は、好ましくは、同様に対称軸M1に対して回転対称であるように設計される。
【0053】
軸方向Aから見て、熱シールド21の第2のカバー部24は、内側容器6、特に内側容器6の第2のカバー部11と、冷媒容器14、特に、冷媒容器14の第1のカバー部16との間に配置されている。熱シールド21、特に熱シールド21の第2のカバー部24は冷媒容器14から分離された構成要素である。これは、熱シールド21、特に熱シールド21の第2のカバー部24が冷媒容器14の一部ではないことを意味する。中間空間12は、熱シールド21を完全に包み込む。
【0054】
熱シールド21の第1のカバー部23は、冷媒容器14とは反対の方向に面している。熱シールド21の第1のカバー部23は、外側容器2の第1のカバー部4と内側容器6の第1のカバー部10との間に配置されている。これにより、熱シールド21は自己支持型である。これは、熱シールド21が内側容器6及び外側容器2のいずれにも支持されていないことを意味する。この目的のために、支持リングが熱シールド21上に設けられてもよい。支持リングは、支持ロッド、特に張力ロッドを介して外側容器2に懸架される。更に、内側容器6が、更なる支持ロッド、特に張力ロッドを介して支持リングに懸架されることができる。支持リングによって、機械的な支持ロッドを通じた熱伝達が部分的に実現される。支持リングは、支持ロッドに最大可能な熱長さを可能にするポケットを有する。冷媒容器14は、機械的支持ロッド用のフィードスルーを含むことができる。
【0055】
熱シールド21は、流体透過性である。これは、内側容器6と熱シールド21との間の間隙又は中間空間25が中間空間12に流体接続されていることを意味する。したがって、中間空間12、25は、同時に空にされ得る。中間空間25は、内側容器6を完全に包み込む。
図1~
図3には示されていない断熱要素は、中間空間25内に配置することができる。この断熱要素は、いわゆるMLI(多層断熱体)であり得るか、又はそれを含み得る。熱シールド21にボアホール、開口部などを設けることにより、中間空間12、25を同時に空にすることができる。熱シールド21は、高純度アルミニウム材料からなることが好ましい。
【0056】
熱シールド21の第2のカバー部24は、冷媒容器14を内側容器6に対して完全にシールドする。これは、内側容器6から冷媒容器14に向かって見たとき、特に軸方向Aから見たときに、冷媒容器14が熱シールド21の第2のカバー部24によって完全に覆われるか又は遮蔽されることを意味する。特に、熱シールド21は、内側容器6を完全に取り囲んでいる。これは、内側容器6が完全に熱シールド21内に配置されることを意味し、その点で、熱シールド21は、既に上述したように流体密封されていない。
【0057】
内側容器6は
図2に図示されていないが、
図2が更に示すように、熱シールド21は、内側容器を能動的に冷却するための少なくとも1つの冷却管26を含む。冷却管26は冷却システム13に関連付けられている。好ましくは、いくつかのこのような冷却管26、例えば、6つのそのような冷却管26が提供される。しかしながら、冷却管26の数は任意である。冷却管26は、重力方向gに延びる2つの垂直部27、28と、2つの傾斜部29、30とを含み得る。垂直部27、28は、熱シールド21のカバー部23、24及び/又は基部22上に設けることができる。傾斜部29、30は、同様に、カバー部23、24及び/又は基部22上に設けてもよい。垂直部27は、傾斜部29に流体接続され、傾斜部30は垂直部28に流体接続されている。
【0058】
冷却管26は、機械的にも熱的にも熱シールド21に接続される。この目的のために、冷却管26を熱シールド21に一体的に接合することができる。一体型結合の場合、結合パートナー同士は、原子又は分子力によって一体に保持される。一体型結合は、結合手段又は結合パートナーを破壊することによってのみ分離され得る、解放不可能な接続である。一体型結合は、例えば、接着剤結合、はんだ付け、溶接、又は加硫によって達成することができる。好ましくは、冷却管26は、熱シールド21に溶接、はんだ付け、又は接着接合される。
【0059】
冷却管26は、冷媒容器14が充たされたときに窒素N2が冷媒容器14から冷却管26に押し込まれるように、接続管31の助けを借りて冷媒容器14に流体接続されている。接続管31は、冷却管26の一部である。冷却管26はまた、冷媒容器14と直接接続されていてもよい。接続管31は分配器32に開口し、分配器32から冷却管26の垂直部27及び傾斜部30が分岐する。分配器32は、重力方向gに対して、冷却管26の最低点を形成する。したがって、分配器32は、冷却管26の最低点とも称され得る。冷却管26のこの最低点は、冷媒容器14の液体領域19に接続管31の助けを借りて流体接続される。このプロセスでは、接続管31は、冷媒容器14の重力方向Gに対して最も低い点に開口することができる。冷却管26の傾斜部29及び垂直部28は、重力方向gに対して、冷却管26の最高点を形成する集合器33で合流する。したがって、集合器33はまた、冷却管26の最高点と呼ばれることもある。
【0060】
前述したように、冷却管26は、熱シールド21の基部22及びカバー部23、24の両方に設けられる。あるいは、カバー部23、24は、基部22に実質的に一続きで、特に一体化して接続されている。例えば、カバー部23、24を基部22に溶接することができる。カバー部23、24は、基部22に実質的に一続きで、すなわち、一体化して接続されているため、カバー部23、24もまた、熱伝導によって冷却され得る。
【0061】
冷却管26、特に、冷却管26の傾斜部29、30は、水平線H1に対して傾斜している。水平線H1は、重力方向gに対して垂直かつ対称軸M1に平行に配置されている。特に、傾斜部29、30は、冷媒容器14の方向に傾斜している。好ましくは、セクション29、30は、水平線Hに対して3°を超える傾斜角αを有する。傾斜角αは3°~15°、又はそれ以上であってもよい。特に、傾斜角αはちょうど3°であってもよい。また、傾斜角αを第1傾斜角と呼ぶこともできる。特に、セクション29、30は、集合器33の方向に正の傾斜を有し、したがって、窒素N2が沸騰したときに冷却管26に発生する気泡は、集合器33に向かって上昇する。外側容器2の外側に配置され、気体窒素GN2を液体窒素LN2から分離し、気体窒素GN2を環境内に抽気するように設計された相分離器を、集合器33に接続することができる。しかしながら、このような相分離器は、ここでは省かれる。
【0062】
図1~
図3には示されていない、中間空間12を充たす断熱要素を、中間空間12に配置することができる。この断熱要素は、熱シールド21の外側に設けられ、中間空間12を充たすことができる。断熱要素は、好ましくは、内側容器6の領域内の中間空間12を完全に充たし、したがって、そこで断熱要素の外側は熱シールド21と、内側は外側容器2と接触する。断熱要素は、熱シールド21をその第2のカバー部24を除いて包み込む。すなわち、断熱要素は、第1のカバー部23及び基部22を包み込む。更に、冷媒容器14の円筒状基部15及び第2のカバー部17が断熱要素によって包み込まれている。断熱要素は、好ましくは、いわゆるMLIと同様であるか、又はMLIを含んでもよい。熱シールド21と同様に、断熱要素は能動的に冷却することができる。能動的冷却は、極低温気体窒素GN2の助けを借りて行われる。断熱要素の能動的冷却のために、更なる冷却管をそれを通して導くことができる。冷却管は、螺旋状又は渦巻き状であってもよい。
【0063】
更に、輸送容器1は、少なくとも1つの戻り管路34、35(
図3)を備える。好ましくは、第1の戻り管路34及び第2の戻り管路35が設けられる。しかしながら、戻り管路34、35の数は任意である。冷却管26は、戻り管路34、35の助けを借りて、窒素N2が冷却管26を通過した後に窒素N2を再び冷媒容器14に戻すために、冷却冷媒容器14に流体接続される。戻り管路34、35は、熱シールド21の外側に設けられてもよい。戻り管路34、35は、熱シールド21に少なくとも機械的に接続され、好ましくは熱シールド21と外側容器2との間に配置される。あるいは、戻り管路34、35もまた、熱シールド21に熱的に接続されてもよい。
【0064】
戻り管路34、35は、冷媒容器14の方向に傾斜している。特に、戻り管路34、35は、水平線H2に対して傾斜角βで傾斜している。水平線H2は、水平線H1に平行であるか、又はそれと一致するように配置される。傾斜角βは、第2傾斜角とも称することができる。傾斜角βは、例えば4°とすることができる。傾斜角βは、4°~15°、又はそれ以上であってもよい。特に、傾斜角βはちょうど4°であってもよい。戻り管路34、35は、好ましくは冷却システム13と関連付けられる。
【0065】
冷媒容器14の液体領域19に流体接続される冷却管26とは異なり、戻り管路34、35は、冷媒容器の気体領域18に流体接続されている。これは、冷却管34、35は、重力方向gに関して冷媒容器14の冷却管26の上方、特に冷却管26の接続管31の上方に開口していることを意味する。冷却管26の最高点を表す集合器33は、戻り管路34、35の助けを借りて冷媒容器14に流体接続される。この目的のために、このような集合器33は、例えば熱シールド21の両側に設けられてもよい。戻り管路34、35は、好ましくは互いに平行に走る。ここで、戻り管路34、35の内径d34、d35は、冷却管26の内径d26よりも大きい。好ましくは、冷却管26の内径d26は、10ミリメートルよりも大きい。内径d26は、例えば12ミリメートルとすることができる。
【0066】
冷却システム13は、抽気弁36を更に含む。圧力に応じて抽気弁36の助けを借りて、気体窒素GN2を冷媒容器14から取り出すことができる。抽気弁36は、気体窒素GN2を環境に取り出すのに好適である。あるいは、前述の、外側容器2と熱シールド21との間に配置された能動的に冷却された断熱要素を抽気弁36に接続することができる。取り出された極低温気体窒素GN2は、次いで、断熱要素を通して導かれ能動的に冷却される。次いで、この過程で加熱された気体窒素GN2は、断熱要素の冷却管を通過した後、環境内に排出され得る。そのとき、気体窒素GN2はもはや極低温でなく、断熱要素を出るときに加熱されているので、出口部位の望ましくない氷結を防止することができる。
【0067】
以下、輸送容器1の動作原理について説明する。内側容器6にヘリウムHeを充たす前に、まず、熱シールド21を少なくとも液体窒素LN2の沸点(1.3bara、7.95K)付近又はちょうどまで、(液体窒素LN2が当初の気体から液体とされた)極低温窒素N2の助けを借りて冷却する。内側容器6は、まだ能動的に冷却されていない。熱シールド21が冷却されると、中間空間12、20、25内に依然として存在する残留真空ガスは、熱シールド21で凍結する。その結果、内側容器6がヘリウムHeで充たされるときに残留真空ガスが内側容器6上で凍結し汚染することを防止することができる。熱シールド21及び冷媒容器14が完全に冷却され、冷媒容器14が再び窒素N2で完全に充たされ次第、内側容器6が液体ヘリウムHeで充たされる。
【0068】
これにより、ヘリウムHeを輸送するために輸送容器1をトラック又は船舶などの輸送媒体上に移動させることができる。この過程において、熱シールド21は、液体窒素LN2の助けを借りて連続的に冷却されている。液体窒素LN2は、冷却管26内で沸騰する。この過程で形成された気泡は、気体窒素GN2として冷却システム13の最高点、すなわち集合器33に供給される。この過程で、冷却管26にはその全長にわたって液体窒素LN2が供給され、それによって、窒素N2の沸点にほぼ対応する温度であることが常に確保される。
【0069】
気泡は、液体窒素LN2を冷却管26から同伴し、したがって、液体窒素LN2を戻り管路34、35へ搬送する。液体窒素LN2は、発生した気泡によって、約2メートルの静的高さまで同伴される。これにより、液体窒素LN2の連続的な輸送ではなく、非連続的な搬送がもたらされる。液体窒素LN2はサージのような方法又はサージを介して搬送される。戻り管路34、35内に搬送された液体窒素LN2及び気体窒素GN2は、戻り管路34、35を介して冷媒容器14に戻される。液体窒素LN2は、戻り管路34、35内で部分的に気化する。液体窒素LN2の気化しなかった部分は、冷媒容器14に戻される。戻り管路34、35は冷却管26よりも大きな内径d34、d35を有するため、同伴された液体窒素LN2は自由に戻り管路34、35内に搬送され得る。
【0070】
これにより、窒素N2の自然循環が生じる。これは、可動部品を有するポンプなしに、窒素N2が冷却管26及び戻り管路34、35経由で回路内を搬送されることを意味する。液体窒素LN2は、気体窒素GN2の助けを借りるのみで搬送される。冷却管26及び戻り管路34、35は、液体窒素LN2を搬送するのに好適ないわゆる気泡ポンプ又はマンモスポンプとして作用する。前述したように、自然循環は、超過圧力なし又は少なくともほとんどなしで作動する。したがって、冷媒容器14内の圧力は、通常必要とされる1.3baraから1.1baraまで低下させることができる。この冷媒容器14内の圧力の低下は、液体窒素LN2の沸騰温度の1.5Kの低下をもたらす。それによってヘリウムHeに伝達される熱が約5%低減され、したがってヘリウムの保持期間は、このような戻り管路34、35がない機構と比較して著しく、すなわち約3日増加する。
【0071】
輸送容器1の場合、有利にも、液体窒素LN2を気体窒素N2から分離するための相分離器を省くことができる。このような相分離器は、摩耗を免れない可動部品を含む。これは、相分離器は限られた耐用年数を有することを意味する。したがって、相分離器を省くことにより、そのような輸送容器1の製造及び維持の両方のコストが低減される。更に、通常は外側容器2の外側に追加部品として配置される相分離器を省くことによって、相分離器への損傷もまた除外される。これにより、輸送容器1の取り扱いが簡略化される。相分離器によって引き起こされる冷却システム13への熱伝達もまた無視できない。この理由からも、相分離器を省くことが有利である。
【0072】
極低温気体窒素は、1つの場所、すなわち抽気弁36においてのみ排出されるため、1つの冷却管のみ作動させればよく、熱シールド21と外側容器2との間に配置される断熱要素の能動的冷却がより容易に実施可能である。上述のように、このような能動的に冷却された断熱要素が提供される場合、加熱された気体窒素GN2のみが輸送容器1から排出される。したがって、液体窒素LN2の保持期間の大幅な増加に加えて、輸送容器1の望ましくない氷結も発生し得ない。
【0073】
本発明は、例示的な実施形態に基づいて説明されてきたが、様々な方法で修正することができる。
使用されるリファレンスシンボル
1 輸送容器
2 外側容器
3 基部
4 カバー部
5 カバー部
6 内側容器
7 気体領域
8 液体領域
9 基部
10 カバー部
11 カバー部
12 中間空間
13 冷却システム
14 冷媒容器
15 基部
16 カバー部
17 カバー部
18 気体領域
19 液体領域
20 中間空間
21 熱シールド
22 基部
23 カバー部
24 カバー部
25 中間空間
26 冷却管
27 垂直部
28 垂直部
29 傾斜部
30 傾斜部
31 接続管
32 分配器
33 集合器
34 戻り管路
35 戻り管路
36 抽気弁
A 軸方向
d26 内径
d34 内径
d35 内径
g 重力方向
GN2 窒素
H1 水平線
H2 水平線
He ヘリウム
LN2 窒素
L2 長さ
M1 対称軸
N2 窒素
α 傾斜角
β 傾斜角