(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2023-04-07
(45)【発行日】2023-04-17
(54)【発明の名称】粒子線治療システムの製造方法および粒子線治療システム
(51)【国際特許分類】
A61N 5/10 20060101AFI20230410BHJP
G21K 1/00 20060101ALI20230410BHJP
G21K 5/04 20060101ALI20230410BHJP
【FI】
A61N5/10 H
G21K1/00 A
G21K5/04 A
G21K5/04 D
(21)【出願番号】P 2023001529
(22)【出願日】2023-01-10
【審査請求日】2023-01-12
(31)【優先権主張番号】P 2022016263
(32)【優先日】2022-02-04
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(73)【特許権者】
【識別番号】317015294
【氏名又は名称】東芝エネルギーシステムズ株式会社
(74)【代理人】
【識別番号】110001380
【氏名又は名称】弁理士法人東京国際特許事務所
(72)【発明者】
【氏名】龍頭 啓充
(72)【発明者】
【氏名】宮本 篤
(72)【発明者】
【氏名】平田 寛
【審査官】北村 龍平
(56)【参考文献】
【文献】特開2017-20813(JP,A)
【文献】特開2017-29235(JP,A)
【文献】特開2011-250910(JP,A)
【文献】特開2016-49325(JP,A)
【文献】特開2019-82389(JP,A)
【文献】国際公開第2013/175600(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61N 5/10
G21K 1/00
G21K 5/04
(57)【特許請求の範囲】
【請求項1】
荷電粒子を加速する円形加速器と、
前記円形加速器で加速された前記荷電粒子を複数の治療室に導くビーム輸送ラインと、
前記ビーム輸送ラインにより導かれた前記荷電粒子の患者に対する照射方向を変更可能であってそれぞれの内部に前記治療室が設けられた複数の回転ガントリと、
を備える粒子線治療システムを製造する方法であり、
前記ビーム輸送ラインは、前記円形加速器から延びるメイン輸送ラインと前記メイン輸送ラインからそれぞれの前記治療室まで延びる複数のサブ輸送ラインとを含み、
前記メイン輸送ラインの第1連結点に一方の前記サブ輸送ラインが連結され、かつ前記メイン輸送ラインの前記第1連結点とは異なる第2連結点に他方の前記サブ輸送ラインが連結されており、
前記メイン輸送ラインを通過する前記荷電粒子のベータトロン振動を表すベータ関数の位相進みであって前記第1連結点から前記第2連結点までの前記位相進みがπの整数倍となるように前記メイン輸送ラインを設計し、
それぞれの前記回転ガントリの回転部分と固定部分との境界で、それぞれのビーム光学パラメータが一致するように、ビーム形状を設定する、
粒子線治療システムの製造方法。
【請求項2】
前記境界と前記治療室における前記荷電粒子が最も集中して照射される位置とで、それぞれの前記ビーム光学パラメータが一致するように、前記ビーム形状を設定する、
請求項1に記載の粒子線治療システムの製造方法。
【請求項3】
それぞれの前記境界で、対称ビーム方法による条件、ラウンドビーム方法による条件、ローテーター方法による条件のうち、少なくともいずれかを満たすように、前記ビーム形状を設定する、
請求項1または請求項2に記載の粒子線治療システムの製造方法。
【請求項4】
前記ビーム光学パラメータは、ツイスパラメータを含み、
前記荷電粒子の進行方向をZ軸とした場合に、前記境界で、X軸とY軸の前記ツイスパラメータが等しくなるように、前記ビーム形状を設定する、
請求項1または請求項2に記載の粒子線治療システムの製造方法。
【請求項5】
それぞれの前記境界で、前記X軸と前記Y軸の前記ツイスパラメータが等しくなるように、前記第1連結点および前記第2連結点の前記ツイスパラメータを設定する、
請求項4に記載の粒子線治療システムの製造方法。
【請求項6】
前記ビーム光学パラメータは、アルファ関数、ベータ関数、ガンマ関数、エミッタンス、ディスパージョンの少なくともいずれかで表わされ、これらの少なくとも1つを、それぞれの前記境界で一致させる、
請求項1または請求項2に記載の粒子線治療システムの製造方法。
【請求項7】
それぞれの前記境界で、それぞれの前記ビーム光学パラメータが一致するように、前記ビーム輸送ラインに設けられる偏向電磁石および収束電磁石の強さと配置を調整する、
請求項1または請求項2に記載の粒子線治療システムの製造方法。
【請求項8】
荷電粒子を加速する円形加速器と、
前記円形加速器で加速された前記荷電粒子を複数の治療室に導くビーム輸送ラインと、
前記ビーム輸送ラインにより導かれた前記荷電粒子の患者に対する照射方向を変更可能であってそれぞれの内部に前記治療室が設けられた複数の回転ガントリと、
を備え、
前記ビーム輸送ラインは、前記円形加速器から延びるメイン輸送ラインと前記メイン輸送ラインからそれぞれの前記治療室まで延びる複数のサブ輸送ラインとを含み、
前記メイン輸送ラインの第1連結点に一方の前記サブ輸送ラインが連結され、かつ前記メイン輸送ラインの前記第1連結点とは異なる第2連結点に他方の前記サブ輸送ラインが連結されており、
前記メイン輸送ラインを通過する前記荷電粒子のベータトロン振動を表すベータ関数の位相進みであって前記第1連結点から前記第2連結点までの前記位相進みがπの整数倍となるように前記メイン輸送ラインが設計され、
それぞれの前記回転ガントリの回転部分と固定部分との境界で、それぞれのビーム光学パラメータが一致するように、ビーム形状が設定されている、
粒子線治療システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、粒子線治療システムの製造技術に関する。
【背景技術】
【0002】
粒子線治療システムにおいて、複数の治療室に粒子線ビームを導入させるとなると、これら治療室のレイアウトに合わせて、粒子線ビームを輸送するラインを延伸し、分岐し、屈曲させることとなる。しかし、ラインを通過するビーム中の荷電粒子の分布は一定でなく、その断面形状は、粒子線ビームを輸送するラインに沿って変化しており、ベータトロン振動と呼ばれる一定周期の振動をしている。このため、粒子線ビームを輸送するラインは、通過するビームの断面形状に応じた設計仕様が要求される。ラインが延伸される距離が長くなり、またはラインの分岐が増えるほど、ラインの設計と現地調整にかかる時間が指数関数的に増大し、建設期間および建設コストの増大を招いてしまう。
【0003】
そこで、構成機器が共通化されたセグメントを組み合わせてビーム輸送ラインを構築する技術が知られている。しかし、この技術だけでは、複数の治療室のレイアウトまたは建設現場の土地の広さなどに応じてビーム輸送ラインを自由に構築することが難しい。
【0004】
また、ビーム輸送ラインにおいて、第1の分岐点と第2の分岐点との間における荷電粒子ビームのベータトロン振動の位相差をπの整数倍にして、それぞれの分岐点でツイスパラメータを揃える技術が知られている。この技術は、照射ポートが固定されている治療室(固定室)を設計するためのものであり、固定室を増設する場合には、充分にビーム輸送ラインの設計の容易化が図れる。しかし、この技術は、回転ガントリにより照射ポートが可動する治療室(回転ガントリ室)を設計する場合に、充分にビーム輸送ラインの設計の容易化が図れるものではない。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2017-29235号公報
【文献】特開2017-20813号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明が解決しようとする課題は、回転ガントリを備える複数の治療室が設けられた粒子線治療システムにおいて、ビーム輸送ラインの設計の容易化を図り、回転ガントリを増設する際の建設期間および建設コストの抑制に寄与することができる粒子線治療システムの製造技術を提供することである。
【課題を解決するための手段】
【0007】
本発明の実施形態に係る粒子線治療システムの製造方法は、荷電粒子を加速する円形加速器と、前記円形加速器で加速された前記荷電粒子を複数の治療室に導くビーム輸送ラインと、前記ビーム輸送ラインにより導かれた前記荷電粒子の患者に対する照射方向を変更可能であってそれぞれの内部に前記治療室が設けられた複数の回転ガントリと、を備える粒子線治療システムを製造する方法であり、前記ビーム輸送ラインは、前記円形加速器から延びるメイン輸送ラインと前記メイン輸送ラインからそれぞれの前記治療室まで延びる複数のサブ輸送ラインとを含み、前記メイン輸送ラインの第1連結点に一方の前記サブ輸送ラインが連結され、かつ前記メイン輸送ラインの前記第1連結点とは異なる第2連結点に他方の前記サブ輸送ラインが連結されており、前記メイン輸送ラインを通過する前記荷電粒子のベータトロン振動を表すベータ関数の位相進みであって前記第1連結点から前記第2連結点までの前記位相進みがπの整数倍となるように前記メイン輸送ラインを設計し、それぞれの前記回転ガントリの回転部分と固定部分との境界で、それぞれのビーム光学パラメータが一致するように、ビーム形状を設定する。
【発明の効果】
【0008】
本発明の実施形態により、回転ガントリを備える複数の治療室が設けられた粒子線治療システムにおいて、ビーム輸送ラインの設計の容易化を図り、回転ガントリを増設する際の建設期間および建設コストの抑制に寄与することができる粒子線治療システムの製造技術が提供される。
【図面の簡単な説明】
【0009】
【発明を実施するための形態】
【0010】
以下、図面を参照しながら、粒子線治療システムの製造方法および粒子線治療システムの実施形態について詳細に説明する。
【0011】
図1の符号1は、本実施形態の粒子線治療システムである。この粒子線治療システム1は、治療用放射線としての炭素イオンなどの粒子線ビームを被検体としての患者の病巣組織(がん)に照射して治療を行う所謂粒子線がん治療装置である。
【0012】
粒子線治療システム1を用いた放射線治療技術は、重粒子線がん治療技術などとも称される。この技術は、がん病巣(患部)を炭素イオンがピンポイントで狙い撃ちし、がん病巣にダメージを与えながら、正常細胞へのダメージを最小限に抑えることが可能とされる。なお、粒子線とは、放射線のなかでも電子より重いものと定義され、陽子線、重粒子線などが含まれる。このうち重粒子線は、ヘリウム原子より重いものと定義される。
【0013】
重粒子線を用いるがん治療では、従来のエックス線、ガンマ線、陽子線を用いたがん治療と比較してがん病巣を殺傷する能力が高く、患者の体の表面では放射線量が弱く、がん病巣において放射線量がピークになる特性を有している。そのため、照射回数と副作用を少なくすることができ、治療期間をより短くすることができる。
【0014】
例えば、粒子線ビームは、患者の体内を通過する際に運動エネルギーを失って速度が低下するとともに、速度の二乗にほぼ反比例する抵抗を受け、ある一定の速度まで低下すると急激に停止する。この粒子線ビームの停止点はブラッグピークと呼ばれ、高エネルギーが放出される。粒子線治療システム1は、このブラッグピークを患者の病巣組織(患部)の位置に合わせることにより、正常組織のダメージを抑えつつ、病巣組織のみを死滅させることができる。
【0015】
粒子線治療システム1は、イオン発生器2と線形加速器3と円形加速器4とメイン輸送ライン5とサブ輸送ライン6と回転ガントリ7とを備える。なお、メイン輸送ライン5とサブ輸送ライン6とでビーム輸送ラインが構成されている。
【0016】
イオン発生器2は、荷電粒子である炭素イオンのイオン源を有し、この炭素イオンによって粒子線ビームが生成される。線形加速器3は、平面視で直線状を成し、イオン発生器2で発生させたイオンを加速して粒子線ビームとする。そして、線形加速器3は、この粒子線ビームを円形加速器4に導入させる。
【0017】
円形加速器4は、平面視でリング状を成し、粒子線ビームをさらに加速する。ここで、粒子線ビームは、円形加速器4を約百万回周回する間に光速の約70%まで加速される。そして、円形加速器4で加速された粒子線ビームが、メイン輸送ライン5とサブ輸送ライン6により回転ガントリ7まで輸送される。この回転ガントリ7の内部には、粒子線ビームが照射される対象である患者が配置される。なお、回転ガントリ7の内部が治療室(回転ガントリ室)となっている。
【0018】
なお、イオン発生器2と線形加速器3と円形加速器4とメイン輸送ライン5とサブ輸送ライン6は、内部が真空にされ、一体的に延びる真空ダクト8(ビームパイプ)を備える。この真空ダクト8の内部を粒子線ビームが進行する。この真空ダクト8によって、粒子線ビームをイオン発生器2から回転ガントリ7まで導く輸送経路が形成されている。つまり、真空ダクト8は、粒子線ビームを通過させるために、充分な真空度を有する密閉された連続空間である。
【0019】
円形加速器4は、高周波加速空洞9と偏向電磁石10と収束電磁石11とを備える。高周波加速空洞9は、磁場と加速電場の周波数を制御することで炭素イオンを加速するものである。
【0020】
偏向電磁石10と収束電磁石11は、粒子線ビームの輸送経路を形成する磁場を発生させる電磁石であり、真空ダクト8の外周を囲むように配置されている。ここで、偏向電磁石10は、真空ダクト8に沿って粒子線ビームの進行方向を変更するものである。また、収束電磁石11は、粒子線ビームの収束および発散を制御するものである。なお、収束電磁石11は、四極電磁石または六極電磁石などで構成される。
【0021】
メイン輸送ライン5は、偏向電磁石12と収束電磁石13とを備える。メイン輸送ライン5は、円形加速器4から延びている。メイン輸送ライン5の直線状を成す部分には、複数のサブ輸送ライン6が連結されている。
【0022】
それぞれのサブ輸送ライン6は、偏向電磁石14と収束電磁石15とを備える。本実施形態では、1本のメイン輸送ライン5に対して3本のサブ輸送ライン6が連結されている。それぞれのサブ輸送ライン6は、回転ガントリ7まで延びている。
【0023】
つまり、メイン輸送ライン5と複数のサブ輸送ライン6から成るビーム輸送ラインは、円形加速器4で加速された粒子線ビームをそれぞれの回転ガントリ7の内部の治療室に導くものである。
【0024】
詳細な図示は省略するが、回転ガントリ7は、円筒形状を成す大型の装置である。この回転ガントリ7は、その円筒の軸が水平方向を向くように配置される。この水平軸を中心として回転ガントリ7が回転可能となっている。
【0025】
回転ガントリ7は、粒子線治療システム1が設けられている治療施設を構成する建屋の躯体(図示略)に支持されている。例えば、この回転ガントリ7の前端縁と後端縁には、エンドリング(図示略)が固定されている。これらのエンドリングの下方位置には、エンドリングを回転可能な状態で支持し、かつ駆動モータを備える回転駆動部(図示略)が設けられている。これらの回転駆動部は、躯体に支持されている。回転駆動部の駆動力は、エンドリングを介して回転ガントリ7に与えられ、回転ガントリ7が水平軸周りに回転される。
【0026】
また、回転ガントリ7は、偏向電磁石16と収束電磁石17と照射ノズル18とを備える。ここで、照射ノズル18と偏向電磁石16と収束電磁石17が、回転ガントリ7に支持され、回転ガントリ7とともに回転可能となっている。
【0027】
なお、本実施形態の偏向電磁石10,12,14,16と収束電磁石11,13,15,17は、超電導電磁石で構成されても良い。
【0028】
回転ガントリ7には、サブ輸送ライン6から続く真空ダクト8が設けられている。真空ダクト8は、まず、回転ガントリ7の端部からその水平軸に沿って内部に導かれる。そして、真空ダクト8は、回転ガントリ7の外周面よりも外側に向けて一旦延びた後、再び回転ガントリ7の内側に向けて延びる。この真空ダクト8の先端部が配置される照射ノズル18は、患者に近接する位置まで延びる。
【0029】
なお、真空ダクト8において、回転ガントリ7の水平軸に沿う部分には、所定の回転機構(図示略)が設けられている。真空ダクト8は、この回転機構よりも外側の部分が静止した状態であり、この回転機構よりも内側の部分が回転ガントリ7の回転とともに回転するようになっている。
【0030】
照射ノズル18は、真空ダクト8の先端部に設けられ、偏向電磁石16と収束電磁石17により導かれた粒子線ビームを患者に向けて照射する。この照射ノズル18は、回転ガントリ7の内周面に固定されている。なお、粒子線ビームは、照射ノズル18から水平軸に対して直交する方向に照射される。
【0031】
患者は、回転ガントリ7の内部の治療室に設けられた治療台(図示略)に載置される。この治療台は、患者を載置した状態で移動可能となっている。この治療台の移動によって患者を粒子線ビームの照射位置に移動させて位置合わせを行うことができる。そのため、患者の病巣組織に最適な精度で粒子線ビームを照射することができる。
【0032】
なお、治療室には、粒子線ビームが最も集中して照射される位置であるアイソセンタCが設定されている。治療開始前には、X線画像などで患者の患部の位置を確認しつつ、治療台を移動させることより、患部がアイソセンタCに配置される。このアイソセンタCにベータトロン振動の節が配置されるように、ビーム形状(ビームプロファイル)が設定される。つまり、ビームプロファイルを決定づけるビーム光学パラメータが設定されることとなる。
【0033】
ビーム光学パラメータは、アルファ関数、ベータ関数、ガンマ関数、エミッタンス、ディスパージョンのうち、少なくともいずれかで表わされる。ここで、アルファ関数、ベータ関数、ガンマ関数は、単振動の式としてビームの軌道を表す方程式において、ビームの軌道を表すパラメータである。また、エミッタンスは、ビームの広がりを示すパラメータである。また、ディスパージョンは、分散関数とも呼ばれ、ビームの運動量と位置の関係性を表すパラメータである。
【0034】
患者は水平軸の位置に配置され、回転ガントリ7を回転させることで、静止している患者を中心として照射ノズル18を回転させることができる。例えば、患者(水平軸)を中心として照射ノズル18を、回転ガントリ7の周方向において、一方と他方に180度ずつ回転し、合計で360度の任意の角度に回転させることができる。そして、患者の周囲のいずれの方向からも粒子線ビームを照射させることができる。つまり、回転ガントリ7は、サブ輸送ライン6により導かれた粒子線ビームの患者に対する照射方向を変更可能な装置である。そのため、患者の負担を軽減しつつ、最適な方向から粒子線ビームを正確に患部に照射することができる。
【0035】
次に、本実施形態の粒子線治療システム1を製造する方法について説明する。
【0036】
本実施形態では、メイン輸送ライン5の直線状を成す部分において、第1地点P1に一方のサブ輸送ライン6Aが連結(分岐)されている。また、第2地点P2に他方のサブ輸送ライン6Bが連結(分岐)されている。さらに、第3地点P3に別のサブ輸送ライン6Cが連結(延伸)されている。
【0037】
ここで、第1地点P1が第1連結点であり、これと異なる第2地点P2が第2連結点であるとする。この場合において、メイン輸送ライン5を通過する荷電粒子のベータトロン振動を表すベータ関数の位相進みであって第1地点P1(第1連結点)から第2地点P2(第2連結点)までの位相進みがπの整数倍となるようにメイン輸送ライン5を設計する。このようにすれば、連結点Pごとのビーム調整の省力化と共通化を図ることができる。
【0038】
なお、第2地点P2が第1連結点であり、これと異なる第3地点P3が第2連結点であるとした場合においても同様に、第2地点P2(第1連結点)から第3地点P3(第2連結点)までの位相進みがπの整数倍となるようにメイン輸送ライン5を設計する。
【0039】
例えば、ビーム形状は、中心軌道周りのベータトロン振動に依存するため、ベータ関数で表現可能である。ベータトロン振動のパラメータで表される輸送行列の式で分かるように、ビーム形状の変化は、三角関数で表されるので、ある地点からある地点までの位相進みがπの整数倍になれば、これら2つの地点でビーム形状が一致することとなる。
【0040】
なお、ベータトロン振動は、磁場分布で決まるので、メイン輸送ライン5の設計時に収束電磁石13の強さと配置が決まれば、メイン輸送ライン5の所定の地点のビーム形状が一義的に決まる。
【0041】
例えば、メイン輸送ライン5と1本目のサブ輸送ライン6Aとが第1地点P1(第1連結点)で連結されている場合に、この第1地点P1からアイソセンタC1の位置までのサブ輸送ライン6Aと回転ガントリ7の構成を決めておく。そして、第1地点P1から第2地点P2(第2連結点)までの位相進みがπの整数倍になるように設計しておく。さらに、第2地点P2(第1連結点)から第3地点P3(第2連結点)までの位相進みもπの整数倍になるように設計しておく。このようにすれば、第1地点P1から延びる1本目のサブ輸送ライン6Aと回転ガントリ7の構成と同様に、2本目と3本目のサブ輸送ライン6B,6Cとそれぞれの回転ガントリ7の構成を共通化することができる。さらに、それぞれの治療室のアイソセンタC1,C2,C3において、同様のビーム形状を実現することができる。
【0042】
また、メイン輸送ライン5において、第1連結点から第2連結点までの構成を繰り返すことで、粒子線ビームの新たな軌道計算を行わなくても治療室(回転ガントリ室)を増やすことができる。
【0043】
例えば、治療室のレイアウト(配置形態)が治療施設ごとに異なる場合がある。従来の技術では、治療施設ごとに粒子線ビームの軌道計算(ラティス計算)を行い、患者に粒子線ビームが当たる位置(アイソセンタC)におけるビーム形状が一定となるように、設計する必要がある。
【0044】
本実施形態では、サブ輸送ライン6の数を増やしてもメイン輸送ライン5との連結点Pのビーム形状が同一であるため、サブ輸送ライン6の下流側の構成の設計が容易になる。つまり、連結点Pよりも下流側の構成を共通化することができる。また、粒子線治療システム1の建設期間および建設コストの抑制に寄与することができる。さらに、複数の治療室のレイアウトまたは建設現場の土地の広さなどの状況に応じてビーム輸送ラインを自由に構築することができる。
【0045】
本実施形態のビーム光学パラメータは、ツイスパラメータ(Twiss parameter)を含む。ここで、粒子線治療システム1の設計者は、メイン輸送ライン5の第1地点P1と第2地点P2と第3地点P3のそれぞれの連結点Pで粒子線ビームのツイスパラメータを一致させるようにメイン輸送ライン5を設計する。このようにすれば、それぞれの連結点Pでビーム形状が一致するため、連結点Pよりも下流側の設計を共通化することができる。
【0046】
また、第1連結点から第2連結点までの位相進みがπの整数倍となるようにメイン輸送ライン5に設けられる少なくとも収束電磁石13の強さと配置を調整する。このようにすれば、収束電磁石13の調整によりベータ関数の位相進みの調整を行うことができる。例えば、第1連結点から第2連結点までの間にある収束電磁石13の調整が行われる。追加的または代替的に、第1連結点から第2連結点までの間以外にある収束電磁石13の調整が行われても良い。さらに、メイン輸送ライン5に設けられる偏向電磁石12の強さと配置が調整されても良い。
【0047】
本実施形態では、1本のメイン輸送ライン5に対して少なくとも3本のサブ輸送ライン6A,6B,6Cが連結され、第1連結点から第2連結点までに相当する区間が少なくとも2つ設けられている。例えば、第1地点P1から第2地点P2までの第1区間S1と、第2地点P2から第3地点P3までの第2区間S2とが設けられている。
【0048】
ここで、第1区間S1と第2区間S2に設けられる少なくとも収束電磁石13の強さと配置の構成が同一となるように設計する。追加的または代替的に、第1区間S1と第2区間S2の長さが同一となるように設計する。このようにすれば、第1連結点と第2連結点のビーム形状を同一にすることができる。
【0049】
なお、本実施形態では、第1区間S1と第2区間S2に設けられる収束電磁石13の強さと配置の構成が同一となっているが、その他の態様であっても良い。例えば、第1区間S1と第2区間S2に設けられる収束電磁石13の強さと配置の構成が異なっていても良い。
【0050】
なお、本実施形態では、第1区間S1と第2区間S2の長さが同一となっているが、その他の態様であっても良い。例えば、第1区間S1と第2区間S2の長さが異なっていても良い。
【0051】
本実施形態では、メイン輸送ライン5の第1地点P1と第2地点P2と第3地点P3のそれぞれの連結点P、つまり、第1連結点と第2連結点のそれぞれに対応する位置に、ビームモニタ19(スクリーンモニタ)が設けられている。例えば、それぞれの連結点Pの上流側にビームモニタ19が設けられている。つまり、サブ輸送ライン6の入口側の偏向電磁石14の入口側の近傍にビームモニタ19が設けられている。
【0052】
なお、それぞれの連結点Pの下流側にビームモニタ19が設けられても良い。つまり、サブ輸送ライン6の入口側の偏向電磁石14の出口側の近傍にビームモニタ19が設けられても良い。
【0053】
なお、それぞれの連結点Pからそれぞれのビームモニタ19までの距離は同一となっている。そして、それぞれのビームモニタ19により荷電粒子のビーム形状が測定される。このようにすれば、連結点Pにおける荷電粒子のビーム形状の調整が容易になる。例えば、それぞれの連結点Pのビーム形状が同一であるか否かの比較を行うことができる。
【0054】
なお、ビームモニタ19を用いたビーム形状の測定は、粒子線治療システム1の製造時に行っても良いし、運用時に行っても良い。
【0055】
本実施形態では、回転ガントリ7により照射方向が変更される場合であっても、患者に照射される荷電粒子のビーム形状の調整が行い易くなる。例えば、回転ガントリ7において、連結点Pを基準としてベータトロン振動を解析し、回転部分と固定部分との境界Bにベータトロン振動の節が配置されるようにビーム形状を設定する。従来の技術では、回転ガントリ7が回転してもアイソセンタCでのビーム形状が一定となるように精密な計算が必要になり、労力およびコストを要していたが、本実施形態は、このような課題を解決することができる。
【0056】
また、粒子線治療システム1の設計者は、それぞれの回転ガントリ7の回転部分と固定部分との境界B1,B2,B3で、それぞれのビーム光学パラメータが一致するように、ビーム形状を設定する。このようにすれば、例えば、最初に2つの回転ガントリ7を建設しておき、その後に、残り1つの回転ガントリ7を増設する際の建設期間および建設コストを抑制することができる。
【0057】
例えば、それぞれの境界B1,B2でビーム光学パラメータが一致するように、ビーム形状が設定されていれば、第1地点P1から境界B1までの長さと、第2地点P2から境界B2までの長さが異なっていても良い。このようにすれば、その後に第3地点P3が増設され、第3地点P3から境界B3が延長され、その先に新しい回転ガントリ7が増設されても、メイン輸送ライン5とサブ輸送ライン6の設計の容易化が図れる。
【0058】
また、粒子線治療システム1の設計者は、回転ガントリ7の回転部分と固定部分との境界BとアイソセンタCとで、それぞれのビーム光学パラメータが一致するように、ビーム形状を設定する。このようにすれば、回転ガントリ7の角度がいずれの位置にあってもアイソセンタCのビーム形状が同じになる。
【0059】
本実施形態のビーム形状の設定には、いくつかの方法がある。粒子線治療システム1の設計者は、それぞれの境界B1,B2,B3で、対称ビーム方法による条件、ラウンドビーム方法による条件、ローテーター方法による条件のうち、少なくともいずれかを満たすように、ビーム形状を設定する。いずれの方法でも、メイン輸送ライン5とサブ輸送ライン6の設計の容易化が図れる。
【0060】
これらの方法を適用することで、回転ガントリ7が回転してもビームスポットの大きさおよび形状が変わらないようになる。また、回転ガントリ7が備える偏向電磁石16と収束電磁石17において、回転ガントリ7の角度が変わっても粒子線ビームの軌道が変わらないようにできる。
【0061】
対称ビーム方法は、回転ガントリ7の入口(境界B)において、回転ガントリ7の回転方向に対してビーム形状を回転対称に設定する方法である。例えば、粒子線ビームの進行方向をZ軸とした場合に、X軸(水平軸)とY軸(垂直軸)とで同じ位相空間楕円になるようにビーム形状が設定される。この対称ビーム方法は、回転ガントリ7の入口において、X軸とY軸のエミッタンスおよびビーム光学パラメータを一致させ、ディスパージョンをゼロとする方法である。
【0062】
また、ラウンドビーム方法は、回転ガントリ7が備える偏向電磁石16と収束電磁石17から成るビーム光学系(境界BからアイソセンタCまで)の位相進みをπの整数倍とし、入口(境界B)でのディスパージョンをゼロとする方法である。例えば、回転ガントリ7の入口に丸い形状のビームを入射すると、アイソセンタCでも丸い形状のビームが得られる。
【0063】
また、ローテーター方法は、回転ガントリ7の入口(境界B)の上流側に、回転ガントリ7の回転角度の半分の角度だけ回転する部分であるローテーター(図示略)を設ける方法である。このローテーターは、例えば、サブ輸送ライン6において、回転ガントリ7の上流側の直前に在る収束電磁石15を、回転ガントリ7が回転するときの角度の半分の角度で回転させるものである。このローテーター方法は、粒子線ビームの進行方向をZ軸とした場合に、ローテーターの入口(上流端部)から出口(下流端部)までのX軸(水平軸)の位相進みを2πとし、Y軸(垂直軸)の位相進みをπとする方法である。
【0064】
また、粒子線治療システム1の設計者は、粒子線ビームの進行方向をZ軸とした場合に、境界Bで、X軸とY軸のツイスパラメータが等しくなるように、ビーム形状を設定する。このようにすれば、回転ガントリ7の回転角度が変わってもアイソセンタC(照射位置)でビーム形状を一定に維持することができる。
【0065】
また、粒子線治療システム1の設計者は、それぞれの境界B1,B2,B3で、X軸とY軸のツイスパラメータが等しくなるように、第1地点P1と第2地点P2と第3地点P3のツイスパラメータを設定する。このようにすれば、回転ガントリ7を増設する際の建設期間および建設コストの抑制が図られる。
【0066】
ここで、粒子線治療システム1の設計者は、ビーム光学パラメータを表すアルファ関数、ベータ関数、ガンマ関数、エミッタンス、ディスパージョンのうち、少なくとも1つを、それぞれの境界B1,B2,B3で一致させるように設計する。
【0067】
また、粒子線治療システム1の設計者は、それぞれの境界B1,B2,B3で、それぞれのビーム光学パラメータが一致するように、メイン輸送ライン5とサブ輸送ライン6に設けられる偏向電磁石12,14および収束電磁石13,15の強さと配置を調整する。このようにすれば、偏向電磁石12,14および収束電磁石13,15の強さと配置の調整で、ビーム光学パラメータを調整することができる。
【0068】
なお、本実施形態では、全ての治療室が回転ガントリ7に設けられている形態を例示しているが、その他の態様であっても良い。例えば、回転ガントリ7を設けずに、照射ノズル18が固定的に配置された治療室を設けても良い。
【0069】
なお、本実施形態では、メイン輸送ライン5の直線状を成す部分にサブ輸送ライン6が連結される連結点Pが設けられているが、その他の態様であっても良い。例えば、メイン輸送ライン5の曲線状を成す部分に連結点Pが設けられても良い。また、第1区間S1が直線状であり、第2区間S2が曲線状であっても良い。
【0070】
なお、本実施形態では、周方向の一方と他方に180度ずつ回転し、合計で360度の任意の角度に回転させることができる全回転型の回転ガントリ7が例示されているが、その他の態様の回転ガントリ7でも良い。例えば、周方向の一方と他方に90度ずつ回転し、合計で180度の任意の角度に回転させることができる半回転型の所謂ハーフガントリに本実施形態が適用されても良い。ハーフガントリは、その回転範囲が全周の3分の2以下(240度以下)の装置を示す。
【0071】
なお、本実施形態は、炭素が用いられた粒子線ビームを例示しているが、その他の態様でも良い。例えば、ヘリウム、酸素、またはネオンが用いられた粒子線ビームでも良い。
【0072】
以上説明した実施形態によれば、回転ガントリ7を備える複数の治療室が設けられた粒子線治療システム1において、ビーム輸送ラインの設計の容易化を図り、回転ガントリ7を増設する際の建設期間および建設コストの抑制に寄与することができる。
【0073】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態またはその変形は、発明の範囲と要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【符号の説明】
【0074】
1…粒子線治療システム、2…イオン発生器、3…線形加速器、4…円形加速器、5…メイン輸送ライン、6,6A,6B,6C…サブ輸送ライン、7…回転ガントリ、8…真空ダクト、9…高周波加速空洞、10…偏向電磁石、11…収束電磁石、12…偏向電磁石、13…収束電磁石、14…偏向電磁石、15…収束電磁石、16…偏向電磁石、17…収束電磁石、18…照射ノズル、19…ビームモニタ、B,B1,B2,B3…境界、C,C1,C2,C3…アイソセンタ、P…連結点、P1…第1地点、P2…第2地点、P3…第3地点、S1…第1区間、S2…第2区間。
【要約】
【課題】回転ガントリを備える複数の治療室が設けられた粒子線治療システムにおいて、ビーム輸送ラインの設計の容易化を図り、回転ガントリを増設する際の建設期間および建設コストの抑制に寄与することができる粒子線治療システムの製造技術を提供する。
【解決手段】粒子線治療システム1の製造方法は、メイン輸送ライン5の第1連結点P1に一方のサブ輸送ライン6Aが連結され、かつメイン輸送ライン5の第1連結点P1とは異なる第2連結点P2に他方のサブ輸送ライン6Bが連結されており、メイン輸送ライン5を通過する荷電粒子のベータトロン振動を表すベータ関数の位相進みであって第1連結点P1から第2連結点P2までの位相進みがπの整数倍となるようにメイン輸送ライン5を設計し、それぞれの回転ガントリ7の回転部分と固定部分との境界Bで、それぞれのビーム光学パラメータが一致するように、ビーム形状を設定する。
【選択図】
図1