IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ダイヘンの特許一覧

<>
  • 特許-電力システムおよび電力制御装置 図1
  • 特許-電力システムおよび電力制御装置 図2
  • 特許-電力システムおよび電力制御装置 図3
  • 特許-電力システムおよび電力制御装置 図4
  • 特許-電力システムおよび電力制御装置 図5
  • 特許-電力システムおよび電力制御装置 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-10
(45)【発行日】2023-04-18
(54)【発明の名称】電力システムおよび電力制御装置
(51)【国際特許分類】
   H02J 3/46 20060101AFI20230411BHJP
   H02J 3/00 20060101ALI20230411BHJP
   H02J 13/00 20060101ALI20230411BHJP
   H02J 3/38 20060101ALI20230411BHJP
【FI】
H02J3/46
H02J3/00 170
H02J13/00 311R
H02J3/38 110
H02J3/38 120
【請求項の数】 5
(21)【出願番号】P 2019046657
(22)【出願日】2019-03-14
(65)【公開番号】P2020150690
(43)【公開日】2020-09-17
【審査請求日】2021-10-22
(73)【特許権者】
【識別番号】000000262
【氏名又は名称】株式会社ダイヘン
(74)【代理人】
【識別番号】100086380
【弁理士】
【氏名又は名称】吉田 稔
(74)【代理人】
【識別番号】100168044
【弁理士】
【氏名又は名称】小淵 景太
(72)【発明者】
【氏名】花尾 隆史
(72)【発明者】
【氏名】大堀 彰大
【審査官】山本 香奈絵
(56)【参考文献】
【文献】特開2018-170901(JP,A)
【文献】特開2018-148627(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 3/46
H02J 3/00
H02J 13/00
H02J 3/38
(57)【特許請求の範囲】
【請求項1】
電力系統との接続点における接続点電力を制御する電力システムであって、
前記接続点電力を目標電力にするための誘導指令値を算出する処理装置と、
各々が、前記処理装置より入力された共通の前記誘導指令値に基づいて、互いに異なる種類の制御対象の出力電力を制御する複数の電力制御装置と、
を備えており、
前記複数の電力制御装置の各々は、共通の評価関数を含む最適化問題に基づいて、出力電力の目標値を算出し、
前記評価関数は、前記複数の電力制御装置の各々に設定された設定値が代入される設計パラメータ、および、前記誘導指令値を含んでおり、
前記設計パラメータは、第1パラメータを含んでおり、
前記第1パラメータは、前記誘導指令値の変化に応じた前記出力電力の変化量を調整するためのパラメータであり、第1設定値が代入される、
ことを特徴とする電力システム。
【請求項2】
前記設計パラメータは、第2パラメータおよび第3パラメータを含んでおり
記第2パラメータは、前記誘導指令値が「0」付近の値である場合の前記出力電力を調整するためのパラメータであり、第2設定値が代入され、
前記第3パラメータは、前記出力電力が変化し始める前記誘導指令値を調整するためのパラメータであり、第3設定値が代入される、
請求項1に記載の電力システム。
【請求項3】
前記第1設定値、前記第2設定値および前記第3設定値はそれぞれ、前記誘導指令値が正の値の時と前記誘導指令値が負の値の時とで、それぞれ設定される、
請求項2に記載の電力システム。
【請求項4】
前記複数の電力制御装置の各々は、前記評価関数から導出される下記(1)式および下記(2)式を演算することで、前記目標値を算出する、
請求項2または請求項3に記載の電力システム。
なお、Prefは前記目標値、prは前記誘導指令値、prlmtは前記誘導指令値prの最大値および最小値を定義する値である誘導指令値限界、a1は前記第1パラメータ、a2は前記第2パラメータ、a3は前記第3パラメータ、a4は蓄電池の充電率に応じたパラメータである。
【数1】
【請求項5】
電力系統との接続点における接続点電力を制御する電力システムにおいて、前記接続点電力を目標電力にするための誘導指令値を入力され、当該誘導指令値に基づいて、出力電力を制御する電力制御装置であって、
下記(3)式および下記(4)式で規定される最適化問題の評価関数に基づいて、前記出力電力の目標値を算出する、
ことを特徴とする電力制御装置。
なお、Prefは前記目標値、prは前記誘導指令値、prlmtは前記誘導指令値prの最大値および最小値を定義する値である誘導指令値限界、a1,a2,a3は前記電力制御装置の各々に設定された設定値が代入される設計パラメータ、a4は蓄電池の充電率に応じたパラメータである。
【数2】
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、電力システムおよび電力制御装置に関する。
【背景技術】
【0002】
近年、電力系統に接続された複数の電力装置を管理して、電力系統との間での送受電の制御を行う電力システムが普及しつつある。例えば、特許文献1には、複数の電力装置と管理装置とを備えた電力システムの一例が開示されている。管理装置は、複数の電力装置を管理する。管理装置は、所定の調整対象電力を目標電力に制御するための指標を算出する。複数の電力装置は、たとえば太陽光発電装置および蓄電装置である。各電力装置は、管理装置が算出した指標を用いて、分散的に出力電力を制御している。このとき、各電力装置は、指標を用いた最適化問題に基づいて、自装置の出力電力の目標値を算出する。そして、出力電力が当該目標値となるように、自装置の出力電力を制御している。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2018-148627号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
電力装置が多様化しており、太陽光発電装置や蓄電装置とは異なる種類の電力装置(例えば、電気自動車の充電スタンド、ビル用エネルギー管理システム、工場用エネルギー管理システムなど)が電力系統に連系されつつある。そこで、電力システムにおいて、様々な種類の電力装置を含めたエネルギー管理が求められる。
【0005】
本開示は、上記課題に鑑みて考え出されたものであり、その目的は、電力装置の多様化に対応したエネルギー管理が可能な電力システムを提供することにある。また、電力システムにおいて、電力装置の多様化に対応したエネルギー管理を可能にする電力制御装置を提供することにある。
【課題を解決するための手段】
【0006】
本開示の第1の側面によって提供される電力システムは、電力系統との接続点における接続点電力を制御する電力システムであって、前記接続点電力を目標電力にするための誘導指令値を算出する処理装置と、各々が、前記処理装置より入力された共通の前記誘導指令値に基づいて、互いに異なる種類の制御対象の出力電力を制御する複数の電力制御装置と、を備えており、前記複数の電力制御装置の各々は、共通の評価関数を含む最適化問題に基づいて、出力電力の目標値を算出し、前記評価関数は、前記複数の電力制御装置の各々に設定された設定値が代入される設計パラメータ、および、前記誘導指令値を含んでいることを特徴とする。
【0007】
前記電力システムの好ましい実施の形態においては、前記設計パラメータは、第1パラメータ、第2パラメータおよび第3パラメータを含んでおり、前記第1パラメータは、前記誘導指令値の変化に応じた前記出力電力の変化量を調整するためのパラメータであり、第1設定値が代入され、前記第2パラメータは、前記誘導指令値が「0」付近の値である場合の前記出力電力を調整するためのパラメータであり、第2設定値が代入され、前記第3パラメータは、前記出力電力が変化し始める前記誘導指令値を調整するためのパラメータであり、第3設定値が代入される。
【0008】
前記電力システムの好ましい実施の形態においては、前記第1設定値、前記第2設定値および前記第3設定値はそれぞれ、前記誘導指令値が正の値の時と前記誘導指令値が負の値の時とで、それぞれ設定される。
【0009】
前記電力システムの好ましい実施の形態においては、前記複数の電力制御装置の各々は、前記評価関数から導出される下記(1)式および下記(2)式を演算することで、前記目標値を算出する。なお、Prefは前記目標値、prは前記誘導指令値、prlmtは前記誘導指令値prの最大値および最小値を定義する値である誘導指令値限界、a1は前記第1パラメータ、a2は前記第2パラメータ、a3は前記第3パラメータ、a4は蓄電池の充電率に応じたパラメータである。
【数1】
【0010】
本開示の第2の側面によって提供される電力制御装置は、電力系統との接続点における接続点電力を制御する電力システムにおいて、前記接続点電力を目標電力にするための誘導指令値を入力され、当該誘導指令値に基づいて、出力電力を制御する電力制御装置であって、下記(3)式および下記(4)式で規定される最適化問題の評価関数に基づいて、前記出力電力の目標値を算出することを特徴とする。なお、Prefは前記目標値、prは前記誘導指令値、prlmtは前記誘導指令値prの最大値および最小値を定義する値である誘導指令値限界、a1,a2,a3は前記電力制御装置の各々に設定された設定値が代入される設計パラメータ、a4は蓄電池の充電率に応じたパラメータである。
【数2】
【発明の効果】
【0011】
本開示の電力システムによれば、前記複数の電力制御装置の各々は、共通の評価関数を含む最適化問題に基づいて、出力電力の目標値を算出する。この構成によると、複数の電力制御装置によって異なる種類の制御対象を制御する場合であっても、制御対象の種類に応じた評価関数を検討する必要がない。例えば、太陽電池や蓄電池とは異なる制御対象に応じた評価関数を新たに検討する必要がない。したがって、本開示の電力システムは、電力制御装置(電力装置)の多様化に対応することができる。また、本開示の電力制御装置は、上記(3)式および上記(4)式で規定される最適化問題の評価関数に基づいて、前記出力電力の目標値を算出する。上記(3)式および上記(4)式は、電力制御装置が制御する制御対象固有の設計パラメータを含んでいない。この構成によると、電力制御装置は、制御対象の種類が異なっていても、上記(3)式および上記(4)式に基づいて、出力電力の目標値を算出することができる。したがって、電力制御装置は、電力システムにおいて、電力制御装置(電力装置)の多様化に対応したエネルギー管理を可能にする。
【図面の簡単な説明】
【0012】
図1】電力システムの全体構成例を示している。
図2】太陽光パワーコンディショナの設定例を示している。
図3】蓄電池パワーコンディショナの設定例を示している。
図4】EVスタンドの設定例を示している。
図5】負荷制御装置の設定例を示している。
図6】発電機制御装置の設定例を示している。
【発明を実施するための形態】
【0013】
本開示の電力システムおよび電力制御装置の好ましい実施の形態について、以下に説明する。
【0014】
図1は、本開示の電力システムS1の全体構成例を示している。電力システムS1は、図1に示すように、電力線90、処理装置A1および複数の電力制御装置B1を備えている。複数の電力制御装置B1は、図1に示すように、複数の太陽光パワーコンディショナ11、複数の蓄電池パワーコンディショナ21、複数のEVスタンド31、複数の負荷制御装置41、および、複数の発電機制御装置51を含んでいる。以下の説明および図1において、パワーコンディショナを「PCS」と略する。
【0015】
電力システムS1は、電力系統Dに連系される。電力システムS1は、電力系統Dに送電可能(逆潮流が可能)であり、かつ、電力系統Dから受電可能である。電力システムS1は、処理装置A1と複数の電力制御装置B1とが協調して、電力システムS1と電力系統Dとの接続点における電力(以下「接続点電力」という。)が、当該接続点電力の目標値(以下「目標電力」という。)となるように、電力制御を行う。本開示において、電力システムS1から電力系統Dに電力が出力されているとき、すなわち、逆潮流しているとき、接続点電力が正の値となるものとする。一方、電力系統Dから電力システムS1に電力が出力されているとき、接続点電力が負の値となるものとする。
【0016】
電力システムS1が行う電力制御には、例えば、出力抑制制御、ピークカット制御、逆潮流回避制御およびスケジュール制御などがある。出力抑制制御では、電力会社から指示される出力抑制指令に従い、電力システムS1から電力系統Dに出力する電力(売電電力)を抑制する。ピークカット制御は、電力系統Dから供給される電力(買電電力)のピーク値を抑える。逆潮流回避制御では、逆潮流の発生を抑制する。スケジュール制御は、電力システムS1の出力電力を利用者によって設定された電力値にする。電力システムS1は、処理装置A1に設定される制御モードに応じて、これらの電力制御のいずれかを行う。
【0017】
電力線90は、電力システムS1における電力ネットワークを構築するものである。電力システムS1は、電力線90によって、電力系統Dに接続される。
【0018】
処理装置A1は、複数の電力制御装置B1と協調して、電力システムS1の電力制御を行う。処理装置A1は、各電力制御装置B1とそれぞれ通信可能である。この通信は、無線方式であってもよいし、有線方式であってもよい。
【0019】
複数の太陽光PCS11はそれぞれ、太陽電池12が接続され、太陽電池12が発電した電力(例えば直流電力)を、系統連系に適した電力(例えば交流電力)に変換して出力する。各太陽光PCS11に対して、1つの太陽電池12が接続されていてもよいし、複数の太陽電池12が接続されていてもよい。各太陽光PCS11は、電力線90によって、受電設備C1に接続される。各太陽光PCS11は、太陽電池12が発電した電力を受電設備C1に出力する。各太陽光PCS11は、各太陽電池12の発電量を制御することで、制御対象(各太陽電池12)の出力電力の制御を行う。
【0020】
複数の蓄電池PCS21はそれぞれ、蓄電池22が接続され、蓄電池22の充放電を行う。各蓄電池PCS21に対して、1つの蓄電池22が接続されていてもよいし、複数の蓄電池22が接続されていてもよい。蓄電池22は、例えば、リチウムイオン電池、ニッケル水素電池、ニッケルカドミウム電池、鉛蓄電池などの二次電池であってもよいし、電気二重層コンデンサなどのコンデンサであってもよい。各蓄電池PCS21は、電力線90によって、受電設備C1に接続される。各蓄電池PCS21は、受電設備C1から入力される電力を蓄電池22に供給することで、蓄電池22の充電を行う。また、各蓄電池PCS21は、蓄電池22に蓄積された電力を受電設備C1に出力することで、蓄電池22の放電を行う。各蓄電池PCS21は、各蓄電池22の充電量および放電量を制御することで、制御対象(各蓄電池22)の出力電力の制御を行う。
【0021】
複数のEVスタンド31はそれぞれ、電気自動車32が接続され、電気自動車32の充放電(詳細には電気自動車32に備えられた蓄電池の充放電)を行う。各EVスタンド31に対して、1つの電気自動車32が接続されていてもよいし、複数の電気自動車32が接続されていてもよい。本開示における電気自動車32とは、電動機を動力源として走行可能な自動車をいい、内燃機関が併設された自動車(例えばプラグインハイブリッド車)などを含む。なお、電動機は、電気自動車32に備えられた蓄電池に蓄積された電力によって動作する。電気自動車32は、エネルギー回生システムを搭載していてもよい。各EVスタンド31は、電力線90によって、受電設備C1に接続される。各EVスタンド31は、受電設備C1から入力される電力を電気自動車32に供給することで、電気自動車32の充電を行う。また、EVスタンド31は、電気自動車32に蓄積された電力を受電設備C1に出力することで、電気自動車32の放電を行う。各EVスタンド31は、各電気自動車32の充電量および放電量を制御することで、制御対象(各電気自動車32)の出力電力の制御を行う。なお、各EVスタンド31は、電気自動車32の充放電を行うものではなく、電気自動車32の充電のみまたは放電のみを行うものであってもよい。
【0022】
複数の負荷制御装置41はそれぞれ、受電設備C1に接続された電力負荷42の制御を行う。負荷制御装置41は、例えば、ビル内エネルギー管理システム(BEMS)や工場内のエネルギー管理システム(FEMS)などである。複数の負荷制御装置41はそれぞれ、1つの電力負荷42を制御してもよいし、複数の電力負荷42を制御してもよい。各負荷制御装置41は、各電力負荷42の消費電力を監視して、各電力負荷42の消費電力を調整する。各負荷制御装置41が行う各電力負荷42の消費電力の調整としては、例えば、電力負荷42のオンとオフとの切り替え、電力負荷42が空調設備であれば風量の変更や設定温度の変更など、電力負荷42が照明装置であれば調光制御などがある。各電力負荷42は、電力を消費する際に生じた、電気エネルギー以外のエネルギー(例えば熱エネルギーなど)を蓄積し、蓄積したエネルギーを電気エネルギーに変換する発電機構を備えていてもよい。この場合、各電力負荷42は、発電機構によって発電した電力を受電設備C1に出力可能である。各負荷制御装置41は、各電力負荷42の消費電力を制御することで、制御対象(各電力負荷42)の出力電力の制御を行う。
【0023】
複数の発電機制御装置51はそれぞれ、発電機52が接続され、発電機52が発電した電力を、系統連系に適した電力に変換して、出力する。各発電機制御装置51に対して、1つの発電機52が接続されていてもよいし、複数の発電機52が接続されていてもよい。発電機52は、例えば、石油、石炭、ガスなどの燃料がもつ熱エネルギーを機械的エネルギーに変換し、この機械的エネルギーによって発電するものである。なお、発電機52は、太陽光以外の再生可能エネルギー(例えば、風力、水力、バイオマス、地熱など)を利用した発電装置であってもよい。太陽電池12が太陽光エネルギーを直接電気エネルギーに変換するのに対して、発電機52は、電気エネルギー以外のエネルギーを力学的エネルギーに変換した後、当該力学的エネルギーを電気エネルギーに変換する。各発電機制御装置51は、電力線90によって、受電設備C1に接続される。各発電機制御装置51は、発電機52が発電した電力を受電設備C1に出力する。各発電機制御装置51は、各発電機52の発電量を制御することで、制御対象(各発電機52)の出力電力の制御を行う。
【0024】
本実施形態においては、複数の電力制御装置B1が制御する制御対象の種類として、太陽光PCS11が制御する太陽電池12、蓄電池PCS21が制御する蓄電池22、EVスタンド31が制御する電気自動車32、負荷制御装置41が制御する電力負荷42、および、発電機制御装置51が制御する発電機52の5種類を含んでいる場合を示すが、これに限定されない。例えば、電力システムS1は、これら5種類のうちの少なくとも1種類以上を備えていればよい。また、制御対象の種類は、上記した5種類に限定されない。
【0025】
受電設備C1は、配電盤や分電盤を含んで構成されている。受電設備C1は、電力システムS1を電力系統Dに連系するための各種保護装置も含んでいる。例えば、電力システムS1が電力系統Dへの逆潮流を禁止されたシステムである場合、保護装置として、逆電力継電器を含んでいる。受電設備C1は、電力系統D、各電力制御装置B1(複数の負荷制御装置41を除く)、および、各電力負荷42から、電力線90を介して入力される電力を受電する。受電設備C1は、受電した電力を、電力系統D、各電力制御装置B1(複数の負荷制御装置41を除く)、各電力負荷42などに供給する。受電設備C1は、電力システムS1と電力系統Dとの接続点に設置された電力センサ(図示略)を含んでおり、この電力センサで接続点電力を検出する。受電設備C1は、接続点電力の検出値を処理装置A1に送信する。
【0026】
以上のように構成された電力システムS1において、処理装置A1は、接続点電力を監視し、接続点電力を目標電力に制御するための誘導指令値を算出する。接続点電力は、受電設備C1から受信する検出値を用いてもよいし、各電力制御装置B1から通信によって取得した各出力電力の値から算出される推算値を用いてもよい。目標電力は、設定される制御モードに応じた値が設定される。処理装置A1は、算出した誘導指令値を、各電力制御装置B1に送信する。一方、各電力制御装置B1は、処理装置A1から送信された誘導指令値を受信する。各電力制御装置B1は、受信した誘導指令値を用いて、予め設定された最適化問題に基づき、制御対象の出力電力の目標値(以下、「出力目標値」という。)を算出する。そして、制御対象の出力電力が、算出した出力目標値となるように、出力電力の制御を行う。これより、電力システムS1は、接続点電力が目標電力となるように、電力制御を行っている。本実施形態においては、処理装置A1によって算出される誘導指令値が大きいほど、接続点電力が小さくなり、誘導指令値が小さいほど、接続点電力が大きくなる。誘導指令値は、各電力制御装置B1が出力目標値を算出するためのものでもある。
【0027】
処理装置A1は、下記(5)式および下記(6)式に示す状態方程式(連立微分方程式)が設定されており、この状態方程式を演算することで、誘導指令値を算出する。処理装置A1は、誘導指令値の算出を所定時間(例えば1[sec])毎に行う。下記(5)式および下記(6)式において、P(t)は接続点電力、PC(t)は目標電力、λ(t)は状態変数、pr(t)は誘導指令値である。また、[A]は状態係数の行列、[B]は入力係数の行列、[C]は出力係数の行列、[D]は直達係数の行列であり、これらの係数行列[A],[B],[C],[D]は、下記(7)式で定義される。下記(7)式において、Rは実数の集合、p,q,rはそれぞれ自然数である。下記(5)式および下記(6)式に示す、処理装置A1に設定される状態方程式は、所定の伝達関数を状態空間表現に変換したものであり、その伝達関数に応じて各係数行列[A],[B],[C],[D]が決定される。
【数3】
【0028】
処理装置A1は、例えば、各係数行列[A],[B],[C],[D]が下記(8)式であるとき、下記(9)式および下記(10)式に示す状態方程式を解くことで、誘導指令値pr(t)を算出する。εは、勾配係数である。
【数4】
【0029】
処理装置A1は、上記(5)式および上記(6)式に示す状態方程式の代わりに、当該状態方程式を離散化した差分方程式を用いてもよい。この場合の差分方程式は、求める状態変数をλ(k)、求める誘導指令値をpr(k)、前回算出した状態変数をλ(k-1)、誘導指令値pr(k)の算出周期をTsとして、下記(11)式および下記(12)式で表される。なお、下記(11)式および下記(12)式においては、後進差分を用いた差分方程式を示したが、後進差分の代わりに、前進差分あるいは中心差分などを用いてもよい。
【数5】
【0030】
各電力制御装置B1は、誘導指令値を用いた最適化問題に基づいて、出力目標値を算出する。この最適化問題は、評価関数と制約条件とを含んでいる。
【0031】
評価関数は、誘導指令値が含まれており、各電力制御装置B1で共通である。つまり、評価関数は、各太陽光PCS11、各蓄電池PCS21、各EVスタンド31、各負荷制御装置41および各発電機制御装置51で共通である。評価関数は、例えば下記(13)式および下記(14)式で示される。下記(13)式および下記(14)式において、Prefは各電力制御装置B1の出力目標値、prは誘導指令値、prlmtは誘導指令値限界、a1は第1パラメータ、a2は第2パラメータ、a3は第3パラメータ、a4は第4パラメータである。誘導指令値限界prlmtは、電力システムS1で用いる誘導指令値prの最大値および最小値を定義する値である。下記(14)式で算出される値Λは、誘導指令値prの最小値(-prlmt)と誘導指令値prの最大値(prlmt)との間の値に制限される。第1パラメータa1は、主に誘導指令値prの変化に応じた出力電力の変化量を調整するパラメータである。第2パラメータa2は、主に誘導指令値prが0付近での出力電力を調整するパラメータである。第3パラメータa3は、主に出力電力が変化し始める誘導指令値prを調整するパラメータである。第4パラメータa4は、接続される蓄電池の充電率(SoC:State of Charge)に応じたパラメータである。これらの各設計パラメータa1~a4は、各電力制御装置B1に設定された設定値が代入される。
【数6】
【0032】
制約条件は、各電力制御装置B1が制御する制御対象の種類に応じて異なる。つまり、制約条件は、太陽光PCS11が制御する太陽電池12、蓄電池PCS21が制御する蓄電池22、EVスタンド31が制御する電気自動車32、負荷制御装置41が制御する電力負荷42、および、発電機制御装置51が制御する発電機52に応じて、異なる。各電力制御装置B1に設定される制約条件は、各制御対象の種類に関係なく、制限出力制約および出力電流制約(あるいは定格容量制約)を少なくとも含んでいる。例えば、太陽光PCS11に設定される制約条件は、下記(15)式でされ、蓄電池PCS21に設定される制約条件は、下記(16)式で示される。
【数7】
【0033】
上記(15)式において、(15a)式は、出力最大値P11 maxによって制限される出力電力の最大値、および、出力最小値P11 minによって制限される出力電力の最小値による制約(制限出力制約)である。出力最大値P11 maxおよび出力最小値P11 minは、各太陽光PCS11に設定された最大出力設定値svmax(後述)および最小出力設定値svmin(後述)が代入される。(15b)式は、各太陽光PCS11の出力電流による制約(出力電流制約)であり、Q11は各太陽光PCS11の無効電力、S11 dは各太陽光PCS11の出力可能な最大の皮相電力、V0は設計時における接続点の基準電圧、V11は各太陽光PCS11の出力電圧をそれぞれ表している。なお、上記(15b)式に示す出力電流制約の代わりに、下記(15b’)式に示す各太陽光PCS11の定格容量による制約(定格容量制約)を用いてもよい。
【数8】
【0034】
上記(16)式において、(16a)式は、出力最大値P21 maxによって制限される出力電力の最大値、および、出力最小値P21 minによって制限される出力電力の最小値による制約(制限出力制約)である。出力最大値P21 maxおよび出力最小値P21 minは、各蓄電池PCS21に設定された最大出力設定値svmax(後述)および最小出力設定値svmin(後述)が代入される。(16b)式は、各蓄電池22のCレートによる制約(Cレート制約)であり、PSM lmtは、各蓄電池22の充電定格出力を表しており、PSP lmtは、各蓄電池22の放電定格出力を表している。(16c)式は、各蓄電池PCS21のSoCによる制約(蓄電池SoC制約)であり、α,βは、各蓄電池22の残量によって調整できる調整パラメータを表している。例えば、各蓄電池22のSoCが90%以上のとき、αを0、βをP21 lmtと設定することで、上記(16c)式により放電のみを行うように制限できる。また、各蓄電池22のSoCが10%以下のとき、αを-P21 lmt、βを0と設定することで、上記(16c)式により充電のみを行うように制限できる。さらに、各蓄電池22のSoCがこれらの間(10%より大きく90%未満)であるとき、αを-P21 lmt、βをP21 lmtと設定することで、充電も放電も行うようにできる。(16d)式は、蓄電池PCS21の出力電流による制約(出力電流制約)であり、Q21は蓄電池PCS21の無効電力、S21 dは蓄電池PCS21の出力可能な最大の皮相電力、V0は設計時における接続点の基準電圧、V21は蓄電池PCS21の出力電圧をそれぞれ表している。なお、上記(16d)式に示す出力電流制約の代わりに、下記(16d’)式に示す各蓄電池PCS21の定格容量による制約(定格容量制約)を用いてもよい。
【数9】
【0035】
各電力制御装置B1は、上記(13)式および上記(14)式で示される評価関数から導出される下記(17)式および下記(18)式で示す演算式が設定されており、この演算式によって、出力目標値を算出する。なお、各電力制御装置B1は、下記(17)式および下記(18)式で示す演算式ではなく、上記(13)式および上記(14)式で示される評価関数が設定され、この評価関数を解く(最小化問題を解く)ことで、出力目標値Prefを算出してもよい。
【数10】
【0036】
各電力制御装置B1は、上記(17)式および上記(18)式で示す演算式によって算出された出力目標値Prefが、各電力制御装置B1に設定される制約条件(上記(15)式または上記(16)式参照)を満たしていない場合には、制約条件を満たすように、出力目標値の補正を行う。例えば、各太陽光PCS11において、上記(17)式および上記(18)式によって算出された出力目標値Prefが、出力最大値P11 maxよりも大きかった場合、出力目標値Prefを出力最大値P11 maxの値に補正する。
【0037】
各電力制御装置B1には、出力目標値Prefを算出するために、複数の設定値が設定されている。本実施形態においては、最大出力設定値svmax、最小出力設定値svmin、第1設定値sv1、第2設定値sv2、第3設定値sv3、および、第4設定値sv4がある。最大出力設定値svmaxは、出力最大値Pmaxを規定する設定値であり、各電力制御装置B1に規定される定格出力を上に超えない値が設定される。最小出力設定値svminは、出力最小値Pminを規定する設定値であり、各電力制御装置B1に規定される定格出力を下に超えない値が設定される。第1設定値sv1は、第1パラメータa1に代入する値の設定値である。第1設定値sv1は、任意の値であって、逆潮流時の接続点電力を正の値としたときには、「0」以上の値が設定される。第2設定値sv2は、第2パラメータa2に代入する値の設定値である。第2設定値sv2は、「+1」,「0」,「-1」のいずれかが設定される。第2設定値sv2が「+1」の時、誘導指令値prが「0」付近の値で出力目標値Prefが正の値となり、第2設定値sv2が-1の時、誘導指令値prが「0」付近の値で出力目標値Prefが負の値となり、第2設定値sv2が「0」の時、誘導指令値prが「0」付近の値で出力目標値Prefが「0」となる。第3設定値sv3は、第3パラメータa3に代入する値の設定値である。第3設定値は、任意の値が設定される。第4設定値sv4は、第4パラメータa4に代入する値の設定値である。第4設定値sv4は、次のように設定される。それは、各太陽光PCS11、各負荷制御装置41および各発電機制御装置51には、蓄電池が接続されないため固定値1が設定され、各蓄電池PCS21および各EVスタンド31には、下記(19)式の演算値が設定される。下記(19)式において、ωSoCは、下記(20)式で算出され、ωSoC_tmpは、下記(21)式あるいは下記(22)式のうちいずれか小さい方が用いられる。下記(20)式ないし下記(22)式において、ASoCは重みwSoCのオフセット、KSoCは重みwSoCのゲイン、sswは重みwSoCのオン/オフスイッチ(例えば、オンのとき1,オフのとき0)、SoCpは各蓄電池22の現在のSoC、SoCdは基準となるSoCをそれぞれ示している。これらの各設定値は、受信する誘導指令値が正の値の時と負の値の時とでそれぞれ別々に設定可能である。以下の説明において、誘導指令値が正の値(「0」を含む)である時に対応した設定を「正の誘導指令値設定」といい、誘導指令値が負の値である時に対応した設定を「負の誘導指令値設定」という。
【数11】
【0038】
図2図6は、各電力制御装置B1に設定される各設定値の一例、および、各電力制御装置B1における、誘導指令値prと出力目標値Prefとの関係を示している。これらの各図(a)は、最大出力設定値svmax、最小出力設定値svmin、第1設定値sv1、第2設定値sv2、および、第3設定値sv3の各設定例である。なお、第4設定値sv4は、各電力制御装置B1に関わらず、すべて「1」が設定されている。各蓄電池PCS21および各EVスタンド31においては、例えば、上記(18)式ないし上記(20)式のsswを「0」にすることで、第4設定値sv4を「1」にしている。これらの各図(b)は、(a)に示す設定値における、誘導指令値prに対する出力目標値Prefの変化特性を示している。なお、図2図6の各図(b)においては、横軸に誘導指令値prを、縦軸に出力目標値Prefをとっている。図2は、4つの太陽光PCS11における各設定例である。4つの太陽光PCS11をそれぞれ、太陽光PCS11a,11b,11c,11dと区別する。図3は、3つの蓄電池PCS21における各設定例である。3つの蓄電池PCS21をそれぞれ、蓄電池PCS21a,21b,21cと区別する。図4は、3つのEVスタンド31における各設定例である。3つのEVスタンド31をそれぞれ、EVスタンド31a,31b,31cと区別する。図5は、4つの負荷制御装置41における各設定例である。4つの負荷制御装置41をそれぞれ、負荷制御装置41a,41b,41c,41dと区別する。図6は、4つの発電機制御装置51における各設定例である。4つの発電機制御装置51をそれぞれ、発電機制御装置51a,51b,51c,51dと区別する。
【0039】
各太陽光PCS11a~11dにおいて、図2(a)に示すように、正の誘導指令値設定および負の誘導指令値設定の各第2設定値sv2は、固定値「1」が設定されている。この設定により、各太陽光PCS11a~11dは、図2(b)に示すように、誘導指令値prが「0」の時に、出力目標値Prefが正の値となっている。つまり、各太陽光PCS11a~11dは、誘導指令値prが「0」の時に、太陽電池12が発電した電力を、受電設備C1に出力する。また、各太陽光PCS11a~11dにおいて、負の誘導指令値設定の各設定値が、図2(a)に示すように設定されている。この設定により、各太陽光PCS11a~11dは、図2(b)に示すように、誘導指令値prが負の値の時に、出力目標値Prefが最大出力設定値svmaxになっている。つまり、各太陽光PCS11a~11dは、誘導指令値prが負の値の時、最大限出力可能な電力を受電設備C1に出力する。特に、設定される最大出力設定値svmaxが各太陽光PCS11a~11dの定格出力値と同じである場合、各太陽光PCS11a~11dは、最大電力点追従制御を行う。さらに、各太陽光PCS11a~11dにおいて、図2(a)に示すように、正の誘導指令値設定および負の誘導指令値設定の各最小出力設定値svminに「0」が設定されている。この設定により、受信する誘導指令値prによらず、出力目標値Prefが負の値にならない。つまり、各太陽光PCS11a~11dは、受電設備C1から受電せず、太陽電池12に電力を供給することがない。
【0040】
各蓄電池PCS21a~21cにおいて、図3(a)に示すように、正の誘導指令値設定の最大出力設定値svmaxは、固定値「0」が設定され、負の誘導指令値設定の最小出力設定値svminは、固定値「0」が設定されている。この設定により、各蓄電池PCS21a~21cは、図3(b)に示すように、誘導指令値prが正の値の時に、出力目標値Prefが「0」よりも大きくならず、誘導指令値prが負の値の時に、出力目標値Prefが「0」よりも小さくならない。つまり、各蓄電池PCS21a~21cは、誘導指令値prが正の値の時に、常に、受電設備C1から受電して蓄電池22を充電し、誘導指令値prが負の値の時に、常に、蓄電池22を放電して受電設備C1に送電する。また、蓄電池PCS21cにおいて、図3(a)に示すように、正の誘導指令値設定の第2設定値sv2は「1」が設定され、かつ、正の誘導指令値設定の最大出力設定値svmaxは「0」が設定されている。その上、負の誘導指令値設定の第2設定値sv2は「-1」が設定され、かつ、負の誘導指令値設定の最小出力設定値svminは「0」が設定されている。これらの設定により、蓄電池PCS21cは、図3(b)に示すように、誘導指令値prが「0」でない時にも出力目標値Prefが「0」となる。つまり、蓄電池PCS21cは、蓄電池22の充放電をできる限りしないように設定されている。
【0041】
各EVスタンド31a~31cにおいて、図4(a)に示すように、正の誘導指令値設定および負の誘導指令値設定の各第2設定値sv2に、固定値「-1」が設定されている。この設定により、各EVスタンド31a~31cは、図4(b)に示すように、誘導指令値prが「0」の時に、出力目標値Prefが負の値となっている。つまり、各EVスタンド31a~31cは、誘導指令値prが「0」の時に、受電設備C1から受電し、電気自動車32を充電する。また、各EVスタンド31a~31cにおいて、正の誘導指令値設定の各設定値が、図4(a)に示すように設定されている。この設定により、各EVスタンド31a~31cは、図4(b)に示すように、誘導指令値prが正の値の時に、出力目標値Prefが出力最小値Pminになっている。つまり、各EVスタンド31a~31cは、誘導指令値prが正の値の時、設定される出力最小値Pminの電力を受電設備C1から受電する。
【0042】
各負荷制御装置41a~41dにおいて、図5(a)に示すように、正の誘導指令値設定および負の誘導指令値設定の各第2設定値sv2は、固定値「-1」が設定されている。この設定により、各負荷制御装置41a~41dは、図5(b)に示すように、誘導指令値prが「0」の時に、出力目標値Prefが負の値となっている。つまり、各負荷制御装置41a~41dは、誘導指令値prが「0」の時に、電力負荷42に受電設備C1から受電させる。また、各負荷制御装置41a~41dにおいて、正の誘導指令値設定の各設定値が、図5(a)に示すように設定されている。この設定により、各負荷制御装置41a~41dは、図5(b)に示すように、誘導指令値prが正の値の時に、原則、出力目標値Prefが出力最小値Pminになっている。ただし、負荷制御装置41bのように、負の誘導指令値設定の第3設定値sv3によっては、一部、出力目標値Prefが出力最小値Pminにならない時もある。さらに、各負荷制御装置41a~41dにおいて、図5(a)に示すように、原則、正の誘導指令値設定および負の誘導指令値設定の各最大出力設定値svmaxに「0」が設定されている。この設定により、出力目標値Prefが正の値にならない。つまり、負荷制御装置41a~41dは、原則、電力負荷42から受電設備C1に送電しない。ただし、負荷制御装置41cにおいて、図5(a)に示すように、負の誘導指令値設定の最大出力設定値svmaxに「0」より大きい値を設定することで、図5(b)に示すように出力目標値Prefを正の値にすることも可能である。これは、負荷制御装置41cが制御する電力負荷42が発電機構を備えているため、この電力負荷42から受電設備C1に送電可能だからである。例えば、負荷制御装置41cにおいて、負の誘導指令値設定の最大出力設定値svmaxに、負荷制御装置41cが制御する電力負荷42(が備える発電機構)の発電時の定格出力の値が設定されうる。
【0043】
各発電機制御装置51a~51dにおいて、図6(a)に示すように、原則、正の誘導指令値設定および負の誘導指令値設定の各第2設定値sv2は、固定値「1」が設定されている。この設定により、各発電機制御装置51a~51dは、図6(b)に示すように、誘導指令値prが「0」の時に、出力目標値Prefが正の値となっている。つまり、各発電機制御装置51a~51dは、誘導指令値prが「0」の時に、発電機52が発電した電力を、受電設備C1に出力する。ただし、発電機制御装置51cにおいて、図6(a)に示すように、負の誘導指令値設定の第2設定値sv2は「-1」が設定され、かつ、負の誘導指令値設定の最小出力設定値svminは「250」が設定されている。この設定により、図6(b)に示すように、誘導指令値prが最小値(-prlmt)付近で、出力目標値Prefが250kW(出力最小値Pmin)と300kW(出力最大値Pmax)との間を変化している。これは、発電機制御装置51cが、接続された発電機52を、基本的には、余力を残して動作させ、受電設備C1への電力供給がさらに必要な場合に出力電力を大きくするような運用を考慮したものである。また、発電機制御装置51bにおいて、図6(a)に示すように、正の誘導指令値設定の第1設定値sv1に、「0」から「1」の間の値が設定されている。この設定により、図6(b)に示すように、誘導指令値prが最大値(prlmt)であっても、出力目標値Prefが「0」にならない。例えば、所定ワット数以上、電力を出力(発電)させ続けないといけない発電機52が接続されている場合には、このように、正の誘導指令値設定の第1設定値sv1に、「0」から「1」の間の値を設定する。
【0044】
以上のように、各電力制御装置B1は、設定された各設定値によって、次に示す点がそれぞれ調整され、各電力制御装置B1に応じた変化特性に調整される。それは、誘導指令値prが最小値(-prlmt)の時の、出力目標値Prefの値、誘導指令値prが最大値(prlmt)の時の、出力目標値Prefの値、誘導指令値prが変化しても出力目標値Prefの値が変化しない誘導指令値prの範囲(不変範囲)、誘導指令値prの変化に応じて出力目標値Prefの値が変化する誘導指令値prの範囲(可変範囲)、可変範囲における出力目標値Prefの変化量、不変範囲と可変範囲との境界における誘導指令値prの値、誘導指令値prが「0」であるときの出力目標値Prefの値、および、出力目標値Prefが正の値から負の値に変わる時(つまり、出力目標値Prefが0kWの時)の誘導指令値prの値などが調整される。特に、第1パラメータa1に代入する設定値(第1設定値sv1)を変えることで、可変範囲における出力目標値Prefの変化量(特性線の傾き)が変化することが分かる(図2の太陽光PCS11a,11cを比較参照)。また、第2パラメータa2に代入する設定値(第2設定値sv2)を変えることで、誘導指令値prが「0」付近における出力目標値Prefの値が変化することが分かる(図2図6を比較参照)。さらに、第3パラメータa3に代入する設定値(第3設定値sv3)を変えることで、不変範囲と可変範囲との境界における誘導指令値prの値(出力目標値Prefが変化し始める誘導指令値pr)が変化することが分かる(図2の太陽光PCS11a,11bを比較参照)。
【0045】
本開示の電力システムS1の作用効果は、次の通りである。
【0046】
電力システムS1によれば、各電力制御装置B1は、誘導指令値を用いた最適化問題に基づいて、制御対象の出力目標値を算出する。この最適化問題は、評価関数を含んでいる。評価関数は、複数の電力制御装置B1に対して共通である。例えば、特許文献1に記載の電力システムにおいては、太陽光PCSと蓄電池PCSとで異なる評価関数が設定されていた。また、当該電力システムにおいては、太陽電池および蓄電池とは異なる種類の制御対象を制御する電力装置(電力制御装置)を導入する際、制御対象の種類に応じた最適化問題(評価関数)を検討する必要があった。一方、電力システムS1においては、太陽光PCS11と蓄電池PCS21とで、共通の評価関数を用いている。さらに、電力システムS1においては、EVスタンド31、負荷制御装置41および発電機制御装置51にも、太陽光PCS11と蓄電池PCS21と、共通の評価関数を用いている。この構成によると、複数の電力制御装置B1毎に、当該電力制御装置B1が制御する制御対象に応じた最適化問題(評価関数)を検討する必要がない。したがって、電力システムS1は、複数の電力制御装置B1によって異なる種類の制御対象を制御する場合であっても、各電力制御装置B1に共通の評価関数を用いればよいので、電力制御装置B1の追加にも容易に対応することができる。つまり、電力システムS1は、電力制御装置B1(電力装置)の多様化に対応できる。
【0047】
電力システムS1によれば、各電力制御装置B1が用いる評価関数には、第1設定値が代入される第1パラメータ、第2設定値が代入される第2パラメータ、および、第3設定値が代入される第3パラメータが含まれている。これら第1設定値、第2設定値および第3設定値は、複数の電力制御装置B1毎に設定されている。これらの各設定値により、各電力制御装置B1において、誘導指令値の変化に対する出力目標値の変化特性(図2図6の(b)参照)を調整することができる。この構成によると、各電力制御装置B1に設定される評価関数が共通する場合であっても、第1設定値、第2設定値および第3設定値により、利用者の多様な出力要求にも柔軟に対応することができる。
【0048】
電力システムS1によれば、第1設定値、第2設定値および第3設定値はそれぞれ、誘導指令値が正の値の時と誘導指令値が負の値の時とで、それぞれ異なる値を設定可能である。この構成によると、誘導指令値が正の場合(正の誘導指令値設定)と負の場合(負の誘導指令値設定)とで、それぞれ、誘導指令値の変化に対する出力目標値の変化特性(図2図6の(b)参照)を適宜調整することができる。したがって、各電力制御装置B1に設定される評価関数が共通する場合であっても、誘導指令値が正の場合(正の誘導指令値設定)および負の場合(負の誘導指令値設定)のそれぞれにおける第1設定値、第2設定値および第3設定値により、利用者の多様な出力要求にも柔軟に対応することができる。
【0049】
電力システムS1によれば、各電力制御装置B1は、上記(13)式および上記(14)式に示す評価関数から導出される上記(17)式および上記(18)式に示す演算式によって、出力目標値を算出している。この構成によると、上記(13)式および上記(14)式に示す評価関数(最小化問題)を解くことなく、上記(17)式および上記(18)式の演算で出力目標値を算出できるので、各電力制御装置B1における演算負荷を低減させることができる。
【0050】
各電力制御装置B1によれば、上記(13)式および上記(14)式に示す最適化問題の評価関数に基づいて、出力目標値を算出してもよい。上記(13)式および上記(14)式は、各電力制御装置B1の制御対象固有のパラメータを含んでいない。この構成によると、電力制御装置B1は、制御対象の種類が異なっていても、上記(13)式および上記(14)式に基づいて出力目標値を算出できる。したがって、電力制御装置B1は、電力システムS1において、電力制御装置B1の多様化に対応したエネルギー管理を可能にすることができる。
【0051】
本開示にかかる電力システムおよび電力制御装置は、上記した実施形態に限定されるものではない。本開示の電力システムおよび電力制御装置の各部の具体的な構成は、種々に設計変更自在である。
【符号の説明】
【0052】
A1:処理装置、B1:電力制御装置、11:太陽光パワーコンディショナ(太陽光PCS)、12:太陽電池、21:蓄電池パワーコンディショナ(蓄電池PCS)、22:蓄電池、31:EVスタンド、32:電気自動車、41:負荷制御装置、43:電力負荷、51:発電機制御装置、52:発電機、C1:受電設備、D:電力系統
図1
図2
図3
図4
図5
図6