(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-11
(45)【発行日】2023-04-19
(54)【発明の名称】ディープラーニング加速化のためのデータ構造記述子
(51)【国際特許分類】
G06F 15/173 20060101AFI20230412BHJP
G06N 3/063 20230101ALI20230412BHJP
G06F 15/80 20060101ALI20230412BHJP
【FI】
G06F15/173 683C
G06N3/063
G06F15/80
(21)【出願番号】P 2019556709
(86)(22)【出願日】2018-04-17
(86)【国際出願番号】 IB2018052643
(87)【国際公開番号】W WO2018193363
(87)【国際公開日】2018-10-25
【審査請求日】2019-12-25
(32)【優先日】2017-04-17
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2017-06-11
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2017-06-15
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2017-06-19
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2017-06-19
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2017-08-08
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2017-08-08
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2017-11-01
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-02-09
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-02-09
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-04-05
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-04-09
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】519305351
【氏名又は名称】セレブラス システムズ インク.
(74)【代理人】
【識別番号】100104411
【氏名又は名称】矢口 太郎
(72)【発明者】
【氏名】リー、ショーン
(72)【発明者】
【氏名】モリソン、マイケル
(72)【発明者】
【氏名】アレカプディ、スリカンス
(72)【発明者】
【氏名】ラウターバッハ、ゲイリー アール.
(72)【発明者】
【氏名】ジェームズ、マイケル エドウィン
【審査官】三坂 敏夫
(56)【参考文献】
【文献】特開2009-129447(JP,A)
【文献】特開平02-005173(JP,A)
【文献】国際公開第2016/186813(WO,A1)
【文献】米国特許第7814303(US,B2)
【文献】特開平06-096035(JP,A)
【文献】特開2014-186509(JP,A)
【文献】特開平08-185380(JP,A)
【文献】特表2015-537324(JP,A)
【文献】国際公開第2017/048655(WO,A1)
【文献】特開平06-110864(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06F 15/16-15/177
G06N 3/063
G06F 15/80
(57)【特許請求の範囲】
【請求項1】
計算要素であって、
メモリと、
命令を復号化する手段であって、前記命令はオペランドフィールドを有するものである、復号化する手段と、
少なくとも部分的に前記オペランドフィールドに基づいてオペランド記述子にアクセスする手段であって、前記オペランド記述子は、複数の属性およびパラメータをエンコードし、データ構造記述子の格納専用の複数のデータ構造レジスタの1つに格納されているフィールドを有するものである、前記アクセスする手段と、
前記オペランド記述子を復号化して、前記オペランド記述子が参照する複数のタイプの特定の1つを特定する手段と、
前記オペランド記述子及び前記特定のタイプに従ってオペランドにアクセスする手段と
を有し、
前記タイプは、ファブリックタイプ及びメモリタイプを有し、
前記計算要素は、ファブリックルータを有する処理要素に含まれ、前記処理要素は、各計算要素及び各ファブリックルータをそれぞれ有する処理要素のファブリックの1つであり、
前記処理要素は、各ファブリックルータに結合されたファブリックを介して相互接続され、
前記処理要素のファブリックは、データルーティングおよび命令関連のスケジューリングに従ってそれぞれデータフローベースの処理及び命令ベースの処理を実行することができ、前記ルーティングおよびスケジューリングのそれぞれは、前記プロセッサ要素によって処理された複数のパケットのそれぞれにエンコードされ、さらに、いくつかの前記オペランド記述子タイプの各オペランド記述子にそれぞれエンコードされた少なくとも1つの仮想チャネル識別子を介して部分的に管理され、
前記処理要素のファブリックは、ウェーハスケール集積を介して実装され、
前記特定のタイプが前記ファブリックタイプである場合、前記オペランドは前記ファブリックを介してアクセスされ、
前記特定のタイプが前記メモリタイプである場合、前記オペランドは前記メモリを介してアクセスされ、
前記計算要素は前記命令を実行することができ、前記オペランド記述子は、前記オペランドがベクトルであり、前記ベクトルの要素へのアクセスのストールがある場合に前記計算要素がいかに動作すべきかを記述するマイクロスレッド処理情報を有するものである計算要素。
【請求項2】
請求項1記載の計算要素において、前記タイプが前記ファブリックタイプである場合、前記オペランド記述子には前記ファブリックのファブリック仮想チャネルが関連付けられ、前記ファブリック仮想チャネルは、前記オペランド記述子にエンコードされた前記仮想チャネル識別子の1つによって指定されるものである計算要素。
【請求項3】
請求項1記載の計算要素において、さらに、
前記オペランド記述子により記述されるアクセスパターンに従って前記命令の繰り返しを実行する手段であって、前記ベクトルの前記繰り返しに十分なデータ要素にアクセスすることを介して実行するものである、実行する手段を有するものである計算要素。
【請求項4】
請求項3記載の計算要素において、前記アクセスパターンは、ファブリックベクトル、一次元メモリベクトル、四次元メモリベクトル、及び循環メモリバッファの1つである計算要素。
【請求項5】
請求項1記載の計算要素において、前記オペランドにアクセスする手段は、前記タイプが前記ファブリックタイプであり、前記オペランドがソースである場合、前記ファブリックに結合された入力キューからデータ要素を読み出すことができるものである計算要素。
【請求項6】
請求項1記載の計算要素において、前記オペランドにアクセスする手段は、前記タイプが前記ファブリックタイプであり、前記オペランドがデスティネーション(宛先)である場合、前記ファブリックに結合された出力キューにデータ要素を書き込むことができるものである計算要素。
【請求項7】
請求項1記載の計算要素において、前記オペランドにアクセスする手段は、前記タイプが前記メモリタイプであり、前記オペランドがソースである場合、前記メモリから読み出すことができるものである計算要素。
【請求項8】
請求項1記載の計算要素において、前記オペランドにアクセスする手段は、前記タイプが前記メモリタイプであり、前記オペランドがデスティネーション(宛先)である場合、前記メモリに書き込むことができるものである計算要素。
【請求項9】
請求項1記載の計算要素において、前記オペランドが前記ベクトルである場合、前記オペランド記述子は、前記ベクトルの長さを記述する情報を有するものである計算要素。
【請求項10】
請求項1記載の計算要素において、さらに、
前記ストール及びマイクロスレッド処理が可能ではないことを示す前記マイクロスレッド処理情報に応答して、前記計算要素をストールさせる手段を有するものである計算要素。
【請求項11】
請求項1記載の計算要素において、前記命令は第1の命令であり、さらに、
前記ストール及びマイクロスレッド処理が可能であることを示す前記マイクロスレッド処理情報に応答して、前記計算要素が前記第1の命令の処理を保留にし、第2の命令を処理に選択する手段を有するものである計算要素。
【請求項12】
請求項1記載の計算要素において、前記オペランドは前記ベクトルであり、前記オペランド記述子は、前記ベクトルのいくつの要素を並列処理するかを示すものである計算要素。
【請求項13】
計算要素であって、
メモリと、
命令を復号化する手段であって、前記命令はオペランドフィールドを有するものである、復号化する手段と、
少なくとも部分的に前記オペランドフィールドに基づいてオペランド記述子にアクセスする手段であって、前記オペランド記述子は、複数の属性およびパラメータをエンコードし、データ構造記述子の格納専用の複数のデータ構造レジスタの1つに格納されているフィールドを有するものである、前記アクセスする手段と、
前記オペランド記述子を復号化して、前記オペランド記述子が参照する複数のタイプの特定の1つを特定する手段と、
前記オペランド記述子及び前記特定のタイプに従ってオペランドにアクセスする手段と
を有し、
前記タイプは、ファブリックタイプ及びメモリタイプを有し、
前記計算要素は、ファブリックルータを有する処理要素に含まれ、前記処理要素は、各計算要素及び各ファブリックルータをそれぞれ有する処理要素のファブリックの1つであり、
前記処理要素は、各ファブリックルータに結合されたファブリックを介して相互接続され、
前記処理要素のファブリックは、データルーティングおよび命令関連のスケジューリングに従ってそれぞれデータフローベースの処理及び命令ベースの処理を実行することができ、前記ルーティングおよびスケジューリングのそれぞれは、前記プロセッサ要素によって処理された複数のパケットのそれぞれにエンコードされ、さらに、いくつかの前記オペランド記述子タイプの各オペランド記述子にそれぞれエンコードされた少なくとも1つの仮想チャネル識別子を介して部分的に管理され、
前記処理要素のファブリックは、ウェーハスケール集積を介して実装され、
前記特定のタイプが前記ファブリックタイプである場合、前記オペランドは前記ファブリックを介してアクセスされ、
前記特定のタイプが前記メモリタイプである場合、前記オペランドは前記メモリを介してアクセスされ、
前記オペランド記述子は、前記オペランドが
ベクトルであり、前記ベクトルの要素を伝達する制御ファブリックパケットが受信される場合、処理を終了すべきか否かのインジケータを有するものである計算要素。
【請求項14】
請求項1記載の計算要素において、前記オペランド記述子は、前記命令の完了に応答して前記識別された仮想チャネルの前記命令関連のスケジューリングを選択的にアクティベートする前記少なくとも1つの仮想チャネル識別子を有するものである計算要素。
【請求項15】
請求項1記載の計算要素において、前記命令の実行は、ニューラルネットワークのアクティベーションの計算、ニューラルネットワークのアクティベーションの部分和の計算、ニューラルネットワークのエラーの計算、ニューラルネットワークの勾配推定の計算、及びニューラルネットワークの重みの更新の1若しくはそれ以上の少なくとも部分を実行するものである計算要素。
【請求項16】
請求項1記載の計算要素において、前記オペランドは、ニューラルネットワークの重み、ニューラルネットワークのアクティベーション、ニューラルネットワークのアクティベーションの部分和、ニューラルネットワークのエラー、ニューラルネットワークの勾配推定、及びニューラルネットワークの重み更新の1若しくはそれ以上の少なくとも部分を有するものである計算要素。
【請求項17】
請求項1記載の計算要素において、前記オペランドは、前記ベクトル、行列、及びテンソルの1若しくはそれ以上の少なくとも部分を有するものである計算要素。
【請求項18】
方法であって、
計算要素において、命令を復号化する工程であって、前記命令はオペランドフィールドを有する、復号化する工程と、
前記計算要素において、少なくとも部分的に前記オペランドフィールドに基づいてオペランド記述子にアクセスする工程であって、前記オペランド記述子は、複数の属性およびパラメータをエンコードし、データ構造記述子の格納専用の複数のデータ構造レジスタの1つに格納されているフィールドを有するものである、前記アクセスする工程と、
前記計算要素において、前記オペランド記述子を復号化して、前記オペランド記述子が参照する複数のタイプの特定の1つを特定する工程と、
前記計算要素において、前記オペランド記述子及び前記特定のタイプに従ってオペランドにアクセスする工程と
を含み、
前記タイプは、ファブリックタイプ及びメモリタイプを有し、
前記計算要素は、ファブリックルータを有する処理要素に含まれ、前記処理要素は、各計算要素及び各ファブリックルータをそれぞれ有する処理要素のファブリックの1つであり、
前記処理要素は、各ファブリックルータに結合されたファブリックを介して相互接続され、
前記処理要素のファブリックは、データルーティングおよび命令関連のスケジューリングに従ってそれぞれデータフローベースの処理及び命令ベースの処理を実行することができ、前記ルーティングおよびスケジューリングのそれぞれは、前記プロセッサ要素によって処理された複数のパケットのそれぞれにエンコードされ、さらに、いくつかの前記オペランド記述子タイプの各オペランド記述子にそれぞれエンコードされた少なくとも1つの仮想チャネル識別子を介して部分的に管理され、
前記処理要素のファブリックは、ウェーハスケール集積を介して実装され、
前記特定のタイプが前記ファブリックタイプである場合、前記オペランドは前記ファブリックを介してアクセスされ、
前記特定のタイプが前記メモリタイプである場合、前記オペランドは前記計算要素の前記メモリを介してアクセスされ、
前記オペランド記述子は、前記オペランドが
ベクトルであり、前記ベクトルの要素へのアクセスのストールがある場合に前記計算要素がいかに動作すべきかを記述するマイクロスレッド処理情報を有するものである方法。
【請求項19】
請求項18記載の方法において、前記タイプが前記ファブリックタイプである場合、前記オペランド記述子には前記ファブリックのファブリック仮想チャネルが関連付けられ、前記ファブリック仮想チャネルは、前記オペランド記述子にエンコードされた前記仮想チャネル識別子の1つによって指定されるものである方法。
【請求項20】
請求項18記載の方法において、さらに、
前記オペランド記述子により記述されるアクセスパターンに従って、前記命令の繰り返しを実行する工程であって、前記ベクトルの前記繰り返しに十分なデータ要素にアクセスすることを介して実行するものである、実行する工程を含むものである方法。
【請求項21】
請求項20記載の方法において、前記アクセスパターンは、ファブリックベクトル、一次元メモリベクトル、四次元メモリベクトル、及び循環メモリバッファの1つである方法。
【請求項22】
請求項18記載の方法において、前記タイプが前記ファブリックタイプであり、前記オペランドがソースである場合、前記オペランドにアクセスする工程は、前記ファブリックに結合された入力キューからデータ要素を読み出すことを含むものである方法。
【請求項23】
請求項18記載の方法において、前記タイプが前記ファブリックタイプであり、前記オペランドがデスティネーション(宛先)である場合、前記オペランドにアクセスする工程は、前記ファブリックに結合された出力キューにデータ要素を書き込むことを含むものである方法。
【請求項24】
請求項18記載の方法において、前記タイプが前記メモリタイプであり、前記オペランドがソースである場合、前記オペランドにアクセスする工程は、前記計算要素に含まれる前記メモリから読み出すことを含むものである方法。
【請求項25】
請求項18記載の方法において、前記タイプが前記メモリタイプであり、前記オペランドがデスティネーション(宛先)である場合、前記オペランドにアクセスする工程は、前記計算要素に含まれる前記メモリに書き込むことを含むものである方法。
【請求項26】
請求項18記載の方法において、前記オペランドは前記ベクトルであり、前記オペランド記述子は、前記ベクトルの長さを記述する情報を有するものである方法。
【請求項27】
請求項18記載の方法において、さらに、
前記ストール及びマイクロスレッド処理が可能ではないことを示す前記マイクロスレッド処理情報に応答して、前記計算要素がストールする工程を含むものである方法。
【請求項28】
請求項18記載の方法において、前記命令は第1の命令であり、さらに、
前記ストール及びマイクロスレッド処理が可能であることを示す前記マイクロスレッド処理情報に応答して、前記計算要素が前記第1の命令の処理を保留し、第2の命令を処理に選択する工程を含むものである方法。
【請求項29】
請求項28記載の方法において、前記第1の命令には第1のタスクが関連付けられ、前記第2の命令には第2のタスクが関連付けられるものである方法。
【請求項30】
請求項18記載の方法において、前記オペランドは前記ベクトルであり、前記オペランド記述子は、前記ベクトルのいくつの要素を並列処理するかを示すものである方法。
【請求項31】
方法であって、
計算要素において、命令を復号化する工程であって、前記命令はオペランドフィールドを有する、復号化する工程と、
前記計算要素において、少なくとも部分的に前記オペランドフィールドに基づいてオペランド記述子にアクセスする工程であって、前記オペランド記述子は、複数の属性およびパラメータをエンコードし、データ構造記述子の格納専用の複数のデータ構造レジスタの1つに格納されているフィールドを有するものである、前記アクセスする工程と、
前記計算要素において、前記オペランド記述子を復号化して、前記オペランド記述子が参照する複数のタイプの特定の1つを特定する工程と、
前記計算要素において、前記オペランド記述子及び前記特定のタイプに従ってオペランドにアクセスする工程と
を含み、
前記タイプは、ファブリックタイプ及びメモリタイプを有し、
前記計算要素は、ファブリックルータを有する処理要素に含まれ、前記処理要素は、各計算要素及び各ファブリックルータをそれぞれ有する処理要素のファブリックの1つであり、
前記処理要素は、各ファブリックルータに結合されたファブリックを介して相互接続され、
前記処理要素のファブリックは、データルーティングおよび命令関連のスケジューリングに従ってそれぞれデータフローベースの処理及び命令ベースの処理を実行することができ、前記ルーティングおよびスケジューリングのそれぞれは、前記プロセッサ要素によって処理された複数のパケットのそれぞれにエンコードされ、さらに、いくつかの前記オペランド記述子タイプの各オペランド記述子にそれぞれエンコードされた少なくとも1つの仮想チャネル識別子を介して部分的に管理され、
前記処理要素のファブリックは、ウェーハスケール集積を介して実装され、
前記特定のタイプが前記ファブリックタイプである場合、前記オペランドは前記ファブリックを介してアクセスされ、
前記特定のタイプが前記メモリタイプである場合、前記オペランドは前記計算要素の前記メモリを介してアクセスされ、
前記オペランド記述子は、前記オペランドが
ベクトルであり、前記ベクトルの要素を伝達する制御ファブリックパケットが受信される場合、処理を終了すべきか否かのインジケータを有するものである方法。
【請求項32】
請求項18記載の方法において、前記オペランド記述子は、前記命令の完了に応答して前記識別された仮想チャネルの前記命令関連のスケジューリングを選択的にアクティベートする前記少なくとも1つの仮想チャネル識別子を有するものである方法。
【請求項33】
請求項18記載の方法において、前記命令の実行は、ニューラルネットワークのアクティベーションの計算、ニューラルネットワークのアクティベーションの部分和の計算、ニューラルネットワークのエラーの計算、ニューラルネットワークの勾配推定の計算、及びニューラルネットワークの重みの更新の1若しくはそれ以上の少なくとも部分を実行するものである方法。
【請求項34】
請求項18記載の方法において、前記オペランドは、ニューラルネットワークの重み、ニューラルネットワークのアクティベーション、ニューラルネットワークのアクティベーションの部分和、ニューラルネットワークのエラー、ニューラルネットワークの勾配推定、及びニューラルネットワークの重み更新の1若しくはそれ以上の少なくとも部分を有するものである方法。
【請求項35】
請求項18記載の方法において、前記オペランドは、前記ベクトル、行列、及びテンソルの1若しくはそれ以上の少なくとも部分を有するものである方法。
【請求項36】
システムであって、
処理要素のファブリックであって、各処理要素は、計算要素に結合されたファブリックルータを有し、前記処理要素のファブリックは、データフローベースの処理及び命令ベースの処理を実行することができ、前記ルーティングおよびスケジューリングのそれぞれは、前記プロセッサ要素によって処理された複数のパケットのそれぞれにエンコードされ、少なくとも1つの仮想識別子を介して部分的に管理され、前記処理要素のファブリックは、ウェーハスケール集積を介して実装されるものである、前記処理要素のファブリック
を有し、
各処理要素は選択的に、少なくとも部分的に前記処理要素のそれぞれの前記ファブリックルータを介して前記処理要素の他のものとファブリックパケットを通信することができ、
各計算要素はメモリを有し、
命令を復号化することであって、前記命令はオペランドフィールドを有する、復号化することと、
少なくとも部分的に前記オペランドフィールドに基づいてオペランド記述子にアクセスすることであって、前記オペランド記述子は、複数の属性およびパラメータをエンコードし、データ構造記述子を格納するための専用の複数のデータ構造レジスタの1つに格納されているフィールドを有する、アクセスすることと、
前記オペランド記述子を復号化して、前記オペランド記述子が参照する複数のタイプの特定の1つを特定することであって、前記複数のタイプはファブリックタイプ及びメモリタイプを有し、さらに、いくつかの前記オペランド記述子タイプの各オペランド記述子にエンコードされた前記少なくとも1つの仮想チャネル識別子である、復号化して特定することと、
前記オペランド記述子及び前記特定のタイプに従ってオペランドにアクセスすることと
を行うことができ、
前記オペランドの前記アクセスは、前記特定のタイプが前記ファブリックタイプである場合、前記計算要素に結合された前記ファブリックルータのそれぞれを介し、
前記オペランドの前記アクセスは、前記特定のタイプが前記メモリタイプである場合、前記メモリを介し、
前記オペランド記述子は、複数の拡張オペランド記述子のうちの1つを指定することができ、
前記拡張オペランド記述子は、四次元メモリベクトルのストライド情報及び次元情報の1若しくはそれ以上を指定することができるものであるシステム。
【請求項37】
請求項36記載のシステムにおいて、前記オペランド記述子は、一次元メモリベクトルアクセスパターン、四次元メモリベクトルアクセスパターン、及び循環メモリバッファアクセスパターンの1つとしてアクセスパターンを識別するものであるシステム。
【請求項38】
システムであって、
処理要素のファブリックであって、各処理要素は、計算要素に結合されたファブリックルータを有し、前記処理要素のファブリックは、データフローベースの処理及び命令ベースの処理を実行することができ、前記ルーティングおよびスケジューリングのそれぞれは、前記プロセッサ要素によって処理された複数のパケットのそれぞれにエンコードされ、少なくとも1つの仮想識別子を介して部分的に管理され、前記処理要素のファブリックは、ウェーハスケール集積を介して実装されるものである、前記処理要素のファブリック
を有し、
各処理要素は選択的に、少なくとも部分的に前記処理要素のそれぞれの前記ファブリックルータを介して前記処理要素の他のものとファブリックパケットを通信することができ、
各計算要素はメモリを有し、
命令を復号化することであって、前記命令はオペランドフィールドを有する、復号化することと、
少なくとも部分的に前記オペランドフィールドに基づいてオペランド記述子にアクセスすることであって、前記オペランド記述子は、複数の属性およびパラメータをエンコードし、データ構造記述子を格納するための専用の複数のデータ構造レジスタの1つに格納されているフィールドを有する、アクセスすることと、
前記オペランド記述子を復号化して、前記オペランド記述子が参照する複数のタイプの特定の1つを特定することであって、前記複数のタイプはファブリックタイプ及びメモリタイプを有し、さらに、いくつかの前記オペランド記述子タイプの各オペランド記述子にエンコードされた前記少なくとも1つの仮想チャネル識別子である、復号化して特定することと、
前記オペランド記述子及び前記特定のタイプに従ってオペランドにアクセスすることと
を行うことができ、
前記オペランドの前記アクセスは、前記特定のタイプが前記ファブリックタイプである場合、前記計算要素に結合された前記ファブリックルータのそれぞれを介し、
前記オペランドの前記アクセスは、前記特定のタイプが前記メモリタイプである場合、前記メモリを介し、
前記オペランド記述子は、複数の拡張オペランド記述子のうちの1つを指定するために有効にされ、
前記拡張オペランド記述子は、循環メモリバッファの開始アドレス及び終了アドレスの1若しくはそれ以上を指定することができるものであるシステム。
【請求項39】
システムであって、
処理要素のファブリックであって、各処理要素は、計算要素に結合されたファブリックルータを有し、前記処理要素のファブリックは、データフローベースの処理及び命令ベースの処理を実行することができ、前記ルーティングおよびスケジューリングのそれぞれは、前記プロセッサ要素によって処理された複数のパケットのそれぞれにエンコードされ、少なくとも1つの仮想識別子を介して部分的に管理され、前記処理要素のファブリックは、ウェーハスケール集積を介して実装されるものである、前記処理要素のファブリック
を有し、
各処理要素は選択的に、少なくとも部分的に前記処理要素のそれぞれの前記ファブリックルータを介して前記処理要素の他のものとファブリックパケットを通信することができ、
各計算要素はメモリを有し、
命令を復号化することであって、前記命令はオペランドフィールドを有する、復号化することと、
少なくとも部分的に前記オペランドフィールドに基づいてオペランド記述子にアクセスすることであって、前記オペランド記述子は、複数の属性およびパラメータをエンコードし、データ構造記述子を格納するための専用の複数のデータ構造レジスタの1つに格納されているフィールドを有する、アクセスすることと、
前記オペランド記述子を復号化して、前記オペランド記述子が参照する複数のタイプの特定の1つを特定することであって、前記複数のタイプはファブリックタイプ及びメモリタイプを有し、さらに、いくつかの前記オペランド記述子タイプの各オペランド記述子にエンコードされた前記少なくとも1つの仮想チャネル識別子である、復号化して特定することと、
前記オペランド記述子及び前記特定のタイプに従ってオペランドにアクセスすることと
を行うことができ、
前記オペランドの前記アクセスは、前記特定のタイプが前記ファブリックタイプである場合、前記計算要素に結合された前記ファブリックルータのそれぞれを介し、
前記オペランドの前記アクセスは、前記特定のタイプが前記メモリタイプである場合、前記メモリを介し、
前記オペランド記述子は、複数の拡張オペランド記述子のうちの1つを指定するために有効にされ、
前記拡張オペランド記述子は、循環メモリバッファのFIFO演算又は非FIFO演算を指定することができるものであるシステム。
【請求項40】
請求項36記載のシステムにおいて、前記オペランド記述子は、ベクトルオペランドのベクトル長さを指定することができるものであるシステム。
【請求項41】
システムであって、
処理要素のファブリックであって、各処理要素は、計算要素に結合されたファブリックルータを有し、前記処理要素のファブリックは、データフローベースの処理及び命令ベースの処理を実行することができ、前記ルーティングおよびスケジューリングのそれぞれは、前記プロセッサ要素によって処理された複数のパケットのそれぞれにエンコードされ、少なくとも1つの仮想識別子を介して部分的に管理され、前記処理要素のファブリックは、ウェーハスケール集積を介して実装されるものである、前記処理要素のファブリック
を有し、
各処理要素は選択的に、少なくとも部分的に前記処理要素のそれぞれの前記ファブリックルータを介して前記処理要素の他のものとファブリックパケットを通信することができ、
各計算要素はメモリを有し、
命令を復号化することであって、前記命令はオペランドフィールドを有する、復号化することと、
少なくとも部分的に前記オペランドフィールドに基づいてオペランド記述子にアクセスすることであって、前記オペランド記述子は、複数の属性およびパラメータをエンコードし、データ構造記述子を格納するための専用の複数のデータ構造レジスタの1つに格納されているフィールドを有する、アクセスすることと、
前記オペランド記述子を復号化して、前記オペランド記述子が参照する複数のタイプの特定の1つを特定することであって、前記複数のタイプはファブリックタイプ及びメモリタイプを有し、さらに、いくつかの前記オペランド記述子タイプの各オペランド記述子にエンコードされた前記少なくとも1つの仮想チャネル識別子である、復号化して特定することと、
前記オペランド記述子及び前記特定のタイプに従ってオペランドにアクセスすることと
を行うことができ、
前記オペランドの前記アクセスは、前記特定のタイプが前記ファブリックタイプである場合、前記計算要素に結合された前記ファブリックルータのそれぞれを介し、
前記オペランドの前記アクセスは、前記特定のタイプが前記メモリタイプである場合、前記メモリを介し、
前記オペランド記述子は、複数の拡張オペランド記述子のうちの1つを指定するために有効にされ、
前記オペランド記述子は、前記オペランドが
ベクトルであり、前記ベクトルの要素へのアクセスのストールがある場合に前記計算要素がいかに動作すべきかを記述するマイクロスレッド処理情報を指定することができるものであるシステム。
【請求項42】
請求項13記載の計算要素において、前記タイプが前記ファブリックタイプである場合、前記オペランド記述子には前記ファブリックのファブリック仮想チャネルが関連付けられ、前記ファブリック仮想チャネルは、前記オペランド記述子にエンコードされた前記仮想チャネル識別子の1つによって指定されるものである計算要素。
【請求項43】
請求項13記載の計算要素において、さらに、
前記オペランド記述子により記述されるアクセスパターンに従って前記命令の繰り返しを実行する手段であって、前記ベクトルの前記繰り返しに十分なデータ要素にアクセスすることを介して実行するものである、実行する手段を有するものである計算要素。
【請求項44】
請求項43記載の計算要素において、前記アクセスパターンは、ファブリックベクトル、一次元メモリベクトル、四次元メモリベクトル、及び循環メモリバッファの1つである計算要素。
【請求項45】
請求項13記載の計算要素において、前記オペランドにアクセスする手段は、前記タイプが前記ファブリックタイプであり、前記オペランドがソースである場合、前記ファブリックに結合された入力キューからデータ要素を読み出すことができるものである計算要素。
【請求項46】
請求項13記載の計算要素において、前記オペランドにアクセスする手段は、前記タイプが前記ファブリックタイプであり、前記オペランドがデスティネーション(宛先)である場合、前記ファブリックに結合された出力キューにデータ要素を書き込むことができるものである計算要素。
【請求項47】
請求項13記載の計算要素において、前記オペランドにアクセスする手段は、前記タイプが前記メモリタイプであり、前記オペランドがソースである場合、前記メモリから読み出すことができるものである計算要素。
【請求項48】
請求項13記載の計算要素において、前記オペランドにアクセスする手段は、前記タイプが前記メモリタイプであり、前記オペランドがデスティネーション(宛先)である場合、前記メモリに書き込むことができるものである計算要素。
【請求項49】
請求項13記載の計算要素において、前記オペランドが前記ベクトルである場合、前記オペランド記述子は、前記ベクトルの長さを記述する情報を有するものである計算要素。
【請求項50】
請求項13記載の計算要素において、前記オペランドは前記ベクトルであり、前記オペランド記述子は、前記ベクトルのいくつの要素を並列処理するかを示すものである計算要素。
【請求項51】
請求項13記載の計算要素において、前記オペランド記述子は、前記命令の完了に応答して前記識別された仮想チャネルの前記命令関連のスケジューリングを選択的にアクティベートする前記少なくとも1つの仮想チャネル識別子を有するものである計算要素。
【請求項52】
請求項13記載の計算要素において、前記命令の実行は、ニューラルネットワークのアクティベーションの計算、ニューラルネットワークのアクティベーションの部分和の計算、ニューラルネットワークのエラーの計算、ニューラルネットワークの勾配推定の計算、及びニューラルネットワークの重みの更新の1若しくはそれ以上の少なくとも部分を実行するものである計算要素。
【請求項53】
請求項13記載の計算要素において、前記オペランドは、ニューラルネットワークの重み、ニューラルネットワークのアクティベーション、ニューラルネットワークのアクティベーションの部分和、ニューラルネットワークのエラー、ニューラルネットワークの勾配推定、及びニューラルネットワークの重み更新の1若しくはそれ以上の少なくとも部分を有するものである計算要素。
【請求項54】
請求項13記載の計算要素において、前記オペランドは、ベクトル、行列、及びテンソルの1若しくはそれ以上の少なくとも部分を有するものである計算要素。
【請求項55】
請求項31記載の方法において、前記タイプが前記ファブリックタイプである場合、前記オペランド記述子には前記ファブリックのファブリック仮想チャネルが関連付けられ、前記ファブリック仮想チャネルは、前記オペランド記述子にエンコードされた前記仮想チャネル識別子の1つによって指定されるものである方法。
【請求項56】
請求項31記載の方法において、さらに、
前記オペランド記述子により記述されるアクセスパターンに従って、前記命令の繰り返しを実行する工程であって、前記ベクトルの前記繰り返しに十分なデータ要素にアクセスすることを介して実行するものである、実行する工程を含むものである方法。
【請求項57】
請求項31記載の方法において、前記アクセスパターンは、ファブリックベクトル、一次元メモリベクトル、四次元メモリベクトル、及び循環メモリバッファの1つである方法。
【請求項58】
請求項31記載の方法において、前記タイプが前記ファブリックタイプであり、前記オペランドがソースである場合、前記オペランドにアクセスする工程は、前記ファブリックに結合された入力キューからデータ要素を読み出すことを含むものである方法。
【請求項59】
請求項31記載の方法において、前記タイプが前記ファブリックタイプであり、前記オペランドがデスティネーション(宛先)である場合、前記オペランドにアクセスする工程は、前記ファブリックに結合された出力キューにデータ要素を書き込むことを含むものである方法。
【請求項60】
請求項31記載の方法において、前記タイプが前記メモリタイプであり、前記オペランドがソースである場合、前記オペランドにアクセスする工程は、前記計算要素に含まれる前記メモリから読み出すことを含むものである方法。
【請求項61】
請求項31記載の方法において、前記タイプが前記メモリタイプであり、前記オペランドがデスティネーション(宛先)である場合、前記オペランドにアクセスする工程は、前記計算要素に含まれる前記メモリに書き込むことを含むものである方法。
【請求項62】
請求項31記載の方法において、前記オペランドはベクトルであり、前記オペランド記述子は、前記ベクトルの長さを記述する情報を有するものである方法。
【請求項63】
請求項31記載の方法において、前記オペランドはベクトルであり、前記オペランド記述子は、前記ベクトルのいくつの要素を並列処理するかを示すものである方法。
【請求項64】
請求項31記載の方法において、前記オペランド記述子は、前記命令の完了に応答して前記識別された仮想チャネルの前記命令関連のスケジューリングを選択的にアクティベートする前記少なくとも1つの仮想チャネル識別子を有するものである方法。
【請求項65】
請求項31記載の方法において、前記命令の実行は、ニューラルネットワークのアクティベーションの計算、ニューラルネットワークのアクティベーションの部分和の計算、ニューラルネットワークのエラーの計算、ニューラルネットワークの勾配推定の計算、及びニューラルネットワークの重みの更新の1若しくはそれ以上の少なくとも部分を実行するものである方法。
【請求項66】
請求項31記載の方法において、前記オペランドは、ニューラルネットワークの重み、ニューラルネットワークのアクティベーション、ニューラルネットワークのアクティベーションの部分和、ニューラルネットワークのエラー、ニューラルネットワークの勾配推定、及びニューラルネットワークの重み更新の1若しくはそれ以上の少なくとも部分を有するものである方法。
【請求項67】
請求項31記載の方法において、前記オペランドは、前記ベクトル、行列、及びテンソルの1若しくはそれ以上の少なくとも部分を有するものである方法。
【請求項68】
請求項38記載のシステムにおいて、前記オペランド記述子は、一次元メモリベクトルアクセスパターン、四次元メモリベクトルアクセスパターン、及び循環メモリバッファアクセスパターンの1つとしてアクセスパターンを識別するものであるシステム。
【請求項69】
請求項38記載のシステムにおいて、前記オペランド記述子は、ベクトルオペランドのベクトル長さを指定することができるものであるシステム。
【請求項70】
請求項39記載のシステムにおいて、前記オペランド記述子は、一次元メモリベクトルアクセスパターン、四次元メモリベクトルアクセスパターン、及び循環メモリバッファアクセスパターンの1つとしてアクセスパターンを識別するものであるシステム。
【請求項71】
請求項39記載のシステムにおいて、前記オペランド記述子は、ベクトルオペランドのベクトル長さを指定することができるものであるシステム。
【請求項72】
請求項41記載のシステムにおいて、前記オペランド記述子は、一次元メモリベクトルアクセスパターン、四次元メモリベクトルアクセスパターン、及び循環メモリバッファアクセスパターンの1つとしてアクセスパターンを識別するものであるシステム。
【請求項73】
請求項41記載のシステムにおいて、前記オペランド記述子は、ベクトルオペランドのベクトル長さを指定することができるものであるシステム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願のタイプにより許される限り、本願は、全て、本願の有効出願日までに本願と同一の所有者により所有される以下の出願をあらゆる目的のためにこの参照により組み込む:
2018年4月17日付で出願された第一発明者Sean LIE及び名称MICROTHREADING FOR ACCELERATED DEEP LEARNINGのPCT出願第PCT/IB2018/052640号明細書(代理人整理番号CS-17-08PCT)、
2018年4月16日付で出願された第一発明者Sean LIE及び名称TASK SYNCHRONIZATION FOR ACCELERATED DEEP LEARNINGのPCT出願第PCT/IB2018/052638号明細書(代理人整理番号CS-17-06PCT)、
2018年4月15日付で出願された第一発明者Sean LIE及び名称WAVELET REPRESENTATION FOR ACCELERATED DEEP LEARNINGのPCT出願第PCT/IB2018/052610号明細書(代理人整理番号CS-17-03PCT)、
2018年4月15日付で出願された第一発明者Sean LIE及び名称NEURON SMEARING FOR ACCELERATED DEEP LEARNINGのPCT出願第PCT/IB2018/052607号明細書(代理人整理番号CS-17-01PCT)、
2018年4月15日付で出願された第一発明者Sean LIE及び名称DATAFLOW TRIGGERED TASKS FOR ACCELERATED DEEP LEARNINGのPCT出願第PCT/IB2018/052606号明細書(代理人整理番号CS-17-02PCT)、
2018年4月13日付けで出願された第一発明者Sean LIE及び名称FLOATING-POINT UNIT STOCHASTIC ROUNDING FOR ACCELERATED DEEP LEARNINGの国際出願第PCT/IB2018/052602号(代理人整理番号CS-17-11PCT)、
2018年4月11日付けで出願された第一発明者Sean LIE及び名称MICROTHREADING FOR ACCELERATED DEEP LEARNINGの米国仮特許出願第62/655,826号(代理人整理番号CS-17-08)、
2018年4月9日付けで出願された第一発明者Sean LIE及び名称BACKPRESSURE FOR ACCELERATED DEEP LEARNINGの米国仮特許出願第62/655,210号(代理人整理番号CS-17-21)、
2018年4月5日付けで出願された第一発明者Sean LIE及び名称TASK ACTIVATING FOR ACCEERATED DEEP LEARNINGの米国仮特許出願第62/652,933号(代理人整理番号CS-17-22)、
2018年2月23日付けで出願された第一発明者Sean LIE及び名称ACCELERATED DEEP LEARNINGの米国特許出願第15/903,340号(代理人整理番号CS-17-13NP)、
2018年2月23日付けで出願された第一発明者Sean LIE及び名称ACCELERATED DEEP LEARNINGの国際出願第PCT/IB2018/051128号(代理人整理番号CS-17-13PCT)
2018年2月9日付で出願された第一発明者Sean LIE及び名称FABRIC VECTORS FOR DEEP LEARNING ACCELERATIONの米国仮特許出願第62/628,784号(整理番号CS-17-05)、
2018年2月9日付で出願された第一発明者Sean LIE及び名称DATA STRUCTURE DESCRIPTORS FOR DEEP LEARNING ACCELERATIONの米国仮特許出願第62/628,773号(整理番号CS-17-12)、
2017年11月1日付で出願された第一発明者Sean LIE及び名称NEURON SMEARING FOR ACCELERATED DEEP LEARNINGの米国仮特許出願第62/580,207号(整理番号CS-17-01)、
2017年8月8日付で出願された第一発明者Sean LIE及び名称DATAFLOW TRIGGERED TASKS FOR ACCELERATED DEEP LEARNINGの米国仮特許出願第62/542,645号(整理番号CS-17-02)、
2017年8月8日付で出願された第一発明者Sean LIE及び名称TASK SYNCHRONIZATION FOR ACCELERATED DEEP LEARNINGの米国仮特許出願第62/542,657号(整理番号CS-17-06)、
2017年6月19日付で出願された第一発明者Sean LIE及び名称WAVELET REPRESENTATION FOR ACCELERATED DEEP LEARNINGの米国仮特許出願第62/522,065号(整理番号CS-17-03)、
2017年6月19日付で出願された第一発明者Sean LIE及び名称CONTROL WAVELET FOR ACCELERATED DEEP LEARNINGの米国仮特許出願第62/522,081号(整理番号CS-17-04)、
2017年6月15日付で出願された第一発明者Michael Edwin JAMES及び名称INCREASED CONCURRENCY AND EFFICIENCY OF DEEP NETWORK TRAINING VIA CONTINUOUS PROPAGATIONの米国仮特許出願第62/520,433号(整理番号CS-17-13B)、
2017年6月11日付で出願された第一発明者Sean LIE及び名称ACCELERATED DEEP LEARNINGの米国仮特許出願第62/517,949号(整理番号CS-17-14B)、
2017年4月17日付で出願された第一発明者Sean LIE及び名称ACCELERATED DEEP LEARNINGの米国仮特許出願第62/486,372号(整理番号CS-17-14)、
2017年4月14日付けで出願された第一発明者Sean LIE及び名称FLOATING-POINT UNIT STOCHASTIC ROUNDING FOR MACHINE LEARNINGの米国仮特許出願第62/485,638号(代理人整理番号CS-17-11)、並びに
2017年2月23日付で出願された第一発明者Michael Edwin JAMES及び名称INCREASED CONCURRENCY AND EFFICIENCY OF DEEP NETWORK TRAINING VIA CONTINUOUS PROPAGATIONの米国仮特許出願第62/462,640号(整理番号CS-17-13)。
【背景技術】
【0002】
分野:精度、性能、及びエネルギー効率の1若しくはそれ以上の改善を提供する加速化ディープラーニングにおける進歩が必要である。
【0003】
関連技術:公知又は周知であるものとして明らかに識別される場合を除き、本明細書における技法及び概念の言及は、状況、定義、又は比較目的を含め、そのような技法及び概念が従来、公知されるか、又は従来技術の部分であることを認めるものとして解釈されるべきではない。本明細書に引用される全ての引用文献(存在する場合)は、特許、特許出願、及び公開物を含め、あらゆる目的のために特に組み込まれるか否かに関係なく、全体的にこの参照により本明細書に組み込まれる。
この出願の発明に関連する先行技術文献情報としては、以下のものがある(国際出願日以降国際段階で引用された文献及び他国に国内移行した際に引用された文献を含む)。
(先行技術文献)
(特許文献)
(特許文献1) 国際公開第2017/048655号
(特許文献2) 米国特許出願公開第2015/0378734号明細書
(特許文献3) 米国特許第8,311,057号明細書
(特許文献4) 米国特許第5,481,688号明細書
(特許文献5) 米国特許第7,814,303号明細書
(非特許文献)
(非特許文献1) XlAO-WEI SHEN et al.,‘An Efficient Network-on-Chip Router for Dataflow Architecture’,In: Journal of Computer Science and Technology,volume 32,January 2017,pages 11-25,DOI 10.1007/s11390-017-1703-5 <URL: https://link.springer.com/content/pdf/10.1007%2Fsl1390-017-1703-5.pdf>
【発明の概要】
【課題を解決するための手段】
【0004】
本発明は、多くの方法で、例えば、プロセス、製品、装置、システム、複合物、及びコンピュータ可読記憶媒体(例えば、ディスク等の光学及び/又は磁気大容量記憶装置内の媒体、フラッシュ記憶装置等の不揮発性記憶装置を有する集積回路)等のコンピュータ可読媒体、又はプログラム命令が光学もしくは電子通信リンクを介して送信されるコンピュータネットワークとして実施することができる。詳細な説明は、上記識別された分野でのコスト、生産性、性能、効率、及び使用有用性の改善を可能にする本発明の1若しくはそれ以上の実施形態の説明を提供する。詳細な説明は、詳細な説明の残りの部分の理解を促進する前置きを含む。前置きは、本明細書に記載される概念によるシステム、方法、製品、及びコンピュータ可読媒体の1若しくはそれ以上の実施例を含む。結論においてより詳細に考察するように、本発明は、発行される特許請求の範囲内の可能な変更及び変形を全て包含する。
【図面の簡単な説明】
【0005】
【
図1】
図1は、ディープ・ラーニング・アクセラレータを使用したニューラルネットワークのトレーニング及び推論のシステムの一実施形態の選択された細部を示すものである。
【
図2】
図2は、ディープ・ラーニング・アクセラレータを使用したニューラルネットワークのトレーニング及び推論に関連付けられたソフトウェア要素の一実施形態の選択された細部を示すものである。
【
図3】
図3は、ディープ・ラーニング・アクセラレータを使用してニューラルネットワークをトレーニングし、トレーニングされたニューラルネットワークを使用して推論を実行することに関連付けられた処理の一実施形態の選択された細部を示すものである。
【
図4】
図4は、ディープ・ラーニング・アクセラレータの一実施形態の選択された細部を示すものである。
【
図5】
図5は、ディープ・ラーニング・アクセラレータの処理要素の一実施形態の選択された細部を示すものである。
【
図6】
図6は、処理要素のルータの一実施形態の選択された細部を示すものである。
【
図7A】
図7Aは、処理要素のルータに関連付けられた処理の一実施形態の選択された細部を示すものである。
【
図7B】
図7Bは、処理要素の計算要素に関連付けられた背圧情報を生成し提供する一実施形態の選択された細部を示すものである。
【
図7C】
図7Cは、処理要素のルータに関連付けられた背圧情報を生成し提供する一実施形態の選択された細部を示すものである。
【
図7D】
図7Dは、処理要素の計算要素に関連付けられたストール処理の一実施形態の選択された細部を示すものである。
【
図8】
図8は、処理要素の計算要素の一実施形態の選択された細部を示すものである。
【
図9A】
図9Aは、タスク開始のためのウェーブレット処理の一実施形態の選択された細部を示すものである。
【
図9B】
図9Bは、タスクアクティベーションの一実施形態の選択された細部を示すものである。
【
図9C】
図9Cは、ブロック命令実行及びブロック解除命令実行の一実施形態の選択された細部を示すものである。
【
図10A】
図10Aは、プロセッサ要素の各組に1つのニューロンの複数のインスタンスをマッピングする一実施形態において生じる高レベルデータフローの選択された細部を示すものである。
【
図10B】
図10Bは、プロセッサ要素の各組に1つのニューロンの複数のインスタンスをマッピングする一実施形態において生じる高レベルデータフローの選択された細部を示すものである。
【
図11】
図11は、クローズアウトを介した依存性管理を含む順方向パス状態機械で使用されるタスクの一実施形態を示すものである。
【
図12】
図12は、活性化累積及びクローズアウト、その後に続く部分和計算及びクローズアウトに関連付けられたフローの一実施形態の選択された細部を示すものである。
【
図13A】
図13Aは、スパースウェーブレットの一実施形態の選択された細部を示すものである。
【
図13B】
図13Bは、高密度ウェーブレットの一実施形態の選択された細部を示すものである。
【
図14】
図14は、ウェーブレットを作成し送信する一実施形態の選択された細部を示すものである。
【
図15】
図15は、ウェーブレットを受信する一実施形態の選択された細部を示すものである。
【
図16】
図16は、ウェーブレットを消費する一実施形態の選択された細部を示すものである。
【
図17】
図17は、ニューラルネットワークの一実施形態の選択された細部を示すものである。
【
図18A】
図18Aは、ニューロンへの処理要素の割り振りの第1の実施形態の選択された細部を示すものである。
【
図18B】
図18Bは、ニューロンへの処理要素の割り振りの第2の実施形態の選択された細部を示す物である。
【
図19】
図19は、複数の処理要素にわたるニューロンのスメアリングの一実施形態の選択された細部を示すものである。
【
図20】
図20は、分割ニューロンの部分間の通信の一実施形態の選択された細部を示すものである。
【
図21A】
図21Aは、ファブリック入力データ構造記述子の一実施形態の選択された細部を示すものである。
【
図21B】
図21Bは、ファブリック出力データ構造記述子の一実施形態の選択された細部を示すものである。
【
図21C】
図21Cは、1Dメモリ・ベクトル・データ構造記述子の一実施形態の選択された細部を示すものである。
【
図21D】
図21Dは、4Dメモリ・ベクトル・データ構造記述子の一実施形態の選択された細部を示すものである。
【
図21E】
図21Eは、循環メモリ・バッファ・データ構造記述子の一実施形態の選択された細部を示すものである。
【
図22A】
図22Aは、循環メモリバッファ拡張データ構造記述子の一実施形態の選択された細部を示すものである。
【
図22B】
図22Bは、4Dメモリベクトル拡張データ構造記述子の一実施形態の選択された細部を示すものである。
【
図23】
図23は、データ構造記述子によるオペランドアクセスの選択された細部を示すものである。
【
図24】
図24は、データ構造記述子を復号化する一実施形態の選択された細部を示すものである。
【
図25A】
図25Aは、複数オペランド命令の一実施形態の選択された細部を示すものである。
【
図25B】
図25Bは、1発信元0宛先オペランド命令の一実施形態の選択された細部を示すものである。
【
図26】
図26は、マイクロスレッド処理による処理の選択された細部を示すものである。
【
図27A】
図27Aは、確率勾配降下(Stochastic Gradient Descent:SGD)のパイプラインフローの一実施形態を示すものである。
【
図27B】
図27Bは、ミニバッチ勾配降下(Mini-Batch Gradient Descent:MBGD)のパイプラインフローの一実施形態を示すものである。
【
図27C】
図27Cは、連続伝搬勾配降下(Continuous Propagation Gradient Descent:CPGD)のパイプラインフローの一実施形態を示すものである。
【
図27D】
図27Dは、リバース・チェック・ポイント(Reverse Check Point:RCP)を用いる連続伝搬勾配降下(CPGD)のパイプラインフローの一実施形態を示すものである。
【
図28A】
図28A~28Eは、SGD処理、MBGD処理、CPGD処理、及びRCP処理による順方向パス及び逆方向パス実施形態の様々な態様を示すものである。
【
図28B】
図28A~28Eは、SGD処理、MBGD処理、CPGD処理、及びRCP処理による順方向パス及び逆方向パス実施形態の様々な態様を示すものである。
【
図28C】
図28A~28Eは、SGD処理、MBGD処理、CPGD処理、及びRCP処理による順方向パス及び逆方向パス実施形態の様々な態様を示すものである。
【
図28D】
図28A~28Eは、SGD処理、MBGD処理、CPGD処理、及びRCP処理による順方向パス及び逆方向パス実施形態の様々な態様を示すものである。
【
図28E】
図28A~28Eは、SGD処理、MBGD処理、CPGD処理、及びRCP処理による順方向パス及び逆方向パス実施形態の様々な態様を示すものである。
【
図29】
図29は、浮動小数点ユニットを有し、確率的丸めが可能なプロセッサの一実施形態の選択された細部を示すものである。
【
図30A】
図30Aは、任意選択で確率的丸めを指定する浮動小数点命令の一実施形態の選択された細部を示すものである。
【
図30B】
図30Bは、確率的丸めの制御に関連付けられた浮動小数点制御レジスタの一実施形態の選択された細部を示すものである。
【
図30C】
図30Cは、正規化及び丸めを受ける浮動小数点演算の結果の仮数の一実施形態の選択された細部を示すものである。
【
図30D】
図30Dは、正規化後であり、丸めを受ける浮動小数点演算の結果の正規化された仮数の一実施形態の選択された細部を示すものである。
【
図31】
図31は、任意選択で確率的丸めを用いて浮動小数点命令を実行するプロセッサの一実施形態の選択された細部の流れ図を示すものである。
【発明を実施するための形態】
【0006】
詳細な説明
本発明の1若しくはそれ以上の実施形態の詳細な説明を以下に、本発明の選択された細部を図示する添付図と共に提供する。本発明について実施形態に関連して説明する。本明細書における実施形態は、単なる例示であることが理解され、本発明は明らかに、本明細書における実施形態のいずれか又は全てに限定されず、本発明は、多くの代替、変更、及び均等物を包含する。説明での単調さを回避するために、様々な言葉のラベル(最初、最後、特定の、様々な、さらに、他の、特定の、選択、幾つか、及び顕著な等)が、別個の組の実施形態に適用されることがあり、本明細書で使用される場合、そのようなラベルは明らかに、品質又は任意の形態の嗜好又は偏見を意味するものではなく、単に別個の組を好都合に区別することが意味される。開示されるプロセスの幾つかの演算の順序は、本発明の範囲内で変更可能である。複数の実施形態がプロセス、システム、及び/又はプログラム命令特徴の変形を説明するように機能する場合は常に、所定又は動的に決定される基準に従って、複数のマルチ実施形態にそれぞれ対応する複数の動作モードの1つの静的及び/又は動的選択を実行する他の実施形態も考えられる。本発明の完全な理解を提供するために、以下の説明では、多くの特定の詳細が記載される。詳細は説明のために提供され、本発明は、詳細の幾つか又は全てなしで、特許請求の範囲に従って実施することができる。明確にするために、本発明に関連する当技術分野で既知の技術材料は、本発明が不必要に曖昧にならないように、詳細に説明しなかった。
【0007】
導入部
導入部は、詳細な説明のより素早い理解を促進するためだけに包含され、本発明は、導入部に提示される概念(明白な例がある場合、明白な例を含む)に限定されず、任意の導入部の段落は必ずしも、趣旨全体の要約図であり、網羅的又は制限的な説明であることは意味されない。例えば、以下の導入部は、スペース及び編成により特定の実施形態のみに制限された概説情報を提供する。本明細書の残り全体を通して考察される、特許請求の範囲が最終的に描かれる実施形態を含め、多くの他の実施形態がある。
【0008】
概念的に、加速化ディープラーニングのデータ構造記述子に関連する一態様では、高度ディープラーニングにおける技法は、精度、性能、及びエネルギー効率の1若しくはそれ以上において改善を提供する。処理要素のアレイは、データのウェーブレットに対してフローベースの計算を実行する。各処理要素は、各計算要素及び各ルーティング要素を有する。各計算要素はメモリを有する。各ルータは、ウェーブレットを介して、2Dメッシュにおける少なくとも最近傍と通信できるようにする。ルーティングは、各ウェーブレット内の各仮想チャネル指定子及び各ルータ内のルーティング構成情報により制御される。計算要素により実行される命令は、1若しくはそれ以上のオペランド指定子を含み、オペランド指定子の幾つかは、データ構造記述子を記憶するデータ構造レジスタを指定する。データ構造記述子は、ファブリックベクトル又はメモリベクトルとしてオペランドを記述する。データ構造記述子は、一次元ベクトル、四次元ベクトル、又は循環バッファベクトルの1つとしてメモリベクトルを更に記述する。任意選択的に、データ構造記述子は、拡張データ構造記述子を記憶する拡張データ構造レジスタを指定する。拡張データ構造記述子は、四次元ベクトル又は循環バッファベクトルに関連するパラメータを指定する。
【0009】
加速化ディープラーニングの第1の例は、ディープ・ラーニング・アクセラレータを使用して、ニューラルネットワークをトレーニングすることである。加速化ディープラーニングの第2の例は、ディープ・ラーニング・アクセラレータを使用して、トレーニングされたニューラルネットワークを動作させて、推論を実行することである。加速化ディープラーニングの第3の例は、ディープ・ラーニング・アクセラレータを使用して、ニューラルネットワークをトレーニングし、続けて、トレーニングされたニューラルネットワーク、トレーニングされたニューラルネットワークからの情報、及びトレーニングされたニューラルネットワークのバリアントの任意の1若しくはそれ以上を用いて推論を実行することである。
【0010】
ニューラルネットワークの例には、全結合ニューラルネットワーク(Fully Connected Neural Networks:FCNNs)、再帰型ニューラルネットワーク(Recurrent Neural Networks:RNNs)、畳み込みニューラルネットワーク(Convolutional Neural Networks:CNNs)、長短期メモリ(Long Short-Term Memory:LSTM)ネットワーク、オートエンコーダ、ディープビリーフネットワーク、及び敵対的生成ネットワークがある。
【0011】
ニューラルネットワークをトレーニングする一例は、ディープ・ラーニング・アクセラレータを介したハードウェア加速化等により、ニューラルネットワークに関連付けられる1若しくはそれ以上の重みを決定することである。推論を行うことの一例は、トレーニングされたニューラルネットワークを使用し、トレーニングされたニューラルネットワークに関連付けられた重みに基づいて入力データを処理することにより結果を計算することである。本明細書で使用される場合、「重み」という用語は、様々な形態のニューラルネットワーク処理で使用される「パラメータ」の一例である。例えば、幾つかのニューラルネットワーク学習は、パラメータの決定に関し、パラメータは次に、パラメータを使用したニューラルネットワーク推論の実行に使用可能である。
【0012】
ニューラルネットワークは、ニューロンのレイヤを含むデータフローグラフに従ってデータを処理する。刺激(例えば、入力データ)は、ニューロンの入力レイヤにより受信され、データフローグラフの計算結果(例えば、出力データ)は、ニューロンの出力レイヤにより提供される。ニューロンのレイヤ例には、入力レイヤ、出力レイヤ、正規化線形ユニットレイヤ、全結合レイヤ、再帰レイヤ、長短期メモリレイヤ、畳み込みレイヤ、カーネルレイヤ、ドロップアウトレイヤ、及びプーリングレイヤがある。ニューラルネットワークは、ハードウェア加速を受けて条件付きで及び/又は選択的にトレーニングされる。トレーニング後、ニューラルネットワークは、ハードウェア加速を受けて推論に条件付き及び/又は選択的に使用される。
【0013】
ディープ・ラーニング・アクセラレータの一例は、専用性の比較的低いハードウェア要素を使用するよりも比較的効率的に、ニューラルネットワークをトレーニングし、及び/又はニューラルネットワークを用いて推論を実行する、1若しくはそれ以上のソフトウェア要素と併せて動作する1若しくはそれ以上の比較的専用のハードウェア要素である。比較的専用のハードウェア要素の幾つかの実施態様は、カスタム論理、合成論理、ASIC、及び/又はFPGAを介して実施される等のトランジスタ、レジスタ、インダクタ、キャパシタ、ワイヤ相互接続、結合論理(例えば、NAND、NOR)ゲート、ラッチ、レジスタファイル、メモリアレイ、メモリアレイのタグ、コンテンツアドレス指定可能メモリ、フラッシュ、ROM、DRAM、SRAM、シリアライザ/デシリアライザ(Serializer/Deserializer:SerDes)、I/Oドライバ等の1若しくはそれ以上のハードウェア論理回路要素を含む。専用性が比較的低いハードウェア要素の幾つかには、従来のCPU及び従来のGPUがある。
【0014】
ディープ・ラーニング・アクセラレータの一実施例は、ニューラルネットワークのトレーニング及び/又はニューラルネットワークを用いての推論に実行される計算に従ってデータフローを処理することができる。幾つかのディープ・ラーニング・アクセラレータは、ファブリックを介して結合された処理要素を有し、ファブリックを介して互いと通信することができる。処理要素及びファブリックはまとめて、処理要素のファブリックと呼ばれることがある。
【0015】
処理要素の一実施例は、ウェーブレットを通信し処理することができる。様々な状況では、ウェーブレットは、通信及び/又は処理に従ったデータフロー及び/又は命令フローに対応し、ニューラルネットワークのトレーニング及び/又はニューラルネットワークを使用した推論に実行される計算を可能にする。
【0016】
処理要素の一例は、ファブリックを介してウェーブレットを通信するルータと、ウェーブレットを処理する計算要素とを有する。ルータの一例は複数の要素に結合される:ファブリック、計算要素へのオフランプ、及び計算要素からのオンランプ。ルータとファブリックとの間の結合の一例は、ルータと、例えば、4つの論理及び/又は物理的に隣接した処理要素との間の通信を可能にする。ルータは様々に、ファブリック及びオンランプからウェーブレットを受信する。ルータは様々に、ウェーブレットをファブリック及びオフランプに送信する。
【0017】
計算要素の一実施例は、タスクを開始し、ウェーブレットに関連付けられた命令を実行し、ウェーブレット及び/又は命令に関連付けられたデータにアクセスすることにより、ウェーブレットを処理することができる。命令は、算術命令、制御フロー命令、データ型変換命令、構成命令、ファブリック管理命令、及びロード/記憶命令を含む命令セットアーキテクチャによる。命令は、様々なデータ型、例えば、様々な幅の整数データ型及び浮動小数点データ型を含むオペランドに対して動作する。オペランドは様々に、スカラーオペランド及びベクトルオペランドを含む。様々な実施形態及び/又は使用状況では、ベクトルは様々に、例えばニューラルネットワークの重み、ニューラルネットワークの入力又は刺激、ニューラルネットワークの活性化、及び/又はニューラルネットワークの部分和を表す。幾つかの状況では、ベクトルはスパースベクトル(例えば、ニューロン活性化のベクトル)であり、スパースベクトル要素(例えば、非ゼロ要素のみ)を含む。幾つかの他の状況では、ベクトルは高密度ベクトル(例えば、ピクセル値)であり、高密度データ要素(例えば、ゼロ要素を含むベクトルの全ての要素)を含む。
【0018】
計算要素の一例は、命令により指定された演算(例えば、算術演算、制御フロー演算、及びロード/記憶演算)を実行することにより、ウェーブレット二関連付けられた命令を集合的に実行するハードウェア要素を有する。ハードウェア要素の例には、ピッカーキュー、ピッカー、タスク定義テーブル、命令シーケンサ、命令デコーダ、データシーケンサ、レジスタファイル、メモリ、疑似乱数生成器、及びALUがある。ハードウェア要素の幾つかの実施態様は、本明細書の他の箇所に記載されるようなハードウェア論理回路要素に従う。計算要素は計算エンジンと呼ばれることがある。計算スケジューラはピッカーと呼ばれることがあり、計算スケジューラキューはピッカーキューと呼ばれることがある。
【0019】
ファブリックの一例は、処理要素間及び/又は1つの処理要素内の論理及び/又は物理的結合の集まりである。ファブリックは、メッシュ、2Dメッシュ、3Dメッシュ、ハイパーキューブ、トーラス、リング、ツリー、又はそれらの任意の組合せ等の論理及び/又は物理的通信トポロジの実施に使用可能である。処理要素間の物理的な結合の一例は、物理的に結合された処理要素間の1組の物理的な相互接続(任意選択及び/又は選択的なバッファリングを含む)である。物理的に結合された処理要素の第1の例は、第2の処理要素の真横(「北」、「南」、「東」、又は「西」等)に配置された第1の処理要素等の物理的に直に隣接した処理要素である。物理的に結合された処理要素の第2の例は、比較的少数の介在処理要素内、例えば、第2の処理要素から1つ又は2つの「行」及び/又は「列」だけ離れて配置された第1の処理要素等の物理的に比較的近傍の処理要素である。物理的に結合された処理要素の第3の例は、処理要素に関連付けられたクロック・サイクル及び/又はクロックサブサイクル内のシグナル伝搬(任意選択及び/又は選択でのバッファリングあり又はなしで)により制限される距離等の第2の処理要素から物理的に比較的離れて配置された第1の処理要素等の物理的に比較的離れた処理要素である。1つの処理要素(例えば、計算要素及びルータを有する)内の物理的結合の一例は、出力情報を計算要素からルータに結合するオンランプ及び入力情報をルータから計算要素に結合するオフランプである。幾つかの状況では、ルータは、情報をオンランプからオフランプにルーティングする。
【0020】
処理要素間の論理結合の一例は、処理要素内のルータにより実施される仮想チャネルである。第1の処理要素と第2の処理要素との間のルートは、例えば、仮想チャネル及びルーティング構成情報に従って転送されるルートに沿って処理要素内のルータにより実施される。1つの特定の処理要素(例えば、ルータを有する)内の論理結合の一例は、ルータにより実施される仮想チャネルであり、特定の処理要素が仮想チャネルを介して特定の処理要素に情報を送信できるようにする。ルータは、仮想チャネル及びルーティング構成情報に従って特定の処理要素の「内部」で転送する。
【0021】
ウェーブレットの一例は、ファブリックを介して処理要素間で通信される一束の情報である。ウェーブレットの一例は、ウェーブレットペイロード及びカラーを有する。ウェーブレットペイロードは、データを有し、命令が関連付けられる。処理要素の計算要素により受信されたウェーブレットへの第1の応答は、ウェーブレットに関連付けられた命令の処理に対応する等のタスクを計算要素が開始することを含む。処理要素の計算要素により受信されたウェーブレットへの第2の応答は、計算要素がウェーブレットのデータを処理することを含む。ウェーブレットのタイプ例には、高密度ウェーブレット及びスパースウェーブレット並びにデータウェーブレット及び制御ウェーブレットがある。
【0022】
ウェーブレットは、例えば、処理要素間の通信に使用される。第1の状況では、第1の処理要素はウェーブレットを第2の処理要素に送信する。第2の状況では、外部デバイス(例えば、FPGA)は、ウェーブレットを処理要素に送信する。第3の状況では、処理要素はウェーブレットを外部デバイス(例えば、FPGA)に送信する。
【0023】
仮想チャネルの一例は、カラーにより指定された1若しくはそれ以上の通信パスウェイであり、例えば、ファブリック及び1若しくはそれ以上のルータにより可能になる。特定のカラーを有するウェーブレットは、特定のカラーに関連付けられた特定の仮想チャネルに関連付けられたものとして呼ばれることがある。カラーの第1の例は、2つの異なる処理要素間の仮想チャネルを指定するファブリックカラーである。幾つかの実施形態では、ファブリックカラーは5ビット整数である。カラーの第2の例は、処理要素から処理要素への仮想チャネルを指定するローカルカラーである。幾つかの実施形態では、カラーは6ビット整数であり、ファブリックカラー及びローカルカラーの一方を指定する。
【0024】
タスクの一例は、ウェーブレットに応答して実行される命令の集まりを含む。命令の一例は演算を含み、任意選択で、演算に従って処理すべきデータ要素のロケーションを指定する1若しくはそれ以上のオペランドを含む。オペランドの第1の例は、メモリ内のデータ要素を指定する。オペランドの第2の例は、ファブリックを介して通信された(例えば、受信又は送信された)データ要素を指定する。データシーケンサの一例は、データ要素のロケーションを決める。命令シーケンサの一例は、ウェーブレットに関連付けられた命令のメモリ内のアドレスを決める。
【0025】
ピッカーキューの一例は、計算要素を処理するために、ファブリックのオフランプを介して受信したウェーブレットを保持することができる。ピッカーの一例は、ピッカーキューから処理するウェーブレットを選択し、及び/又は対応するタスクを開始する処理のアクティブブロック解除カラーを選択する。
【0026】
記憶装置の一例は、状態情報、例えば、フリップフロップ、ラッチ又はラッチのアレイ、レジスタ又はレジスタのアレイ、レジスタファイル、メモリ、メモリアレイ、磁気記憶装置、光学記憶装置、SRAM、DRAM、フラッシュ、及びROMのいずれか1若しくはそれ以上を保持することができる1若しくはそれ以上の要素である。様々な実施形態では、記憶装置は揮発性(例えば、SRAM又はDRAM)及び/又は不揮発性(例えば、フラッシュ又はROM)である。
【0027】
集積回路(Integrated Circuit:IC)の一例は、半導体材料の1つの部分に実装される回路の集まりである。特定用途向け集積回路(Application-Specific Integrated Circuit:ASIC)の一例は、特定用途に向けて設計されたICである。ウェーハスケール集積の一例は、例えば、ウェーハを全体又は略全体として残すことにより、システムの要素としてウェーハの全て又は大部分を使用してシステムを実施することである。
【0028】
幾つかの実施形態及び/又は使用状況では、ウェーハスケール集積は、チップ間相互接続を介する代わりに、シリコン製造プロセスを使用して形成されたウェーハ相互接続を介してシステム内の複数の要素を接続できるようにし、したがって、性能、コスト、信頼性、及びエネルギー効率の改善の任意の1若しくはそれ以上を改善する。特定の例として、ウェーハスケール集積技術を使用して実装されたシステムは、1つのウェーハへの300万個のPEの実装を可能にし、各PEは、ウェーハスケール集積技術以外を使用する同等のシステムよりも大きな、物理的最近傍への帯域幅を有する。帯域幅がより大きいことにより、ウェーハスケール集積技術を使用して実装されたシステムは、ウェーハスケール集積技術以外を使用して実装されるシステムよりも大きなニューラルネットワークで、比較的効率的にトレーニングし、及び/又は推論を実行することができる。
【0029】
頭字語
本明細書において定義される様々な簡略略語(例えば、頭字語)の少なくとも幾つかは、本明細書で使用される特定の要素を指す。
【0030】
【0031】
例示的な実施形態
詳細な説明を結論付けるに当たり、以下は、本明細書に記載される概念による様々な実施形態タイプの追加説明を提供する少なくとも幾つかの、「EC」(組合せ例)として明示的に列挙されるものを含む実施例の集まりであり、これらの例は相互に排他的、網羅的、又は限定を意味せず、本発明はこれらの実施例に限定されず、発行される特許請求の範囲及びそれらの均等物内の可能な全ての変更及び変形を包含する。
【0032】
EC1)計算要素であって、
メモリと、
命令を復号化する手段であって、命令はオペランドフィールドを有するものである、復号化する手段と、
少なくとも部分的にオペランドフィールドに基づいてオペランド記述子にアクセスする手段と、
オペランド記述子を復号化して、オペランド記述子が参照する複数のタイプの特定の1つを特定する手段と、
オペランド記述子及び特定のタイプに従ってオペランドにアクセスする手段と
を有し、
タイプは、ファブリックタイプ及びメモリタイプを有し、
計算要素は、ファブリックルータを有する処理要素に含まれ、処理要素は、各計算要素及び各ファブリックルータをそれぞれ有する処理要素のファブリックの1つであり、
処理要素は、各ファブリックルータに結合されたファブリックを介して相互接続され、
処理要素のファブリックは、データフローベースの処理及び命令ベースの処理を実行することができ、
処理要素のファブリックは、ウェーハスケール集積を介して実施され、
特定のタイプがファブリックタイプである場合、オペランドはファブリックを介してアクセスされ、
特定のタイプがメモリタイプである場合、オペランドはメモリを介してアクセスされる計算要素。
【0033】
EC2)EC1記載の計算要素において、タイプがファブリックタイプである場合、オペランド記述子にはファブリックのファブリック仮想チャネルが関連付けられる計算要素。
【0034】
EC3)EC1記載の計算要素において、さらに、
オペランド記述子により記述されるアクセスパターンに従って、繰り返しに十分なベクトルのデータ要素にアクセスすることを介して命令の繰り返しを実行する手段を有するものである計算要素。
【0035】
EC4)EC3記載の計算要素において、アクセスパターンは、ファブリックベクトル、一次元メモリベクトル、四次元メモリベクトル、及び循環メモリバッファの1つである計算要素。
【0036】
EC5)EC1記載の計算要素において、オペランドにアクセスする手段は、タイプがファブリックタイプであり、オペランドがソースである場合、ファブリックに結合された入力キューからデータ要素を読み出すことができるものである計算要素。
【0037】
EC6)EC1記載の計算要素において、オペランドにアクセスする手段は、タイプがファブリックタイプであり、オペランドがデスティネーション(宛先)である場合、ファブリックに結合された出力キューにデータ要素を書き込むことができるものである計算要素。
【0038】
EC7)EC1記載の計算要素において、オペランドにアクセスする手段は、タイプがメモリタイプであり、オペランドがソースである場合、メモリから読み出すことができるものである計算要素。
【0039】
EC8)EC1記載の計算要素において、オペランドにアクセスする手段は、タイプがメモリタイプであり、オペランドがデスティネーション(宛先)である場合、メモリに書き込むことができるものである計算要素。
【0040】
EC9)EC1記載の計算要素において、オペランドがベクトルである場合、オペランド記述子は、ベクトルの長さを記述する情報を有するものである計算要素。
【0041】
EC10)EC1記載の計算要素において、計算要素は命令を実行することができ、オペランド記述子は、オペランドがベクトルであり、ベクトルの要素へのアクセスストールがある場合に計算要素がいかに動作すべきかを記述するマイクロスレッド処理情報を有するものである計算要素。
【0042】
EC11)EC10記載の計算要素において、さらに、
ストール及びマイクロスレッド処理が可能ではないことを示すマイクロスレッド処理情報に応答して、計算要素をストールさせる手段を有するものである計算要素。
【0043】
EC12)EC10記載の計算要素において、命令は第1の命令であり、さらに、
ストール及びマイクロスレッド処理が可能であることを示すマイクロスレッド処理情報に応答して、計算要素が第1の命令の処理を保留し、第2の命令を処理に選択する手段を有するものである計算要素。
【0044】
EC13)EC1記載の計算要素において、オペランドはベクトルであり、オペランド記述子は、ベクトルのいくつの要素を並列処理するかを示すものである計算要素。
【0045】
EC14)EC1記載の計算要素において、オペランド記述子は、オペランドがベクトルであり、ベクトルの要素を伝達する制御ファブリックパケットが受信される場合、処理を終了すべきか否かのインジケータを有するものである計算要素。
【0046】
EC15)EC1記載の計算要素において、オペランド記述子は、命令の完了に応答して選択的にアクティベートする仮想チャネルのインジケータを有するものである計算要素。
【0047】
EC16)EC1記載の計算要素において、命令の実行は、ニューラルネットワークのアクティベーションの計算、ニューラルネットワークのアクティベーションの部分和の計算、ニューラルネットワークのエラーの計算、ニューラルネットワークの勾配推定の計算、及びニューラルネットワークの重みの更新の1若しくはそれ以上の少なくとも部分を実施するものである計算要素。
【0048】
EC17)EC1記載の計算要素において、オペランドは、ニューラルネットワークの重み、ニューラルネットワークのアクティベーション、ニューラルネットワークのアクティベーションの部分和、ニューラルネットワークのエラー、ニューラルネットワークの勾配推定、及びニューラルネットワークの重み更新の1若しくはそれ以上の少なくとも部分を有するものである計算要素。
【0049】
EC18)EC1記載の計算要素において、オペランドは、ベクトル、行列、及びテンソルの1若しくはそれ以上の少なくとも部分を有するものである計算要素。
【0050】
EC19)方法であって、
計算要素において、命令を復号化する工程であって、命令はオペランドフィールドを有する、復号化する工程と、
計算要素において、少なくとも部分的にオペランドフィールドに基づいてオペランド記述子にアクセスする工程と、
計算要素において、オペランド記述子を復号化して、オペランド記述子が参照する複数のタイプの特定の1つを特定する工程と、
計算要素において、オペランド記述子及び特定のタイプに従ってオペランドにアクセスする工程と
を含み、
タイプは、ファブリックタイプ及びメモリタイプを有し、
計算要素は、ファブリックルータを有する処理要素に含まれ、処理要素は、各計算要素及び各ファブリックルータをそれぞれ有する処理要素のファブリックの1つであり、
処理要素は、各ファブリックルータに結合されたファブリックを介して相互接続され、
処理要素のファブリックは、データフローベースの処理及び命令ベースの処理を実行することができ、
処理要素のファブリックは、ウェーハスケール集積を介して実施され、
特定のタイプがファブリックタイプである場合、オペランドはファブリックを介してアクセスされ、
特定のタイプがメモリタイプである場合、オペランドは計算要素のメモリを介してアクセスされる方法。
【0051】
EC20)EC19記載の方法において、タイプがファブリックタイプである場合、オペランド記述子にはファブリックのファブリック仮想チャネルが関連付けられるものである方法。
【0052】
EC21)EC19記載の方法において、さらに、
オペランド記述子により記述されるアクセスパターンに従って、繰り返しに十分なベクトルのデータ要素にアクセスすることを介して命令の繰り返しを実行する工程を含むものである方法。
【0053】
EC22)EC21記載の方法において、アクセスパターンは、ファブリックベクトル、一次元メモリベクトル、四次元メモリベクトル、及び循環メモリバッファの1つである方法。
【0054】
EC23)EC19記載の方法において、タイプがファブリックタイプであり、オペランドがソースである場合、オペランドにアクセスする工程は、ファブリックに結合された入力キューからデータ要素を読み出すことを含むものである方法。
【0055】
EC24)EC19記載の方法において、タイプがファブリックタイプであり、オペランドがデスティネーション(宛先)である場合、オペランドにアクセスする工程は、ファブリックに結合された出力キューにデータ要素を書き込むことを含むものである方法。
【0056】
EC25)EC19記載の方法において、タイプがメモリタイプであり、オペランドがソースである場合、オペランドにアクセスする工程は、計算要素に含まれるメモリから読み出すことを含むものである方法。
【0057】
EC26)EC19記載の方法において、タイプがメモリタイプであり、オペランドがデスティネーション(宛先)である場合、オペランドにアクセスする工程は、計算要素に含まれるメモリに書き込むことを含むものである方法。
【0058】
EC27)EC19記載の方法において、オペランドはベクトルであり、オペランド記述子は、ベクトルの長さを記述する情報を有するものである方法。
【0059】
EC28)EC19記載の方法において、オペランド記述子は、オペランドがベクトルであり、ベクトルの要素へのアクセスストールがある場合に計算要素がいかに動作すべきかを記述するマイクロスレッド処理情報を有するものである方法。
【0060】
EC29)EC28記載の方法において、さらに、
ストール及びマイクロスレッド処理が可能ではないことを示すマイクロスレッド処理情報に応答して、計算要素がストールする工程を含むものである方法。
【0061】
EC30)EC28記載の方法において、命令は第1の命令であり、さらに、
ストール及びマイクロスレッド処理が可能であることを示すマイクロスレッド処理情報に応答して、計算要素が第1の命令の処理を保留し、第2の命令を処理に選択する工程を含むものである方法。
【0062】
EC31)EC30記載の方法において、第1の命令には第1のタスクが関連付けられ、第2の命令には第2のタスクが関連付けられるものである方法。
【0063】
EC32)EC19記載の方法において、オペランドはベクトルであり、オペランド記述子は、ベクトルのいくつの要素を並列処理するかを示すものである方法。
【0064】
EC33)EC19記載の方法において、オペランド記述子は、オペランドがベクトルであり、ベクトルの要素を伝達する制御ファブリックパケットが受信される場合、処理を終了すべきか否かのインジケータを有するものである方法。
【0065】
EC34)EC19記載の方法において、オペランド記述子は、命令の完了に応答して選択的にアクティベートする仮想チャネルのインジケータを有するものである方法。
【0066】
EC35)EC19記載の方法において、命令の実行は、ニューラルネットワークのアクティベーションの計算、ニューラルネットワークのアクティベーションの部分和の計算、ニューラルネットワークのエラーの計算、ニューラルネットワークの勾配推定の計算、及びニューラルネットワークの重みの更新の1若しくはそれ以上の少なくとも部分を実施するものである方法。
【0067】
EC36)EC19記載の方法において、オペランドは、ニューラルネットワークの重み、ニューラルネットワークのアクティベーション、ニューラルネットワークのアクティベーションの部分和、ニューラルネットワークのエラー、ニューラルネットワークの勾配推定、及びニューラルネットワークの重み更新の1若しくはそれ以上の少なくとも部分を有するものである方法。
【0068】
EC37)EC19記載の方法において、オペランドは、ベクトル、行列、及びテンソルの1若しくはそれ以上の少なくとも部分を有するものである方法。
【0069】
EC38)システムであって、
処理要素のファブリックであって、各処理要素は、計算要素に結合されたファブリックルータを有し、処理要素のファブリックは、データフローベースの処理及び命令ベースの処理を実行することができ、処理要素のファブリックは、ウェーハスケール集積を介して実施されるものである、処理要素のファブリック
を有し、
各処理要素は選択的に、少なくとも部分的に処理要素のそれぞれのファブリックルータを介して処理要素の他のものとファブリックパケットを通信することができ、
各計算要素はメモリを有し、
命令を復号化することであって、命令はオペランドフィールドを有するものである、復号化することと、
少なくとも部分的にオペランドフィールドに基づいてオペランド記述子にアクセスすることと、
オペランド記述子を復号化して、オペランド記述子が参照する複数のタイプの特定の1つを特定することであって、複数のタイプはファブリックタイプ及びメモリタイプを有するものである、復号化して特定することと、
オペランド記述子及び特定のタイプに従ってオペランドにアクセスすることと
を行うことができ、
オペランドのアクセスは、特定のタイプがファブリックタイプである場合、計算要素に結合されたファブリックルータのそれぞれを介し、
オペランドのアクセスは、特定のタイプがメモリタイプである場合、メモリを介するシステム。
【0070】
EC39)EC38記載のシステムにおいて、オペランド記述子は、一次元メモリベクトルアクセスパターン、四次元メモリベクトルアクセスパターン、及び循環メモリバッファアクセスパターンの1つとしてアクセスパターンを識別するものであるシステム。
【0071】
EC40)EC38記載のシステムにおいて、オペランド記述子は、複数の拡張オペランド記述子の1つを指定することができるものであるシステム。
【0072】
EC41)EC40記載のシステムにおいて、拡張オペランド記述子は、四次元メモリベクトルのストライド情報及び次元情報の1若しくはそれ以上を指定することができるものであるシステム。
【0073】
EC42)EC40記載のシステムにおいて、拡張オペランド記述子は、循環メモリバッファの開始アドレス及び終了アドレスの1若しくはそれ以上を指定することができるものであるシステム。
【0074】
EC43)EC40記載のシステムにおいて、拡張オペランド記述子は、循環メモリバッファのFIFO演算又は非FIFO演算を指定することができるものであるシステム。
【0075】
EC44)EC38記載のシステムにおいて、オペランド記述子は、ベクトルオペランドのベクトル長さを指定することができるものであるシステム。
【0076】
EC45)EC38記載のシステムにおいて、オペランド記述子は、オペランドがベクトルであり、ベクトルの要素へのアクセスストールがある場合に計算要素がいかに動作すべきかを記述するマイクロスレッド処理情報を指定することができるものであるシステム。
【0077】
EC46)方法であって、
命令を復号化する工程であって、命令はオペランドフィールドを有する、復号化する工程と、
少なくとも部分的にオペランドフィールドに基づいてオペランド記述子にアクセスする工程と、
オペランド記述子を復号化して、オペランド記述子が参照する複数のタイプの特定の1つを特定する工程と、
オペランド記述子及び特定のタイプに従ってオペランドにアクセスする工程と
を含み、
タイプは、ファブリックタイプ及びメモリタイプを有する方法。
【0078】
EC47)EC46記載の方法において、方法は、処理要素のファブリックの1つである処理要素により実行され、各処理要素はファブリックルータと、データフローベースの処理及び命令ベースの処理を実行することができる計算エンジンとを有するものである方法。
【0079】
EC48)EC47記載の方法において、処理要素のファブリックは、ウェーハスケール集積を介して実施されるものである方法。
【0080】
EC49)EC46記載の方法において、タイプがファブリックタイプである場合、オペランド記述子には、命令を実行することができる計算要素を有する処理要素に結合されたファブリックのファブリック仮想チャネルが関連付けられるものである方法。
【0081】
EC50)EC46記載の方法において、オペランドがベクトルである場合、さらに、
繰り返しに十分なベクトルのデータ要素にアクセスすることに従って命令の繰り返しを実行する工程を含み、アクセスパターンに従ってオペランドにアクセスする工程は、オペランド記述子により記述されるものである方法。
【0082】
EC51)EC50記載の方法において、アクセスパターンは、ファブリックベクトル、一次元メモリベクトル、四次元メモリベクトル、及び循環メモリバッファの1つである方法。
【0083】
EC52)EC46記載の方法において、オペランドはソースオペランドである方法。
【0084】
EC53)EC52記載の方法において、オペランドフィールドは第1のオペランドフィールドであり、ソースオペランドは第1のソースオペランドであり、命令は、第2のソースオペランドに対応する第2のオペランドフィールドを更に有するものである方法。
【0085】
EC54)EC46記載の方法において、オペランドは宛先である方法。
【0086】
EC55)EC46記載の方法において、オペランドはソースオペランド及び宛先オペランドである方法。
【0087】
EC56)EC46記載の方法において、メモリタイプは第1のメモリタイプであり、タイプは第2のメモリタイプを更に有するものである方法。
【0088】
EC57)EC56記載の方法において、第1のメモリタイプは多次元メモリベクトルタイプである方法。
【0089】
EC58)EC57記載の方法において、多次元メモリベクトルは、一次元、二次元、三次元、及び四次元の1つである方法。
【0090】
EC59)EC58記載の方法において、オペランド記述子は、多次元メモリベクトルのベースアドレスを有するものである方法。
【0091】
EC60)EC56記載の方法において、第1のメモリタイプは一次元メモリベクトルである方法。
【0092】
EC61)EC60記載の方法において、オペランド記述子は、一次元メモリベクトルのベースアドレスを有するものである方法。
【0093】
EC62)EC60記載の方法において、オペランド記述子は、一次元メモリベクトルのストライドを有するものである方法。
【0094】
EC63)EC56記載の方法において、第2のメモリタイプは、四次元メモリベクトルタイプ及び循環メモリバッファタイプのいずれかである方法。
【0095】
EC64)EC63記載の方法において、オペランド記述子は、複数の拡張オペランド記述子の1つの識別子を有するものである方法。
【0096】
EC65)EC64記載の方法において、拡張オペランド記述子は、各拡張データ構造レジスタに対応する各記憶ロケーションに記憶されるものである方法。
【0097】
EC66)EC64記載の方法において、識別される拡張オペランド記述子は、第2のメモリタイプが四次元メモリベクトルタイプであるか否かを示すものである方法。
【0098】
EC67)EC66記載の方法において、さらに、
ストライド情報を1若しくはそれ以上のストライド記憶ロケーションから読み出す工程を含むものである方法。
【0099】
EC68)EC66記載の方法において、識別される拡張オペランド記述子は、四次元メモリベクトルのストライド情報を示すものである方法。
【0100】
EC69)EC66記載の方法において、識別される拡張オペランド記述子は、四次元メモリベクトルの次元情報を示すものである方法。
【0101】
EC70)EC64記載の方法において、識別される拡張オペランド記述子は、第2のメモリタイプが循環メモリバッファタイプであるか否かを示すものである方法。
【0102】
EC71)EC70記載の方法において、識別される拡張オペランド記述子は、循環メモリバッファの開始アドレス及び終了アドレスの1若しくはそれ以上を示すものである方法。
【0103】
EC72)EC70記載の方法において、識別される拡張オペランド記述子は、循環メモリバッファのFIFO演算又は非FIFO演算を示すものである方法。
【0104】
EC73)EC70記載の方法において、識別される拡張オペランド記述子は、循環メモリバッファに関連する1若しくはそれ以上の仮想チャネルを示すものである方法。
【0105】
EC74)EC46記載の方法において、タイプがファブリックタイプであり、オペランドがソースである場合、オペランドにアクセスする工程は、命令を実行することができる計算要素を有する処理要素に結合されたファブリックに結合された入力キューからデータ要素を読み出すことを含むものである方法。
【0106】
EC75)EC46記載の方法において、タイプがファブリックタイプであり、オペランドがデスティネーション(宛先)である場合、オペランドにアクセスする工程は、命令を実行することができる計算要素を有する処理要素に結合されたファブリックに結合された出力キューにデータ要素を書き込むことを含むものである方法。
【0107】
EC76)EC46記載の方法において、タイプがメモリタイプであり、オペランドがソースである場合、オペランドにアクセスする工程は、命令を実行することができる計算要素に含まれるメモリから読み出すことを含むものである方法。
【0108】
EC77)EC76記載の方法において、メモリはキャッシュを含むものである方法。
【0109】
EC78)EC46記載の方法において、タイプがメモリタイプであり、オペランドがデスティネーション(宛先)である場合、オペランドにアクセスする工程は、命令を実行することができる計算要素に含まれるメモリに書き込むことを含むものである方法。
【0110】
EC79)EC46記載の方法において、オペランドはベクトルであり、オペランド記述子は、ベクトルの長さを記述する情報を有するものである方法。
【0111】
EC80)EC46記載の方法において、オペランド記述子は、オペランドがベクトルであり、ベクトルの要素へのアクセスストールがある場合に命令を実行することができる計算要素がいかに動作すべきかを記述するマイクロスレッド処理情報を有するものである方法。
【0112】
EC81)EC80記載の方法において、さらに、
ストール及びマイクロスレッド処理が可能ではないことを示すマイクロスレッド処理情報に応答して、計算要素がストールする工程を含むものである方法。
【0113】
EC82)EC80記載の方法において、命令は第1の命令であり、さらに、
ストール及びマイクロスレッド処理が可能であることを示すマイクロスレッド処理情報に応答して、計算要素が第1の命令の処理を保留し、第2の命令を処理に選択する工程を含むものである方法。
【0114】
EC83)EC82記載の方法において、第1の命令には第1のタスクが関連付けられ、第2の命令には第2のタスクが関連付けられるものである方法。
【0115】
EC84)EC46記載の方法において、オペランドはベクトルであり、オペランド記述子は、ベクトルのいくつの要素に並列アクセスするかを示すものである方法。
【0116】
EC85)EC46記載の方法において、オペランドはベクトルであり、オペランド記述子は、ベクトルのいくつの要素を並列処理するかを示すものである方法。
【0117】
EC86)EC46記載の方法において、オペランド記述子は、オペランドがベクトルであり、ベクトルの要素を伝達する制御ファブリックパケットが受信される場合、処理を終了すべきか否かのインジケータを有するものである方法。
【0118】
EC87)EC46記載の方法において、オペランド記述子は、命令の完了に応答して選択的にアクティベートする仮想チャネルのインジケータを有するものである方法。
【0119】
EC88)EC46記載の方法において、オペランド記述子は、複数のレジスタの1つに記憶されるものである方法。
【0120】
EC89)EC88記載の方法において、レジスタは、オペランドがソースである場合、ソースデータ構造レジスタとして動作可能な第1の複数のレジスタと、オペランドがデスティネーション(宛先)である場合、宛先データ構造レジスタとして動作可能な第2の複数のレジスタとを有するものである方法。
【0121】
EC90)EC46記載の方法において、方法は、第1の処理要素の計算要素により実行され、第1の処理要素は、複数のファブリック仮想チャネルに関連付けられたファブリックを介して少なくとも1つの第2の処理要素に結合され、第1の処理要素及び第2の処理要素は、ウェーハスケール集積を介して実施されるものである方法。
【0122】
EC91)EC46記載の方法において、命令の実行は、ニューラルネットワークのアクティベーションの計算、ニューラルネットワークのアクティベーションの部分和の計算、ニューラルネットワークのエラーの計算、ニューラルネットワークの勾配推定の計算、及びニューラルネットワークの重みの更新の1若しくはそれ以上の少なくとも部分を実施するものである方法。
【0123】
EC92)EC46記載の方法において、オペランドは、ニューラルネットワークの重み、ニューラルネットワークのアクティベーション、ニューラルネットワークのアクティベーションの部分和、ニューラルネットワークのエラー、ニューラルネットワークの勾配推定、及びニューラルネットワークの重み更新の1若しくはそれ以上の少なくとも部分を有するものである方法。
【0124】
EC93)EC46記載の方法において、オペランドは、ベクトル、行列、及びテンソルの1若しくはそれ以上の少なくとも部分を有するものである方法。
【0125】
EC94)システムであって、
処理要素のファブリックであって、各処理要素は、ファブリックルータ及び計算要素を有するものである、処理要素のファブリック
を有し、
各処理要素は選択的に、少なくとも部分的に処理要素のファブリックルータを介して処理要素の他のものとファブリックパケットを通信することができ、
各計算要素は、
命令を復号化することであって、命令は1若しくはそれ以上のオペランドフィールドを有するものである、復号化することと、
少なくとも部分的にオペランドフィールドにそれぞれ基づいて、1若しくはそれ以上のオペランド記述子のそれぞれにアクセスすることと、
各オペランド記述子を復号化して、各オペランド記述子が参照する複数のタイプの対応する特定のそれぞれ1つを特定することと、
各オペランド記述子及び対応する特定の各タイプに従って各オペランドにアクセスすることと
を行うことができ、
タイプはファブリックタイプ及びメモリタイプを有するシステム。
【0126】
EC95)EC94記載のシステムにおいて、処理要素のファブリックは、データフローベースの処理及び命令ベースの処理を実行することができるものであるシステム。
【0127】
EC96)EC95記載のシステムにおいて、処理要素のファブリックは、ウェーハスケール集積を介して実施されるものであるシステム。
【0128】
EC97)EC94記載のシステムにおいて、ファブリックルータは、ファブリックタイプのオペランドのアクセスの少なくとも部分を実行することができるものであるシステム。
【0129】
EC98)EC94記載のシステムにおいて、メモリタイプのオペランドのアクセスは、少なくとも部分的に各計算要素のメモリのアクセスを介するものであるシステム。
【0130】
EC99)EC94記載のシステムにおいて、処理要素のファブリックは、ウェーハスケール集積を介して実施されるものであるシステム。
【0131】
EC100)EC94記載のシステムにおいて、オペランド記述子の少なくとも1つは、一次元メモリベクトルアクセスパターン、四次元メモリベクトルアクセスパターン、及び循環メモリバッファアクセスパターンの1つとしてアクセスパターンを識別するものであるシステム。
【0132】
EC101)EC94記載のシステムにおいて、計算要素は、オペランド記述子のそれぞれ1つを記憶することができる各レジスタを有するものであるシステム。
【0133】
EC102)EC94記載のシステムにおいて、オペランド記述子は、複数の拡張オペランド記述子の1つを指定することができるものであるシステム。
【0134】
EC103)EC102記載のシステムにおいて、計算要素は、拡張オペランド記述子のそれぞれ1つを記憶することができる各レジスタを有するものであるシステム。
【0135】
EC104)EC102記載のシステムにおいて、拡張オペランド記述子は、四次元メモリベクトルのストライド情報及び次元情報の1若しくはそれ以上を指定することができるものであるシステム。
【0136】
EC105)EC102記載のシステムにおいて、拡張オペランド記述子は、循環メモリバッファの開始アドレス及び終了アドレスの1若しくはそれ以上を指定することができるものであるシステム。
【0137】
EC106)EC102記載のシステムにおいて、拡張オペランド記述子は、循環メモリバッファのFIFO演算又は非FIFO演算を指定することができるものであるシステム。
【0138】
EC107)EC94記載のシステムにおいて、オペランド記述子は、ベクトルオペランドのベクトル長さを指定することができるものであるシステム。
【0139】
EC108)EC94記載のシステムにおいて、オペランド記述子は、オペランドがベクトルであり、ベクトルの要素へのアクセスストールがある場合に計算要素がいかに動作すべきかを記述するマイクロスレッド処理情報を指定することができるものであるシステム。
【0140】
EC109)EC94記載のシステムにおいて、オペランド記述子は、ベクトルのいくつの要素に並列アクセスするかを指定することができるものであるシステム。
【0141】
EC110)EC94記載のシステムにおいて、オペランド記述子は、ベクトルのいくつの要素を並列処理するかを指定することができるものであるシステム。
【0142】
EC111)方法であって、
オペランド記述子を記憶ロケーションに書き込む工程であって、オペランド記述子は複数のタイプの特定の1つを指定するものである、書き込む工程と、
オペランド記述子及び特定のタイプに従ってオペランドにアクセスする工程と
を含み、
タイプはファブリックタイプ及びメモリタイプを有する方法。
【0143】
EC112)EC111記載の方法において、方法は、処理要素のファブリックの1つである処理要素により実行され、各処理要素は、ファブリックルータと、データフローベースの処理及び命令ベースの処理を実行することができる計算エンジンとを有するものである方法。
【0144】
EC113)EC112記載の方法において、処理要素のファブリックは、ウェーハスケール集積を介して実施されるものである方法。
【0145】
EC114)EC111記載の方法において、書き込む工程及びアクセスする工程は、計算要素により実行され、特定のタイプがファブリックタイプである場合、アクセスする工程はルータを介して実行され、特定のタイプがメモリタイプである場合、アクセスする工程は、計算要素に含まれるメモリにアクセスすることを含むものである方法。
【0146】
EC115)EC114記載の方法において、計算要素及びルータは、処理要素に含まれ、処理要素は、ウェーハスケール集積を介して実施される複数の処理要素の1つである方法。
【0147】
EC116)C111記載の方法において、書き込む工程には第1の命令の実行が関連付けられ、アクセスする工程には第2の命令の実行が関連付けられるものである方法。
【0148】
EC117)C111記載の方法において、オペランドはベクトルであり、オペランドにアクセスする工程は、命令により指定された演算の繰り返しに十分なベクトルのデータ要素にアクセスすることを含むものである方法。
【0149】
EC118)C111記載の方法において、オペランド記述子はアクセスパターンを指定するものである方法。
【0150】
EC119)C118記載の方法において、アクセスパターンは、ファブリックベクトル、一次元メモリベクトル、四次元メモリベクトル、及び循環メモリバッファの1つである方法。
【0151】
EC120)C111記載の方法において、特定のタイプがファブリックタイプであり、オペランドがソースである場合、アクセスする工程は、アクセスする工程を実行することができる計算要素を有する処理要素に結合されたファブリックに結合された入力キューから読み出すことを含むものである方法。
【0152】
EC121)C111記載の方法において、特定のタイプがファブリックタイプであり、オペランドがデスティネーション(宛先)である場合、アクセスする工程は、アクセスする工程を実行することができる計算要素を有する処理要素に結合されたファブリックに結合された出力キューに書き込むことを含むものである方法。
【0153】
EC122)EC111記載の方法において、オペランドは、ニューラルネットワークの重み、ニューラルネットワークのアクティベーション、ニューラルネットワークのアクティベーションの部分和、ニューラルネットワークのエラー、ニューラルネットワークの勾配推定、及びニューラルネットワークの重み更新の1若しくはそれ以上の少なくとも部分を有するものである方法。
【0154】
EC123)EC111記載の方法において、オペランドは、ベクトル、行列、及びテンソルの1若しくはそれ以上を有するものである方法。
【0155】
選択された実施形態の詳細
ディープ・ラーニング・アクセラレータ・ハードウェア要素及びソフトウェア要素を有するニューラル・ネットワーク・トレーニング及び推論に関連する実施形態について本明細書に記載する(例えば、
図1~
図4及び「ディープ・ラーニング・アクセラレータ概説」セクション参照)。ディープ・ラーニング・アクセラレータは、ハードウェア処理要素を有する(例えば、
図5~
図8並びに「ファブリック概説」及び「処理要素:計算要素及びルータ」セクション参照)。ディープ・ラーニング・アクセラレータは、タスク開始及びタスクブロック/ブロック解除(例えば、
図9A~
図9C並びに「タスク開始」及び「タスクのブロック及びブロック解除」セクション参照)、ニューロンからプロセッサ要素へのマッピング及び関連するデータフロー(例えば、
図10A及び
図10B並びに「高レベルデータフロー」セクション参照)、タスク状態機械及びクローズアウト(例えば、
図11及び
図12並びに「一例の作業負荷及び例示的なタスク」セクション参照)、ウェーブレット処理(例えば、
図13A~
図16及び「ウェーブレット」セクション参照)、ニューロンスメアリング(例えば、
図17~
図20及び「ニューロンスメアリング」セクション参照)、ファブリックベクトル、メモリベクトル、及び関連するデータ構造記述子(例えば、
図21A~
図24及び「ベクトル及びデータ構造記述子」セクション参照)、並びに命令フォーマット(例えば、
図25A~
図25C及び「命令フォーマット」セクション参照)を含むタスク等の様々な技法を実施及び/又は使用する。ディープ・ラーニング・アクセラレータのハードウェア処理要素は、ストール時、仕事を実行することができる(例えば、
図26及び「マイクロスレッド処理」セクション参照)。ディープ・ラーニング・アクセラレータは、様々なシナリオで使用可能である(例えば、
図27A~
図28E及び「ディープ・ラーニング・アクセラレータの使用例」セクション参照)。ディープ・ラーニング・アクセラレータは任意選択で、任意選択な確率的丸めを用いた浮動小数点を提供する(例えば、
図29、
図30A~
図30D、及び
図31並びに「浮動小数点演算の状況及び確率的丸め演算」セクション参照)。ディープ・ラーニング・アクセラレータは、大規模ディープ・ニューラル・ネットワークに拡張可能である(例えば、「大規模ディープ・ラーニング・ネットワークへの拡張可能性」セクション参照)。ディープ・ラーニング・アクセラレータは、様々な実施形態において意図される(例えば、「他の実施形態の詳細」セクション参照)。ディープ・ラーニング・アクセラレータは様々に実施可能である(例えば、「実施技法例」セクション参照)。
【0156】
ディープ・ラーニング・アクセラレータ概説
図1は、ニューラル・ネットワーク・システム100として、ディープ・ラーニング・アクセラレータを使用するニューラル・ネットワーク・トレーニング及びインターフェースのシステムの一実施形態の選択された細部を図示する。概念的に、ニューラルネットワークは、ディープ・ラーニング・アクセラレータを使用してトレーニングされる。次に、トレーニングの1若しくはそれ以上の結果(例えば、重み)を推論に使用する。例えば、トレーニングは、ニューラルネットワークのニューロンをディープ・ラーニング・アクセラレータのPEにマッピングすることを含む。次に、トレーニングデータがPEに適用される。PEはトレーニングデータを処理し(例えば、順方向パス、デルタパス、及びチェインパスを介して)、トレーニングが完了するまで、重みを更新する。次に、重みは推論に使用される。
【0157】
図を参照すると、ディープ・ラーニング・アクセラレータ120は、結合123によって図示されるように、FPGA121及びPE122を有し、互いとの通信を可能にする。配置サーバ150(CPU151及びCRM152を有する)は、LAN111を介して接続サーバ160(CPU161、CRM162、及びNIC164を有する)に結合される。接続サーバ160は、NIC164及び100Gb112を介してFPGA121と通信することができる。自律車両130はCPU131、CRM132、IE133、及びカメラ135を有する。携帯電話140はCPU141、CRM142、IE143、及びカメラ145を有する。
【0158】
インターネット180は、様々な実施形態及び/又は使用状況に従って、配置サーバ150、接続サーバ160、自律車両130、及び/又は携帯電話140の任意の組合せ間に結合(明示的に図示せず)を提供する。
【0159】
破線矢印配置113は概念的に、配置サーバ150からPE122に通信される(例えば、LAN111、接続サーバ160/NIC164、100Gb112、FPGA121、及び結合123を介して)配置情報を示す。幾つかの実施形態及び/又は使用状況では、配置113は暗黙的であり、PE122のルータ要素及びPE122の計算要素に提供される初期化情報において反映される。幾つかの実施形態及び/又は使用状況では、配置113の初期化情報の一部は、FPGA121に提供され、PE122と動作するようにFPGA121の要素を構成する。
【0160】
破線矢印重み114及び破線矢印重み115は概念的に、PE122から自律車両130及び携帯電話にそれぞれ通信される(例えば、結合123、FPGA121、100Gb112、接続サーバ160/NIC164、及びインターネット180を介して)重み情報を示す。幾つかの実施形態及び/又は使用状況では、重み情報は、トレーニングの結果として直接生成される重み情報の全てもしくは任意の部分、そのサブサンプリング、その量子化、及び/又はその他の変換の任意の1若しくはそれ以上である。
【0161】
ディープ・ラーニング・アクセラレータ120は、100Gb112を介して受信される配置情報及びトレーニング情報に応答して重みを計算する等により、ニューラルネットワークのトレーニングを実行することができる。ディープ・ラーニング・アクセラレータ120はさらに、トレーニング完了後、100Gb112を介して結果として重みを提供することができる。次に、重みは、自律車両130及び/又は携帯電話140等での推論に使用可能である。PE122は、比較的多数のPE(例えば、10,000以上)を有し、各PEは、トレーニングに関連するルーティング及び計算を独立して実行することができる。幾つかの実施形態及び/又は使用状況では、PE122は、各複数のPEが1つのウェーハの各ダイに実装される等のウェーハスケール集積を介して実施される。FPGA121は、100Gb112を介して提供された情報にPE122をインターフェースすることができる。インターフェースすることは、結合123で通信されるように、ウェーブレットから、変更されたイーサネット(登録商標)フレームへの変換/変更されたイーサネット(登録商標)フレームからウェーブレットへの変換を含む。
【0162】
配置サーバ150はプログラム的に、1若しくはそれ以上の配置プログラムを介してニューロンの配置を決定することができる(例えば、配置113で図示されるように)。配置プログラムはCRM152に記憶され、CPU151によって実行される。配置情報は、LAN111を介して接続サーバ160に通信される。配置の一例は、物理的メモリ及び実行ハードウェアリソース(例えば、PE122)へのニューラルネットワークの論理ニューロンのマッピングである。
【0163】
接続サーバ160は、FPGA121と通信し、PE122とFPGA121/結合123、NIC164、及びドライバプログラムを介してそのプログラムされた制御を介して間接的に通信することができる。様々な実施形態及び/又は使用状況では、通信は配置情報(例えば、配置サーバ150から)、トレーニング情報(例えば、図示されていないが、インターネット180を介してアクセス可能なソースから)、及び/又はトレーニングの結果(例えば、PE122からの重み)を含む。ドライバプログラムはCRM162に記憶され、CPU161によって実行される。
【0164】
自律車両130は、プログラム的に制御され、及び/又はCRM132に記憶されたプログラムを実行するCPU131によって支援されるように、IE133を使用して、重み114を使用して推論を実行することができる。推論は任意選択及び/又は選択で、カメラ135から得られた情報を使用して実行される。例えば、車は自律車両として動作可能である。車は、動画を推論エンジンに提供することができるカメラを有する。推論エンジンは、交通レーン、障害物、及び他の物体等の車のナビゲートに関連する物体を認識することができる。車は、物体認識の結果を使用してナビゲートすることができる。提供、認識、及びナビゲートの任意の組合せは、少なくとも部分的に、CRMに記憶されたプログラムを実行する1若しくはそれ以上のCPUを介して制御及び/又は実行される。
【0165】
携帯電話140は、CRM142に記憶されたプログラムを実行するCPU141によってプログラム的に制御及び/又は支援されるように、IE143を使用して、重み115を使用して推論を実行することができる。推論は任意選択及び/又は選択で、カメラ145から得られた情報を使用して実行される。例えば、携帯電話は、ソーシャルネットワーキングウェブサイトにタグ付き写真を掲示するように動作可能である。携帯電話は、画像データを推論エンジンに提供することができるカメラを有する。推論エンジンは、画像内の物体にタグ付けすることができる(例えば、「猫」、「犬」等のタイプにより又は「ボブ」、「マリー」等の名前により)。携帯電話は、画像及びタグ付けの結果をソーシャルネットワーキングウェブサイトに掲示することができる。提供、タグ付け、及び掲示の任意の組合せは、少なくとも部分的に、CRMに記憶されたプログラムを実行する1若しくはそれ以上のCPUを介して制御及び/又は実行される。
【0166】
様々な実施形態及び/又は使用状況では、ディープ・ラーニング・アクセラレータを介して決定された重み情報の全て又は任意の部分は、推論使用の前に、アクセラレータ外部で事後処理される。例えば、重み114及び/又は重み115によって表される情報の全て又は任意の部分は、自律車両130及び/又は携帯電話140による推論使用前、配置サーバ150によって全体的又は部分的に処理される。様々な実施形態及び/又は使用状況では、事後処理の一例は、重み114及び/又は重み115の量子化(例えば、浮動小数点数フォーマットから固定小数点数フォーマットへの変換)を含む。様々な実施形態及び/又は使用状況では、カメラ135及びカメラ145はそれぞれ、IE133及びIE143に入力を提供するセンサの例である。センサの他の例は、ロケーションセンサ、向きセンサ、磁気センサ、光センサ、及び圧力センサである。
【0167】
CPU151は、各命令セットアーキテクチャと互換性がある1若しくはそれ以上のCPUを有する。CPU151は、命令セットアーキテクチャに従ってCRM152から命令をフェッチし実行することができる。CPU161は、各命令セットアーキテクチャと互換性がある1若しくはそれ以上のCPUを有する。CPU161は、命令セットアーキテクチャに従ってCRM162から命令をフェッチし実行することができる。幾つかの実施形態では、CPU151の命令セットアーキテクチャの少なくとも1つは、CPU161の命令セットアーキテクチャの少なくとも1つと互換性がある。
【0168】
CPU131は、各命令セットアーキテクチャと互換性がある1若しくはそれ以上のCPUを有する。CPU131は、命令セットアーキテクチャに従ってCRM132から命令をフェッチし実行することができる。CPU141は、各命令セットアーキテクチャと互換性がある1若しくはそれ以上のCPUを有する。CPU141は、命令セットアーキテクチャに従ってCRM142から命令をフェッチし実行することができる。幾つかの実施形態では、CPU131の命令セットアーキテクチャの少なくとも1つは、CPU141の命令セットアーキテクチャの少なくとも1つと互換性がある。幾つかの実施形態では、CPU151、CPU161、CPU131、及びCPU141の任意の1若しくはそれ以上は、互いと互換性がある命令セットアーキテクチャを有する。
【0169】
様々な実施形態及び/又は使用状況では、CRM152、CRM162、CRM132、及びCRM142のそれぞれの少なくとも一部は、不揮発性であり、フラッシュメモリ、磁気メモリ、光学メモリ、相変化メモリ、及び他の不揮発性メモリ技術要素の任意の1若しくはそれ以上で構成される。
【0170】
様々な実施形態及び/又は使用状況では、IE133及び/又はIE143は、ディープ・ラーニング・アクセラレータ120によって決定される(重み114及び/又は重み115により概念的に示される)重み情報を使用することができる1若しくはそれ以上の推論エンジンを有する。様々な実施形態及び/又は使用状況では、IE133は、CPU131によって実行され、CRM132に記憶されるプログラムと併せて及び/又はその制御下で動作する。様々な実施形態及び/又は使用状況では、IE143は、CPU141により実行され、CRM142に記憶されるプログラムと併せて及び/又はその制御下で動作する。様々な実施形態及び/又は使用状況では、IE133及び/又はIE143の全て又は任意の部分は、HW及び/又はSW技法の様々な組合せを介して実施される。幾つかの実施形態では、IE133及び/又はIE143により提供される機能の全て又は任意の部分は、ディープ・ラーニング・アクセラレータ120により及び/又は関連付けられて実施される等の技法を使用して実施される。様々な実施形態及び/又は使用状況では、IE133及び/又はIE143の全て又は任意の部分は、従来のCPU、従来のGPU、従来のDSP、従来のFPGA、及び専用ハードウェアの様々な組合せを含む技法を介して様々に実施される。
【0171】
様々な実施形態では、100Gb112は様々に、標準イーサネット(登録商標)フレームを送信する100Gbイーサネット(登録商標)結合、変更イーサネット(登録商標)フレームを送信する100Gbイーサネット(登録商標)結合、変更イーサネット(登録商標)フレームを送信する100GB変更イーサネット(登録商標)結合、イーサネット(登録商標)技術以外の100Gb直列結合、又は何らかの他の比較的高速の直列結合である。
【0172】
幾つかの実施形態及び/又は使用状況では、結合123はウェーブレットとして情報を通信する。
【0173】
様々な実施形態では、LAN111は、イーサネット(登録商標)、ファイバチャネル、及び/又は他の適した相互接続技法等の技法を使用して実施される。
【0174】
幾つかの実施形態及び/又は使用状況では、配置サーバ150及び接続サーバ160は、結合サーバ110によって概念的に図示されるように、結合要素(例えば、CPU、CRM、及び/又はNICリソースの共有)として実施され及び/又は動作する。幾つかの実施形態及び/又は使用状況では、配置サーバ150及び接続サーバ160は、LAN111ではなく(又はLAN111に加えて)インターネット180を介して結合される。
【0175】
図2は、ニューラル・ネットワーク・ソフトウェア200として、ディープ・ラーニング・アクセラレータを使用して、ニューラル・ネットワーク・トレーニング及び推論に関連付けられたソフトウェア要素の一実施形態の選択された細部を図示する。配置サーバSW210は、実施形態により、ニューロンからPEへのマッピングSW212及び図示されていない他の要素を有する。様々な実施形態及び/又は使用状況では、配置サーバSW210の全て又は任意の部分は、
図1のCRM152に記憶され、
図1のCPU151により実行可能である。ニューロンからPEへのマッピングSW212の1若しくはそれ以上のプログラムは、
図1のPE122の特定のPEへのニューラルネットワークのニューロンの配置を決定することができる。
【0176】
接続サーバSW220は、実施形態により、100Gb NICドライバ224、トレーニング情報プロバイダSW225、及び重み受信機SW226、並びに図示されていない他の要素を有する。様々な実施形態及び/又は使用状況では、接続サーバSW220の全て又は任意の部分は、
図1のCRM162に記憶され、
図1のCPU161により実行可能である。100Gb NICドライバ224の1若しくはそれ以上のプログラムは、接続サーバ160とディープ・ラーニング・アクセラレータ120との通信を可能にし、接続サーバ160及びディープ・ラーニング・アクセラレータ120は両方とも
図1のものである(NIC164及び100Gb112を介して、これらも
図1のものである)。トレーニング情報プロバイダSW225の1若しくはそれ以上のプログラムは、
図1のディープ・ラーニング・アクセラレータ120への通信のために(NIC164及び100Gb112を介した)、100Gb NICドライバ224の制御下で適用するトレーニング情報を決定できるようにする。様々な実施形態及び/又は使用状況では、トレーニング情報は様々に、例えば、両方とも
図1の接続サーバ160及び/又はインターネット180がアクセス可能な不揮発性記憶装置から決定される。重み受信機SW226の1若しくはそれ以上のプログラムは、ディープ・ラーニング・アクセラレータ120によって決定されるように、100Gb NICドライバ224の制御下で重み情報を受信できるようにする(NIC164及び100Gb112を介して)。
【0177】
様々な実施形態及び/又は使用状況では、FPGA上の種々SW250は概念的に、FPGA121(
図1の)に含まれる1若しくはそれ以上のCPUによって実行されるSWを表す。FPGAのCPUは、例えば、FPGA121の1若しくはそれ以上の要素の製造中、ハードコードされ、及び/又はFPGA121の1若しくはそれ以上の要素の初期化中、ソフトコードされる。様々な実施形態及び/又は使用状況では、FPGA上の種々SW250及び/又はその表現の全て又は任意の部分は、FPGA121に含まれ、及び/又は接続サーバ160がアクセス可能な不揮発性メモリに記憶される。様々な実施形態及び/又は使用状況では、FPGA上の種々SW250は、
図1のPE122の初期化及び/又はデバッグに関連する等の様々なハウスキーピング機能を実行できるようにする。
【0178】
様々な実施形態及び/又は使用状況では、PE上のタスクSW260は概念的に、PE122のうちの様々なPEでタスクとして実行される分散SWを表す。様々な実施形態及び/又は使用状況では、PE上のタスクSW260及び/又はその表現の全ての又は任意の部分は、PE122に含まれ、及び/又は接続サーバ160がアクセス可能な不揮発性メモリに記憶される。様々な実施形態及び/又は使用状況では、PE上のタスクSW260は、ニューラルネットワークの重みの決定等のトレーニングデータの処理の実行を可能にする(例えば、順方向パス、デルタパス、及びチェインパスを介して)。
【0179】
自律車両SW230は、実施形態により、ビデオカメラSW232、推論エンジンSW233、及びナビゲートSW234、並びに図示されていない他の要素を有する。様々な実施形態及び/又は使用状況では、自律車両SW230の全て又は任意の部分は、
図1のCRM132に記憶され、
図1のCPU131により実行可能である。ビデオカメラSW232の1若しくはそれ以上のプログラムは、動画情報を推論エンジンSW233に提供するような
図1のカメラ135の制御及び/又は動作を可能にする。推論エンジンSW233の1若しくはそれ以上のプログラムは、動画情報から、回避する物体及び/又は辿る交通レーン等のナビゲーション情報を特定するような
図1のIE133の制御及び/又は動作を可能にする。ナビゲートSW234の1若しくはそれ以上のプログラムは、ナビゲーション情報に応答して自律車両SW230のナビゲートを可能にする。
【0180】
携帯電話SW240は、実施形態により、静止カメラSW242、推論エンジンSW243、掲示SW244、及び図示されていない他の要素を有する。様々な実施形態及び/又は使用状況では、携帯電話SW240の全て又は任意の部分は、
図1のCRM142に記憶され、
図1のCPU141により実行可能である。静止カメラSW242の1若しくはそれ以上のプログラムは、推論エンジンSW243に静止画像情報を提供するような
図1のカメラ145の制御及び/又は動作を可能にする。推論エンジンSW243の1若しくはそれ以上のプログラムは、静止画像情報からタグ情報を特定するような
図1のIE143の制御及び/又は動作を可能にする。掲示SW244の1若しくはそれ以上のプログラムは、静止画像情報及び/又はタグ情報に応答してソーシャルネットワーキングウェブサイトへの掲示を可能にする。
【0181】
様々な実施形態及び/又は使用状況では、SWコレクションである配置サーバSW210、接続サーバSW220、自律車両SW230、及び/又は携帯電話SW240の任意の1若しくはそれ以上は任意選択及び/又は選択で、1若しくはそれ以上のオペレーティングシステム要素、例えば、1若しくはそれ以上のリアルタイムオペレーティングシステム、1若しくはそれ以上の非リアルタイムオペレーティングシステム、及び/又は各SWコレクションの要素を調整する1若しくはそれ以上の他の制御プログラムを有する。
【0182】
図3は、ニューラル・ネットワーク・トレーニング/推論300として、ディープ・ラーニング・アクセラレータを使用して、ニューラルネットワークをトレーニングし、トレーニングされたニューラルネットワークを使用して推論を実行することに関連する処理の一実施形態の選択された細部を図示する。図示のように、ニューラルネットワークのニューロンは、動作310において、配置される、例えば、割り振られ、及び/又は特定のPEリソースに関連付けられる。次に、動作320において、FPGAリソースが、ニューラルネットワークのトレーニングへの準備として初期化される。次に、動作330において、PEリソースが、ニューラルネットワークのトレーニングへの準備として初期化される。
【0183】
FPGAリソース及びPEリソースが、トレーニングへの準備として初期化された後、動作340において、トレーニングデータはPEに適用される。動作350において、PEリソースはトレーニングデータを処理する。次に、動作360において、例えば、トレーニングデータの適用が完了し、及び/又は1若しくはそれ以上の完了基準(決める限度未満の推論エラー等)が満たされるため、トレーニングが完了したか否かをチェックして判断する。完了してない場合、フローは次に動作340に戻り、更なるトレーニングデータを適用する。幾つかのシナリオでは、トレーニングは完了せず、幾つかの実施形態では、代わりに制御は別の動作(図示せず)に渡され、例えば、ニューラルネットワークのハイパーパラメータを変更することができる(例えば、ニューロンの層の追加、ニューロンの層の削除、ニューロン間の接続性の変更、バッチサイズの変更、及び学習ルールの変更のいずれか1若しくはそれ以上)。次に、変更されたニューラルネットワークは、動作310、320、330、340、350、及び360に従ってトレーニングされる。
【0184】
トレーニングが完了した場合、フローは、370における推論に使用されるトレーニングの結果である重みを提供することに続く。幾つかの実施形態及び/又は使用状況では、重みは量子化され、例えば、整数データフォーマットに変換される。幾つかの実施形態及び/又は使用状況では、整数データフォーマットは、精度低減数フォーマット(例えば、8ビット又は16ビット)である。次に、重みは1若しくはそれ以上の推論エンジンに提供され、動作380において推論を行うのに使用される。
【0185】
様々な実施形態及び/又は使用状況では、推論エンジンは、1若しくはそれ以上の推論アプリケーション、例えば、テキスト変換、光学文字認識、画像分類、顔認識、自動運転車のシーン認識、発話認識、高エネルギー物理学でのデータ解析、及び創薬に対応する。
【0186】
様々な実施形態及び/又は使用状況では、PEリソースは、例えば、
図1のPE122に対応し、FPGAリソースは
図1のFPGA121に対応する。
【0187】
様々な実施形態及び/又は使用状況では、ニューラル・ネットワーク・トレーニング/推論300の動作の全て又は任意の部分の任意の1若しくはそれ以上は、
図1のニューラル・ネットワーク・システム100及び/又は
図2のニューラル・ネットワーク・ソフトウェア200の任意の1若しくはそれ以上の要素の全ての又は任意の部分により実行され、及び/又は関連する。例えば、動作310の全て又は任意の部分は、ニューロンからPEへのマッピングSW212の実行を介して配置サーバ150により実行される。別の例として、動作320の全て又は任意の部分は、ニューロンからPEへのマッピングSW212の実行を介して配置サーバ150により実行される。別の例として、動作330の全て又は任意の部分は、ニューロンからPEへのマッピングSW212の実行を介して配置サーバ150により実行される。別の例として、動作330の全て又は任意の部分は、PE上のタスクSW260の実行を介してPE122により実行される。別の例として、動作340の全て又は任意の部分は、トレーニング情報プロバイダSW225の実行を介して接続サーバ160により実行される。別の例として、動作350の全て又は任意の部分は、PE上のタスクSW260の実行を介してPE122により実行される。別の例として、動作350の全て又は任意の部分は、結合サーバ110、配置サーバ150、及び/又は接続サーバ160により実行される。別の例として、370の全て又は任意の部分は、重み受信機SW226の実行を介して接続サーバ160により実行される。別の例として、動作370の全て又は任意の部分は、FPGA上の種々SW250の実行を介してFPGA121により実行される。別の例として、380の全て又は任意の部分は、推論エンジンSW233の制御下等でIE133により実行される。別の例として、動作380の全て又は任意の部分は、推論エンジンSW243の制御下等でIE143により実行される。
【0188】
様々な実施形態及び/又は使用状況では、ニューラル・ネットワーク・トレーニング/推論300の動作の全て又は任意の部分の任意の1若しくはそれ以上は、
図1のニューラル・ネットワーク・システム100の様々な要素間での情報通信を併せて実行される。例えば、ニューラル・ネットワーク・トレーニング/推論300の様々な動作は、少なくとも部分的に、接続サーバ160とFPGA121との間で情報を通信するNIC164及び100Gb112を介して実行される。別の例として、ニューラル・ネットワーク・トレーニング/推論300の様々な動作は、接続サーバ160とPE122との間で情報を通信するFPGA121及び結合123と併せて実行される。別の例として、ニューラル・ネットワーク・トレーニング/推論300の様々な動作は、少なくとも部分的にインターネット180により可能になるように、情報を通信する配置サーバ150、接続サーバ160、自律車両130、及び携帯電話140の任意の1若しくはそれ以上を併せて実行した。
【0189】
図4は、ディープ・ラーニング・アクセラレータ400としてのディープ・ラーニング・アクセラレータの一実施形態の選択された細部を図示する。各PE499要素は、PE499要素のうちの他の要素への結合を有する。PE要素のうちの2つ(PE497及びPE498)は、一意の識別子を有して図示されており、その他の点では、PE499のインスタンスとそれぞれ同一である。PE497は、PEのうちの他のPEへの結合(北結合430、PE498への東結合431、及び南結合432)及びI/O FPGAの1つへの結合(西結合433)という4つの結合のそれぞれについて識別子を有して図示されているが、その他の点では、図示されているPE要素のうちの他の要素と同一である。幾つかの実施形態及び/又は使用状況では、結合は論理結合及び/又は物理結合である。様々な実施形態及び/又は使用状況では、結合は、ウェーブレット、背圧情報、又は両方の通信に使用可能である。様々な実施形態及び/又は使用状況では、物理的結合の全て又は任意の部分は、物理的に隣接するPEへのものである。幾つかの実施形態及び/又は使用状況では、PEは2Dグリッドにおいて物理的に実施される。幾つかの実施形態及び/又は使用状況では、PEは並んだ矩形の2Dグリッドにおいて物理的に実施され、隣接するPEは、水平境界を共有するPE(互いに対して北/南PE)及び垂直境界を共有するPE(互いに対して東/西PE)に対応する。
【0190】
幾つかの実施形態及び/又は使用状況では、同じASICの同一インスタンスのアレイがウェーハ上に形成され、同じASICのそれぞれは、同じPE(例えば、PE499)の複数の同一インスタンスを有し、ウェーハスケール集積技法で使用可能なウェーハ(例えば、ウェーハ412)を形成する。逆のことが示される場合を除き、本明細書における「ウェーハ」への言及(ウェーハ412への言及を含む)は、ウェーハ全体又はウェーハの略全体の実施形態及びウェーハの大部分の実施形態に適用可能である。幾つかの実施形態及び/又は使用状況では、PEの周縁部分は、I/O FPGA420に結合される。ASICの例は、PEの列編成セクション(例えば、一次元様式で複製されて、ウェーハを形成する)を有するASIC410及びPEの正方形編成セクション又は矩形編成セクション(例えば、二次元様式で複製されて、ウェーハを形成する)を有するASIC411として図示される。ウェーハ上の他の編成のASICも考えられる。
【0191】
幾つかの実施形態及び/又は使用状況では、ニューラルネットワークにおけるレイヤに関連付けられたニューロンは一般に、左から右にPE499要素上に配置され、先のレイヤ(例えば、入力レイヤ)は左側にあり、後続レイヤ(例えば、出力レイヤ)は右側にある。したがって、トレーニング中のデータフローは、破線矢印順方向401、デルタ402、及びチェイン403として概念的に図示される。順方向401中、刺激が入力レイヤに適用され、入力レイヤからの活性化は後続レイヤに流れ、最終的に出力レイヤに達し、順方向結果を生成する。デルタ402中、デルタ(例えば、順方向結果とトレーニング出力データとの差)は逆方向に伝搬する。チェイン403中、デルタがデルタ402中に生成されるため、デルタに基づいて勾配(例えば、ニューロンの重みに関する)が計算される。幾つかの実施形態及び/又は使用状況では、デルタ402の処理は実質的に403の処理と重複する。
【0192】
幾つかの実施形態及び/又は使用状況では、ディープ・ラーニング・アクセラレータ400は、
図1のディープ・ラーニング・アクセラレータ120の一実施態様である。幾つかの実施形態及び/又は使用状況では、個々のPE499要素は、
図1のPE122の個々のPEに対応する。幾つかの実施形態及び/又は使用状況では、各ASIC410要素又は代替的には各ASIC411要素は、個々の集積回路として実装されるPE122のPEの全て又は任意の部分に対応する。幾つかの実施形態及び/又は使用状況では、各ASIC410要素又は代替的には各ASIC411要素は、ウェーハの各ダイを介して実装されるPE122の(任意選択で同一の)部分に対応する。幾つかの実施形態及び/又は使用状況では、I/O FPGA420要素は集合的に、
図1のFPGA121に対応する。
【0193】
幾つかの実施形態及び/又は使用状況では、PE499要素へのニューロン(例えば、ニューラルネットワーク内のレイヤに関連付けられる)の配置は全体的又は部分的に、
図2の配置サーバSW210の全て又は任意の部分により実行される。
【0194】
ファブリック概説
図4に図示されるように、ディープ・ラーニング・アクセラレータの一実施形態は、ファブリックを介して互いに結合された複数のPEを有する。各PEはCE(例えば、計算を実行する)及びルータ(例えば、ファブリックについての情報の移動を管理及び/又は実施する)を含む。
【0195】
ファブリックは、ディープ・ラーニング・アクセラレータ内の全てのPE間の通信相互接続として動作する。ファブリックは、例えば、30ビット物理結合を介してウェーブレットを転送して、サイクル(例えば、コア・クロック・サイクル)当たり1ウェーブレット全体の転送を可能にする。概念上、ファブリックは、各PEが(物理的)近傍と直接通信することができるようにPE全体に分散したローカル相互接続である。(物理的)近傍以外への通信は、中間ノード、例えば、他のPEを通したホップを介する。幾つかの実施形態及び/又は使用状況では、分散ローカル・ファブリック・トポロジはニューラルネットワーク作業負荷に効率的にマッピングされ、例えば、各層はデータを近傍層に送信する)、及び/又は比較的低コストでハードウェアにおいて実施可能である。
【0196】
一例のファブリックは、カラーと呼ばれる16個の論理的に独立したネットワークを有する。各カラーは、1つの物理的ネットワークに重ねられた仮想ネットワーク、例えば、仮想チャネルである。各カラーは、専用の物理的バッファリングリソースを有するが、同じ物理的ルーティングリソースを共有する。専用の物理的バッファは、カラーの非ブロック演算が可能である。共有の物理的ルーティングは、物理的リソースを低減する。様々な実施形態及び/又は使用状況では、ファブリックは様々な数のカラー(例えば、8、24、又は32)を有する。
【0197】
各カラーに関連付けられ、ルータにより実施されるルーティングパターンがある。各パターンのルーティングパターンは、プログラム可能であり、幾つかの実施形態では、例えば、
図2の配置サーバSW210及び/又はニューロンからPEへのマッピングSW212により行われる決定に少なくとも部分的に基づいて統計的に構成される。構成されると、例えば、ソフトウェア(
図2の接続サーバSW220等)の制御下で、各カラーは固定ルーティングパターンである。カラー内を流れる全データは常に、固定ルーティングパターンに従って流れる。動的ルーティング決定はない。固定ルーティングは、ニューロン接続が統計的に指定されたニューラルネットワーク通信パターンに合致する。固定ルーティングは、比較的低コストのハードウェア実施を可能にする。
【0198】
図4に示されるように、一例の(物理的な)ファブリックトポロジは、1つのコア・クロック・サイクルで実行される各ホップをX又はY次元(例えば、
図5の西511又は北513のそれぞれ)に有する2Dメッシュを有する。図示される2Dメッシュに加えて、幾つかの実施形態は、例えば水平次元において「スキップ」接続及び例えば垂直次元において「ループ」接続を更に有する。一例のスキップ接続は、2Dメッシュの同じ行内にあり、N個の他のPEにより物理的に隔てられたPEが、まるで物理的に隣接するかのように互いと通信できるようにする。スキップ接続に沿ったホップ(例えば、
図5の西スキップ512)は、1つのコア・クロック・サイクルで実行される。様々な実施形態では、一例のループ接続は、PEの列の下部におけるPEが、まるで物理的に隣接するかのように列の上部におけるPEと通信できるようにする。幾つかの実施形態では、ループ接続に沿ったホップは1つのコア・クロック・サイクルで実行される。
【0199】
幾つかの実施形態及び/又は使用状況では、1クロックにおけるX又はY次元での各ホップの実行は、任意にプログラム可能なルーティングトポロジの実施及び関連するタイミング制約の簡易化を可能にする。幾つかの状況では、ホップ当たり1サイクルの待ち時間は、関連するパイプライン化されたデータフローパターンに匹敵する。幾つかの状況(例えば、ある層から次の層に通信する場合)では、ホップ当たり1サイクルの待ち時間は、追加の待ち時間を加え、性能を下げる。追加の待ち時間は、層が深く、多くのPEを使用する場合、最悪であり、その理由は、層を抜け出し、次の層の全てのPEに達するために使用されるホップが多いためである。追加の待ち時間は、全体作業負荷パイプライン長を増大させ、したがって、記憶域(例えば、順方向パスアクティベーションのための)を増大させる。
【0200】
スキップ接続は、追加の待ち時間の低減に使用される。一例を考える。各スキップ接続は、1コア・クロック・サイクルで50個のPEをスキップする。最初のスキップ接続に入るための待ち時間は最大で49ホップである。最初のスキップ接続を出た後、最後のPEに達するための待ち時間は最大で49ホップである。したがって、98コア・クロック・サイクルの最大待ち時間オーバーヘッド及び49コア・クロック・サイクルの平均待ち時間オーバーヘッドがある。層を処理するための待ち時間は2000コア・クロック・サイクルである。したがって、この例では、5%の最大全体オーバーヘッド及び2.5%の平均全体オーバーヘッドがある。
【0201】
幾つかの実施形態及び/又は使用状況では、各行はスキップ接続を有し、各列はループ接続を有する。幾つかの実施形態及び/又は使用状況では、各スキップ接続は50個のPEをスキップし、各列は、ループ接続が包含する200個のPEを有する。幾つかの実施形態では、1つのループ接続(例えば、PEの列の状況では、列の下部におけるPEと列の上部におけるPEとの間)は概ね、物理的にその列に及び、他の実施形態では、列のループ接続は、平均及び最悪事例のループホップが概ね、物理的に2つのPEに及ぶように折り畳まれることにより物理的に実施される。
【0202】
幾つかの実施形態及び/又は使用状況では、ファブリックはASIC当たり200×100個のPEを相互接続し、200個のPEは垂直次元にあり、100個のPEは水平次元にある。ファブリックは汎用であり、任意の機能のためにPEで実行されるソフトウェア(例えば、
図2のPE上のタスクSW260)により使用可能である。幾つかの実施形態及び/又は使用状況では、ソフトウェアは、層間のデータ通信(例えば、アクティベーションブロードキャスト)に水平次元を使用する。層間のデータ通信は任意選択及び/又は選択で、1若しくはそれ以上のスキップ接続を介する。幾つかの実施形態及び/又は使用状況では、ソフトウェアは、層内のデータ通信(例えば、部分和累積)に垂直次元を使用する。層内の通信は任意選択及び/又は選択で、1若しくはそれ以上のループ接続を介する。幾つかの状況では、部分和累積はリングトポロジを介する。
【0203】
概念上、ファブリックでは、背圧情報は、背圧情報が対応するデータと同じトポロジに沿って同じ速さであるが、対応するデータの逆方向に流れる。例えば、ルータは、背圧情報を固定ルーティングパターンの逆方向パスに沿って送信する。各カラーに独立した背圧チャネル(例えば、信号)があり、複数のカラーの背圧情報を同時に通信できるようにする。独立した背圧チャネルは、幾つかの実施形態及び/又は使用状況では、同じサイクルで(例えば、異なる出力に)排出する複数のキューがある場合、背圧通信を簡易化する。
【0204】
カラーに背圧が掛けられる場合、ファブリック内の各ホップにおいてキュー内待機中のデータはストールする。その結果、キュー内待機中のデータは、背圧がなくなると、宛先に排出されるため、宛先におけるキューへの延長部である。例えば、特定のPEからの、特定のカラーに対応する背圧信号は、その特定のPEのルータの、その特定のカラーに対応するデータキューが所定の閾値にある(例えば、満杯又は略満杯)ときのみ、アサートされる。したがって、特定のカラーに関して、データキューが分散ファブリック内キューの一部として効率的に動作するように、ストールしたPEに達するまで、データは流れる。
【0205】
固定ルーティングパターンは、各ルータ内でマルチキャスト複製を提供する。マルチキャストは、幾つかのニューラルネットワーク作業負荷内等の高ファンアウト通信パターンを可能にする。マルチキャストを実行するために、各ルータノードには、マルチキャストカラー毎に複数の出力が統計的に構成される。ルータは、マルチキャストカラーに対応する入力ウェーブレットを静的構成により指定された全ての出力に複製してから、マルチキャストカラーの次のウェーブレットを処理する。幾つかの状況では、複数のマルチキャストカラーがあり、それぞれに複数の出力の各組が統計的に構成される。
【0206】
ルータは、カラー毎に複数の入力ソースを提供し、一度に1つのアクティブ入力ソースを処理する。入力ソースの調整は、例えば、一度に1つのみの入力ソースがアクティブであるように、より高レベル(例えば、フロー制御依存性、PE間の明示的なメッセージング、又は他の適したメカニズム)のソフトウェアにより実行される。幾つかの実施形態及び/又は使用状況では、1つのアクティブ入力ソースの実施により、ルータは、入力ソース毎に1つのバッファではなく、カラー毎に1つのバッファを有するため、比較的低コストのハードウェアが可能になる。
【0207】
一度の1つのみのアクティブ入力ソースしかないため、カラー内にはいかなる輻輳もない。しかしながら、幾つかの状況では、複数のカラーが1つの物理チャネルを共有するため、カラー間に輻輳が生じる。ルータは、準備のできたカラー間で1つの共有出力チャネルにスケジュールすることにより輻輳に対応する。
【0208】
ファブリックでのデッドロックは、ファブリックがブロック中である(例えば、ファブリック及びルータがハードウェアデッドロック回避機構を有さない)であるため、生じ得る。デッドロックは、ソフトウェアが、依存ループがなく、したがって、循環依存及びデッドロックを回避するように固定ルーティングパターンを構成することにより回避される。
【0209】
ソフトウェアはまた、PEデータパスリソースを通しての循環依存がないことも保証する。そのような依存は、そのような保証がない場合、トレーニング作業負荷が3つ全てのメガフェーズ(順方向パス、デルタパス、及びチェインパス)で同じ物理的PEデータパスを共有し、デルタパス及びチェインパスの処理が、順方向パスの処理と同じPE上であるため、生じる。いかなる循環依存も破るために、ソフトウェアは、(順方向パス、デルタパス、及びチェインパス)ループ内の全てのタスクが無期限にブロックしないことを保証する。そうするために、ループ内の少なくとも1つのタスクは、スケジュールされると完了することが保証される。タスクスケジューリングは、計算要素内のウェーブレットピッカーにより可能である。ピッカーは、ウェーブレットの下流カラーが利用可能な場合のみ、ウェーブレットをスケジュールするようにプログラムされる。幾つかの実施形態及び/又は使用状況では、ソフトウェアが、独立して、性能のために上記属性を用いてタスクをプログラムすることも望ましい。
【0210】
デッドロックに繋がる不正確な構成の場合、進行しないことを検出し、故障を管理ソフトウェアに通知するウォッチドッグメカニズムがある。
【0211】
処理要素:計算要素及びルータ
図5は、ディープ・ラーニング・アクセラレータのPE500としてPEの一実施形態の選択された細部を図示する。PE500はルータ510と、計算要素520とを有する。ルータ510は選択で及び/又は条件付きで、結合511~516を介して他のPE(例えば、論理的及び/又は物理的に隣接するPE)とPE500との間でウェーブレットを通信(例えば、送受信)する。結合511~516は、結合上のウェーブレットの双方向通信を強調するために、双方向矢印として図示されている。背圧情報はまた、背圧が対応するウェーブレット情報の逆方向で結合上を送信される。ルータ510は選択で及び/又は条件付きで、オフランプ(Off Ramp)521を介してPE500(例えば、計算要素520)にウェーブレットを通信し、オンランプ(On Ramp)522を介してPE500(例えば、計算要素520)からウェーブレットを通信する。オフランプ521は、結合上のウェーブレットの単方向通信(例えば、ルータ510から計算要素520へ)を強調するために、単方向矢印として図示されている。背圧情報はまた、ウェーブレット情報の逆方向(例えば、計算要素520からルータ510へ)に結合上を送信される。オンランプ522は、結合上のウェーブレットの単方向通信(例えば、計算要素520からルータ510へ)を強調するために、単方向矢印として図示されている。背圧情報はまた、ウェーブレット情報の逆方向(例えば、ルータ510から計算要素520へ)において結合上を送信される。
【0212】
計算要素520は、ウェーブレットから導出可能な命令アドレス情報に従って、ウェーブレットにおいて具現されるデータに対して計算を実行する。命令アドレス情報は、計算要素の記憶装置(例えば、メモリ、キャッシュ、及びレジスタファイルのいずれか1若しくはそれ以上)に記憶された命令として具現されるタスクの開始アドレスの識別に使用される。計算の結果は選択で及び/又は条件付きで、記憶装置に記憶され、及び/又は例えば、他のPE及び又はPE500に送信するために、ルータに通信されるウェーブレットで具現されるデータとして提供される。
【0213】
データに加えて、ルータ510は選択で及び/又は条件付きで、結合511~516を介して他のPEとPE500との間で背圧情報を通信(例えば、送受信)する。ルータ510は選択で及び/又は条件付きで、オンランプ522を介して背圧情報をPE500に送信する。ルータ510は、オフランプ521を介して背圧情報をPE500から受信する。他のPEに提供された背圧情報及びPE500に提供された背圧情報は、キュー空間がルータ510にデータを記憶するのには不十分であることに起因して、ストールしない場合には失われるデータ(例えば、ウェーブレット)の送信をストールするために他のPE及びPE500により使用される。他のPE及びPE500から受信した背圧情報は、他のPEのルータのキュー空間が不十分であり、計算要素520の入力キュー内の空間が不十分であることのそれぞれに起因して、回避されない場合には失われるデータ(例えば、ウェーブレット)の送信を回避するために、ルータ510によりそれぞれ使用される。
【0214】
様々な実施形態では、511~516の任意の1若しくはそれ以上は省かれる。
【0215】
幾つかの実施形態及び/又は使用状況では、PE500は
図4のPE499の一実施形態であり、及び/又はPE500の要素はPE499の一実施態様に対応する。幾つかの実施形態及び/又は使用状況では、北513、東515、南516、及び西511は、
図4の北結合430、東結合431、南結合432、及び西結合433にそれぞれ対応する。
【0216】
図6は、ルータ600としてPEのルータ一実施形態の選択された細部を図示する。複数のPEがあり、各PEが各ルータ及び各CEを有すると考える。ルータ600は、各ルータの1つのインスタンスである。ルータ600は、ウェーブレットのカラー情報及びルーティング構成情報に従って、インスタントルータが含まれるPE及びルータのうちの他のルータのCEにウェーブレットをルーティングする。ルーティングされたウェーブレットは様々に、インスタントルータにより受信され、及び/又はインスタントルータが含まれるPEのCEにより生成される。ルーティングは、PE間での通信を可能にする。ストール情報が通信されて、ルータ600でのウェーブレット記憶リソースのオーバーフローを回避する。
【0217】
ルータ600は、4つのグループのインターフェースを有する:データイン(Data In)610、データアウト(Data Out)620、ストールアウト(Stall Out)630、及びストールイン640。データイン610、データアウト620、ストールアウト630、及びストールイン640はそれぞれ、インターフェース要素611~617、621~627、631~637、及び641~647を有する。ルータ600は、データイン610、データアウト620、ストールアウト630、及びストールイン640にそれぞれ結合される書き込みデコーダ(Write Dec)651、アウト(Out)652、ストール生成(Gen Stall)656、及びストール(Stall)657を更に有する。ルータ600は、ストール生成656に結合されたSrc670を有するソース653を更に有する。ルータ600はデータキュー(Data Queues)650、制御情報(Control Info)660、及びスケジュール済みルータ(Router Sched)654を更に有する。制御情報660は宛先(Dest)661及び送信元(Sent)662を有する。
【0218】
概念的に、スキップX+611、スキップX+621、スキップX+631、及びスキップX+641は、7つの「方向」の1つ、例えば、「スキップX+」方向を有する。幾つかの実施形態では、スキップX+方向は
図5の東スキップ514に対応する。スキップX-612、スキップX-622、スキップX-632、及びスキップX-642は、第2の「スキップX-」方向を有する。幾つかの実施形態では、スキップX-方向は
図5の西スキップ512に対応する。X+613、X+623、X+633、及びX+643は第3の「X+」方向を有する。幾つかの実施形態では、X+方向は
図5の東515に対応する。X-614、X-624、X-634、及びX-644は第4の「X-」方向を有する。幾つかの実施形態では、X-方向は
図5の西511に対応する。Y+615、Y+625、Y+635、及びY+645は第5の「Y+」方向を有する。幾つかの実施形態では、Y+方向は
図5の北513に対応する。Y-616、Y-626、Y-636、及びY-646は第6の「Y-」方向を有する。幾つかの実施形態では、Y-方向は
図5の南516に対応する。最後に、オンランプ617、オフランプ627、オンランプ637、及びオフランプ647は第7の「オン/オフランプ」方向を有する。幾つかの実施形態では、オン/オフランプ方向のオンランプ617及びオンランプ637の部分は、
図5のオンランプ522に対応する。幾つかの実施形態では、オン/オフランプ方向のオフランプ627及びオフランプ647は、
図5のオフランプ521に対応する。
【0219】
データイン610は、各コア・クロック・サイクルで各方向から1つまでのウェーブレットを受信するためのものである。ストールアウト630は、各コア・クロック・サイクルで各カラーのストール情報を各方向に送信するためのものである。データアウト620は、各コア・クロック・サイクルで1つまでのウェーブレットを各方向に送信するためのものである。ストールイン640は、各コア・クロック・サイクルで各カラーのストール情報を各方向から受信するためのものである。
【0220】
データキュー650は書き込みデコーダ651に結合されて、入力ウェーブレット情報を受信し、アウト652に結合されて出力ウェーブレット情報を提供する。データキュー650は生成ストール656に更に結合されて、例えば、ストール情報の生成に使用されるデータキュー検証情報(例えば、満杯度に対応する)を提供する。スケジュール済みルータ654は制御情報660に結合されて、キューに配置されたウェーブレットのスケジューリングに関連する制御情報を受信する。スケジュール済みルータ654はアウト652に更に結合されて、621~627の1若しくはそれ以上でのキュー配置ウェーブレットの提示を指示する。スケジュール済みルータ654はストール生成656に更に結合されて、ストール情報の生成を部分的に指示する。
【0221】
幾つかの実施形態では、データキュー650はカラー(c0,...,c15)毎に2つのエントリを有する。各エントリは、ウェーブレットの少なくともペイロード情報を記憶することができる。様々な実施形態では、ウェーブレットのカラー情報は記憶されない。複数のエントリの第1のエントリは、キューの入力をキューの出力から切り離すのに使用される。複数のエントリの第2のエントリは、ストールが飛行中データと平行して(例えば、同じコア・クロック・サイクルで)送信される場合、飛行中データを捕捉するのに使用される。様々な実施形態では、データキュー650は、カラー数をウェーブレット毎の記憶情報のビット数で乗算し、それをカラー毎のキューエントリ数で乗算したものに等しいビット数、例えば、864ビット=16カラー*27ビットのウェーブレットデータ*カラー毎に2エントリの記憶域を有する。代替的には、33ビットのウェーブレットデータが記憶され、データキュー650は1056ビット=16カラー*33ビットのウェーブレットデータ*カラー毎に2エントリを有する。様々な実施形態では、データキュー650は、1若しくはそれ以上のレジスタ及び/又はレジスタファイルを介して実施される。書き込みデコーダ651は、各方向で、入力ウェーブレットのカラーに対応するデータキュー650のエントリへの各入力ウェーブレットの情報を記憶する。
【0222】
幾つかの実施形態では、スケジュール済みルータ654は、各方向(例えば、621~627毎)のスケジューラを有する。各方向で、各スケジューラは、データキュー650内の利用可能データを各方向に割り当てる。カラー毎の宛先情報は、宛先661により(静的に)提供される。様々な実施形態では、宛先661は、カラー数を方向数で乗算したものに等しい記憶ビット数、例えば、112ビット=16カラー*7方向を有する。様々な実施形態では、宛先661は、1若しくはそれ以上のレジスタ及び/又はレジスタファイルを介して実施される。幾つかの実施形態では、宛先661は、結果として、1若しくはそれ以上の方向を提供するカラーによりアクセスされたデータ構造を有する。例えば、二進値として符号化されるカラーによりアドレス指定され、ビットベクトルとして方向毎に1ビットを提供するレジスタファイル/アレイ、カラーを示すビットベクトルの各アサートビットは、関連する方向に送信されるべきである。
【0223】
各スケジューラは互いに独立して動作する。したがって、マルチキャスト出力では、1つのウェーブレットが選択で及び/又は条件付きで、異なるコア・クロック・サイクルで又は代替的には同じコア・クロック・サイクルで異なる方向にスケジュールされる。送信元662は、ウェーブレットが送信された方向の追跡に使用される。カラーがまだ送信されたことがなく、方向がそのカラーでストールされていない場合、各スケジューラはそのカラーを選ぶ。様々な実施形態では、送信元662は、カラー数を方向数で乗算したものに等しい記憶ビット数、例えば、112ビット=16カラー*7方向を有する。様々な実施形態では、送信元662は1若しくはそれ以上のレジスタ及び/又はレジスタファイルを介して実施される。
【0224】
様々な実施形態では、各スケジューラは、1若しくはそれ以上のスケジューリングポリシー、例えば、ラウンドロビン及び優先度を実施する。ラウンドロビン・スケジューリング・ポリシーは、スケジューラが利用可能な全てのカラーから一度に1つを選び、概念的に全てのカラーを通して循環してから、同じカラーを再び選ぶことを含む。優先度スケジューリングポリシーは、スケジューラが、第2の組の所定のカラー(例えば、カラー8~15)よりも高い優先度を有する第1の組の所定のカラー(例えば、カラー0~7)の中から選ぶことを含む。
【0225】
幾つかの実施形態では、ストール657は、ストール情報を捕捉することができ、カラー数を方向数で乗算したものに等しい記憶ビット数、例えば、112ビット=16カラー*7方向を有する。様々な実施形態では、ストール657は、1若しくはそれ以上のレジスタ及び/又はレジスタファイルを介して実施される。
【0226】
幾つかの実施形態では、ストール情報は、データキュー650の占有度に基づいて、全方向の全カラーでストール生成656により生成される。例えば、631~637のそれぞれの各カラーにストール生成器がある。Src670は、ストール生成656の情報を記憶し提供して、データキュー650の対応するカラーを1若しくはそれ以上の対応する方向にマッピングする。特定のカラーに対応するデータキュー650内のキュー空間が不十分なことに起因して、特定のカラーのソースとして機能する方向は、更なる入力のためにデータキュー650内のキュー空間が空くまで、更なる入力の提供をストールするように指示される。様々な実施形態では、Src670は、カラー数を方向数で乗算したものに等しい記憶ビット数、例えば、112ビット=16カラー*7方向を有する。様々な実施形態では、Src670は、1若しくはそれ以上のレジスタ及び/又はレジスタファイルを介して実施される。幾つかの実施形態では、Src670は、結果として1若しくはそれ以上の方向を提供するカラーによりアクセスされるデータ構造を有する。例えば、二進値として符号化されるカラーによりアドレス指定され、ビットベクトルとして方向毎に1ビットを提供するレジスタファイル/アレイ、カラーを示すビットベクトルの各アサートビットは、関連する方向からのソースである。
【0227】
様々な実施形態及び/又は使用状況では、Src670及び宛先661の任意の1若しくはそれ以上に保持された情報の全て又は任意の部分は、ルーティング構成情報の全て又は任意の部分に対応する。様々な実施形態及び/又は使用状況では、ルーティング構成情報の全て又は任意の部分は、例えば、少なくとも部分的に
図2の配置サーバSW210及び/又はニューロンからPEへのマッピングSW212に基づいて決定される。様々な実施形態及び/又は使用状況では、ルーティング構成情報は、例えば、ソフトウェア(
図2の接続サーバSW220、FPGA上の種々SW250、及び/又はPE上のタスクSW260等)の制御下でルータに向けられる。様々な実施形態及び/又は使用状況では、1若しくはそれ以上の所定のカラー(例えば、カラー0)は、所定の固定ルーティングパターン、ルーティング構成情報の全て又は任意の部分、及び/又は計算要素構成情報の全て又は任意の部分に従って、配信に使用される。所定の固定ルーティングパターンの一例は、任意選択で及び/又は条件付きで非ストールフローと組み合わせた所定のマルチキャストトポロジである。幾つかの実施形態及び/又は使用状況では、構成情報の配信は、配信に固有のウェーブレットフォーマットを介して実施される。固有のフォーマットのウェーブレットは、例えば、オフランプ627をモニタするハードコード状態機械により解析及び解釈される。
【0228】
様々な実施形態では、インターフェース要素611~616、621~626、631~636、及び641~646のそれぞれは、ルータ600の1インスタンスとルータ600の別のインスタンスとの間で追加の機能に適応するように、受動相互接続(例えば、バッファリングなしのワイヤ)、能動相互接続(例えば、選択及び/又は任意選択のバッファリングを用いるワイヤ)、及び論理を用いた結合を介して様々に実施される。様々な実施形態では、インターフェース要素617、627、637、及び647のそれぞれは、受動相互接続(例えば、バッファリングなしのワイヤ)、能動相互接続(例えば、選択及び/又は任意選択のバッファリングを有するワイヤ)、及びインスタントルータと、インスタントルータが含まれるPEのCEとの間の、追加機能に適合する論理との結合を介して様々に実施される。
【0229】
幾つかの実施形態及び/又は使用状況では、ルータ600は
図5のルータ500の一実施態様である。
【0230】
図7Aは、ウェーブレットイングレス710としての処理要素のルータに関連する処理の一実施形態の選択された細部を図示する。概念上、ルータは、イングレスポートから可能な限り多くのウェーブレットを受け入れ、必要に応じて、キュー空間が空いている場合、キュー配置し、単位時間(例えば、コア・クロック・サイクル)当たり可能な限り多くのウェーブレットをイグレスポートにルーティングする。幾つかの実施形態及び/又は使用状況では、カラー毎に1つのキューがある。
【0231】
ウェーブレットイングレス710は、各ルータ方向(例えば、
図6の611~617のいずれか)で、(論理的及び/又は物理的に)隣接するPE及び/又はインスタントPEからのウェーブレットイングレスに対応する動作711~713を有する。ルータは、入力ウェーブレットを待つ(ウェーブレットを待つ711)。入力ウェーブレットに応答して、ウェーブレットは受信され(ウェーブレットを受信712)、ウェーブレットに含まれるカラーに対応するルータキューに書き込まれる(ウェーブレット=>ルータQ713)。幾つかの実施形態では、書き込みは少なくとも部分的に、書き込みデコーダ651の制御下である。次に、フローは、別のウェーブレットを待つことに戻る。幾つかの実施形態及び/又は使用状況では、ウェーブレットイングレス710の各インスタンスは、各ルータ方向で同時に動作する。様々な実施形態及び/又は使用状況では、710の動作の全て又は任意の部分の任意の1若しくはそれ以上は、
図6のルータ600の任意の1若しくはそれ以上の要素の全て又は任意の部分により実行される動作及び/又は関連する動作に対応する。
【0232】
図7Bは、フロー740として処理要素の計算要素に関連する背圧情報を生成し提供する一実施形態の選択された細部を図示する。フロー740の動作は様々なエージェントにより実行される。PEは、PEのCE741により図示されるように、動作744~746を実行するCEを有する。PEは、PEのルータ742により図示されるように、動作747を実行するルータを更に有する。
【0233】
幾つかの実施形態では、背圧情報を生成し送信するフローは、CEのどの入力キューが、キュー毎の閾値よりも多くのウェーブレットを記憶しているかを判断する(閾値を超える入力Qを判断744)ことにより開始される(開始743)。幾つかの実施形態では、キュー毎の閾値は予め決定される。様々な実施形態では、入力キューの閾値は、入力キューの最大容量から2を差し引いたものである(例えば、6つのウェーブレットを記憶することができる入力キューは、閾値4を有する)。幾つかの他の実施形態では、入力キューの閾値は、最大容量から1を差し引いたものである。判断は、あらゆる期間で、例えば、あらゆるコア・クロック・サイクルで行われ、期間中、入力キューで受信され記憶されたウェーブレット及び入力キューから消費され削除されたウェーブレットを考慮する。各入力キューに関連するカラーは及び、CEより特定される(入力Qに関連するカラーを特定745)。幾つかの実施形態では、入力キューには複数のカラーが関連付けられ、他の実施形態では、入力キューには1つのカラーが関連付けられる。関連付けられた入力キューが閾値を超えるか、それとも閾値未満であるかに基づいて、カラーのそれぞれでストール/使用可能状態がCEによって特定され、CEによりルータに信号として提供される(ストール/使用可能をルータに提供746)。
【0234】
様々な実施形態では、カラーの使用可能状態は、関連付けられた入力キューが、幾つかのウェーブレット(例えば、1つ又は2つ)を受信するのに十分な容量を有することを示し、ストール状態は、関連付けられた入力キューが、幾つかのウェーブレットを受信するのに十分な容量を有さないことを示す。提供されたストール/使用可能状態に基づいて、PEのルータ742は条件付きで、ウェーブレットをCEに提供し(ストール/使用可能に従ってウェーブレットをCEに提供747)、フローは終わる(終わり748)。幾つかの実施形態及び/又は使用状況では、ルータは、使用可能状態のカラーのウェーブレットを提供し、ストール状態のカラーのウェーブレットを提供しない。
【0235】
様々な実施形態及び/又は使用状況では、フロー740の動作は概念上、CE、例えば、
図8のCE800及びルータ、例えば、
図6のルータ600に関連する。幾つかの実施形態では、入力キューは入力Q897に対応する。様々な実施形態では、各入力キューに関連付けられたカラーは、ハッシュ822の逆数を計算することにより特定される。幾つかの実施形態では、ストール/使用可能信号の群は、オフランプ647を介してルータに提供される。幾つかの実施形態及び/又は使用状況では、
図9Aの任意の部分又は全て、
図16の任意の部分又は全て、及び
図23の部分(例えば、(次の)ソースデータ要素をキュー/メモリから読み出す2310)の1若しくはそれ以上は、入力キューからのウェーブレット消費の部分に対応する。様々な実施形態では、
図16の部分(例えば、ウェーブレットをピッカーキューに書き込む1507)は、ウェーブレットを受信し、入力キューに記憶することに対応する。
【0236】
図7Cは、フロー750として処理要素のルータに関連する背圧情報を生成し提供する一実施形態の選択された細部を図示する。フロー750の動作は様々なエージェントにより実行される。PEのルータは、PEのルータ751により図示されるように、動作756~759を実行する。PEは、PEのCE752により図示されるように、動作760を実行するCEを更に有する。近傍PEの1若しくはそれ以上のルータは、近傍のルータ753により図示されるように、動作761を実行する。
【0237】
幾つかの実施形態では、背圧情報を生成し提供するフローは、PEのルータが、ルータのどのデータキューが閾値よりも多いウェーブレットを記憶しているかを判断する(閾値を超えるデータキューを判断756)ことにより開始される(開始755)。幾つかの実施形態では、閾値は予め決定される。様々な実施形態では、データキューの閾値は、キューの最大容量から1を差し引いたものである(例えば、2つのウェーブレットを記憶することができるキューは、閾値1を有する)。判断は、あらゆる期間で、例えば、あらゆるコア・クロック・サイクルで行われ、期間中、データキューで受信され記憶されたウェーブレット及びデータキューから消費され削除されたウェーブレットを考慮する。ルータは、各カラーのウェーブレットのソースを特定する(カラーソースをチェック757)。各ルータ出力(例えば、ローカルCE及び近傍PE)について、データキューが閾値を超えるか、それとも閾値未満であるか及びウェーブレットのソースに基づいて、ルータは、どのカラーがストール/使用可能状態であるかを判断する(CE、近傍のストール/使用可能カラーを判断758)。
【0238】
様々な実施形態では、カラーの使用可能状態は、カラーの関連付けられたデータキューが、幾つかのウェーブレット(例えば、1つ又は2つ)を受信するのに十分な容量を有することを示し、ストール状態は、関連付けられたデータキューが、幾つかのウェーブレットを受信するのに十分な容量を有さないことを示す。各出力で、カラーのストール/使用可能状態は、PEのCE752及び近傍のルータ753へのストール/使用可能信号をアサートすることにより群として提供される(ストール/使用可能をCE、近傍に提供759)。幾つかの実施形態及び/又は使用状況では、PEのCE752及び近傍のルータ753の各ルータに提供される背圧情報は同一である。提供されたストール/使用可能状態に基づいて、PEのCE752は条件付きで、ウェーブレットをPEのルータ751に提供し(ストール/使用可能に従ってウェーブレットをルータに提供760)、近傍のルータ753は条件付きで、ウェーブレットをPEのルータ751に提供し(ストール/使用可能に従ってウェーブレットをルータに提供761)、フローは終わる(終わり762)。幾つかの実施形態及び/又は使用状況では、CE及び近傍ルータは、使用可能状態のカラーのウェーブレットを提供し、ストール状態のカラーのウェーブレットを提供しない。
【0239】
様々な実施形態及び/又は使用状況では、フロー750の動作は概念上、CE、例えば、
図8のCE800及びルータ、例えば、
図6のルータ600に関連する。幾つかの実施形態では、ルータは、ストールイン640を介してストール/使用可能カラーを受信する(例えば、オフランプ647を介してローカルCEから及び641~646を介して近傍PEから)。様々な実施形態では、各カラー及び関連付けられたソースは、Src670に記憶され、これは、ストール/使用可能信号を各カラーに提供する方向を示す。例えば、Src670内のカラー7のエントリは、ソースがローカルCE(オンランプ617)及びX+613を含むことを示し、したがって、カラー7のストール/使用可能状態はローカルCE及びX+に提供される。幾つかの実施形態では、ストール/使用可能状態信号の群は、オンランプ637を介してルータからCEに送信される。様々な実施形態では、ストール/使用可能信号の群は、ストールアウト630の631~636を介してルータから近傍PEのルータに提供される。
【0240】
図7Dは、フロー780として処理要素の計算要素に関連付けられたストール処理の一実施形態の選択された細部を図示する。フロー780の動作は、PEのCE781により示されるように、PEのCEにより実行される。
【0241】
幾つかの実施形態では、処理をストールするフローは、CEが、任意の出力キューがキュー毎の最大容量のウェーブレットを記憶しているかを判断する(満杯出力Qを特定783)ことにより開始される(開始782)。幾つかの実施形態では、キュー毎の最大容量は予め決定される。判断は、あらゆる期間で、例えば、あらゆるコア・クロック・サイクルで行われ、期間中、出力キューで受信され記憶されたウェーブレット及びルータに送信されて出力キューから削除されたウェーブレットを考慮する。出力キューが最大容量のウェーブレットを記憶しているとの判断に応答して、CEは、出力キューに関連付けられたカラーを特定し(満杯出力キューに関連付けられたカラーを特定784)、それらのカラーの処理をストールし(満杯出力キューに関連付けられたカラーの処理をストール785)、フローを終える(終わり786)。
【0242】
様々な実施形態及び/又は使用状況では、フロー780の動作は概念上、CE、例えば、
図8のCE800に関連する。幾つかの実施形態では、出力キューは出力キュー859に対応する。様々な実施形態及び使用状況では、ウェーブレットは、ウェーブレットに関連付けられたカラー上のルータからストールを受信することに応答して出力キューに記憶される。幾つかの実施形態及び使用状況では、各出力キュー859には1若しくはそれ以上のカラーが関連付けられ、関連付けは出力キュー859の部分において追跡される。他の実施形態では、各出力キュー859には1つのカラーが関連付けられる。幾つかの実施形態及び使用状況では、CEは、最大容量のウェーブレットを記憶している出力キューに関連付けられたカラーに関連付けられた処理をストールする。幾つかの実施形態では、動作785は、少なくとも部分的にピッカー830により実行される。様々な実施形態では、処理は、ウェーブレットの最大容量未満を記憶している出力キューに関連付けられた任意のカラーでイネーブルされる。
【0243】
図8は、CE800としての処理要素の計算要素の一実施形態の選択された細部を図示する。
【0244】
様々な実施形態では、CE800は
図6のルータ600に結合される。例えば、オフランプ820、オンランプ860、オフランプ847、及びオンランプ837はそれぞれ、オフランプ627、オンランプ617、オンランプ647、及びオンランプ637に結合される。CE800は、オフランプ820を介してウェーブレットを受信するように結合されたキュー配信(Qdistr)824を有する。キュー配信824は、スケジューリング情報896にウェーブレットを送信するように結合される。スケジューリング情報896は、入力キュー897、アクティブビット898、及びブロックビット899を有する。スケジューリング情報896はオフランプ847に結合されて、ストール情報(例えば、各カラーのストール/使用可能信号)をルータに送信する。
【0245】
様々な実施形態では、入力Q897は、各ファブリックカラー及び各ローカルカラーの仮想キューを有する。各ファブリックカラーの仮想キューは、例えば、他の処理要素により作成され、各カラーが関連付けられたウェーブレットの保持に使用可能である。各ローカルカラーの仮想キューは、例えば、CE800により作成され、各カラーが関連付けられたウェーブレットの保持に使用可能である。様々な実施形態では、仮想キューは、1若しくはそれ以上の物理的な入力キューにより実施される。幾つかの他の実施形態では、入力Q897は、各ファブリックカラー及び各ローカルカラーの物理キューを有する。入力Q897のそれぞれ1つ(例えば、入力Q0 897.0)にはアクティブビット898(例えば、アクティブビット0 898.0)及びブロックビット899(例えば、ブロックビット0 899.0)のそれぞれが関連付けられる。アクティブビット898のそれぞれ1つ及びブロックビット899のそれぞれ1つは、入力Q897のそれぞれ1つについての情報を含み、例えば、ブロックビットN 899.Nは、入力QN 897.Nがブロックされているか否かを示す。
【0246】
様々な実施形態では、各カラーの物理的Q、カラーの所定のサブセットの1若しくはそれ以上の物理的Q、及びカラーの動的に決定されるサブセットの1若しくはそれ以上の物理的Qが様々に存在する。様々な実施形態では、同じサイズの1若しくはそれ以上の物理的Q(例えば、それぞれが同数のウェーブレットを保持することができる)及び異なるサイズの1若しくはそれ以上の物理的Q(例えば、それぞれが異なる数のウェーブレットを保持することができる)が様々に存在する。様々な実施形態では、仮想Qに様々にマッピングされる1若しくはそれ以上の物理的Qがあり、各仮想Qには1若しくはそれ以上のカラーが関連付けられる。例えば、N個の論理Q及びN個未満の物理的Qがある。別の例として、入力Q897の幾つかは8つのウェーブレットを保持することができ、入力Q897のうちの他のものは3つのウェーブレットを保持することができる。幾つかの実施形態では、入力Q897の特定の1つに関連付けられた1若しくはそれ以上のカラーのトラフィックは、推定及び/又は測定され、入力Q897の特定の1つは、トラフィックに基づいて特定の数のウェーブレットを保持することができる。幾つかの実施形態では、物理Qの1若しくはそれ以上は、レジスタ及びSRAMの1若しくはそれ以上により実施される。
【0247】
ハッシュ822はQdistr824に結合され、少なくとも部分的にウェーブレットのカラーに基づいて、ウェーブレットを記憶する物理的キューを選択する(例えば、ハッシュ関数をカラーに適用することにより)。幾つかの実施形態では、ウェーブレットペイロードに関連付けられたカラーは、キュー内のエントリが全体ウェーブレット(カラーを有するペイロード)を保持するように、キュー内のウェーブレットペイロードを用いて明示的に記憶される。幾つかの実施形態では、ウェーブレットペイロードに関連付けられたカラーは、キュー内のエントリが、関連付けられたカラーを記憶せずにウェーブレットペイロードを記憶するように、キュー内のウェーブレットペイロードを用いて明示的に記憶されない。ウェーブレットペイロードのカラーは、ウェーブレットペイロードが記憶された特定のキュー等から推測される。
【0248】
幾つかの実施形態では、アクティブビット898及びブロックビット899の1若しくはそれ以上は、各カラーに1つのエントリでN個のエントリを有する各ビットベクトルとして実施される。様々な実施形態では、アクティブビット898及びブロックビット899の1若しくはそれ以上は、各カラーに1つのエントリを有するテーブル内の各ビットフィールドとして実施される。
【0249】
ピッカー(Picker)830は、スケジューリング情報896、RF842、デコーダ(Dec)840、ベース(Base)890、PC834、I配列(I-Seq)836,及びD配列(D-Seq)844に結合される。RF、デコーダ、ベース、PC、I配列、及びD配列はそれぞれ、レジスタファイル、デコーダ、ベースレジスタ、プログラムカウンタ、命令シーケンサ、及びデータシーケンサの略である。ピッカー830は、入力Q897の1つから、処理するウェーブレットを選択することができる。幾つかの実施形態では、ピッカー830は、入力Q897の1つを選択し、選択されたキュー内の最も古いウェーブレットを選択することによりウェーブレットを選択する。幾つかの状況では、ピッカー830は、デコーダ840が、終了命令が復号化されたことを通知する場合、処理する新しいウェーブレットを選択する。幾つかの他の状況(例えば、ファブリック入力にアクセスする命令)では、ピッカー830は、D配列844から受信したキュー識別子に応答して、入力Q897の1つから処理する新しいウェーブレットを選択する。
【0250】
ピッカー830は、入力Q897の1つから選択されたウェーブレットを受信し、選択されたウェーブレットからのデータ及びインデックスの1若しくはそれ以上をRF842に選択的に及び/又は任意選択的に送信することができる。幾つかの実施形態では、入力Q897はデータパス(Data Path)852に結合され、データパスは、Qの1つから直接データを受信することができる。ピッカー830は、ベースアドレスをベース890から読み取り、命令アドレスを計算して、PC834及びI配列836に送信することができる。ベース890は、ベースアドレスを記憶し、D配列844にも結合される。PC834は、フェッチする次の命令のアドレスを記憶する。様々な実施形態では、ベース890及びPC834はレジスタとして実施される。幾つかの実施形態では、D配列844は、ベース890からベースアドレスを読み取り、少なくとも部分的にベース890から読み取られた値に基づいて、メモリ854及びDストア(D-Store)848から1若しくはそれ以上のアドレスにおけるデータを要求することができる。
【0251】
ピッカー830は、処理するウェーブレットを選択する代わりに、処理するアクティベーションされたカラー(アクティブビット898に対応する1つのアサートにより示される)を選択することが更にできる。選択されたカラーに対応するタスクは開始される。幾つかの実施形態及び/又は使用状況では、処理するウェーブレットの選択とは異なり、情報はRF842に提供されず、したがって、開始されたタスクに通信されるデータは、例えば、グローバルレジスタ及び/又はメモリを介する。
【0252】
I配列836はPC834に結合され、PC834を読み取り変更することができる(例えば、シーケンシャル命令のインクリメント又は分岐命令の非シーケンシャル)。I配列836はメモリ854にも結合され、命令フェッチアドレスをメモリ854に提供することができる(例えば、PC834に基づいて)。
【0253】
メモリ854はデコーダ840、データパス852、及びD配列844に更に結合される。I配列836からの命令フェッチアドレスに応答して、メモリ854は、命令フェッチアドレスに配置された命令をデコーダ840(命令デコーダ)に提供することができる。様々な実施形態では、メモリ854は、各命令フェッチアドレスに応答して、最高で3つまでの命令を提供することができる。幾つかの実施形態では、命令は、
図25A、
図25B、及び
図25Cの1若しくはそれ以上に従ってフォーマットされる。
【0254】
様々な実施形態及び/又は使用状況では、命令は、例えば、ソフトウェア(
図2の接続サーバSW220、FPGA上の種々SW250、及び/又はPE上のタスクSW260等)の制御下でPEに配信される。様々な実施形態及び/又は使用状況では、マスタPE(例えば、PE122の任意のPE)として動作しているPEは、ファブリックを介して命令及び/又は構成情報の任意の部分を1若しくはそれ以上のスレーブPE(例えば、マスタPEを含むPE122の任意のPE)に配信する。幾つかの実施形態では、配信は、1若しくはそれ以上の所定のカラー(例えば、カラー0)上のウェーブレットを介し、及び/又は所定の固定ルーティングパターンに従う。幾つかの他の実施形態では、配信は、1若しくはそれ以上の選択されたカラー(例えば、プログラムにより選択される)上のウェーブレットを介する。様々な実施形態では、ウェーブレットは、スレーブPEとして動作している1若しくはそれ以上のPEにより受信され、続くフェッチ及び実行のためにメモリ854の各インスタンスに書き込まれる。
【0255】
デコーダ840は、様々な実施形態及び/又は使用状況に従って命令の1若しくはそれ以上の特性を特定することができる。例えば、デコーダ840は、命令を解析してオペコード(例えば、
図25Aのオペコード2512)及びゼロ以上のオペランド(例えば、発信元及び/又は宛先オペランド)にすることができる。別の例として、デコーダ840は、命令タイプ(例えば、分岐命令又は乗累算命令等)に従って命令を識別することができる。更に別の例では、デコーダ840は、命令が特定の命令であると判断することができ、それに従って1若しくはそれ以上の信号を活性化する。
【0256】
デコーダ840は、終了(Terminate)812を介してピッカー830に結合され、復号化された命令の1つが、タスクを終わらせる終了命令(例えば、選択されたウェーブレットに応答して開始されたタスクに応答して実行される命令の最後の命令が終了命令である)であることを通知することができる。
【0257】
幾つかの状況では、デコーダ840は分岐命令を復号化することができる。分岐命令の例には、PC834を条件付きで変更する条件付き分岐命令及び無条件でPC834を変更するジャンプ命令がある。分岐命令はI配列836によって実行され、任意選択で及び/又は条件付きでPC834を変更する。幾つかの状況では、分岐命令は、PC834を条件付きで変更することによりソフトウェア制御フロー(例えば、ループ)を実施する。
【0258】
命令(例えば、乗累算命令)の復号化に応答して、デコーダ840は、オペコードをデータパス852に送信することができる。デコーダ840はDSR846に結合され、1若しくはそれ以上のオペランド識別子をDSR846に送信することができる。デコーダ840はD配列844にも結合され、1若しくはそれ以上のオペランドタイプ識別子をD配列844に送信することができる。
【0259】
DSR846は、データ構造記述子(DSD)を保持するレジスタを有し、D配列844に結合され、1若しくはそれ以上のDSDをD配列844に送信することができる。幾つかの実施形態では、DSRは、発信元DSR、宛先DSR、拡張DSR、及びストライドレジスタを有する。デコーダ840からのオペランド識別子の受信に応答して、DSR846は、オペランド識別子によって指定されたDSDを読み取り、DSDをD配列844に送信することができる。様々な実施形態では、DSR846は、最高で2つまでの発信元オペランド識別子及び1つの宛先オペランド識別子を受信し、2つの発信元DSR及び1つの宛先DSRを読み取り、2つの発信元DSD及び1つの宛先DSDをD配列844に送信することができる。幾つかの実施形態では、CEはDSRロード命令に応答してDSDをメモリからDSRに明示的に書き込むことができ、CEは、DSR記憶命令に応答して、DSDをDSRからメモリに明示的に書き込むことができる。幾つかの実施形態では、DSR846は、メモリ854に結合され、メモリ854からデータを受信し、メモリ854にデータを送信することができる。
【0260】
幾つかの実施形態では、DSR846は3組のDSRを有する:発信元0オペランドの12個のDSR(S0DSRと呼ばれることもある)、発信元1オペランドの12個のDSR(S1DSRと呼ばれることもある)、及び宛先オペランドの12個のDSR(DDSRと呼ばれることもある)を有する。加えて、DSR846は、6つの拡張DSR(XDSRと呼ばれることもある)及び6つのストライドレジスタも有する。幾つかの実施形態では、DSRは48ビットを有し、XDSRは51ビットを有し、ストライドレジスタは15ビットを有する。様々な実施形態では、各命令は、48ビットのデータをメモリ(例えば、Dストア(D-Store)848又はメモリ854)から各DSRにロードする(例えば。LDS0WDS、LDS1WDS、及びLDDWDS命令はそれぞれ、発信元0DSR、発信元1DSR、及び宛先DSRをロードする)。様々な実施形態では、各命令は、各DSRからの48ビットのデータをメモリに記憶する(例えば、STS0WDS、STS1WDS、及びSTDWDS命令はそれぞれ、発信元0DSR、発信元1DSR、及び宛先DSRをメモリに記憶する)。幾つかの実施形態では、命令(例えば。LDXDS)は、メモリからのデータをXDSRにロードし、他の命令(例えば、STXDS)はXDSRからのデータをメモリに記憶する。データをメモリとXDSR(例えば、LDXDS及びSTXDS)との間で移動させる命令は、メモリの64ビットにアクセスし、下位51ビットのみを使用する。幾つかの実施形態では、命令(例えば、LDSR)は、メモリからのデータをストライドレジスタにロードし、他の命令(例えば、STSR)はストライドレジスタからのデータをメモリに記憶する。幾つかの実施形態では、データをメモリとストライドレジスタとの間で移動させる命令は、メモリの16ビットにアクセスし、下位15ビットのみを使用する。
【0261】
D配列844はDストア848、RF842、及びピッカー830にも結合され、DSR846から受信されたDSDに応答して、様々なソースにおけるベクトルデータへのアクセスを開始することができる。幾つかの状況では(例えば、1Dメモリベクトル、4Dメモリベクトル、及び循環メモリバッファの1つを記述するDSDの受信に応答して)、D配列844は、アクセスする一連のメモリアドレス(例えば、メモリ854及び/又はDストア848内の)を計算することができる。幾つかの他の状況では(例えば、ファブリック入力を記述するDSDの受信に応答して)、D配列844は、ピッカー830を介して入力Q897の1つからのファブリックデータの読み出しを開始することができる。更に他の状況では(例えば、ファブリック出力を記述するDSDの受信に応答して)、D配列844は、ウェーブレットへのデータの変換及び出力キュー859及びオンランプ860を介して結合されるファブリックへのウェーブレットの送信を開始することができる。幾つかの実施形態では、D配列844は、3つのソースにおけるベクトルデータに同時にアクセスすることができる(例えば、メモリからのベクトルデータの読み取り、ファブリック入力からのベクトルデータ読み取り、及びファブリック出力へのベクトルデータの書き込み)。
【0262】
幾つかの実施形態では、D配列844は、RF842内の1若しくはそれ以上のレジスタ内のデータにアクセスすることができる(例えば、1若しくはそれ以上の入力オペランド及び/又は1つの出力オペランドを有する命令)。幾つかの状況では、D配列844は、RF842内のレジスタからのオペランドを要求することができる。更に他の状況では、D配列844は、DSDに従ってアクセスする一連のメモリアドレスを計算するための入力として、RF842内のレジスタからのデータ(例えば、インデックス)を要求することができる。
【0263】
様々な実施形態では、PE800の状態の全て又は任意の部分は、ソフトウェア可視状態(例えば、Dストア848、メモリ854、RF842、DSR846、出力キュー859、及び入力Q897、ブロックビット899の任意の組合せ)及びソフトウェアアクセス可能ではない状態(例えば、UT状態845)を含む、アドレス空間においてマッピングされる。様々な実施形態では、アドレス空間及び/又はアドレス空間の部分は、レジスタ及びSRAMの1若しくはそれ以上により実施される。幾つかの実施形態では、1つのASICに実施される複数のPEのアドレス空間は、1つのアドレス空間にマッピングされる。幾つかの実施形態では、各PE(例えば、1つのASIC又はその部分で実施される複数のPEの)は各プライベートアドレス空間を有する。プライベートアドレス空間を有する幾つかの実施形態では、1つのPEは、他のPEのアドレス空間内の要素に直接アクセスすることができない。
【0264】
データパス852はRF842及びDストア848に結合される。様々な実施形態では、メモリ854、RF842、入力Q897、及びDストア848の任意の1若しくはそれ以上は、データをデータパス852に提供し(例えば、D配列844からの要求に応答して)、データパス852からデータ(例えば、動作の結果)を受信することができる。データパス852は、演算(例えば、実施形態により、復号化されたオペコードにより指定され、及び/又はデコーダ840により提供される)を実行することができる実行リソース(例えば、ALU)を有する。幾つかの実施形態では、RF842は、GPR0~GPR15と呼ばれることもある16個の汎用レジスタを有する。各GPRは16ビット幅であり、整数又は浮動小数点データを記憶することができる。
【0265】
データパス852はまた、出力キュー859及びオンランプ860を介してルータに結合され、出力キュー859及びオンランプ860を介してデータをルータに送信することができる。様々な実施形態では、出力キュー859は、各ファブリックカラーの仮想キュー(例えば、データパス852により作成され、各カラーが関連付けられたウェーブレットについての情報を保持する)、例えば、Q859.0、...、及びQ859.Nを有する。様々な実施形態では、出力キュー859の第1の部分は統計的又は動的に、6つのウェーブレットを保持することができ、出力キュー859の第2の部分は統計的又は動的に、2つのウェーブレットを保持することができ、出力キュー859の第3の部分は統計的又は動的に、ゼロ個のウェーブレットを保持することができる。
【0266】
幾つかの実施形態では、データパス852は、1若しくはそれ以上のウェーブレットに関連付けられたファブリックカラー及び出力キュー859へのファブリックカラーのマッピングに基づいて、1若しくはそれ以上のウェーブレットを出力キュー859の1つに書き込むことができる。出力キュー859は、オンランプ860を介してルータ(例えば、
図6のルータ600)にウェーブレットを送信することができる。幾つかの実施形態及び/又は使用状況では、出力キュー859は、ルータに送出可能ではない(例えば、背圧又は競合に起因して)ウェーブレットをバッファリングする。幾つかの実施形態及び/又は使用状況では、出力キュー859の1つが満杯である場合、ファブリックパケットを出力キュー859の1つに書き込む処理はストールする(例えば、ピッカー830により)。幾つかの実施形態及び/又は使用モデルでは、出力キュー859は、オンランプ837を介してルータに結合され、背圧情報をルータから受信することができる。様々な実施形態では、背圧情報は、各カラーのストール/使用可能信号を有し、背圧情報に応答して、ストールされたカラーに対応するウェーブレットはルータに送信されない。
【0267】
UT状態845は、ピッカー830、デコーダ840、D配列844、DSR846、スケジューリング情報896、及び出力キュー859に結合される(上記結合は、明確にするために図から省かれている)。様々な実施形態及び又は使用状況では、UT状態845は、1若しくはそれ以上のマイクロスレッド処理された命令についての情報の記憶及び提供に使用される。マイクロスレッド処理された命令の一例は、例えば、マイクロスレッド処理がイネーブルされていることを示す対応するUEフィールドを有する少なくとも1つのファブリック・ベクトル・オペランドを介してマイクロスレッド処理をイネーブルする命令である。幾つかの実施形態では、UT状態845は、1若しくはそれ以上(例えば、8つ)のエントリ(例えば、SRAM等の記憶装置により実施される)のデータ構造を有し、1若しくはそれ以上のマイクロスレッド処理された命令(マイクロスレッド処理された命令それ自体、マイクロスレッド処理された命令の演算コード、マイクロスレッド処理された命令の1若しくはそれ以上のオペランド、及びマイクロスレッド処理された命令のオペランドに関連付けられた1若しくはそれ以上のDSDの任意の組合せ等)のそれぞれについての情報を記憶し提供することができる。様々な実施形態では、UT状態845の各エントリには、入力Q897及び出力キュー859のそれぞれ1つの1若しくはそれ以上が関連付けられる(例えば、エントリ0にはQ897.0及びQ859.0が関連付けられる)。幾つかの実施形態では、UT状態845のエントリから入力Q897及び出力キュー859へのマッピングは、静的であり、予め決定される。UT状態845は、デコーダ840とマイクロスレッド処理された命令情報(マイクロスレッド処理された命令それ自体等)を通信し、D配列844及びDSR846の1若しくはそれ以上とDSDの部分を通信することができる。幾つかの実施形態では、マイクロスレッド処理された命令についての情報は、関連付けられたDSDからのマイクロスレッド識別子(例えば、UTID2102又はUTID2122)によって決定されるUT状態845のエントリに記憶される。様々な実施形態では、ファブリック宛先オペランドありのマイクロスレッド処理された命令についての情報は、UTID2122によって決定されるエントリに記憶される。ファブリック宛先なしのマイクロスレッド処理された命令についての情報は、src0オペランドのUTID2102によって決定されるエントリ及びファブリックからのsrc0オペランドがない場合、src1オペランドのUTID2102によって決定されるエントリに記憶される。
【0268】
様々な実施形態及び使用状況では、UT状態845は、D配列844、DSR846、スケジューリング情報896、及び出力キュー859の任意の1若しくはそれ以上と共にストール情報を受信及び/又はモニタすることができる。幾つかの実施形態では、UT状態845は、1若しくはそれ以上のマイクロスレッド処理された命令が実行に使用可能であることをピッカー830に通信することができ、ピッカー830は、実行に向けてマイクロスレッド処理された命令をスケジュールすることができる。様々な実施形態及び/又は使用状況では、UT状態845からのマイクロスレッド処理された命令が実行されると、UT状態845は、デコーダ840、D配列844、及びデータパス852の1若しくはそれ以上に命令情報(例えば、演算及び/又は1若しくはそれ以上オペランド)を通信することができる。
【0269】
幾つかの実施形態では、Dストア848は、メモリ854よりも小さく、より効率的な(例えば、1ビットデータ読み取り当たりのジュール数がより低い)メモリの一種である。幾つかの実施形態では、Dストア848は、メモリ854より比較的容量が低く(例えば、保持する情報量がより少ない)、比較的アクセス待ち時間が短く及び/又は比較的スループットが高いメモリの一種である。幾つかの状況では、より頻繁に使用されるデータはDストア848に記憶され、一方、あまり頻繁に使用されないデータはメモリ854に記憶される。幾つかの実施形態では、Dストア848は第1のアドレス範囲を有し、メモリ854は第2の非重複アドレス範囲を有する。幾つかの実施形態及び/又は使用状況では、メモリ854は、命令を記憶することができる第1のメモリと見なされ、Dストア848及びRF842の任意の組合せは、データを記憶することができる第2のメモリと見なされる。
【0270】
幾つかの実施形態及び/又は使用状況では、仮想キュー(例えば、入力Q897及び出力キュー859)と物理キュー(例えば、SRAMを介して実施される記憶装置)との間には一対一の対応があり、例えば、各仮想キューに1つの物理キューがある。一対一実施形態の幾つかでは、仮想キューの1若しくはそれ以上の各サイズは、あるときにはゼロであり、別の時点では物理キューに従って最大サイズである等、経時変化するように動的に管理される。様々な実施形態及び/又は使用状況では、多対一の対応が仮想キューと物理キューとの間に存在し、例えば、1つの物理キューは複数の仮想キューを実施する。様々な実施形態では、様々に、各カラーの物理Q、カラーの所定のサブセットに1若しくはそれ以上の物理Q、及びカラーの動的に決定されるサブセットに1若しくはそれ以上の物理Qが存在する。様々な実施形態では、様々に、同じサイズの1若しくはそれ以上の物理Q(例えば、それぞれが同数のウェーブレットを保持することができる)及び異なるサイズの1若しくはそれ以上の物理Q(例えば、それぞれが異なる数のウェーブレットを保持することができる)が存在する。様々な実施形態では、仮想Qに様々にマッピングされる1若しくはそれ以上の物理Qがあり、各仮想Qには1若しくはそれ以上のカラーが関連付けられる。例えば、物理Qよりも多数の仮想Qがある。別の例では、仮想キューの第1の部分は統計的又は動的に6つのウェーブレットを保持することができ、仮想キューの第2の部分は統計的又は動的に2つのウェーブレットを保持することができ、仮想キューの第3の部分は統計的又は動的にゼロ個のウェーブレットを保持することができる。幾つかの実施形態では、物理Qの1若しくはそれ以上は、レジスタ及びSRAMの1若しくはそれ以上により実施される。
【0271】
様々な実施形態では、CE800は5段パイプラインに従って命令を処理することができる。幾つかの実施形態では、最初の段において、CEは命令シーケンシング、例えば、ウェーブレットの受信(例えば、入力Q897における)、実行するウェーブレットの選択(例えば、ピッカー830による)、及びウェーブレットに対応する命令へのアクセス(例えば、I配列836による)の1若しくはそれ以上を実行することができる。2番目の段において、CEは、命令をデコードし(例えば、デコーダ840により)、任意のDSRを読み出し(例えば、DSR846から)、オペランドのアドレスを計算する(例えば、DSDに従ってD配列844により)ことができる。3番目の段において、CEは、データを任意の1若しくはそれ以上のメモリ(例えば、メモリ854、RF842、Dストア848、入力キュー897)から読み出すことができる。4番目の段において、CEは、命令によって指定された(例えば、データパス852において)演算を実行し、結果をレジスタファイル(例えば、RF842)に書き込むことができる。5番目の段において、CEは、任意の1若しくはそれ以上のメモリ、例えば、メモリ854、DSR846、Dストア848に結果を書き込むことができる。様々な実施形態では、段の1つにおいて、CEは任意選択で及び/又は条件付きで結果を出力キュー859に提供し、非同期でウェーブレットをルータに提供することができる。
【0272】
幾つかの実施形態及び/又は使用状況では、図の要素は
図5の計算要素520の一実施態様に対応する。例えば、オフランプ820及びオフランプ847の組み合わせは、オフランプ521に対応し、オンランプ860及びオンランプ837の組み合わせはオンランプ522に対応する。
【0273】
図8に図示される分割及び結合は単に例示であり、異なる分割及び/又は結合を有する他の実施形態も考えられる。例えば、他の実施形態では、RF842及びDSR846は1つのモジュールに結合される。更に他の実施形態では、DSR846及びデータパス852は結合される。幾つかの実施形態及び/又は使用状況では、スケジューリング情報896の要素は、カラーにより編成、管理、及び/又は実施され、例えば、各データ構造及び/又は物理要素又はその部分は、カラー0に向けられ、別のデータ構造及び/又は物理要素又はその部分はカラー1に向けられ、以下同様である。
【0274】
タスク開始
図9Aは、フロー900としてタスク開始のウェーブレットを処理する一実施形態の選択された細部を図示する。概念的には、処理は、タスクの命令のフェッチ及び実行を開始するアドレスを特定することによってタスクを開始することを含む。アドレスは、少なくとも部分的にウェーブレットが含む情報に基づいて特定される。
【0275】
幾つかの実施形態では、タスク開始のウェーブレットの処理は、例えば、処理の1若しくはそれ以上のキュー(タスク開始に使用可能なウェーブレットを選択902)の中から使用可能なウェーブレットを選択することで開始する(開始901)。幾つかの実施形態では、ウェーブレットは、各キューに関連付けられたブロック/ブロック解除状態、各キューに関連付けられたアクティブ/非アクティブ状態、前に選択されたウェーブレットのカラー、及びスケジューリングアルゴリズムの1若しくはそれ以上に基づいて選択される。
【0276】
使用可能なウェーブレットを選択した後、そのウェーブレットをチェックして、そのウェーブレットが制御ウェーブレットであるか、それともデータウェーブレットであるかを判断する(制御/データ?903)。ウェーブレットが制御ウェーブレットである場合、制御ウェーブレットに関連付けられたタスクの開始アドレスが、ウェーブレットのインデックスの下位6ビットをベースレジスタに追加することによって計算される(下位インデックスビットをベースレジスタに追加して、命令アドレスを形成910)。ウェーブレットが制御ウェーブレットではない場合、ウェーブレットはデータウェーブレットである。データウェーブレットに関連付けられたタスクの開始アドレスは、ウェーブレットのカラーを4倍したものにベースレジスタを追加することによって計算される((カラー*4)をベースレジスタに追加して、命令アドレスを形成904)。制御ウェーブレットで計算されるか、又はデータウェーブレットで計算されるタスクの開始アドレスは、タスクの命令の開始アドレスに対応する。
【0277】
命令の開始アドレスが計算されると、命令は開始命令アドレスからフェッチされる(メモリ内の命令アドレスから命令をフェッチ905)。フェッチされた命令の1若しくはそれ以上は、復号化され実行される(フェッチされた命令を実行906)。フェッチ及び実行(動作905及び906に図示されるように)は、終了命令が実行される(終了909)まで続けられ(終了せず908)、終了命令が実行されると、次に、開始されたタスクに関連付けられた処理は完了する(終わり919)。幾つかの実施形態では、終了命令は、ウェーブレットの処理に関連付けられた最後の命令である。開始されたタスクが完了した後、フローは任意選択で及び/又は選択で、開始901から開始して、タスク開始の別のウェーブレットの処理に進む。
【0278】
様々な使用状況に従って、実行(フェッチされた命令を実行906)は、シーケンシャル命令及び/又は制御フロー命令を実行することを含み、フェッチに使用される命令アドレスは、それに従って変わる(メモリ内の命令アドレスから命令をフェッチ905)。
【0279】
タスク開始に選択された使用可能なウェーブレットは、特定のカラーで構成される。幾つかの実施形態及び/又は使用状況では、使用可能なウェーブレットがタスク開始に選択されると(タスク開始に使用可能なウェーブレットを選択902)、特定のカラーの受信した更なるウェーブレットがある場合、そのウェーブレットは、命令を実行するためのオペランドとして使われる(フェッチされた命令を実行906)。オペランドとして特定のカラーを有するウェーブレットを使用することは、終了命令のフェッチ及び実行(終了909)まで続く。
【0280】
様々な実施形態及び/又は使用状況では、フロー900の動作は概念的に、CE、例えば
図8のCE800に関連する。一例として、ブロックビット899は、各キューに関連付けられたブロック/ブロック解除状態に対応する。アクティブビット898は、各キューに関連付けられたアクティブ/非アクティブ状態に対応する。幾つかの実施形態では、入力キューのアクティブビットは、ウェーブレットが入力キューに書き込まれる場合、アクティブ状態に設定される。別の例として、動作902の部分はピッカー830により実行される。ピッカー830は、ラウンドロビン又は最後から選択等のスケジューリングポリシーに従って、使用可能な(例えば、ブロックビット899の関連付けられたものがデアサートされ、アクティブビット898の関連付けられたものがアサートされる)入力Q897の1つから最も古いウェーブレットを選択する。幾つかの実施形態及び/又は使用モデルでは、ピッカー830は、最後から選択スケジューリングポリシーに従って動作する場合、ピッカー830がクローズアウトウェーブレットを選択するまで、使用可能な入力Q897のうちの同じ入力Qからウェーブレットを選択し続ける。ピッカー830により選択されたウェーブレットは、
図13A及び
図13Bの一方に従ってフォーマットされたカラー及びウェーブレットペイロードを有し、例えば、制御ビット1320(
図13A)のアサート又は制御ビット1340(
図13B)のアサートは、クローズアウトウェーブレットを示す。
【0281】
別の例として、動作903はCE800の要素によって実行される。ウェーブレットペイロードの制御ビット(例えば、
図13Aの制御ビット1320)がアサートされる場合(例えば、ピッカー830によって判断される)、ウェーブレットは制御ウェーブレットである。続けて、動作910が、ピッカー830等のCE800がベース890の内容を
図13Aの下位インデックスビット1321.1の下位6ビットに追加して、制御ウェーブレットに関連付けられたタスクの命令の命令フェッチアドレスを形成することによって実行される。次に、ピッカー830は命令フェッチアドレスをPC834に提供する。ウェーブレットペイロードの制御ビット(例えば、
図13Aの制御ビット1320)がデアサートされる場合(例えば、ピッカー830により判断される)、ウェーブレットはデータウェーブレットである。続けて、動作904が、ピッカー830等のCE800が、ウェーブレットのカラー(例えば、
図13A及び
図13Bのカラー1324に対応する)を4で乗算したものにベース890の内容を追加して、データウェーブレットに関連付けられたタスクの命令の命令フェッチアドレスを形成することにより実行される。次に、ピッカー830は、命令フェッチアドレスをPC834に提供する。
【0282】
別の例として、動作905は、CE800の要素、例えば、PC834、I配列836、及びメモリ854によって実行される。動作906は、CE800の要素、例えば、特にデコーダ840、D配列844、メモリ854、RF842、及びデータパス852によって実行される。実行は、終了命令の実行を含む。終了命令の一例は、終了ビットがアサートされた命令である。この例の状況では、デコーダ840が終了命令を復号化すると、デコーダ840は終了812を介してピッカー830に、ウェーブレットが終わったことを通知し、ピッカー830は、例えば、動作902に対応する処理の別のウェーブレットを選択する。
【0283】
様々な実施形態及び/又は使用状況では、タスク開始のウェーブレットを処理する要素900の全て又は任意の部分は概念的に、
図2のPE上のタスクSW260の命令の実行の全て又は任意の部分に対応する。
【0284】
様々な実施形態及び/又は使用状況では、フロー900を含む動作の全て又は任意の部分は概念的に、
図15のフロー1500及び/又は
図16のフロー1600の全て又は任意の部分に様々に対応する。例えば、動作902は動作1602の全て又は任意の部分を含み、動作903、904、910、905、及び906は、動作1603の全て又は任意の部分を含む。
【0285】
図9Bは、フロー920としてタスクをアクティベーションする一実施形態の選択された細部を図示する。概念上、タスクアクティベーションは、オン若しくはそれ以上のカラーをアクティベーションし、その結果、カラーは実行に向けて選択可能になり、次に、カラー(例えば、アクティベーションされたカラーの1つ)を選び、カラーに対応するタスクを開始することを含む。
【0286】
幾つかの実施形態では、タスクをアクティベーションするフローは、1若しくはそれ以上のカラーのアクティベーション動作(カラーのアクティベーション動作923)を実行することにより開始される(開始921)。アクティベーション動作は、例えば、命令又は1組のイベントの1つに応答する。アクティベーション動作に応答して、対応するカラーはアクティベーションされ、実行に選択可能にする(カラーをアクティベーション924)。次に、実行に選択可能なカラーは、ピッカーにより選ばれる(ピッカーはカラーを選択925)。選ばれたカラーに対応するタスクは開始され、選ばれたカラーは非アクティベーションされる(タスクを開始、カラーを非アクティベーション926)。タスク開始は、タスクの開始アドレスを特定し、開始アドレスから開始して命令をフェッチし実行することを含む。次に、フローは完了する(終わり929)。
【0287】
アクティベーション動作が応答する命令は、アクティベーション命令を含む。アクティベーション命令は、アクティベーションする1若しくはそれ以上のカラーを指定する。アクティベーションするカラーは、アクティベーション命令内の即値(例えば、アクティベーションする1つのカラーを指定する6ビットフィールド)、アクティベーション命令により指定されるレジスタ、又は他の情報の1若しくはそれ以上により様々に指定される。幾つかの実施形態及び/又は使用状況では、アクティベーション命令ソースが即座ではない場合、アクティベーション命令が完了するまで、新しいタスク選択はストールされる。
【0288】
幾つかの実施形態及び/又は使用状況では、アクティベーション動作が応答する1組のイベントは、マイクロスレッド処理を可能にするファブリックベクトルの処理の完了を含む。例えば、ファブリックベクトルは、ファブリック入力データ構造記述子(DSD)に従って処理される。ファブリック入力DSDは、マイクロスレッド処理がイネーブルされていることを指定し、ファブリック入力DSDは、ファブリックベクトルの処理の完了に応答してアクティベーションするカラーを更に指定する。カラーは、ファブリックベクトルの処理の完了に応答してアクティベーションされる。別の例では、ファブリックベクトルは、ファブリック出力DSDに従って処理される。ファブリック出力DSDは、マイクロスレッド処理がイネーブルされていることを指定し、ファブリック出力DSDは、ファブリックベクトルの処理の完了に応答してアクティベーションするカラーを更に指定する。カラーは、ファブリックベクトルの処理の完了に応答してアクティベーションされる。
【0289】
幾つかの実施形態及び/又は使用状況では、アクティベーション動作が応答する1組のイベントは、関連付けられた循環メモリバッファ拡張DSD(XDSD)を有する循環メモリバッファDSDに従って循環バッファから要素をプッシュ及び/又はポップすることを更に含む。循環メモリバッファXDSDは、要素を循環バッファにプッシュすること及び循環バッファから要素をポップすることに応答してアクティベーションするカラーを指定する各フィールドを有する。各カラーは、プッシュ及び/又はポップに応答してアクティベーションされる。
【0290】
幾つかの実施形態及び/又は使用状況では、カラーをアクティベーションすることは、カラーに対応するインジケータをアクティベーション状態dに設定することを含み、カラーを非アクティブにすることは、インジケータを非アクティベーション状態に設定することを含む。幾つかの実施形態及び/又は使用状況では、インジケータはビットを有し、ビットのアサートはアクティベーション状態を示し、ビットのデアサートは非アクティベーション状態を示し、各カラーに対応するビットがある。
【0291】
様々な実施形態及び/又は使用状況では、
図9Bに示される動作は、ファブリックカラー及び/又はローカルカラーに適用可能である。
【0292】
様々な実施形態及び/又は使用状況では、フロー920の動作は概念的に、CE、例えば
図8のCE800に関連する。例えば、カラーのアクティベーション/非アクティベーションは、アクティブビット898の対応する1つをアサート/デアサートすることにより実行される。別の例では、ピッカーはカラーを選択925は、ピッカー830により実行される。様々な実施形態及び/又は使用状況では、フロー920を含む動作の全て又は任意の部分は概念上、
図9Aのフロー900の全て又は任意の部分に様々に対応し、例えば、動作926は、
図9Aの動作904、905、及び906の全て又は任意の部分を含む。
【0293】
ファブリック入力データ構造記述子2100(
図21A)は、マイクロスレッド処理のイネーブルを指定するフィールド(UE2013)と、ファブリック入力DSDにより記述されるファブリックベクトルの処理の完了に応答してアクティベーションするカラーを指定するフィールド(AC2105)とを有する一例のファブリック入力DSDである。ファブリック出力データ構造記述子2120(
図21B)は、マイクロスレッド処理のイネーブルを指定するフィールド(UE2123)と、ファブリック出力DSDにより記述されるファブリックベクトルの処理の完了に応答してアクティベーションするカラーを指定するフィールド(AC2125)とを有する一例のファブリック出力DSDである。循環メモリ・バッファ・データ構造記述子2180(
図21E)は、循環バッファへの要素のプッシュ及び循環バッファからの要素のポップに応答してアクティベーションするカラーを指定する各フィールドを有する関連付けられた循環メモリバッファ拡張DSD(XDSD)を有する一例の循環メモリバッファDSDである。循環メモリバッファ拡張データ構造記述子2210(
図22A)は、循環バッファへの要素のプッシュ及び循環バッファからの要素のポップに応答してアクティベーションするカラーを指定する各フィールド(プッシュカラー2215及びポップカラー2216)を有する一例の循環メモリバッファ拡張DSD(XDSD)である。
【0294】
タスクのブロック及びブロック解除
様々な実施形態及び/又は使用状況では、CE800の命令セットは、ブロック命令及びブロック解除命令並びに特にタスク同期に有用なアクティベーション演算(例えば、アクティベーション命令)を実行することができる命令を有する。
図2のPE上のタスクSW260は、ブロック命令及びブロック解除命令並びにアクティベーション演算を実行することができる命令を使用して、選択的に、様々な目的に合うようにファブリック演算の様々な態様をローカルに整形することができる。例えば、PE上のタスクSW260は、これらの命令を使用して、1若しくはそれ以上のタスクの計算及び/又は通信の調整、データフロー制御、タスク内及びタスク間の依存性及び/又は優先度の管理、概ね等しい平均生成率及び平均消費率を有するようにキューを間接的に管理するためのタスク活動のスロットル調整(ストール/再開)並びに多様な待ち時間の複数のソース及び/又はパスから集まる中間データを同期させるソフトウェアインターロックの実施(例えば、ニューラルネットワーク層の境界付近の順方向及び/又は逆方向パス計算において生じるような、この態様は
図11、
図12、及び
図28A~
図28Eに様々に示される)の1若しくはそれ以上を実行することができる。
【0295】
図9Cは、フロー940としてブロック命令及びブロック解除命令の実行の一実施形態の選択された細部を図示する。概念上、特定のカラーを指定するブロック命令を実行すると、実施形態及び/又は使用状況に従って以下の1若しくはそれ以上が生じる。特定のカラーに関連付けられた命令は、少なくとも、その特定のカラーを指定するブロック解除命令の実行まで、実行されない。特定のカラーを含むウェーブレットは、少なくとも、その特定のカラーを指定するブロック解除命令の実行まで、選択されない。特定のカラーに一致する、アクティベーションされたカラーは、少なくとも、その特定のカラーを指定するブロック解除命令の実行まで、選択されない(したがって、対応するタスクの開始は実行されない)。特定のカラーに関連付けられたマイクロスレッドは、少なくとも、その特定のカラーを指定するブロック解除命令の実行まで、実行されない。
【0296】
図を参照すると、命令を実行することは、メモリから命令をフェッチし、命令を復号化する(命令をフェッチし復号化942)ことにより開始される(開始941)。命令がブロック命令に復号化される場合(ブロック命令?943)、ブロック演算は実行される(カラーをブロック944)。ブロック命令のソースオペランドは、ブロック/ブロック解除されたカラーに関連付けられた命令処理に関してブロックする1若しくはそれ以上のカラーを指定する。様々な実施形態及び/又は使用状況では、ブロック演算は、ソースオペランドにより指定された1若しくはそれ以上のカラーの1若しくはそれ以上のブロックインジケータをブロック状態に設定することにより実行され、実行は完了する(終わり949)。様々な状況では、ソースオペランドは、1つのカラーのブロック、全カラーのブロック、及び任意の複数のカラーのブロックを様々に指定する。続く演算では、ブロックされたカラーを有するウェーブレットは、処理に選択されない。
【0297】
命令がブロック解除命令に復号化される場合(ブロック解除命令?945)、ブロック解除演算が実行される(カラーをブロック解除946)。ブロック解除命令のソースオペランドは、ブロック/ブロック解除されたカラーに関連付けられた命令処理に関してブロック解除する1若しくはそれ以上のカラーを指定する。様々な実施形態及び/又は使用状況では、ブロック解除演算は、ソースオペランドにより指定された1若しくはそれ以上のカラーのブロックインジケータをブロック解除状態に設定することにより実行され、実行は完了する(終わり949)。様々な状況では、ソースオペランドは、1つのカラーのブロック解除、全カラーのブロック解除、及び任意の複数のカラーのブロック解除を様々に指定する。続く演算では、ブロック解除されたカラーを有するウェーブレットは、処理に選択可能である。
【0298】
命令が、ブロック命令ではなく、ブロック解除命令ではない命令に復号化される場合、命令は他の方法で実行され(命令を実行947)、実行は完了する(終わり949)。
【0299】
幾つかの実施形態では、ブロック命令のソースオペランドは、即値(例えば、8ビット即値)であり、即値の値は、ブロックするカラーを指定する。様々な実施形態では、特定のオペランドを有するブロック命令は、複数のカラーをブロックする。ソースオペランドが即値ではない場合、ブロック命令が完了するまで、全てのカラーがブロックされる。
【0300】
幾つかの実施形態では、ブロック解除命令のソースオペランドは、即値(例えば、8ビット即値)であり、即値の値は、ブロック解除するカラーを指定する。様々な実施形態では、特定のオペランドを有するブロック解除命令は、複数のカラーをブロック解除する。
【0301】
様々な実施形態及び/又は使用状況では、ブロック及びブロック解除命令処理フロー940の要素の任意の1若しくはそれ以上の全て又は任意の部分は概念上、PEのCE、例えば、
図5の計算要素520及び/又は
図8のCE800の全て又は任意の部分等の計算要素の任意の要素により実行される演算及び/又は計算要素の任意の要素に対応及び/又は関連する。
【0302】
一例として、ブロックビット899は、各カラーにビットを有する(例えば、テーブル内のエントリ又はビットマスクとして)。ブロック演算(カラーをブロック944)は、ソースオペランドにより指定された1若しくはそれ以上のカラーのブロックビット899を特定のブロック状態(例えば、「1」)に設定することにより実行される。幾つかの実施形態では、ピッカー830は、ブロックビット899がブロック解除状態(例えば、「0」)に一致するカラーから、処理するウェーブレットを選択する。別の例として、ブロック解除演算(カラーをブロック解除946)は、ソースオペランドにより指定された1若しくはそれ以上のカラーのブロックビット899を特定のブロック解除状態(例えば、「0」)に設定することにより実行される。幾つかの実施形態では、ピッカー830は、ブロックビット899がブロック解除状態(例えば、「0」)に一致するカラーを有するウェーブレットを選択する。
【0303】
幾つかの実施形態では、ブロック及びブロック解除命令処理フロー940の部分は、
図9Aのタスク開始のためにウェーブレットの処理900の部分に対応する。一例として、動作942、943、944、945、946、及び947は、
図9Aの動作905及び906の部分に対応する。
【0304】
様々な実施形態及び/又は使用状況では、ブロック及びブロック解除命令処理フロー940の要素の全て又は任意の部分は概念上、
図2のPE上のタスクSW260の命令の実行の全て又は任意の部分に対応する。
【0305】
高レベルデータフロー
図10A及び
図10Bは、例えば、
図1の配置サーバ150で実行される
図2のニューロンからPEへのマッピングSW212により決定される、プロセッサ要素の各組に1つのニューロンの複数のインスタンスをマッピングする一実施形態において生じる高レベルデータフローの選択された細部を図示する。
図10Aは、
図17等のより大規模なニューラルネットワークの内部ニューラルネットワーク部分1040を抽象的に図示する。ニューラルネットワーク部分1040は、第1のニューロン層(左側)に3つのニューロンを有し、第2のニューロン層(右側)に3つのニューロンを有する。第1のニューロン層は、ニューロンA 1041、ニューロンB 1042、及びニューロンC 1043を含む。第2のニューロン層は、ニューロンD 1044、ニューロンE 1045、及びニューロンF 1046を含む。ニューロンA 1041からのアクティベーションaA 1061、ニューロンB 1042からのアクティベーションaB 1062、及びニューロンC 1043からのアクティベーションaC 1063はそれぞれ、それぞれ非ゼロである場合、第2のニューロン層にブロードキャストされ、図示されるようにトポロジに従って、ニューロンD 1044、ニューロンE 1045、及びニューロンF 1046に通信される。ニューロンD 1044からのアクティベーションaD 1064、ニューロンE 1045からのアクティベーションaE 1065、及びニューロンF 1046からのアクティベーションaF 1066はそれぞれ、それぞれ非ゼロである場合、次の層(図示せず)にブロードキャストされる。非ゼロアクティベーションのみがブロードキャストされるため、ゼロアクティベーションに無駄な計算が使用されない。このようにして、アクティベーションの疎性はウェーハにわたり累積されて、効率を改善し、消費電力を低減する。
【0306】
図10Bは、
図4のウェーハ412等のより大規模な処理要素アレイの処理要素アレイ部分1060を図示する。
図10Bの同様に付番された要素は、
図10Aの同様に付番された要素に対応する。ニューロンD 1044は、重みwAD 1080、wBD 1083、及びwCD 1086のローカルに記憶された各分散を介してPE0 1070、PE3 1073、及びPE6 1076にマッピングされる。ニューロンE 1045は、重みwAE 1081、wBE 1084、及びwCE 1087のローカルに記憶された各分散を介してPE1 1071、PE4 1074、及びPE7 1077にマッピングされる。ニューロンF 1046は、重みwAF 1082、wBF 1085、及びwCF 1088のローカルに記憶された各分散を介してPE2 1072、PE5 1075、及びPE8 1078にマッピングされる。
【0307】
ニューロンA 1041からの非ゼロアクティベーションaA 1061は、記憶された重みwAD 1080、wAE 1081、及びwAF 1082の検索をトリガーする。PE0 1070、PE1 1071、及びPE2 1072は、入力されたニューロンA 1041からのアクティベーションaA 1061との各局所ニューロン重みの各局所乗算及び累積を実行して、各局所部分和を生成する。ニューロンB 1042からの非ゼロアクティベーションaB 1062は、記憶された重みwBD 1083、wBE 1084、及びwBF 1085の探索をトリガーする。PE3 1073、PE4 1074、及びPE5 1075は、入力されたニューロンB 1042からのアクティベーションaB 1062との各局所ニューロン重みの各局所乗算及び累積を実行して、各局所部分和を生成する。ニューロンC 1043からの非ゼロアクティベーションaC 1063は、記憶された重みwCD 1086、wCE 1087、及びwCF 1088の探索をトリガーする。PE6 1076、PE7 1077、及びPE8 1078は、入力されたニューロンC 1043からのアクティベーションaC 1063との各局所ニューロン重みの各局所乗算及び累積を実行して、各局所部分和を生成する。PE0 1070、PE3 1073、及びPE6 1076の局所部分和は累積されて、最終和を生成し、アクティベーション関数が実行され、非ゼロの場合、アクティベーションaD 1064は次の層にブロードキャストされる。PE1 1071、PE4 1074、及びPE7 1077の局所部分和は累積されて、最終和を生成し、アクティベーション関数が実行され、非ゼロの場合、アクティベーションaE 1065は次の層にブロードキャストされる。PE2 1072、PE5 1075、及びPE8 1078の局所部分和は累積されて、最終和を生成し、アクティベーション関数が実行され、非ゼロの場合、アクティベーションaF 1066は次の層にブロードキャストされる。
【0308】
図10Bでは、アクティベーションaA 1061、aB 1062、aC 1063、aD 1064、aE 1065、aF 1066は、各バスセグメントを介して通信されるものとして表され、ニューロンD 1044、ニューロンE 1045、及びニューロンF 1046に対応する部分和累積及びアクティベーション関数は、PSA 1090、PSA 1091、及びPSA 1092によりそれぞれ実行されるものとして表される。幾つかの実施形態及び/又は使用状況では、
図10Bのバスセグメント及びPSA 1090、PSA 1091、及びPSA 1092は抽象であり、部分和累積及びアクティベーション関数は、例えば、配置サーバ150で実行されるニューロンからPEへのマッピングSW212によっても決定される様々な処理要素により実行され、部分和及びアクティベーションは、仮想チャネルを経由し処理要素間の結合を介してウェーブレットとして通信される(例えば、
図13A~
図16及び「ウェーブレット」セクション参照)。
【0309】
一例の作業負荷マッピング及び例示的なタスク
概念上、ディープ・ラーニング・アクセラレータ400(
図4)は、プログラマブル計算ファブリックである(例えば、
図5~
図8及び「処理要素:計算要素及びルータ」セクション参照)。例えば、各PE499要素の計算要素は、タスクの一連の命令を実行することができ(概念上、
図2のPE上のタスクSW260の命令の実行の全て又は任意の部分に対応する等)、各PE499の各ルータ要素は、PE間でウェーブレットをルーティングするように構成可能である。プログラマブル計算ファブリックは、様々な様式で作業負荷を計算ファブリックにマッピングできるようにする。以下に記載するのは、計算ファブリックへの作業負荷の一例の高レベルマッピングであり、計算ファブリックにより実施される様々な技法及びメカニズムを図示する。
【0310】
作業負荷は、SGDを介して実施されるディープ・ニューラル・ネットワーク・トレーニングである。ディープ・ニューラル・ネットワークは、ニューロンの複数のレイアを有する。作業負荷は3つのメガフェーズを有する:順方向パス、デルタパス、及びチェインパス。順方向パスは、アクティベーションを順方向に伝播する。デルタパスは、逆方向にデルタを伝搬する。チェインパスは、デルタがデルタパスで生成される際、デルタに基づいて勾配を計算する。3つのメガフェーズは概ね同量の計算を有する。
【0311】
図4は、PEへのメガフェーズの一例のマッピングを図示する。各層は、計算ファブリックから連続して(例えば、水平次元で)割り当てられた(別名「配置された」)PEのブロックにより実施される。データ移動は、順方向パス(順方向401)中、ファブリックの終わりまで伝搬し、次に、デルタパス(デルタ402)及びチェインパス(チェイン403)中、逆方向で戻る。順方向パスはデルタパス及びチェインパスによる使用のためにアクティベーションを保存するため、配置はデータ移動を低減するように向けられる。この例では、全てのPEは、3つのメガフェーズ間で三方に時間共有され、各メガフェーズは概ね同量の計算を使用する。幾つかの状況では、パスを実行するPEの全体チェインは、各層がパイプ段であり(完了におおよそ同量の時間がかかる)、ミニバッチの各アクティベーションがパイプラインを満たすようなパイプラインとして動作する。
【0312】
幾つかの実施形態及び/又は使用状況では、複数の層のうちの1つの層にマッピングされた1組のPE内で、1つの層の重みは、1つのニューロンが複数のPEにマッピングされるようにPEにわたり分散する。複数のPEにわたり1つのニューロンを分割することは、幾つかの状況では、負荷平衡利点を提供し、通信分割利点を提供する(例えば、
図10A及び
図10B及び「高レベルデータフロー」セクション並びに
図17~
図20及び「ニューロンスメアリング」セクション参照)。
【0313】
概念的に、処理は以下のように進む(
図4の順方向401参照)。アクティベーションは、水平軸に沿って層にブロードキャストされる。アクティベーションは、PEにより受信され、PEにローカルに記憶された、関連付けられた重み(PEにマッピングされたニューロンに対応する)の検索をトリガーする。非ゼロアクティベーションのみがブロードキャストされ、したがって、ゼロアクティベーションに対して計算が無駄にならない(アクティベーションスパース収集の一例)。各PEは、入力アクティベーションの局所乗算及び累算を実行し、全てのニューロン重みは局所部分和を生成する。各ニューロンの重みは複数のPEに分散するため、部分和は、ニューロン重み分布に従って垂直方向にPEにわたり累積される。部分和が累積され、最終和を生成した後、アクティベーション関数が実行され、全ての新しい非ゼロアクティベーションは次の層にブロードキャストされる。
【0314】
デルタパス(
図4のデルタ402参照)及びチェインパス(
図4のチェイン403参照)は、順方向パスのデータフローと同様のデータフローを辿る。幾つかの実施形態及び/又は使用状況では、デルタパス及びチェインパスは、ある層だけオフセットして配置され、それにより、アクティベーションは、逆方向で使用される重みと同じ層に記憶される。アクティベーションは、デルタパス及びチェインパスにおいて、アクティベーションが、追加の通信なしで直接使用されるように、受信層により記憶される。アクティベーションの記憶に加えて、重み転置が実行されて、デルタパスを実施する。重み転置は、幾つかの実施形態及び/又は使用状況では、重みを更新するとき、追加のメモリ容量及び追加の通信を使用して、重みを複製することにより実施される。幾つかの実施形態及び/又は使用状況では、重み転置は、垂直次元でブロードキャストされたデルタを転置することにより実施される。
【0315】
図11は、クローズアウトを介した依存性管理を含む、順方向パス状態機械で使用されるタスク(例えば、
図9A~
図9C及び「タスク開始」及び「タスクのブロック及びブロック解除」セクション参照)の一実施形態を図示する。幾つかの実施形態及び/又は使用状況では、各PEは状態機械のインスタンス化を実施する。幾つかの実施形態及び/又は使用状況では、状態機械の様々な部分は、各PEによって実施される(例えば、
図17~
図20及び「ニューロンスメアリング」セクション参照)。状態機械には4つのタスクがある:f_rxact:acc1101、f_rxact:close1102、f_psum:prop1103、及びf_txact:tx1104。概念的に、アクティベーションはPEからインスタントPEの「左」(前の層に対応する)に到着する。例えば、アクティベーションブロードキャストワイヤ上の前の層からの入力(非クローズアウト)アクティベーション(前の層からのアクティベーション1111)はf_rxact:acc1101をトリガーする。インスタントPEは、タスクの命令を実行し、アクティベーションに関連付けられた重みを検索し(例えば、インスタントPEにローカルなメモリから)、局所重み乗累算を実行して、部分和を生成する。制御フロー依存性が、f_rxact:acc1101とf_psum:prop1103との間に存在する(フロー1113)。タスクが参照するデータ構造例は、wrow、fpsum、及びfactである。
【0316】
アクティベーションブロードキャストワイヤへの入力アクティベーションクローズアウト(前の層からのクローズアウト1112)は、f_rxact:close1102をトリガーする。クローズアウトは、現在の波面の全てのアクティベーションの終わりを通知する。インスタントPEはタスクの命令を実行し、インスタントPEの開始リスト内の部分和との部分和累積リングを開始する(Psum開始1116)。タスクが参照するデータ構造例は、fpsum_acc_mem及びfpsum_acc_fabである。
【0317】
入力部分和(Psumプロップ1130)は、f_psum:prop1103をトリガーする。インスタントPEは、タスクの命令を実行し、入力部分和をインスタントPEの局所部分和に追加し、次に、結果をリング上の次のホップに転送する(Psumプロップ1131)。インスタントPEがリングの終わりである場合、最終和が生成される。幾つかの実施形態及び/又は使用状況では、追加の処理が実行されて、デッドロックを回避する。タスクが参照するデータ構造例は、fpsum_acc_mem、fpsum_acc_fab、及びf_txact_wakeである。
【0318】
送信する、キューに入ったアクティベーションがある場合、f_txact:tx1104は、例えば、インスタントPEがウェーブレットをそれ自体に送信することを介して自己トリガーされる(ウェイク1114)。インスタントPEはタスクの命令を実行し、アクティベーションをキューから取り出し、ブロードキャストワイヤ上でアクティベーションを次の層に送信する(次の層へのアクティベーション1121)。キュー内にまだアイテムが残っている場合、インスタントPEは、例えば、インスタントPEがウェーブレットをそれ自体に送信することを介してタスクを再スケジュールする(再スケジュール1115)。キューが空の場合、インスタントPEはクローズアウトウェーブレットを送信して、波面を閉じる(次の層へのクローズアウト1122)。
【0319】
アクティベーション(入力及び出力)、部分和(入力及び出力)、並びにクローズアウトウェーブレットは、ウェーブレットとして通信される(例えば、
図13A~
図16及び「ウェーブレット」セクション参照)。幾つかの実施形態及び/又は使用状況では、ウェーブレットの1若しくはそれ以上は、1若しくはそれ以上のDSD及び/又はXDSDにより記述されるように、ファブリックベクトルの1若しくはそれ以上の要素に対応する。
【0320】
様々な状態機械のデータ構造は、以下の表に記述されるように、各DSRに記憶された複数のDSDを介して参照される(例えば、
図21A~
図24及び「ベクトル及びデータ構造記述子」セクション参照)。
【0321】
【0322】
以下の一例の作業負荷マッピングはSGDに関するものである。しかしながら、この技法は、RCPあり及びなしでMBGD及びCPGDに容易に適用可能である。
【0323】
幾つかの実施形態及び/又は使用状況では、
図11の動作の全て又は任意の部分は、
図1のPE122の要素及び/又はにより実行される動作に対応し、又は概念的に関連する。幾つかの実施形態及び/又は使用状況では、
図11の要素の全て又は任意の部分は、
図2のPE上のタスクSW260の命令の実行の全て又は任意の部分に概念的に対応する。
【0324】
図12は、活性化累積/クローズアウト及び部分和計算/クローズアウト1200として、活性化累積及びクローズアウト、その後に続く部分和計算及びクローズアウトに関連付けられたフローの一実施形態の選択された細部を図示する。
【0325】
フローは開始される(開始1201)。アクティベーションは受信され(アクティベーションを受信1202)、例えば、
図11のf_rxact:acc1101により処理されるように、累積される(アクティベーションを累積1203)。アクティベーションクローズアウトの受信(アクティベーションクローズアウトを受信1204)に応答して、例えば、
図11のf_rxact:close1102により実行され、
図11のPsum開始1116により示されるように、PEの「リング」に対する部分和計算が開始される(部分和リングを開始1205)。PEの一例のリングは、PE0 1070、PE3 1073、及びPE6 1076として
図10Bに図示され、対応する部分和累積はPSA1090により図示される。幾つかの実施形態及び/又は使用状況では、アクティベーションクローズアウトを受信1204は、アクティベーションの累積を締めくくり、部分和計算の開始に関する順序を強制し、例えば、部分和計算を初期化する前、全てのアクティベーションが受信され累積されることを保証する。(入力)部分和は、インスタントPEにより受信され(部分和を受信1206)、インスタントPEにより計算された部分和に追加され(部分和を計算1207)、加算の結果は、リングの次のPEに送信される(出力)部分和を形成する(部分和を送信1208)。受信、加算、及び送信は、例えば、
図11のf_psum:prop1103により実行され、入力/出力部分和は、これもまた
図11のプロップPsum1130及びプロップPsum1131によりそれぞれ示される。最終和が、PEのリングへの部分和計算の完了により計算されると、次の層に出力するためのアクティベーションが、例えば、
図11のf_txact:tx1104により、これもまた
図11の次の層へのアクティベーション1121で図示されるように、生成され送信される(アクティベーションを送信1209)。全てのアクティベーションが送信されると、クローズアウトは、例えば、これもまた
図11のf_txact:tx1104により、これもまた
図11の次の層へのクローズアウト1122により図示されるように、送信される(クローズアウトを送信1210)。次に、フローは完了する(終わり1211)。幾つかの状況及び/又は使用状況では、クローズアウトを送信1210は、クローズアウトの送信を締めくくり、更なる処理に関するアクティベーション送信の順序を強制し、例えば、更なる処理の前に全てのアクティベーションが送信されることを保証する。
【0326】
幾つかの実施形態及び/又は使用状況では、クローズアウトは、ニューラルネットワークの他の部分を締めくくり、例えば、デルタを送信する。
【0327】
幾つかの実施形態及び/又は使用状況では、活性化累積/クローズアウト及び部分和計算/クローズアウト1200の動作の全て又は任意の部分は概念的に、
図1のPE122の要素によって実行される動作及び/又はPE122の要素に対応又は関連する。幾つかの実施形態及び/又は使用状況では、活性化累積/クローズアウト及び部分和計算/クローズアウト1200の要素の全て又は任意の部分は概念的に、PE上のタスクSW260の命令の実行の全て又は任意の部分に対応する。幾つかの実施形態及び/又は使用状況では、クローズアウト(例えば、動作1210に関連付けられる)は制御ウェーブレットの一例である。
【0328】
ウェーブレット
図13Aは、スパースウェーブレット1301としてスパースウェーブレットの一実施形態の選択された細部を図示する。スパースウェーブレット1301は、スパース・ウェーブレット・ペイロード1302と、カラー1324とを有する。スパース・ウェーブレット・ペイロード1302は、インデックス1321と、スパースデータ1322と、制御ビット1320とを有する。インデックス1321は、下位インデックスビット1321.1と、上位インデックスビット1321.2とを有する。
【0329】
幾つかの実施形態では、スパースデータ1322は、16ビット浮動小数点数又は16ビット整数のフィールドを有する。様々な状況では、スパースデータ1322は様々に、ニューラルネットワークの重み、ニューラルネットワークの入力又は刺激、ニューラルネットワークの活性化、又はニューラルネットワークの部分和を表す。
【0330】
幾つかの実施形態では、インデックス1321は16ビットフィールドを有する。幾つかの状況では、インデックス1321は整数であり、ニューラルネットワークの特定のニューロンを明示的に示すインデックスである。幾つかの実施形態では、下位インデックスビット1321.1は6ビットであり、上位インデックスビット1321.2は10ビットである。
【0331】
幾つかの実施形態では、制御ビット1320は1ビットフィールドである。幾つかの状況では、制御ビット1320は、スパース・ウェーブレット・ペイロード1302が制御活動をトリガーするか、それともデータ活動をトリガーするかを示す。幾つかの状況では、制御活動は、ニューロンの最後の活性化を計算することを含み、データ活動は、最後の活性化ではないニューロンの活性化を計算することを含む。幾つかの実施形態及び/又は使用状況では、制御活動は、
図11の前のレイヤからのクローズアウト1112及び/又は次のレイヤへのクローズアウト1122の任意の1若しくはそれ以上及び
図12の活性化クローズアウトの受信1204及び/又はクローズアウト送信1210の任意の1若しくはそれ以上等のクローズアウト活動を含む。
【0332】
幾つかの実施形態では、カラー1324は5ビットフィールドを有する。幾つかの実施形態では、カラーは、カラーに従ったルーティングを介する等の共有物理チャネルを介した仮想チャネルに対応する。幾つかの状況では、カラーは、構成情報を処理要素に送信する又は処理要素にマッピングされるニューロンにニューラルネットワークの入力を送信する等の特定の目的で使用される。
【0333】
図13Bは、高密度ウェーブレット1331として高密度ウェーブレットの一実施形態の選択された細部を図示する。高密度ウェーブレット1331は、高密度ウェーブレットペイロード1332と、カラー1344とを有する。高密度ウェーブレットペイロード1332は、高密度データ1343.1と、高密度データ1343.2と、制御ビット1340とを有する。
【0334】
幾つかの実施形態では、制御ビット1340は、1ビットフィールドであり、機能的に制御ビット1320と同一である。
【0335】
幾つかの実施形態では、カラー1344は、5ビットフィールドを有し、カラー1324と機能的に同一である。
【0336】
幾つかの状況では、高密度データ1343.1及び高密度データ1343.2は、各16ビット浮動小数点数又は各16ビット整数のフィールドを有する。様々な状況では、高密度データ1343.1及び高密度データ1343.2は様々に、ニューラルネットワークの重み、ニューラルネットワークの入力又は刺激、ニューラルネットワークの活性化、又はニューラルネットワークの部分和を表す。幾つかの状況では、高密度データ1343.1及び高密度データ1343.2は集合的に、32ビット浮動小数点数を有する(例えば、高密度データ1343.1は、32ビット浮動小数点数の第1の部分を有し、高密度データ1343.2は、32ビット浮動小数点数の第2の部分を有する)。
【0337】
様々な実施形態及び/又は使用状況では、スパースウェーブレットの使用対高密度ウェーブレットの使用は様々に、予め決定され、動的に決定され、及び/又は両方である。様々な実施形態及び/又は使用状況では、スパースウェーブレットの使用対高密度ウェーブレットの使用は、ソフトウェアによって決定される。
【0338】
図14は、ウェーブレット作成フロー1400として、ウェーブレットを作成し送信する一実施形態の選択された細部を図示する。ウェーブレット作成フロー1400の動作は、様々なエージェントにより実行される。送信PEは、送信PE1420のCEで図示されるように、動作1403~1409を実行するCEを有する。送信PEは、送信PE1430のルータで図示されるように、動作1411を実行するルータを更に有する。受信PEは、受信PE1440のルータで図示されるように、動作1412を実行するルータを有する。
【0339】
ウェーブレットの作成及び送信は、少なくとも1つの送信PE及び1若しくはそれ以上の受信PE並びに送信PE及び受信PEを結合するファブリックを実施するルータを有する任意のPEを初期化する(PE初期化1402)ことで開始される(開始1401)。各PEは、各ルータ(例えば、
図5のルータ510)と、各CE(例えば、
図5の計算要素520)とを有する。幾つかの状況では、PEを初期化することは、PEのCEが計算を実行できるようにし、PEのルータがファブリックを介してウェーブレットを送信、受信、及び/又は転送できるようにする。
【0340】
様々な実施形態では、DSRは、データ要素(例えば、メモリ、ファブリック入力、及び/又はファブリック出力)のロケーション、データ要素の数(例えば、長さ)、データ要素の1若しくはそれ以上のアドレス(例えば、開始アドレス及びメモリ内のストライド)等のオペランドについての情報を有する。ファブリック出力オペランド(例えば、ファブリックを介して送信されたウェーブレット)の場合、DSRは、ファブリック上のウェーブレットのカラー、制御ビット、及び任意選択でインデックスの値又はロケーションを含む。
【0341】
幾つかの実施形態では、送信PEのCEはソース(発信元設定1403)を構成する。幾つかの状況では、ソースは、ソースオペランドを記述するソースDSDである。様々な実施形態では、ソースDSDは、キャッシュ及びメモリの1つに記憶された1若しくはそれ以上のデータ要素を記述する。他の実施形態では、ソースDSDは、ファブリックを介して受信される1若しくはそれ以上のデータ要素を記述する(例えば、データ要素は、ファブリックを介して到着したウェーブレットのペイロードである)。幾つかの他の状況では、ソースはソースレジスタ(例えば、RF842の1つ)を含む。更に他の状況では、ソースは、命令で即時指定された、を含む。
【0342】
CEはまた、宛先オペランドのロケーションを記述する宛先DSR内の宛先DSDを構成する。様々な実施形態では、宛先オペランドのロケーションはファブリックである(宛先(ファブリック)DSRを設定1404)。幾つかの実施形態では、宛先DSDは、ファブリックを介して送信された1若しくはそれ以上のデータ要素を記述する。様々な実施形態では、発信元DSD及び宛先DSDは、1若しくはそれ以上の命令を介して構成される。
【0343】
続けて、CEは、宛先DSRにおいてDSDによって指定された1若しくはそれ以上のソースオペランド、演算、宛先オペランドを含む命令(例えば、FMACH、MOV、LT16)をフェッチし復号化する(宛先DSRを有する命令をフェッチ/復号化1405)。幾つかの実施形態では、命令のオペランドタイプフィールドは、オペランドがDSDによって指定されるか否かを指定する。
【0344】
CEは、宛先DSRから宛先DSDを読み取り、発信元DSR内の任意の発信元DSDを読み取る(DSRを読み取る1406)。DSDに基づいて、CEは、データ構造のタイプ、データ要素のソース、複数のデータ要素が一緒に読み取られるか否か(例えば、SIMD演算の場合)、及び各オペランドのデータ要素の総数を判断する。幾つかの状況では、DSRは、発信元0オペランド、発信元1オペランド、及び宛先オペランドの1若しくはそれ以上について読み取られる。幾つかの実施形態及び/又は使用状況では、DSRは全体的又は部分的に並列に読み取られ、他の実施形態及び/又は使用状況では、DSRは全体的又は部分的に順次読み取られる。
【0345】
送信PEのCEは、ソースによって指定される第1のデータ要素を読み出し(例えば、レジスタ又はメモリから)(キュー/メモリから(次の)データ要素を読み出す1407)、命令により指定される演算(例えば、乗算)を第1のデータ要素に対して実行する。宛先オペランドが、宛先DSDによりファブリックタイプとして指定されることに応答して、CEは1若しくはそれ以上のウェーブレットを作成する。演算の1若しくはそれ以上の結果(例えば、データ要素の形態)は、宛先DSDに基づいてウェーブレットペイロードを形成するのに使用される。ウェーブレットペイロードの制御ビット及びウェーブレットのカラーは、宛先DSDにより指定される。ウェーブレットペイロード及びカラーは、送信CEのルータに提供される(データ要素をウェーブレットとして出力キューに提供1408)。幾つかの実施形態及び/又は使用状況では、1つのデータ要素が、スパースウェーブレットのペイロードの作成に使用される。他の実施形態及び/又は使用状況では、2つのデータ要素が、高密度ウェーブレットのペイロードの作成に使用される。様々な実施形態では、4つのデータ要素が、2つのウェーブレットのペイロードの作成に使用される。幾つかの実施形態では、使用されるデータ要素数は、宛先DSDにより指定される。
【0346】
送信PEのCEは、追加のデータ要素が宛先DSDによって指定されているか否かを判断する(まだデータ要素があるか?1409)。追加のデータ要素が宛先DSDによって指定されている場合、CEは、追加のデータ要素が宛先DSDによって指定されなくなるまで、キュー/メモリから(次の)発信元データ要素を読み取る動作1407、データ要素をウェーブレットとして出力キューに提供する動作1408、及びより多くのデータ要素?1409を介して追加のウェーブレットを作成する。追加のデータ要素が宛先DSDによって指定されない場合、フローは終わる(終わり1410)。幾つかの実施形態では、動作1408を介して作成されたウェーブレットは、宛先DSRによって指定されるものと同じカラーである。
【0347】
送信PEのルータは、ウェーブレットの各カラーに従って、ウェーブレットのカラーに従ってウェーブレットを送信する(ウェーブレットをファブリックに送信1411)。幾つかの実施形態及び/又は使用状況では、送信は、受信PEのルータへの直接送信である。幾つかの実施形態及び/又は使用状況では、送信は、例えば、カラーに従ってウェーブレットを転送するように動作する1若しくはそれ以上の介在PEを介した受信PEのルータへの間接的な送信である。受信PEのルータは、カラーに従ってウェーブレットを受信する(ウェーブレットをファブリックから受信1412)。
【0348】
様々な実施形態では、動作1411は、動作1407、1408、及び1409の任意の1若しくはそれ以上に関して非同期で実行される。例えば、複数のウェーブレットは、動作1408により生成され、それから、生成されたウェーブレットのいずれかが、動作1411で図示されるように、送信される。
【0349】
様々な実施形態では、ウェーブレットをファブリックから受信1412は、様々な点で、
図15のルータにおいてウェーブレットを受信1503に対応する。
【0350】
様々な実施形態及び/又は使用状況では、ウェーブレット作成フロー1400の要素の任意の1若しくはそれ以上の全て又は任意の部分は、PE、例えば、
図4のPE499の要素によって実行される動作及び/又はPEの要素に概念的に対応し及び/又は概念的に関連する。
【0351】
様々な実施形態及び/又は使用状況では、ウェーブレット作成フロー1400の要素の任意の1若しくはそれ以上(例えば、動作1403~1409の任意の1若しくはそれ以上)の全て又は任意の部分は、PEのCEの全て又は任意の部分、
図5の計算要素520、及び/又は
図8のCE800等の計算要素の要素によって実行される動作及び/又は計算要素の要素に概念的に対応し及び/又は概念的に関連する。一例として、宛先DSR(DSR宛先(ファブリック)DSR設定1404に関連付けられる)は、DSR846の1つである。幾つかの状況では、発信元DSR(発信元設定1403に関連付けられる)は、DSR846の1つであり、他の状況では、発信元レジスタ(発信元設定1403に関連付けられる)はRF842の1つである。
【0352】
別の例として、送信PEのCEとしてのCE800は、メモリ854からの情報を発信元DSR(例えば、DSR846の1つ)にコピーするDSRロード命令に応答して動作1403を実行する。様々な実施形態では、発信元DSRは、メモリ854、Dストア848、及びRF842の1つとしてデータ要素のロケーションを指定する。幾つかの状況では、発信元DSRは、メモリ854内の第1のデータ要素のアドレス(例えば、アドレス0x0008)、データ要素の数(例えば、9つのデータ要素)、及び続くデータ要素間のストライド(例えば、12バイト)を指定する。別の例として、CE800は、データをRF842のレジスタに書き込むことによって動作1403を実行する。
【0353】
別の例として、送信PEのCEとしてのCE800は、メモリ854からの情報を宛先DSR(例えば、DSR846の1つ)にコピーするDSRロード命令に応答して、動作1404を実行する。様々な実施形態では、宛先DSRは、1若しくはそれ以上のウェーブレットへの1若しくはそれ以上のデータ要素の変換を指定し、ファブリック結合イグレスポート(例えば、北513)を介してルータ510により送信した。宛先DSRは、ウェーブレットのカラー、ウェーブレットの制御ビット、データ要素の数(例えば、長さ)、及びウェーブレットのインデックスについての情報を指定する。幾つかの状況では、宛先DSRはインデックスの値を指定し、他の状況では、宛先DSRはインデックスの値のロケーション(例えば、RF842のレジスタ内の)を指定する。
【0354】
別の例として、送信PEのCEとしてのCE800は、宛先オペランドとして宛先DSRを指定する命令のフェッチ及び復号化(動作1405)に応答して、動作1406、1407、1408及び1409を実行する。幾つかの実施形態及び/又は使用状況では、D配列844は発信元DSRを読み取り、例えば、メモリ854又はDストア848から、各発信元DSRによって指定された1つ、2つ又は4つのデータ要素にアクセスし、それにより、動作1407を実行する。様々な実施形態では、メモリ854及び/又はDストア848は、データ要素をデータパス852に提供する。データパス852は、演算をデータ要素に対して実行する(例えば、ソース0データ要素をソース1データ要素に加算する)。宛先DSDに従って、データパス852は、演算の結果データをウェーブレットに変換し、宛先DSDのカラーにより指定される出力キュー859の1つにウェーブレットを書き込み、それにより、動作1408を実行する。幾つかの実施形態では、送信PEのCE800は、宛先DSDにおいて指定されたデータ要素の数(例えば、長さ)を、動作1408を介して送信されたデータ要素の数(例えば、カウンタによって追跡される)と比較することにより、動作1409を実行する。
【0355】
別の例として、送信PEのCEとしてのCE800は動作1408を実行する。CEは、宛先DSDに従って1つ又は2つのデータ要素をウェーブレットペイロードに変換する。幾つかの実施形態及び/又は使用状況では、CEは、1つのデータ要素を、
図13Aのスパースウェーブレット1301に従ってフォーマットされたウェーブレットペイロードに変換する。1つのデータ要素はスパースデータ1322のインスタンスに変換され、宛先DSDによって指定されるインデックス値は、インデックス1321のインスタンスに変換され、宛先DSDからの制御ビットは、制御ビット1320のインスタンスに変換され、それにより、スパース・ウェーブレット・ペイロード1302のインスタンスを形成する。
【0356】
別の例として、送信PEのCEとしてのCE800は、2つのデータ要素を、
図13Bの高密度ウェーブレット1331に従ってフォーマットされたウェーブレットペイロードに変換する。第1のデータ要素は、高密度データ1343.1のインスタンスに変換され、第2のデータ要素は、高密度データ1343.2のインスタンスに変換される。宛先DSDからの制御ビットは、制御ビット1340のインスタンスに変換され、それにより、高密度ウェーブレットペイロード1332のインスタンスを形成する。
【0357】
幾つかの実施形態では、CEはウェーブレットをルータに非同期で(例えば、
図7Cの動作760に従って)提供する。
【0358】
様々な実施形態及び/又は使用状況では、ウェーブレット作成フロー1400の要素の任意の1若しくはそれ以上(例えば、動作1411及び1412の任意に1若しくはそれ以上)の全て又は任意の部分は、PEのルータ、例えば、
図5のルータ510及び/又は
図6のルータ600、
図7Cの動作760及び
図7Bの動作747の全て又は任意の部分等のルータの要素により実行される動作及び/又はルータの要素に概念的に対応及び/又は概念的に関連する。
【0359】
一例として、ウェーブレットをファブリックに送信1411は、
図7Cの動作760に従って送信PEのルータ1430としてルータ600により実行される。別の例として、ファブリックからウェーブレットを受信1412は、
図7Bの動作747に従って受信PEのルータ1440としてルータ600により実行される。
【0360】
幾つかの実施形態及び/又は使用状況では、ウェーブレット作成フロー1400の要素の全て又は任意の部分は概念的に、
図2のPE上のタスクSW260の命令の実行の全て又は任意の部分に対応する。
【0361】
図15は、ウェーブレット受信フロー1500としてウェーブレットを受信する一実施形態の選択された細部を図示する。ウェーブレット受信フロー1500の動作は、様々なエージェントによって実行される。受信PEは、受信PE1520のルータで図示されるように、動作1503~1506を実行するルータを有する。受信PEは、受信PE1530のCEで図示されるように、動作1507を実行するCEを更に有する。
【0362】
ウェーブレットの受信は、少なくとも1つの送信PE及び1若しくはそれ以上の受信PE及び送信PE及び受信PEを結合するファブリックを実施するルータを有する任意のPEを初期化する(PE初期化1502)ことで開始される(開始1501)。各PEは、各ルータ(例えば、
図5のルータ510)と、各CE(例えば、
図5の計算要素520)とを有する。幾つかの状況では、PEを初期化することは、PEのCEが計算を実行できるようにし、PEのルータがファブリックを介してウェーブレットを送信、受信、及び/又は転送できるようにする。
【0363】
以下の説明は、1つの受信PEがあると仮定する。使用状況では、複数の受信PEがある場合、各受信PEの各ルータ及びCEが、
図15による処理を実行する。
【0364】
受信PEのルータは、送信PEによって送信されたように、ファブリックの「カラー上」のウェーブレット(例えば、ウェーブレットはカラーを有する)を受信する(ルータにおいてウェーブレットを受信1503)。ルータは、例えば、構成レジスタを読み取ることにより、カラーに基づいてウェーブレットの宛先をチェックする。ウェーブレットの宛先が他のPE(他のPEへ?1504)を含む場合、ルータはウェーブレットを宛先PEに送信する。ルータは、ウェーブレットをルータの出力に送信し(ウェーブレットを出力に送信1505)、ウェーブレットは出力からファブリックを介して宛先PEに送信される。ウェーブレットの宛先が他のPEを含まない場合、送信は省略される。
【0365】
ウェーブレットの宛先がローカルCEを含まない(ローカルCEへ?1506)場合、更なる動作は行われない(終わり1510)。ウェーブレットの宛先の1つがローカルCEである場合、ルータは、オフランプを介してウェーブレットをローカルCEに提供し、ウェーブレットは、ウェーブレットが受信されたカラーに関連付けられたピッカーキューに書き込まれ(ウェーブレットをピッカーキーに書き込む1507)、それにより、ウェーブレットを受信する(終わり1510)。
【0366】
様々な実施形態及び/又は使用状況では、ウェーブレット受信フロー1500の要素(例えば、動作1503~1506の任意の1若しくはそれ以上)の任意の1若しくはそれ以上の全て又は任意の部分は、PEのルータ、例えば、
図5のルータ510及び/又は
図6のルータ600の全て又は任意の部分等のルータの要素により実行される動作及び/又はルータの要素に概念的に対応及び/又は概念的に関連する。
【0367】
一例として、ルータにおいてウェーブレットを受信1503は、ウェーブレットがデータイン610の1つで受信された場合、受信PE1520のルータとしてルータ600により実行される。続けて、他のPEへ?1504及びローカルCEへ?1506が、例えば、宛先661を読み取ることにより、ウェーブレットのカラーを使用してウェーブレットの宛先を特定して、ルータ600によって実行される。各入力カラーで、宛先661は出力宛先、例えば、データアウト620の1若しくはそれ以上を示す。宛先661により、出力が他のPE(例えば、スキップX+621、スキップX-622、X+623、X-624、Y+625、及びY-626の1つを介して)を含むことが示される場合、ウェーブレットは、スケジュール済みルータ654により他のPEに送信される。宛先661により、出力がPEのCEを含む(例えば、オフランプ627)ことが示される場合、ウェーブレットは、スケジュール済みルータ654によりCEに送信される。ウェーブレットは、動作1505が、データアウト620に送信されるようにウェーブレットをスケジュールする(例えば、スケジュール済みルータ654により)ことによって実行される。
【0368】
様々な実施形態及び/又は使用状況では、ウェーブレット受信フロー1500の要素の任意の1若しくはそれ以上(例えば、動作1507)の全て又は任意の部分は、PEのCE、例えば、
図5の計算要素520及び/又は
図8のCE800の全て又は任意の部分等の計算要素により実行される動作及び/又は計算要素に概念的に対応及び/又は概念的に関連する。一例として、ウェーブレットをピッカーキューに書き込む1507は、オフランプ820を介してウェーブレットをCE800に送信し、ウェーブレットを入力Q897の1つに書き込むことによって実行される。幾つかの実施形態では、動作1507は更に、入力Q897の1つに対応するアクティブビット(アクティブビット898の)を設定することを含む。
【0369】
幾つかの実施形態及び/又は使用状況では、ウェーブレットは、ウェーブレットがローカルCEに向けられているとのいかなる特定の判断もなく、ルータにより受信され、キューに配置され、ルータ出力ポートにルーティングされる。代わりに、ローカルCEを宛先としたウェーブレットは、オフランプにルーティングされ、次に、ピッカーキューに書き込まれる。ローカルCEを宛先としていないウェーブレットは、オフランプルータ出力以外にルーティングされる。
【0370】
図16は、ウェーブレット消費フロー1600としてウェーブレットを消費する一実施形態の選択された細部を図示する。ウェーブレット消費フロー1600の動作は、PEのCEによって実行される。
【0371】
ウェーブレットの消費は、ピッカーが処理するウェーブレットをキューから選択する(ピッカーが処理するウェーブレットを選択1602)ことにより開始され(開始1601)、次に、CEはウェーブレットを処理する。CEは、ウェーブレットに関連付けられた命令をフェッチし実行し(命令をフェッチし実行1603)、それにより、ウェーブレットを消費する(終わり1604)。幾つかの実施形態及び/又は使用状況では、ウェーブレットに関連付けられた命令のフェッチ及び実行は、終了命令のフェッチ及び実行で終わる。
【0372】
幾つかの実施形態では、ピッカーが処理するウェーブレットを選択する1602は、
図8のピッカー830により実行される。様々な状況では、ピッカー830は、ラウンドロビン又は最後からピック等のスケジューリングポリシーに従って、使用可能な入力Q897の1つを選択する(例えば、ブロックビット899及びアクティブビット898が特定の値である)。幾つかの実施形態では、ウェーブレット消費フロー1600の部分は、
図9Aのタスク初期化に向けてのウェーブレットの処理900の部分に対応する。一例として、動作1602は動作902に対応する。別の例として、動作1603は動作903、904、910、905、及び906に対応する。
【0373】
幾つかの他の状況では、ウェーブレットは、CEで実行中の命令(例えば、FMACH)によりオペランドとしてアクセスされ、ウェーブレットは、例えば、
図23に図示されるように、命令の実行中、CEにより消費される。
【0374】
ニューロンスメアリング
図17は、ニューラルネットワーク1700としてニューラルネットワークの一実施形態の選択された細部を示す。ネットワーク1700は、3つの部分:入力レイヤ1710と、内部レイヤ1720と、出力レイヤ1740とを有する。各レイヤは複数のニューロンを有する。入力レイヤ1710は、ニューロンN11 1711、N12 1712、及びN13 1713を有する。内部レイヤ1720は、ニューロンN21 1721、N22 1722、N23 1723、及びN24 1724の第1のレイヤを有し、それに続けてニューロンN31 1731、N32 1732、及びN33 1733の第2のレイヤを有する。出力レイヤ1740はニューロンN41 1741及びN42 1742を有する。
【0375】
選択されたニューロン(N21 1721、N22 1722、N23 1723、及びN24 1724並びにN31 1731及びN32 1732)及び選択されたニューロン間の通信(1791、1792、及び1793)は、図中、強調表示されている。選択されたニューロン及びパスウェイについて以下により詳細に考察する。
【0376】
図18Aは、ニューロンへの処理要素の割り振りの第1の実施形態の選択された細部を図示する。ニューロンへの処理要素の割り振りは、処理要素へのニューロンの配置又は代替的にはニューロンの配置と呼ばれることがある。
図18Aの同様に付番された要素は、
図17の同様に付番された要素に対応する
図17のニューロンのサブセット(強調表示されたニューロンN21 1721、N22 1722、N23 1723、及びN24 1724並びにN31 1731及びN32 1732)への処理要素の第1の割り振りは概念的に示される。図中の垂直距離は、5つの処理要素PE0 1820、PE1 1821、PE2 1822、PE3 1823、PE4 1824、及びPE5 1825のそれぞれの計算リソースの相対的使用を示す。
【0377】
ニューロンN21 1721、N22 1722、N23 1723、及びN24 1724のそれぞれは、概ね同量の計算リソース、例えば、M個の演算、記憶容量K、及びストレージへの及びストレージからの帯域幅Jを表す。ニューロンN31 1731及びN32 1732のそれぞれは、概ね同量の計算リソース、例えば、M/2個の演算、ストレージK/2、及び帯域幅J/2を表す。したがって、N31 1731及びN32 1732のそれぞれは、N21 1721、N22 1722、N23 1723、及びN24 1724のそれぞれの計算リソースの概ね半分を表す。様々な実施形態では、計算リソースの例には、計算演算、記憶容量、ストレージからの読み取り帯域幅、ストレージへの書き込み帯域幅、他のニューロンからの入力接続、及び他のニューロンへの出力接続がある。
【0378】
図示の実施形態では、ニューロン処理は、上記ニューロンのそれぞれがPE全体に割り振られるように割り振られる。より具体的には、N21 1721はPE0 1820に割り振られ、N22 1722はPE1 1821に割り振られ、N23 1723はPE2 1822に割り振られ、N24 1724はPE3 1823に割り振られ、N31 1731はPE4 1824に割り振られ、N32 1732はPE5 1825に割り振られる。したがって、6つの処理要素のうちの4つは完全にサブスクライブされ(PE0 1820、PE1 1821、PE2 1822、及びPE3 1823)、一方、6つの処理要素のうちの2つ(PE4 1824及びPE5 1825)は半分しかサブスクライブされない。
【0379】
図18Bは、ニューロンへの処理要素の割り振りの第2の実施形態の選択された細部を図示する。
図18Bの同様に付番された要素は、
図17及び
図18Aの同様に付番された要素に対応する。
図17のニューロンのサブセット(強調表示されたニューロンN21 1721、N22 1722、N23 1723、及びN24 1724並びにN31 1731及びN32 1732)への処理要素の第2の割り振りは、概念的に示される。
図18Aと同様に、図中の垂直距離は、5つの処理要素PE0 1820、PE1 1821、PE2 1822、PE3 1823、PE4 1824、及びPE5 1825のそれぞれの計算リソースの相対的使用を示す。また
図18Aと同様に、N31 1731及びN32 1732のそれぞれは、N21 1721、N22 1722、N23 1723、及びN24 1724のそれぞれの計算リソースの概ね半分を表す。
【0380】
図示の実施形態では、ニューロン処理は、各ニューロンの処理が処理要素にわたり「染め」られる(smearing)ように割り振られる。概念的には、ニューロンは、処理要素への割り振りに適した部分に「分割」される。図示されるように、ニューロンは分割され、処理要素は、6つの処理要素のうちの4つが等しく(完全に)サブスクライブされ(PE0 1820、PE1 1821、PE2 1822、PE3 1823)、一方、6つの処理要素のうちの2つが完全にはサブスクライブされず、したがって、他の使用に利用可能である(PE4 1824及びPE5 1825)ように割り振られる。幾つかの実施形態及び/又は使用状況では、サブスクライブされない処理要素は使用されないままであり、能動電力及び/又は静的電力を殆ど又は全く消費しない(例えば、クロックゲーティング及び節電の1若しくはそれ以上を介して)。より具体的には、N21 1721は2つの半分で(1/2 N21 1721.1及び1/2 N21 1721.2)2つの各処理要素(PE0 1820及びPE2 1822)に割り振られる。同様に、N22 1722は2つの半分で(1/2 N22 1722.1及び1/2 N22 1722.2)2つの各処理要素(PE0 1820及びPE2 1822)に割り振られる。N23 1723は2つの半分で(1/2 N23 1723.1及び1/2 N23 1723.2)2つの各処理要素(PE1 1821及びPE3 1823)に割り振られ、N24 1724は2つの半分で(1/2 N24 1724.1及び1/2 N24 1724.2)2つの各処理要素(PE1 1821及びPE3 1823)に割り振られる。N31 1731は、4つの1/4で(1/4 N31 1731.1、1/4 N31 1731.2、1/4 N31 1731.3、及び1/4 N31 1731.4)4つの各処理要素(PE0 1820、PE1 1821、PE2 1822、及びPE3 1823)に割り振られる。同様に、N32 1732は、4つの1/4で(1/4 N32 1732.1、1/4 N32 1732.2、1/4 N32 1732.3、及び1/4 N32 1732.4)4つの各処理要素(PE0 1820、PE1 1821、PE2 1822、及びPE3 1823)に割り振られる。様々な実施形態では、ニューロンに関連付けられた1若しくはそれ以上の計算リソースに基づいて、ニューロンは分割され、処理要素は割り振られる。幾つかの実施形態では、処理要素で利用可能なハードウェアリソース(例えば、幾つかのニューロンは、PRNG等の特定のハードウェアリソースを必要とする)に基づいて、ニューロンは分割され、処理要素は割り振られる。
【0381】
図19は、複数の処理要素にわたりニューロンをスメアリングする一実施形態の選択された細部を図示する。分割により、分割ニューロンの部分が生成され、分割ニューロンの部分は次に、処理要素にわたりスメアリングされる。
図19の同様に付番された要素は、
図17、
図18A、及び
図18Bの同様に付番された要素に対応する。
図18Bに図示されるように、N21 1721は、PE0 1820及びPE2 1822によってそれぞれ実施される2つの部分1/2 N21 1721.1及び1/2 N21 1721.2に分割される。
【0382】
概念的に、N21 1721は、ローカル計算及びローカル記憶並びに入力及び出力を有すると考えられる。N21 1721の各要素はそれぞれ分割される。N21のローカル計算は、1/2ローカル計算1930.1及び1/2ローカル計算1930.2に分割される。N21のローカル記憶は、1/2ローカル記憶1940.1及び1/2ローカル記憶1940.2に分割される。N21の入力は、第1の半分in0 1910、in1 1911、及びin2 1912並びに第2の半分in3 1913、in4 1914、及びin5 1915に分割される。N21の出力は、第1の半分out0 1920、out1 1921、及びout2 1922並びに第2の半分out3 1923、out4 1924、及びout5 1925に分割される。
【0383】
1/2ローカル計算1930.1、1/2ローカル記憶1940.1、in0 1910、in1 1911、in2 1912、out0 1920、out1 1921、及びout2 1922は、PE1820により実施される。1/2ローカル計算1930.2、1/2ローカル記憶1940.2、in3 1913、in4 1914、及びin5 1915、out3 1923、out4 1924、及びout5 1925は、PE2 1822により実施される。
【0384】
幾つかの実施形態及び/又は使用状況では、2つ以上の処理要素にわたるニューロンスメアリングは、スメアリングされたニューロンの部分からの部分結果を結合して、ニューロン全体(元のスメアリングされていない)の結果に対応する結果にすることを含む。結合は、例えば、少なくとも部分的に、普通ならニューロン全体により実行/使用されない追加の計算、追加の記憶、及び/又は追加の通信により実施される。追加の計算1950.1及び追加の記憶1960.1は、1/2 N21 1721.1の追加の計算及び追加の記憶を表し、PE0 1820により実施される。追加の計算1950.2及び追加の記憶1960.2は、1/2 N21 1721.2の追加の計算及び追加の記憶を表し、PE2 1822により実施される。
【0385】
追加の通信1970は、1/2 N21 1721.1と1/2 N21 1721.2との間の追加の通信を表し、PE0 1820とPE2 1822との間のファブリック接続により実施される。幾つかの実施形態及び/又は使用状況では、追加の通信1970の全て又は任意の部分は、1つの処理要素が全体的にN21 1721実施される場合、1つの処理要素の内部で行われる通信を表す。
【0386】
図20は、分割されたニューロンの部分間の通信の一実施形態の選択された細部を図示する。
図20の同様に付番された要素は、
図17、
図18A、
図18B、及び
図19の同様に付番された要素に対応する。ニューロン部分へのPE0 1820、PE1 1821、PE2 1822、及びPE3 1823の割り振りは、
図18Bによって図示される。明確にするために、PE0 1820及びPE1 1821に固有の割り振りのみが図示される。
【0387】
ウェーハ部分2000は、PE0 1820、PE1 1821、PE2 1822、及びPE3 1823を有する。ウェーハ部分2000のPE間の結合は、PE 1820及びPE1 1821を結合する2040(隣接PE間の結合)、PE1 1821及びPE3 1823の2041結合、PE3 1823及びPE2 1822の2043結合、及びPE2 1822及びPE0 1820の2044結合として図示される。ウェーハ部分2000に隣接するPEへの結合は、(隣接するPE間の結合の部分)2050、2051、2052、2053、2054、2055、2056、及び2057として図示される。隣接するPEへの結合は、幾つかの実施形態及び/又は使用状況では、結合の全て又は任意の部分が、ウェーハ部分2000内に全体的にではなく、ウェーハ部分2000に隣接するウェーハ部分に含まれるため、「部分」である。様々な実施形態及び/又は使用状況では、少なくとも部分的に本明細書の他の箇所に更に記載されるように、結合を介した処理要素間の通信は、例えば、
図1の配置サーバ150で実行される
図2のニューロンからPEへのマッピングSW212により決定されるウェーブレットの指定されたカラーに従って、処理要素内のルータにより実施される論理結合の一種である仮想チャネルを介する。ウェーブレットが一種のパケット(ネットワークパケット)であり、「ファブリックパケット」が、ファブリック転送可能な(物理ファブリック結合を介した物理転送が可能であり、物理転送と互換性を有する)パケットを指し、「ファブリックベクトル」がファブリック転送可能なベクトルデータを指し、本明細書におけるニューロンスメアリングの概念(これに限定されるものではないが、仮想チャネルを介した通信を含む)が、パケット、ファブリックパケット、又はファブリックベクトルを使用した通信、計算、又は記憶に関して説明される実施形態に適用されることが理解される。
【0388】
第1の例として、通信部分1791.1は概念的に、例えば、入力レイヤから内部レイヤへの(
図17の)N11 1711とN21 1721との間の通信1791の一部を、各処理要素内の分割ニューロンの部分と共に表す。より具体的には、N21 1721が2つの部分(1/2 N21 1721.1及び1/2 N21 1721.2:
図18B参照)に分割されることを想起する。したがって、通信1791は2つの部分に分割される。通信部分1791.1は、1/2 N21 1721.1に関する部分のものが特に図示されている。通信部分1791.1は、ウェーハ部分2000に隣接するPE間の(隣接するPE間の結合の部分)2057を介してPE0 1820(1/2 N21 1721.1に割り振られる)に輸送される。幾つかの実施形態及び/又は使用状況では、通信1791は2つの部分:通信部分1791.1(図示される)及び通信部分1791.2(図示せず)に分割される。幾つかの実施形態及び/又は使用状況では、通信部分1791.1及び通信部分1791.2の輸送は、同じ仮想チャネルを介する。幾つかの実施形態及び/又は使用状況では、通信部分1791.1及び通信部分1791.2の輸送は、それぞれ独自の仮想チャネルを介する。
【0389】
第2の例として、通信部分1792.1は概念的に、例えば、第1の内部レイヤから第2の内部レイヤへの(
図17の)N21 1721とN31 1731との間の通信1792の一部を、各処理要素内の分割ニューロンの部分と共に表す。より具体的には、N21 1721が2つの部分(1/2 N21 1721.1及び1/2 N21 1721.2:
図18B参照)に分割されることを想起する。さらに、N31 1731が4つの部分(1/4 N31 1731.1、1/4 N31 1731.2、1/4 N31 1731.3、及び1/4 N31 1731.4:
図18B参照)に分割されることを想起する。したがって、通信1792は部分に分割される。通信部分1792.1は、1/2 N21 1721.1及び1/4 N31 1731.2に関する部分のものが特に図示されている。通信部分1792.1は、PE0 1820(1/2 N21 1721.1に割り振られる)とPE1 1821(1/4 N31 1731.2に割り振られる)との間で(隣接するPE間の結合)2040を介して輸送される。様々な実施形態及び/又は使用状況では、通信部分1792.1(図示される)及び例えば、通信1792の他の部分(図示せず)の輸送は、同じ仮想チャネル、部分ごとに独自の仮想チャネル、特定のニューロンに関連付けられた部分ごとに独自の仮想チャネル、及び/又は特定の処理要素に関連付けられた部分ごとの仮想チャネルを介する。
【0390】
第3の例として、通信部分1793.1は概念的に、例えば、第1の内部レイヤから第2の内部レイヤへの(
図17の)N23 1723とN31 1731との間の通信1793の一部を、同じ処理要素内の分割ニューロンの部分と共に表す。より具体的には、N23 1723が2つの部分(1/2 N23 1723.1及び1/2 N23 1723.2):
図18B参照)に分割されることを想起する。さらに、N31 1731が4つの部分(1/4 N31 1731.1、1/4 N31 1731.2、1/4 N31 1731.3、及び1/4 N31 1731.4:
図18B参照)に分割されることを想起する。したがって、通信1793は部分に分割される。通信部分1793.1は、1/2 N23 1723.1及び1/4 N31 1731.2に関する部分のものが特に図示されている。通信部分1793.1は、PE1 1821(1/2 N23 1723.1及び1/4 N31 1731.2に割り振られる)内部の1若しくはそれ以上の機構を介して輸送される。例えば、PE1 1821は、内部リソース(ルータ等)を使用して、出力を入力として内部でフィードバックし、及び/又は出力から入力を内部で提供する。幾つかの実施形態及び/又は使用状況では、通信部分1793.1の輸送は、入力として使用される出力を生成し、及び/又は出力から提供される入力を生成する仮想チャネルを介する。
【0391】
第4の例として、通信2060は概念的に、追加の通信1970(
図19の)、例えば、処理要素にわたり分割されるニューロン内の通信の全て又は任意の部分を表す。より具体的には、通信2060は特に、N32 1732が分割される4つの部分のうちの2つ(1/4 N32 1732.1及び1/4 N32 1732.2:
図18B参照)間の通信を図示する。通信2060は、PE0 1820(1/4 N32 1732.1に割り振られる)とPE1 1821(1/4 N32 1732.2に割り振られる)との間で(隣接するPE間の結合)2040を介して輸送される。様々な実施形態及び/又は使用状況では、通信2060は、通信2060専用の仮想チャネル、通信2060及びN32 1732の他の部分間の通信で共有される仮想チャネル、並びに通信2060及び処理要素にわたって分割されたニューロンの全て又は任意の部分で共有される仮想チャネルを介する。
【0392】
幾つかの実施形態及び/又は使用状況では、ウェーハ部分2000の全て又は任意の部分は
図1のPE122を有する。幾つかの実施形態及び/又は使用状況では、PE0 1820、PE1 1821、PE2 1822、及びPE3 1823の任意の1つは、
図4のPE497に対応する。幾つかの実施形態及び/又は使用状況では、隣接するPE2041、2040、2043、及び2044間の結合及び/又は隣接するPE2050、2051、2052、2053、2054、2055、2056、及び2057間の結合の部分の任意の1若しくはそれ以上は、
図4の北結合430、東結合431、南結合432、及び西結合433の任意の1若しくはそれ以上に対応する。
【0393】
ニューロンスメアリング(例えば、
図17、
図18A、
図18B、
図19、及び
図20に関して説明され、これらに関して図示された)に関連する概念はFCNN、RNN、CNN、LSTMネットワーク、オートエンコーダ、ディープビリーフネットワーク、及び敵対的生成ネットワーク等の様々なトポロジ及びタイプのニューラルネットワークに適用可能である。
【0394】
様々な実施形態及び/又は使用状況では、ニューロンは同サイズの部分、例えば、1/2、1/4、1/8等に分割される。様々な実施形態及び/又は使用状況では、ニューロンは、異なるサイズの部分、例えば、半分である第1の部分、それぞれ1/4である第2の部分及び第3の部分に分割される。様々な実施形態及び/又は使用状況では、ニューロンは任意のサイズの部分に分割される。
【0395】
様々な実施形態及び/又は使用状況では、複数のPEが1つのニューロンに割り振られる。様々な実施形態及び/又は使用状況では、1つのPEが複数のニューロンの各全体に割り振られる。
【0396】
様々な実施形態及び/又は使用状況では、ニューロンへのPEの割り振りは全体的又は部分的に、計算要件及び/又は記憶要件の静的測定及び/又は動的測定に応答する。様々な実施形態及び/又は使用状況では、ニューロンへのPEの割り振りは全体的又は部分的に、処理するデータの次元に応答する。
【0397】
様々な実施形態及び/又は使用状況では、矢印の方向として表されるデータフローは、単方向(描かれる矢頭で図示されるように)、双方向、及び/又は逆方向(描かれる矢頭の逆)である。特定の例として、様々な実施形態及び/又は使用状況では、通信1792(
図17の)は、N21 1721からN31 1731へのデータフロー(例えば、順方向伝搬中)又はN31 1731からN21 1721への逆のデータフロー(例えば、逆伝搬中)を表す。したがって、通信部分1792.1ひいては(隣接するPE間の結合の部分)上の通信2040は、PE0 1820からPE1 1821に(例えば、順方向伝搬中)及びPE1 1821からPE0 1820に逆に(例えば、逆伝搬中)発生する。
【0398】
様々な実施形態及び/又は使用状況では、各ニューロンは、入力アクティベーション毎の重み、部分和累積計算、及び出力アクティベーション関数計算の関連付けられた記憶装置を有する。1つのニューロンが複数のPEにわたり分割される状況では、重みはそれぞれ複数のPEにローカルに記憶され、乗算及び累積演算はそれぞれ、複数のPEでローカルに実行され、ローカルに生成された部分和は、最終和を生成するために特定のPEに仮想チャネルを介して通信される。最終和に続くアクティベーション関数は、
図1の配置サーバ150で実行される
図2のニューロンからPEへのマッピングSW212によって全て決定されるように、同じ特定のPE又は別のPEで実行することができる。非ゼロアクティベーション出力は、仮想チャネルを介してニューラルネットワークの後続層のニューロンに通信される。
【0399】
様々な実施形態及び/又は使用状況では、部分和、累積、及びアクティベーション関数は全て、デジタル論理及び/又はデジタル処理を含むデジタル技法を使用して実施される。様々な実施形態及び/又は使用状況では、欠陥を除き、ファブリックは、浮動小数点算術を実行するタスク、浮動小数点乗算器論理、乗算及び累積融合デジタル論理、並びに確率的ルーティングを使用する浮動小数点加算の1若しくはそれ以上を介してデジタル算術を実行することができるPEの同種の集まりを含む。様々な実施形態及び/又は使用状況では、同種の集まりのPEは更に、正規化線形ユニット(ReLU)、シグモイド、及びtanhから成る群から選択される非線形アクティベーション関数として各アクティベーション関数を実行することができる。
【0400】
ニューラルネットワークの
図17における表現は、データフローグラフの一種であり、ニューラルネットワーク及びニューロンスメアリングに関する上記概念は、データフローグラフに関して説明された実施形態に適用されることが理解される。幾つかの実施形態及び/又は使用状況では、データフローグラフのノードはニューロンに対応し、ノードスライスは分割ニューロンに対応し、ノードの1若しくはそれ以上は、複数の処理要素のリソースを使用して実施される。
【0401】
ベクトル及びデータ構造記述子
様々な実施形態及び/又は使用状況では、それぞれがデータ要素の1若しくはそれ以上をそれぞれ有する1若しくはそれ以上のベクトルの処理が実行される。ベクトルは様々にメモリ(例えば、
図8のメモリ854又はDストア848等のPEのCEの)から読み取られ、メモリに書き込まれ、ファブリックから受信され、又はファブリックに送信される。メモリから読み取られたベクトル又はメモリに書き込まれたベクトルは、「メモリベクトル」と呼ばれることもある。ファブリックから受信したベクトル又はファブリックに送信されたベクトル(例えば、ウェーブレットとして)は、「ファブリックベクトル」と呼ばれることがある。DSRからのDSD(及びXDSRからのXDXD)は、メモリベクトルのアドレス指定パターン及びファブリックベクトルのアクセスパターンの決定に使用可能である。
【0402】
【0403】
図21Aは、ファブリック入力データ構造記述子2100として、ファブリック入力データ構造記述子(別名ファブリック入力DSD)の一実施形態の選択された細部を図示する。幾つかの実施形態では、ファブリック入力データ構造記述子2100は、ファブリックからPEによって受信されるファブリックベクトル及びファブリックベクトルの処理に関連する様々なパラメータを記述する。様々な実施形態及び/又は使用状況では、命令の発信元0オペランド又は発信元1オペランドは、ファブリック入力データ構造記述子2100に従ってDSDのインスタンスを含むDSRを参照する。
【0404】
ファブリック入力データ構造記述子2100は、長さ2101、UTID(Microthread Identifier:マイクロスレッド識別子)2102、UE(Microthread Enable:マイクロスレッドイネーブル)2103、SW(v:SIMD幅)2104、AC(Activate Color:カラー活性化)2105、Term(Terminate Microthread on Control Wavelet:制御ウェーブレット時にマイクロスレッド終了)2106、CX(Control Wavelet Transform Enable:制御ウェーブレット変換イネーブル)2107、US(Microthread Sparse Mode:マイクロスレッド・スパース・モデル)2108、タイプ2109、SS(Single Step:シングルステップ)2110、SA(Save Address/Conditional Single Step Mode:アドレス保存/条件付きシングル・ステップ・モード)2111、SC(Color Specified / Normal Mode:カラー指定/通常モード)2112、SQ(Queue Specified / Normal Mode:キュー指定/通常モード)2113、及びCH(Color High:カラーハイ)2114を有する。
【0405】
幾つかの実施形態では、長さ2101は、ベクトルの長さ、例えば、ベクトル内のデータ要素の数を指定する15ビット整数を有する。
【0406】
幾つかの実施形態では、UE(Microthread Enable:マイクロスレッドイネーブル)2103は、少なくとも幾つかの条件下で、ファブリックベクトルの処理中、マイクロスレッド処理がイネーブルされているか否かを示す1ビットフィールドを有し、これは、「マイクロスレッド処理をイネーブルする」ファブリックベクトルと呼ばれることもある。命令の少なくとも1つのオペランド(ソース又は宛先)が、マイクロスレッド処理が可能なファブリックベクトルである場合、命令は「マイクロスレッド処理された命令」と呼ばれ、処理中、入力ストール又は出力ストールのいずれかで、処理は別の命令(例えば、同じタスク又は別のタスクの)に進むことができる(十分なマイクロスレッド処理リソースが利用可能である場合)。ストールがクリアされると、処理は(最終的に)、ストールした繰り返しにおいて前にストールした命令に戻る。一例の入力ストールは、入力ファブリックベクトルの少なくとも1つの要素又はFIFOオペランドが入力(例えば、ソースデータ要素)として利用可能ではない場合である。一例の出力ストールは、空間が、出力ファブリックベクトルの要素又は出力のFIFO(例えば、宛先データ要素)に関連付けられた結果をバッファリングするのに不十分である場合である。幾つかの状況では、マイクロスレッド処理をイネーブルしないファブリックベクトルは、同期して処理され、入力ストール又は出力ストールのいずれかで処理をストールする。幾つかの状況では、マイクロスレッド処理をイネーブルするファブリックベクトルは非同期で処理され、入力ストール又は出力ストールのいずれかでの処理要素のストールを低減又は回避する。ファブリックベクトルがマイクロスレッド処理をイネーブルする場合、処理要素は、条件付きで異なる命令の処理に切り替わることができ(ストールする代わりに)、続けて、後の時点(例えば、データが利用可能なとき)にファブリックベクトルの処理を再開することができる。
【0407】
幾つかの実施形態では、UTID(Microthread Identifier:マイクロスレッド識別子)2102は、複数のマイクロスレッドの1つ及び/又は複数のマイクロスレッドの1つに関連付けられたリソースを識別する3ビットフィールドを有する。マイクロスレッド及び/又はリソースには、例えば、マイクロスレッド処理をイネーブルするファブリックベクトルが関連付けられる。幾つかの実施形態では、ハードウェアは8つのマイクロスレッドにリソースを提供する。幾つかの実施形態及び/又は使用状況では、UTID2102は入力Q897の1つを識別又は部分的に識別する。
【0408】
幾つかの実施形態では、SW(SIMD Width:SIMD幅)2104は、幾つかの実施態様では、並列に実行される演算数を指定する2ビットフィールドを有する。例えば、FMACH、FADDH、FMULH、又はMOV16命令は、各オペランドで複数(最高で4つ)の演算を並列に実行する。幾つかの実施態様では、SWフィールドは、ウェーブレットを解析してデータvsインデックス情報にする方法の決定に使用される。例えば、SWフィールドが4である場合、それぞれが2つのデータ値を有する(インデックス値は有さない)2つのウェーブレットが、例えば並列で4つのオペランドを提供する。この例を続けると、SWフィールドが2である場合、2つのデータ値を有する(インデックス値を有さない)1つのウェーブレットが、例えば並列で2つのオペランドを提供する。この例を続けると、SWフィールドが1である場合、1つのデータ値及び1つのインデックス値を有する1つのウェーブレットが、1つのオペランドを提供する。
【0409】
幾つかの実施形態では、AC(Activate Color:カラー活性化)2105は、活性化するカラー(例えば、活性化演算を介して)を指定する6ビットフィールドを有する。幾つかの状況では、マイクロスレッド処理をイネーブルするファブリックベクトルの処理が完了した場合、ACフィールドによって指定されたカラーは活性化され、活性化されたカラーに基づいてタスクが開始される。処理の完了は、例えば、ファブリックベクトルの全ての要素が処理された場合、又はTerm2106が制御ウェーブレットに直面したときに終了することを示し、ファブリックベクトルの処理時、制御ウェーブレットに直面した場合、発生する。幾つかの実施形態では、AC2105は、ローカルカラー及びファブリックカラーの一方を指定することができる。
【0410】
幾つかの実施形態では、Term(Terminate Microthread on Control Wavelet:制御ウェーブレット時にマイクロスレッド終了)2106は、制御ウェーブレット受信時に終了するか否かを指定する1ビットフィールドを有する。ファブリック入力データ構造記述子2100によって指定されたキュー(例えば、本明細書の他の箇所に記載されるように、UTID2102、SC2112、及び/又はSQ2113の任意の組合せの様々な機能によって様々に指定される入力Q897の1つ)のヘッド部におけるウェーブレットが、制御ウェーブレット(例えば、
図13Aの制御ビット1320又は
図13Bの制御ビット1340が設定されている)であり、Term2106が設定されている場合、命令は終了し、AC2105によって指定されたカラーは活性化される。
【0411】
幾つかの実施形態では、CX(Control Wavelet Transform Enable:制御ウェーブレット変換イネーブル)2107は、制御ウェーブレットを変換すべきか否かを指定する1ビットフィールドを有する。CX2107が設定されている場合、ファブリックベクトル内の制御ウェーブレットの受信に応答して、インデックスレジスタのビット15:6は全て「1」である。幾つかの実施形態及び/又は使用状況では、インデックスレジスタのビット15:6が全て「1」である場合、インデックスレジスタを参照する出力ファブリックベクトルに関連付けられた任意の出力ウェーブレットの制御ビットは設定される。
【0412】
幾つかの実施形態では、US(Microthread Sparse Mode:マイクロスレッド・スパース・モード)2108は、マイクロスレッド処理をイネーブルする(UEフィールドを介して)ファブリックベクトルがスパースモードで処理されるか否かを指定する1ビットフィールドを有する。US2108が設定される場合、ファブリックベクトルは、スパースデータ要素のベクトル及びファブリック入力データ構造記述子2100によって記述されるオペランドの各ウェーブレットインデックスを有する。インデックスは任意選択で及び/又は選択で、WLI2152(
図21Cの)に応じて、メモリオペランドのアドレス計算に使用される。
【0413】
幾つかの実施形態では、タイプ2109は、データ構造タイプ及び/又はファブリック入力データ構造記述子2100の他のフィールドを解釈する方法を指定する3ビットフィールドを有する。タイプ2109は、ファブリック入力データ構造記述子2100の全てのインスタンスで「0」である。
【0414】
幾つかの実施形態では、SS(Single Step:シングルステップ)2110は、オペランドとしてDSDを使用する演算で、少なくとも幾つかの条件下においてシングル・ステップ・モード演算がイネーブルされているか否かを指定する1ビットフィールドを有する。幾つかの状況では、シングル・ステップ・モードをイネーブルする1若しくはそれ以上のオペランドを有する命令は、シングル・ステップ・モードで動作する。
【0415】
幾つかの実施形態では、SA(Save Address/Conditional Single Step Mode:アドレス保存/条件付きシングル・ステップ・モード)2111は、オペランドとしてDSDを使用する演算で、少なくとも幾つかの条件下において保存アドレスモード演算がイネーブルされているか否かを指定する1ビットフィールドを有する。
【0416】
幾つかの実施形態及び/又は使用状況では、カラーは活性化され、それに応答して、カラーに少なくとも部分的に基づくアドレスにおいてタスクを開始する。開始されると、タスクは実行される。幾つかの状況では、入力ファブリックベクトルは、現在実行中のタスクのカラーに関連付けられたキューから提供される。幾つかの実施形態では、SC(Color Specified,Normal Mode:カラー指定、通常モード)2112は、設定される場合、入力ファブリックベクトルが、特定のファブリックカラーに関連付けられた特定のキュー(例えば、入力Q897の1つ)から提供されることを指定する1ビットフィールドを有する。特定のファブリックカラーは、下位ビットUTID2102(3ビットフィールドを含む)及び上位ビットCH2114(2ビットフィールドを含む)の連結として指定される(例えば、5ビットカラーとして)。幾つかの実施形態では、SQ(Queue Specified,Normal Mode:キュー指定、通常モード)2113は、指定される場合、入力ファブリックベクトルが特定のキュー(例えば、入力Q897の1つ)から提供されることを指定する1ビットフィールドを有する。SQ2113が設定される場合、入力ファブリックベクトルは、UTID2102により指定される入力Q897の1つから提供される。
【0417】
図21Bは、ファブリック出力データ構造記述子2120として、ファブリック出力データ構造記述子(別名ファブリック出力DSD)の一実施形態の選択された細部を図示する。幾つかの実施形態では、ファブリック出力データ構造記述子2120は、PEにより作成され、ファブリックを介して送信されるファブリックベクトル及びファブリックベクトルの処理に関連する様々なパラメータを記述する。様々な実施形態及び/又は使用状況では、命令の宛先オペランドは、ファブリック出力データ構造記述子2120によるDSDのインスタンスを含むDSRを参照する。
【0418】
ファブリック出力データ構造記述子2120は、長さ2121、UTID(Microthread Identifier:マイクロスレッド識別子)2122、UE(Microthread Enable:マイクロスレッドイネーブル)2123、SW(SIMD Width:SIMD幅)2124、カラー2126、C(Output Control Bit:出力制御ビット)2127、インデックスロー2128.1、タイプ2129、SS(Single Step:シングルステップ)2130、SA(Save Address/Conditional Single Step Mode:アドレス保存/条件付きシングル・ステップ・モード)2131、WLI(Wavelet Index Select:ウェーブレットインデックス選択)2132、インデックスハイ2128.2、及びAC(Activate Color:カラー活性化)2125を有する。
【0419】
幾つかの実施形態では、ファブリック出力データ構造記述子2120の要素(長さ2121、UTID2122、UE2123、SW2124、SS2130、SA2131、及びAC2125)の機能及び/又は演算はそれぞれ、ファブリック入力データ構造記述子2100の要素(長さ2101、UTID2102、UE2103、SW2104、SS2110、SA2111、及びAC2105)と同様である。
【0420】
幾つかの実施形態では、カラー2126は、ファブリックベクトルに関連付けられたウェーブレットの送信に使用されるファブリックカラーを指定する5ビットフィールドを有する。
【0421】
幾つかの実施形態では、C(Output Control Bit:出力制御ビット)2127は、ウェーブレットが制御ウェーブレットであるか否かを指定する1ビットフィールドを有する。C2127が設定される場合、DSDに基づいて作成されるあらゆるウェーブレットは制御ウェーブレットである(例えば、
図13Aの制御ビット1320が設定される)。
【0422】
幾つかの実施形態では、インデックスロー2128.1は3ビットフィールドを有し、インデックスハイ2128.2は3ビットフィールドを有する。インデックスロー2128.1及びインデックスハイ2128.2を連結したものは集合的に、インデックス2128と呼ばれる。幾つかの状況では、インデックス2128は、ウェーブレットのインデックス(例えば、
図13Aのインデックス1321)の形成に使用される。
【0423】
幾つかの実施形態では、タイプ2129は、データ構造タイプ及び/又はファブリック出力データ構造記述子2120の他のフィールドを解釈する方法を指定する3ビットフィールドを有する。タイプ2129は、ファブリック出力データ構造記述子2120の全てのインスタンスで「0」である。
【0424】
幾つかの実施形態では、WLI(Wavelet Index Select:ウェーブレットインデックス選択)2132は、ファブリックベクトルのインデックスを部分的に指定する1ビットフィールドを有する。幾つかの状況では、WLI2132が「1」である場合、インデックスはレジスタ(例えば、RF842のGPR4)からの値である。幾つかの状況では、WLI2132が「0」である場合、インデックスはインデックス2128の16ビットへのゼロ拡張である。
【0425】
図21Cは、1Dメモリ・ベクトル・データ構造記述子2140として、1Dメモリ・ベクトル・データ構造記述子(別名1DメモリベクトルDSD)の一実施形態の選択された細部を図示する。幾つかの実施形態では、1Dメモリ・ベクトル・データ構造記述子2140は、メモリに記憶された一次元メモリベクトル及びメモリベクトルの処理に関連する様々なパラメータを記述する。様々な実施形態及び/又は使用状況では、命令の発信元0オペランド、発信元1オペランド、及び宛先オペランドのいずれか1若しくはそれ以上は、1Dメモリ・ベクトル・データ構造記述子2140によるDSDの各インスタンスを含む各DSRを参照する。
【0426】
1Dメモリ・ベクトル・データ構造記述子2140は、長さ2141、ベースアドレス2142、タイプ2149、SS(Single Step:シングルステップ)2150、SA(Save Address/Conditional Single Step Mode:アドレス保存/条件付きシングル・ステップ・モード)2151、WLI(Wavelet Index Select:ウェーブレットインデックス選択)2152、及びストライド2153を有する。
【0427】
幾つかの実施形態では、1Dメモリ・ベクトル・データ構造記述子2140の要素の幾つか(長さ2141、SS2150、及びSA2151)の機能及び/又は演算はそれぞれ、ファブリック入力データ構造記述子2100の要素の幾つか(長さ2101、SS2110、及びSA2111)と同様である。幾つかの状況では、メモリベクトルの長さが15ビット超である場合、4Dメモリ・ベクトル・データ構造記述子2140が使用される。
【0428】
幾つかの実施形態では、ベースアドレス2142は、メモリベクトルのベースアドレスを指定する15ビット整数を有する。
【0429】
幾つかの実施形態では、タイプ2149は、データ構造タイプ及び/又は1Dメモリ・ベクトル・データ構造記述子2140の他のフィールドを解釈する方法を指定する3ビットフィールドを有する。タイプ2149は、1Dメモリ・ベクトル・データ構造記述子2140の全てのインスタンスで「1」である。
【0430】
幾つかの実施形態では、WLI(Wavelet Index Select:ウェーブレットインデックス選択)2152は、ベクトルのインデックスを部分的に指定する1ビットフィールドを有する。WLI2152が「0」である場合、インデックスは0である。幾つかの状況では、WLI2152が「1」である場合、インデックスはレジスタ(例えば、RF842のGPR4)からの値又はスパースウェーブレットのインデックス(例えば、
図13Aのインデックス1321)である。
【0431】
幾つかの実施形態では、ストライド2153は、ベクトルのストライドを指定する9ビット符号付き整数を有する。幾つかの状況では、ベースアドレス2142、WLI2153によって指定されるインデックス、及びストライド2153は、1Dメモリベクトル内のデータ要素のアドレスを計算できるようにする。1Dメモリベクトル内の最初のデータ要素のアドレスは、ベースアドレス2142+WLI2153によって指定されたインデックスである。1Dベクトル内の次のデータ要素のアドレスは、最初のデータ要素のアドレス+ストライド2153である。例えば、ベースアドレス2142は136であり、WLI2153は1であり、GPR4は値6を保持する。ストライド2153は-2であり、長さ2141は10であり、メモリベクトルはアドレス{142,140,138,...,124}に配置されたデータを含む。幾つかの状況では、メモリベクトルのストライドが9ビットを超える場合、4Dメモリ・ベクトル・データ構造記述子2140が使用される。
【0432】
図21Dは、4Dメモリ・ベクトル・データ構造記述子2160として、4Dメモリ・ベクトル・データ構造記述子(別名4DメモリベクトルDSD)の一実施形態の選択された細部を図示する。幾つかの実施形態では、4Dメモリ・ベクトル・データ構造記述子2160は、
図22Bの4Dメモリベクトル拡張データ構造記述子2240と併せて、メモリに記憶された四次元メモリベクトル及びメモリベクトルの処理に関連する様々なパラメータを記述する。幾つかの実施形態では、4Dメモリ・ベクトル・データ構造記述子2160は、
図22Bの4Dメモリベクトル拡張データ構造記述子2240と併せて、メモリに記憶された二次元又は三次元メモリベクトル及びメモリベクトルの処理に関連する様々なパラメータを記述する。様々な実施形態及び/又は使用状況では、命令の発信元0オペランド、発信元1オペランド、及び宛先オペランドのいずれか1若しくはそれ以上は、4Dメモリ・ベクトル・データ構造記述子2160によるDSDの各インスタンスを含む各DSRを参照する。
【0433】
4Dメモリ・ベクトル・データ構造記述子2160は、長さ下位ビット2161.1、ベースアドレス2162、タイプ2169、SS(Single Step:シングルステップ)2170、SA(Save Address/Conditional Single Step Mode:アドレス保存/条件付きシングル・ステップ・モード)2171、WLI(Wavelet Index Select:ウェーブレットインデックス選択)2172、及び長さ上位ビット2161.2を有する。
【0434】
幾つかの実施形態では、4Dメモリ・ベクトル・データ構造記述子2160の要素の幾つか(ベースアドレス2162、SS2170、SA2171、及びWLI2172)の機能及び/又は演算はそれぞれ、1Dメモリ・ベクトル・データ構造記述子2140(ベースアドレス2142、SS2150、SA2151、及びWLI2152)と同様である。
【0435】
幾つかの実施形態では、下位ビット2161.1は15ビットフィールドを有し、長さ上位ビット2161.2は9ビットフィールドを有する。下位ビット2161.1及び長さ上位ビット2161.2を連結したものは集合的に、4Dメモリベクトル拡張データ構造記述子2240と併せて解釈される長さ2161(24ビットフィールド)と呼ばれる(長さ2161として図示される)。
【0436】
幾つかの実施形態では、タイプ2169は、例えば、拡張DSD(extended DSD:XDSD)を記憶する拡張DSR(extended DSR:XDSR)を指定する3ビットフィールドを有する。XDSDは、循環メモリバッファ(例えば、
図22Aの循環メモリバッファ拡張データ構造記述子2210)及び四次元メモリベクトル(例えば、
図22Bの4Dメモリベクトル拡張データ構造記述子2240)の一方を指定し記述する。
【0437】
図21Eは、循環メモリ・バッファ・データ構造記述子2180として、循環メモリ・バッファ・データ構造記述子(別名循環メモリバッファDSD)の一実施形態の選択された細部を図示する。幾つかの実施形態では、循環メモリ・バッファ・データ構造記述子2180は、循環メモリバッファ拡張データ構造記述子2210と併せて、メモリに記憶されたデータ要素の循環バッファ及びメモリに記憶されたデータ要素のFIFOの一方及びデータ要素の処理に関連付けられた様々なパラメータを記述する。様々な実施形態及び/又は使用状況では、命令の発信元0オペランド、発信元1オペランド、及び宛先オペランドのいずれか1若しくはそれ以上は、循環メモリ・バッファ・データ構造記述子2180によるDSDの各インスタンスを含む各DSRを参照する。
【0438】
循環メモリ・バッファ・データ構造記述子2180は、長さ2181、ベースアドレス2182、FW(FIFO Wrap Bit:FIFOラップビット)2188、タイプ2189、SS(Single Step:シングルステップ)2190、SA(Save Address/Conditional Single Step Mode:アドレス保存/条件付きシングル・ステップ・モード)2191、WLI(Wavelet Index Select:ウェーブレットインデックス選択)2192、及びSW(SIMD Width:SIMD幅)2184を有する。幾つかの実施形態では、循環メモリバッファアクセスは常に、インデックス0及びストライド1を有する。
【0439】
幾つかの実施形態では、循環メモリ・バッファ・データ構造記述子2180の要素の幾つか(長さ2181、ベースアドレス2182、SS2190、及びSA2191)の機能及び/又は演算はそれぞれ、1Dメモリ・ベクトル・データ構造記述子2140の要素の幾つか(長さ2141、ベースアドレス2142、SS2150、及びSA2151)と同様である。幾つかの状況では、タイプ2189の機能及び/又は演算は、4Dメモリ・ベクトル・データ構造記述子2160のタイプ2169と同様である。幾つかの実施形態では、循環メモリ・バッファ・データ構造記述子2180のSW2184の機能及び/又は演算は、ファブリック入力データ構造記述子2100のSW2104と同様である。
【0440】
幾つかの実施形態では、FW(FIFO Wrap Bit:FIFOラップビット)2188は、満杯FIFOと空FIFOとの区別を可能にする1ビットフィールドを有する。FW(FIFO Wrap Bit:FIFOラップビット)2188は、アクセスがFIFOのアドレス範囲をラップアラウンドするとき、トグルされる。
【0441】
幾つかの実施形態では、WLI2192は、循環バッファのインデックスに影響を有さない。
【0442】
図22Aは、循環メモリバッファ拡張データ構造記述子2210として、循環メモリバッファ拡張データ構造記述子の一実施形態の選択された細部を図示する。循環メモリバッファ拡張データ構造記述子2210は、タイプ2211、開始アドレス2212、終了アドレス2213、FIFO2214、カラープッシュ(活性化)2215、及びカラーポップ(活性化)2216を有する。
【0443】
幾つかの実施形態では、タイプ2211は、データ構造のタイプを指定する1ビットフィールドを有する。タイプ2211は、循環メモリバッファ拡張データ構造記述子2210の全てのインスタンスで「1」である。
【0444】
幾つかの実施形態では、開始アドレス2212は、メモリ内の循環バッファの開始アドレスを指定する15ビットフィールドを有する。幾つかの実施形態では、終了アドレス2213は、メモリ内の循環バッファの終了アドレスを指定する15ビット整数を有する。アドレスが増分され(次のアクセスを開始するために、ストライドにより)、終了アドレス2213に等しい場合、アドレスはベースアドレス2212にリセットされ、それにより、循環アクセス挙動を提供する。
【0445】
幾つかの実施形態では、FIFO2214は、循環バッファがFIFOであるか否かを指定する1ビットフィールドを有する。FIFO2214が「0」の場合、循環バッファはFIFOではない。FIFO2214が「1」の場合、循環バッファはFIFOである。
【0446】
幾つかの実施形態では、カラープッシュ(活性化)2215及びカラーポップ(活性化)2216は、活性化する(例えば、活性化演算を介して)カラーを指定する6ビットフィールドを有する。幾つかの実施形態では、カラープッシュ(活性化)2215及びカラーポップ(活性化)2216は、ローカルカラー及びファブリックカラーのカラーを指定することができる。
【0447】
様々な実施形態では、2つの循環メモリバッファDSRが、メモリの同じレジスタに記憶されたデータ要素のFIFOを記述することができる。宛先DSR(例えば、DDSR8)は、FIFOの書き込みポインタを記述し、発信元1DSR(例えば、S1DSR8)はFIFOの読み取りポインタを記述する。幾つかの実施形態では、宛先DSR及び発信元1DSRは同じ識別子を有する。様々な実施形態では、DSR846の幾つかのみがFIFOを記述することができる(例えば、DDSR8~DDSR11及びS1DSR8~S1DSR11)。
【0448】
2つのDSRのFW(FIFO Wrap Bit:FIFOラップビット)2188は、FIFOが満杯であるか、それとも空であるかの検出を可能にする。FIFOが宛先として使用される場合、関連付けられたS1DSRのベースアドレス2182及びFW2188は読み取られ、DDSRからの値と比較される。2つのDSRのベースアドレス2182が同じであるが、FW2188が異なる場合、FIFOは満杯である。FIFOが発信元として使用される場合、関連付けられたDDSRのベースアドレス2182及びFW2188は読み取られ、S1DSRからの値と比較される。2つのDSRのベースアドレス2182が同じであり、FW2188が同じである場合、FIFOは空である。幾つかの状況(例えば、マイクロスレッド処理)では、空のFIFOにアクセスしている読み取り又は満杯のFIFOにアクセスしている書き込みに応答して、FIFOがそれぞれ空又は満杯ではなくなるまで、処理は別のタスク内の命令に切り替えられる。
【0449】
幾つかの実施形態及び/又は使用状況では、ソフトウェア(例えば、
図2のPE上のタスクSW260)は、PEのキューの延長としてFIFOを構成し動作させる。例えば、FIFOは、データ要素を記憶して、入力Q897及び出力キュー859の1若しくはそれ以上のキューに加えて、容量を提供することができる。別の例として、FIFOは、ウェーブレットをバッファリングすることにより、PEを接続するファブリックに追加容量を提供することができる。
【0450】
図22Bは、4Dメモリベクトル拡張データ構造記述子2240として、4Dメモリベクトル拡張データ構造記述子の一実施形態の選択された細部を図示する。幾つかの実施形態では、4Dメモリベクトル拡張データ構造記述子2240は部分的に、メモリに記憶されるデータ要素の四次元ベクトルを記述する。4Dメモリベクトル拡張データ構造記述子2240は、タイプ2241、次元2242、DF(Dimension Format:次元フォーマット)2243、選択ストライド1 2244.1、選択ストライド2 2244.2、選択ストライド3 2244.3、選択ストライド4 2244.4、及びストライド2245を有する。幾つかの実施形態では、4Dメモリベクトル拡張データ構造記述子2240は51ビットを有する。
【0451】
幾つかの実施形態では、タイプ2241は、データ構造のタイプを指定する1ビットフィールドを有する。タイプ2241は、4Dメモリベクトル拡張データ構造記述子2240の全てのインスタンスで「0」である。
【0452】
幾つかの実施形態では、次元2242は、ベクトルの次の次元の長さを初期化するのに使用される20ビットフィールドを有する。
【0453】
幾つかの実施形態では、DF(Dimension Format:次元フォーマット)2243は、
図21Dの長さ2161と併せて、N次元ベクトルの各次元の長さを指定する5ビットフィールドを有する。概念的に、長さ2161は6つの連続した4ビットニブルに分割され、各次元はニブルの1若しくはそれ以上を使用して表現される。ビットはDF2243において、長さ2161における次元間の境界を示すように設定される。例えば、DF2242は「01110」(二進数)であり、第1の次元が2つのニブル、例えば、ビット[7:0]を使用して表現され、1~128の長さを表すことを示す。同様に、第2の次元は1つのニブル、例えば、ビット[11:8]を使用して表現され、1~4の長さを表す。N次元ベクトルは、DF2242において(N-1)ビットを設定することによって表され、最後の次元のみが4を超えるニブルを使用する。幾つかの実施形態及び/又は使用状況では、例えば、ベクトルが、長さ2141(
図21Cの)が記述するには長すぎる場合、一次元ベクトルはこのフォーマットを使用して記述される。幾つかの実施形態及び/又は使用状況では、二次元又は三次元ベクトルはこのフォーマットを使用して記述される。
【0454】
幾つかの実施形態では、選択ストライド1 2244.1は、ベクトルの第1の次元のストライドを指定する1ビットフィールドを有する。選択ストライド1 2244.1が「0」の場合、ストライドは1である。選択ストライド1 2244.1が「1」の場合、ストライドはストライド2245によって指定される。
【0455】
幾つかの実施形態では、選択ストライド2 2244.2は、3ビットフィールドを有し、ベクトルの第2の次元のストライドを符号化する。選択ストライド2 2244.2が「0」の場合、ストライドは1である。選択ストライド2 2244.2が「1」の場合、ストライドはストライド2245によって指定される。選択ストライド2 2244.2が2~7の場合、ストライドは対応する(DSRs)ストライドレジスタ(例えば、DSR846の6つのストライドレジスタによって指定される。
【0456】
幾つかの実施形態では、選択ストライド3 2244.3及び選択ストライド4 2244.4はそれぞれ3ビットフィールドを有する。幾つかの実施形態では、選択ストライド3 2244.3及び選択ストライド4 2244.4の機能及び/又は演算はそれぞれ、第3及び第4の次元に関して、選択ストライド2 2244.2は第2の次元に関すると同様である。
【0457】
幾つかの実施形態では、ストライド2245は、メモリ内のベクトルのストライドを指定する15ビットフィールドを有する。幾つかの状況では、ストライド2245は、一次元ベクトルにはストライド2153(
図21Cの)よりも長いストライドを使用できるようにする。
【0458】
図23は、データ構造記述子フロー2300として、データ構造記述子によりオペランドにアクセスする一実施形態の選択された細部を図示する。幾つかの実施形態では、データ構造記述子フロー2300の動作はCE(例えば、CE800)によって実行される。
【0459】
データ構造記述子を介して発信元オペランドにアクセスすることは、各DSDを用いてPEのCEの1若しくはそれ以上のDSRを初期化し(DSRを設定2302)、任意選択で各XDSD及び/又はCEのストライド値を初期化する((任意選択)XDSRを設定2305)ことによって開始される(開始2301)。幾つかの実施形態では、初期化されたDSR(及び任意選択で、初期化されたXDSR及びストライド値を保持するストライドレジスタ)は、データをメモリからDSRに移す命令によって初期化される。続けて、CEは、初期化されたDSR及び任意選択で1若しくはそれ以上のXDSR及び/又はストライドレジスタによって指定された1若しくはそれ以上のオペランドを有する命令(例えば、FMACH、MOV、又はLT16)をフェッチし復号化する(DSRを用いて命令をフェッチ/復号化2303)。幾つかの実施形態では、命令のオペランドタイプフィールドは、オペランドがDSRによって指定されるか否かを指定する。
【0460】
CEは、DSRから1若しくはそれ以上のDSDを読み取り(DSRを読み取る2304)、データ構造のタイプ、データ要素の発信元、複数のデータ要素が一緒に読み取られるか否か(例えば、SIMD演算の場合)、及び各オペランドのデータ要素の総数の1若しくはそれ以上を特定する。
図24に関して説明されるように、特定に応じて、各DSD読み取りで、XDSR及び1若しくはそれ以上のストライドレジスタも任意選択で読み取られる((任意選択)XDSRを読み取る2306)。幾つかの状況では、DSRは、発信元0オペランド、発信元1オペランド、及び宛先オペランドの1若しくはそれ以上について読み取られ、動作2303において得られた命令の各オペランドフィールドによって識別される。幾つかの実施形態及び/又は使用状況では、DSR、XDSR、及びストライドレジスタの任意の1若しくはそれ以上は、全体的又は部分的に並列して読み取られ、他の実施形態及び/又は使用状況では、DSR、XDSR、及びストライドレジスタの任意の1若しくはそれ以上は、全体的又は部分的に順次読み取られる。
【0461】
動作2304において得られたDSD(及び任意選択で、動作2306において得られたXDSR及びストライド値)に基づいて、CEは、ファブリック及び/又はメモリから1若しくはそれ以上の発信元データ要素を読み取る(キュー/メモリから(次の)発信元データ要素を読み取る2310)。動作2303において得られた命令によって指定される各発信元(例えば、発信元0及び発信元1のそれぞれ)について、CEは、DSD内のSIMD幅情報に従って、命令において指定された演算の反復に十分な要素を読み取る。幾つかの実施形態及び/又は使用状況では、繰り返しに十分な要素は、少なくとも1つの要素及びSIMD幅情報により示される数以下である。様々な実施形態では、十分な要素は、入力キュー897のキュー内の1つ又は2つのエントリに含まれる要素数以下及び出力キュー859のキュー内の1つ又は2つのエントリに含まれる要素数以下である。ファブリックからのデータ要素(例えば、ソースデータ構造はファブリックベクトルである)は、CEの1若しくはそれ以上のキューを介してアクセスされる。幾つかの実施形態及び/又は使用状況では、CEはレジスタからもデータ要素を読み取る。
【0462】
発信元データ要素を読み取った後、CEは、入力としてデータ要素を使用して演算を実行する(データ要素に対して(次の)演算を実行2311)。演算は、動作2303(例えば、FMACH命令では乗累算演算、MOV命令では移動演算、又はLT16では整数未満比較)において得られる命令によって指定される。
【0463】
幾つかの状況では、演算(例えば、乗累算演算又は移動演算)は、1若しくはそれ以上の出力データ要素を生成する。CEは、動作2304において得られたDSD(及び任意選択で動作2306において得られたXDSR及びストライド値)に基づいて出力データ要素をファブリック又はメモリに書き込む((次の)宛先データ要素をキュー/メモリに書き込む2312)。ファブリックに送信されたデータ要素(例えば、宛先データ構造はファブリックベクトルである)は、ウェーブレットに形成され、PEのルータを介してファブリックに送信される。幾つかの他の状況では、出力データ要素はない(例えば、幾つかの比較演算)。
【0464】
演算からの任意の結果を書き込んだ後、CEは、処理する追加のデータ要素があるか否かを判断する(データ要素がまだあるか?2313)。幾つかの実施形態では、DSDは、アクセスするデータ要素の総数(例えば、ベクトルの長さ)を指定し、CEは、アクセスされたデータ要素の数(例えば、カウンタを介して追跡される)を長さによって指定されたデータ要素の総数と比較する。処理する追加のデータ要素がある場合、CEは、全てのデータ要素が処理されるまで動作2310~2313を繰り返し、全てのデータ要素が処理されると、フローは終わる(終わり2316)。
【0465】
様々な実施形態及び/又は使用状況では、データ構造記述子フロー2300の要素の任意の1若しくはそれ以上の全て又は任意の部分(例えば、任意の1若しくはそれ以上の動作2302~2312)は、CE、例えば、CE800の要素によって実行される演算及び/又はCEの要素に概念的に対応及び/又は概念的に関連する。
【0466】
一例として、発信元DSD(DSRを設定2302及びDSRを読み取る2304に関連付けられる)を保持する発信元DSRは、DSR846の1若しくはそれ以上(例えば、S0DSR、S1DSR、DDSR、XDSR、及びストライドレジスタ)である。幾つかの実施形態では、CE800は、DSDをDSRに書き込む命令、例えば、LDS0WDS、LDS1WDS、LDXDS、及びLDSRに応答してDSRを、設定2302を実行する。
【0467】
別の例として、CE800は、DSRを用いて命令をフェッチ/復号化2303を実行する。様々な実施形態では、PC834及びI配列836は、メモリ854から命令をフェッチし、デコーダ840は、フェッチされた命令を符号化する。幾つかの実施形態では、命令は、
図25Aの複数オペランド命令2510、
図25Bの1発信元0宛先オペランド命令2520、及び
図25Cの即値命令2530の1つに従ってフォーマットされる。幾つかの実施形態では、復号化は、命令オペランドがDSDによって指定されること、例えば、オペランド1タイプ2514.1の値が「1」であることを検出することを含む。
【0468】
別の例として、CE800は、DSRによって指定された1若しくはそれ以上のオペランドを有する命令に応答して、DSRを読み取る2304を実行する。様々な実施形態では、D配列844は、DSR846から動作2303において得られた命令によって指定されたDSRを読み取る。幾つかの実施形態では、DSRから読み取られたDSDは、
図21Aのファブリック入力データ構造記述子2100、
図21Bのファブリック出力データ構造記述子2200、
図21Cの1Dメモリ・ベクトル・データ構造記述子2140、
図21Dの4Dメモリ・ベクトル・データ構造記述子2160、及び
図21Eの循環メモリ・バッファ・データ構造記述子2180の1若しくはそれ以上に従ってフォーマットされる。幾つかの実施形態及び/又は使用状況では、D配列844は、XDSRを指定するタイプ2169又はタイプ2189を有するDSDに応答して、(任意選択)XDSRを読み取る2306を実行する。様々な実施形態では、XDSRから読み取られたXDSDは、
図22Aの循環メモリ拡張バッファデータ構造記述子2180及び
図22Bの4Dメモリベクトル拡張データ構造記述子2160の1つに従ってフォーマットされる。
【0469】
別の例として、CE800は、動作2304において読み取られた発信元DSD及び任意選択で動作2306において読み取られたXDSDに基づいて、キュー/メモリから(次の)発信元データ要素を読み取る2310を実行する。幾つかの状況では、発信元DSDは、オペランドがメモリを発端とすることを指定し(例えば、タイプ2149を介して)、D配列844は、(例えば、ベースアドレス2142、WLI2152、及びストライド2153の1若しくはそれ以上に部分的に基づいて)DSDによって指定されたアドレスにおいてDストア848又はメモリ854からデータ要素を読み取る。幾つかの状況では、発信元DSDは、オペランドがファブリックを発端とすることを指定し(例えば、タイプ2109を介して)、CE800は入力Q897の1つからデータ要素を読み取る。幾つかの実施形態及び/又は使用状況では、データ要素は、入力Q897の1つからデータパス852に直接送信される。他の実施形態及び/又は使用状況では、データ要素は、入力Q897の1つからRF842に、そしてRFからデータパス852に送信される。幾つかの実施形態では、入力Q897の1つは、DSDの部分(例えば、UTID2102、SC2112、及びSQ2113の1若しくはそれ以上)によって暗黙的に指定される。幾つかの状況では、CEは、現在のタスク(例えば、動作2303において得られた命令に関連付けられたタスク)のカラーに関連付けられたキューから読み取る。幾つかの状況(例えば、SQ2113が「1」である)では、CEは、UTID2102によって指定されたキューから読み取る。幾つかの状況(例えば、SC2112が「1」である)では、CEは、CH2114と連結されたUTID2102によって指定されたカラーに関連付けられたキューから読み取る。幾つかの状況では、CEは、SW2104に基づいて指定されたキューから1つ、2つ、又は4つのデータ要素を読み取る。
【0470】
幾つかの実施形態及び/又は使用状況では、CE800が、入力Q897の指定されたキュー内で利用可能なデータ要素よりも多数のデータ要素を読み取ろうとする場合、又は代替的には、空のFIFO(例えば、
図21EによるDSDにより実施される)から読み取ろうとする場合、CE800はストールする。幾つかの実施形態及び/又は使用状況(例えば、マイクロスレッド処理)では、ピッカー830は、データ要素を待っている間、入力Q897から異なるタスクを選択することができ、それにより、CE800はストールを回避することができる。マイクロスレッド処理については、
図26及び「マイクロスレッド処理」セクションにおいてより詳細に説明される。
【0471】
別の例として、CE800は、データ要素に対して(次の)演算を実行2311を実行する。幾つかの実施形態では、データパス852は、動作2303において得られた命令によって指定される演算への入力として、動作2310において読み取ったデータ要素を使用する。幾つかの状況(例えば、計算演算)では、動作2311は出力データ要素を生成し、一方、他の状況(例えば、比較演算)では、動作2311は出力データ要素を生成しない。幾つかの実施形態では、データパス852は、2つ以上の演算を同時に実行することができ(例えば繰り返し)、例えば、SIMD実行リソースを使用して2つ又は4つの乗累算演算を同時に実行することができる。
【0472】
別の例として、CE800は、動作2304において読み取った宛先DSD及び任意選択で動作2306において読み取ったXDSDに基づいて、(次の)宛先データ要素をキュー/メモリに書き込む2312を実行する。幾つかの状況では、宛先DSDは、オペランドがメモリを宛先とすることを指定し(例えば、タイプ2149を介して)、D配列844は、(例えば、ベースアドレス2142、WLI2152、及びストライド2153の1若しくはそれ以上に部分的に基づいて)宛先DSDによって指定されたアドレスにおいてDストア848又はメモリ854にデータ要素を書き込む。
【0473】
様々な実施形態及び/又は使用状況では、動作2312(宛先データ要素をファブリックに書き込む)の部分は、
図14のウェーブレットとしてデータ要素を出力キューに提供1408に概念的に対応及び/又は概念的に関連する。幾つかの状況では、宛先DSDは、オペランドがファブリックに送信されることを指定し(例えば、タイプ2129を介して)、CE800は、データ要素からウェーブレットを生成し(例えば、ファブリック出力データ構造記述子2120に部分的に基づいて)、出力キュー859及びオンランプ860を介して、ファブリックへのルータ600(
図6の)に送信する。幾つかの状況では、CEは、宛先DSDのSW2124に基づいて1つ、2つ、又は4つのデータ要素をウェーブレットとして送信する。
【0474】
幾つかの実施形態及び/又は使用状況では、CE800が、ルータ600で利用可能なリソースよりも多くのウェーブレットを送信しようとする(例えば、
図6のデータキュー650内のリソースが不十分である)場合、又は代替的には、満杯のFIFOに書き込もうとする場合(例えば、
図21EによるDSDにより実施されるように)、CE800はストールする。幾つかの実施形態及び/又は使用状況(例えば、マイクロスレッド処理)では、ピッカー830は、より多くのリソースを待っている間、入力Q897から異なるタスクを選択することができ、それにより、CE800はストールを回避することができる。マイクロスレッド処理については、
図26及び「マイクロスレッド処理」セクションにおいてより詳細に説明される。
【0475】
別の例として、CE800は動作2313を実行する。幾つかの実施形態では、D配列844は、いくつのデータ要素が処理されたか(例えば、各データ要素でカウンタをインクリメントすることにより)を判断し、これをベクトルの長さ(例えば、長さ2101)と比較する。
【0476】
図24は、データ構造記述子復号化フロー2400としてデータ構造記述子を復号化する一実施形態の選択された細部を図示する。様々な実施形態及び/又は使用状況では、メモリデータ構造記述子フロー2400は、ファブリック又はメモリベクトルを記述する、各DSRで実行される動作2304、2306、2310、及び2312(
図23の)の全て又は任意の部分の概念表現である。まとめると、
図23は、初期化されたDSRにより指定される1若しくはそれ以上のオペランドを有する命令をフェッチし復号化すること、DSRを読み取って対応するDSDを取得し復号化すること、DSDに従って(次の)発信元データ要素を読み取ること、発信元データ要素に対して動作を実行すること、DSDに従って演算の出力データ要素を書き込むこと、及び完了まで、次の発信元データ要素を読み取ることに反復して戻ることを図示する。
図24は、ファブリックベクトル(ファブリックベクトル2410)及びメモリベクトル(メモリベクトル2420)について、DSRから得られたDSDの復号化及び任意選択で1若しくはそれ以上のXDSR及びストライドレジスタを読み取り、対応するXDSD及びストライド値を取得し復号化して、命令(例えば、発信元0、発信元1、及び宛先の任意の1若しくはそれ以上)のメモリベクトルのデータ要素にアクセスするのに使用されるメモリ・アクセス・パターンを特定することに関する更なる詳細を図示する。概念的に、
図24に図示される動作は、
図23の動作2304を介して得られた各DSDで実行される。幾つかの実施形態では、メモリデータ構造記述子フロー2400の動作はCE(例えば、CE800)によって実行される。
【0477】
DSD(例えば、
図23の動作2304を介して得られる)の復号化は、例えば、
図21A又は
図21Bにより、DSDがファブリックベクトルに対応するか否か(タイプ=ファブリック?2411)をCEが判断することによって開始される(開始2401)。対応する場合、DSDによって記述されたオペランドのアクセスは、DSDを使用してファブリックベクトルとして進められ(DSDを介してアクセス2412)、例えば、オペランドが発信元である(
図21A)場合、動作2310(
図23の)は、DSDに従ってファブリックから読み取り、オペランドがデスティネーション(宛先)である(
図21B)場合、動作2312(
図23の)はDSDに従ってファブリックに書き込む。次に、DSDの復号化は完了する(終わり2499)。
【0478】
DSDがファブリックベクトルに対応しない場合、DSDはメモリベクトルに対応する。次に、CEは、DSDが、例えば
図21Cによる1Dメモリベクトルに対応するか否かを判断する(タイプ=XDSR?2421)。メモリベクトルに対応する場合、DSDにより記述されるオペランドのアクセスは、DSDを使用して1Dメモリベクトルとして進められる(DSDを介して1Dにアクセス2427)。例えば、オペランドが発信元である場合、動作2310は、DSDにより記述された1Dメモリベクトルに従ってメモリから発信元を読み取り、オペランドがデスティネーション(宛先)である場合、動作2312は、DSDにより記述された1Dメモリベクトルに従ってメモリに書き込む。次に、DSDの復号化は完了する(終わり2499)。
図23におけるデータ要素の反復(動作2310~2313)は、DSDにより記述された1Dメモリベクトルに従ってオペランドメモリアドレスを進める。
【0479】
DSDが1Dメモリベクトルに対応しない場合、DSDは4Dメモリベクトル(例えば、
図21Dによる)又は循環バッファ(例えば、
図21Eによる)に対応する。CEは、DSD(DSDを介して指定されたXDSRを読み取る2422も、
図23の(任意選択)XDSRを読み取る2306に概念的に対応する)によって指定されたXDSRを読み取り、XDSDを取得する。XDSRは、タイプ2169(
図21Dの)又はタイプ2189(
図21Eの)によって指定される。
【0480】
次に、CEは、XDSDが4Dメモリベクトル(例えば、
図22Bによる)を指定するか否かを判断する。4Dメモリベクトルを指定する場合、CEは任意選択で、XDSDにより任意選択で指定されるように、1若しくはそれ以上のストライドレジスタを読み取る(これもまた概念的に
図23の(任意選択)XDSRを読み取る2306に対応する(任意選択)ストライドレジスタを読み取る2424)。DSD、XDSD、及び任意の任意選択なストライド値(ストライドレジスタから得られる)により記述されたオペランドのアクセスは、DSD、XDSD、及び任意選択のストライド値を使用して4Dメモリベクトルとして進められる(XDSDを介して4Dにアクセス2428)。例えば、オペランドが発信元である場合、動作2310は4Dメモリベクトルに従ってメモリから発信元を読み取り、オペランドがデスティネーション(宛先)である場合、動作2312は4Dメモリベクトルに従ってメモリに書き込む。次に、DSDの復号化は完了する(終わり2499)。
図23におけるデータ要素の反復(動作2310~2313)は、DSDにより記述された4Dメモリベクトルに従ってオペランドメモリアドレスを進める。
【0481】
XDSDが4Dメモリベクトルに対応しない場合、XDSDは循環バッファ(例えば、
図22Aによる)に対応する。DSD及びXDSDにより記述されるオペランドのアクセスは、DSD及びXDSDを使用して循環バッファとして進められる(XDSDを介して循環バッファにアクセス2429)。例えば、オペランドが発信元である場合、動作2310は循環バッファに従ってメモリから発信元を読み取り、オペランドがデスティネーション(宛先)である場合、動作2312は循環バッファに従ってメモリに書き込む。次に、DSDの復号化は完了する(終わり2499)。
図23におけるデータ要素の反復(動作2310~2313)は、DSDにより記述された循環バッファに従ってオペランドメモリアドレスを進める。
【0482】
様々な実施形態では、D配列844は、動作2304(
図23の)において読み取ったDSDに基づいてタイプ=ファブリック?2411及び/又はタイプ=XDSD?2421を実行する。幾つかの実施形態では、DSDのタイプフィールド(例えば、
図21Aのタイプ2109、
図21Bのタイプ2129、
図21Cのタイプ2149、
図21Dのタイプ2169、又は
図21Eのタイプ2189)は、データ構造が、ファブリックベクトルである(例えば、タイプ=「0」)か、1Dベクトルであるか(例えば、タイプ=「1」)か、XDSDタイプである(例えば、タイプ=「2~7」)を判断する。様々な実施形態(例えば、タイプ=「2~7」)では、タイプフィールドの値は、DSR846のどのXDSRを動作2422で読み取るかを指定する。幾つかの実施形態では、D配列844は動作2422を実行し、DSR846からXDSDを受信する。幾つかの他の実施形態では、DSR846は動作2421及び2422を実行し、DSD及びXDSDをD配列844に送信する。
【0483】
別の例として、D配列844は、動作2422のXDSDに基づいてタイプ=4Dベクトル?2423を実行する。幾つかの実施形態では、XDSRから読み取られたXDSDのタイプフィールド(例えば、
図22Aのタイプ2211又は
図22Bのタイプ2241)は、データ構造が4Dベクトルの1つである(例えば、XDSDタイプ=「0」)か、それとも循環バッファである(XDSDタイプ=「1」)か、を判断する。
【0484】
別の例として、D配列844は、例えば、本明細書の他の箇所に記載されるように、DSDのベースアドレス2142、WLI2152、長さ2141、及びストライド2153を使用してDSD(例えば、動作2304の)に基づいてメモリアドレスを計算することにより、動作2427に従ってメモリアクセスを生成する。同様に、D配列844は、例えば、本明細書の他の箇所に記載されるように、DSD及びXDSDのベースアドレス2162、長さ2161、WLI2172、ストライド2245、ストライド選択1 2244.1、及びDF2243を使用してDSD(例えば、動作2404の)及び動作2422のXDSDに基づいてメモリアドレスを計算することにより、動作2428に従ってメモリアクセスを生成する。同様に、D配列844は、例えば、本明細書の他の箇所に記載されるように、DSD及びXDSDのベースアドレス2182、長さ2181、WLI2192、開始アドレス2212、及び終了アドレス2213を使用してDSD(例えば、動作2404の)及び動作2422のXDSDに基づいてメモリアドレスを計算することにより、動作2429に従ってメモリアクセスを生成する。
【0485】
幾つかの実施形態では、D配列844は、計算された各アドレスをDストア848及びメモリ854の一方に送信する。計算されたアドレスの受信に応答して、Dストア及び/又はメモリは、計算されたアドレスにおける2バイトのデータにアクセスする。
【0486】
命令フォーマット
最初の数字が「8」の
図25A~
図25Cの説明での各要素識別子は、
図8の要素を指し、簡潔にするために、その他の点では
図8の要素であるものとして特に識別されない。
【0487】
図25Aは、複数オペランド命令2510として複数オペランド命令の一実施形態の選択された細部を図示する。複数オペランド命令2510は、2/3発信元1宛先オペランド命令(例えば、FMACH等の乗加算)、2発信元0宛先オペランド命令(例えば、LT16等の比較)、及び1発信元1宛先オペランド命令(例えば、MOV16等の移動命令)の1つである。
【0488】
複数オペランド命令2510は様々なフィールドを有する:命令タイプ2511、演算コード2512、オペランド0符号化2513、オペランド1符号化2514、及び終了2515。オペランド0符号化2513は、オペランド0タイプ2513.1及びオペランド0 2513.2を有する。オペランド1符号化2514は、オペランド1タイプ2514.1及びオペランド1 2514.2を有する。幾つかの実施形態では、複数オペランド命令2510は20ビットを有する。
【0489】
幾つかの実施形態では、命令タイプ2511の値は、以下の表に従って異なるタイプの命令(2/3発信元1宛先命令タイプ及び1発信元1宛先命令タイプ)を区別する。様々な実施形態では、演算コード2512の値は特定の演算(例えば、乗算、加算、又は減算)を指定する。演算コード2512の長さは、以下の表に記載されるように、異なる命令タイプで変わる。
【0490】
【0491】
幾つかの実施形態では、オペランド0符号化2513は、以下の表に従って発信元及び/又は宛先オペランドを記述する。幾つかの実施形態では、オペランド1符号化2714は発信元オペランドを記述する。
【0492】
【0493】
幾つかの実施形態では、オペランド0 2513.2及びオペランド1 2514.2はそれぞれ4ビットフィールドを有する。幾つかの実施形態では、オペランド0タイプ2513.1及びオペランド1タイプ2514.1はそれぞれ2ビットフィールドを有し、オペランド0 2513.2及びオペランド1 2514.2をいかに解釈するかをそれぞれ決定する。2/3発信元オペランド1宛先オペランド命令の場合、オペランド0タイプ2513.1は以下の表に従って解釈される。
【0494】
【0495】
例えば、オペランド0タイプ2513.1の値が「1」であり、オペランド0 2513.2の値が「4」である場合、オペランド0符号化2513は、発信元0オペランドがS0DSR[4]により記述されるベクトルであり宛先オペランドがDDSR[4]により記述されたベクトルであることを指定する。
【0496】
2発信元オペランド0宛先オペランド命令の場合、オペランド0タイプ2513.1は以下の表に従って解釈される。
【0497】
【0498】
例えば、オペランド0タイプ2513.1の値が「0」であり、オペランド0 2513.2の値が「4」である場合、オペランド0符号化2513は、発信元0オペランドがS0DSR[4]により記述されるベクトルであることを指定する。
【0499】
1発信元オペランド1宛先オペランド命令の場合、オペランド0タイプ2513.1は以下の表に従って解釈される。
【0500】
【0501】
例えば、オペランド0タイプ2513.1の値が「0」であり、オペランド0 2513.2の値が「4」である場合、オペランド0符号化2513は、宛先オペランドがDDSR[4]により記述されるベクトルであることを指定する。
【0502】
複数オペランド命令2510の場合、オペランド1タイプ2514.1は以下の表に従って解釈される。
【0503】
【0504】
例えば、オペランド0タイプ2513.1の値が「0」であり、オペランド0 2513.2の値が「4」である場合、オペランド0符号化2513は、宛先オペランドがDDSR[4]により記述されるベクトルであることを指定する。
【0505】
様々な実施形態では、即値である発信元1オペランドは、幾つかの所定の値(例えば、0、1、及び-1)及びLFSRにより生成される疑似乱数の1つを指定する。例えば、オペランド1タイプ2514.1の値が「3」であり、オペランド1 2514.2の値が「8」である場合、オペランド1符号化2514は、LFSRにより生成されるPRNを指定する。
【0506】
様々な実施形態では、浮動小数点即値であるソース1オペランドは、幾つかの所定の値(例えば、0、1、-1、+無限、-無限、最小正規化数、最大正規化数、-最小正規化数、-最小正規化数)及びLFSRにより生成される疑似乱数の1つを指定する。例えば、オペランド1タイプ2514.1の値が「3」であり、オペランド1 2514.2の値が「8」である場合、オペランド1符号化2514は、LFSRにより生成されるPRNを指定する。
【0507】
幾つかの実施形態では、終了2515は、命令がタスクにおける最後の命令であることを指定する1ビットフィールドを有する。命令が実行を終えると、タスクは終了し、新しいタスクを選択し実行することができる(例えば、終了812及びピッカー830を介して)。
【0508】
図25Bは、1発信元0宛先命令2520として、1発信元0宛先オペランド命令の一実施形態の選択された細部を図示する。1発信元0宛先命令2520は、命令タイプ2521、演算コード2522、オペランド1符号化2523、即値ハイ2524、及び終了2525を有する。オペランド1符号化2523は、発信元オペランドを記述し、オペランド1タイプ2523.1及びオペランド1 2523.2を有する。幾つかの実施形態では、1発信元0宛先命令2520は20ビットを有する。
【0509】
幾つかの実施形態では、命令タイプ2521は、命令が1発信元0宛先オペランド命令であることを指定する4ビット「1111」を有し、演算コード2522は、特定の演算(例えば、ブロック、ブロック解除、活性化、アクティブPRNGを設定、データフィルタ、条件付き分岐、及びジャンプ)を指定する4ビットフィールドを有する。
【0510】
幾つかの実施形態では、即値ハイ2524は4ビットフィールドを有する。幾つかの状況では、オペランド1 2523.2と連結された即値ハイ2524は、8ビット即値を形成する。
【0511】
幾つかの実施形態では、オペランド1タイプ2523.1は、オペランド1 2523.2がいかに解釈されるかを指定する2ビットフィールドを有する。オペランド1タイプ2523.1が「0」である場合、オペランド1符号化2523はベクトル(例えば、入力Q897からのデータ要素のファブリックベクトル又はメモリ854及びDストア854の一方におけるデータ要素のメモリベクトル)を指定し、オペランド1 2523.2の値は、DSR846の12個のS1DSRのいずれがベクトルを記述するかを指定する。オペランド1タイプ2523.1が「1」である場合、オペランド1符号化2523は、メモリ(例えば、メモリ854及びDストア848の一方)内の、オペランド1 2523.2との即値ハイ2524の連結により形成される8ビットアドレスにおける値を記述する。オペランド1タイプ2523.1が「2」である場合、オペランド1符号化2523は、オペランド1 2523.2の値により識別されるレジスタ(例えば、RF842の1つ)内の値を記述する。オペランド1タイプ2523.1が「3」である場合、オペランド1符号化2523は即値を記述する。演算コード2522が、16ビット整数オペランドに対して演算する演算(例えば、ブロック、ブロック解除、又は活性化)を指定する場合、即値は8ビットを有し、即値ハイ2524及びオペランド1 2523.2の連結である。
【0512】
幾つかの実施形態では、終了2525は、命令がタスクにおける最後の命令であることを指定する1ビットフィールドを有する。命令が実行を終えると、タスクは終了し、新しいタスクを選択し実行することができる(例えば、終了812及びピッカー830を介して。1発信元0宛先命令2520が条件付き分岐である場合、タスクは、条件付き分岐がとられない場合のみ、終了する。
【0513】
図25Cは、即値命令2530として、即値命令の一実施形態の選択された細部を図示する。即値命令2530は、命令タイプ2531、演算コード2532、オペランド0 2533.2、及び即値2534を有する。幾つかの実施形態では、即値ロー2534.1は9ビットフィールを有し、即値ハイ2534.2は1ビットフィールドを有する。即値ロー2534.1及び即値ハイ2534.2の連結は集合的に、即値2534と呼ばれる(即値2534と図示される)。幾つかの実施形態では、即値命令2520は20ビットを有する。
【0514】
幾つかの実施形態では、命令タイプ2531は、命令が即値命令であることを指定する1ビットフィールド「0」を有し、演算コード2532は、特定の演算(例えば、発信元0DSRロード、発信元1DSRロード、宛先DSRロード、発信元0DSR記憶、発信元1DSR記憶、及び宛先DSR記憶)を指定する5ビットフィールドを有する。幾つかの状況では、即値命令2530(例えば、DSRロード命令及びXDSRロード命令)の実行は、メモリ854及びDストア848の1つからデータをDSR846のDSRにロードする。他の状況では、即値命令2530(例えば、DSR記憶命令及びXDSR記憶命令)の実行は、DSR846のDSRからのデータをメモリ854及びDストア848の一方に記憶する。
【0515】
幾つかの実施形態では、オペランド0 2533.2は4ビットフィールドを有し、演算コード2532は、オペランド0 2533.2がいかに解釈されるかを決定する。幾つかの状況(例えば、オペランド0 2533.2が、ジャンプ演算等のレジスタオペランドを有さない演算を指定する場合)では、即値ロー2534.1、オペランド0 2533.2、及び即値ハイ2534.2は連結されて、14ビット即値を形成する。幾つかの他の状況では、即値2534は符号拡張されて、16ビット即値を形成する。更に他の状況では、即値2534は符号拡張されて、15ビットアドレスを形成する。更に他の状況では、即値2534は1ビット左にシフトし、符号拡張されて、15ビットアドレス(例えば、32ビットデータの)を形成する。
【0516】
マイクロスレッド処理
図26は、マイクロスレッド処理命令フロー2600としてマイクロスレッド処理された命令に従った処理の選択された細部を図示する。幾つかの実施形態では、フロー2600の動作はCE(例えば、CE800)により実行される。様々な実施形態及び/又は使用状況では、フロー2600は観念上、
図23のフロー2300、
図21Aのファブリック入力データ構造記述子2100、及び
図21Bのファブリック出力データ構造記述子2120に関連する。
【0517】
フロー2600は、
図23のデータ構造記述子フロー2300の状況で行われる処理を説明する。特に、フロー2600は、(次の)ソースデータ要素をキュー/メモリから読み出す2310Aとして、
図23の(次の)ソースデータ要素をキュー/メモリから読み出す2310の代替の実施形態を図示し、マイクロスレッド処理に関連する処理の様々な細部を図示する。
図23の状況と同様に、処理は、CEがDSRから1若しくはそれ以上のDSDを読み出す(DSRを読み出す2304)ことにより開始される。幾つかの状況では、ソース0オペランド、ソース1オペランド、及び宛先オペランドの1若しくはそれ以上のDSRが読み出される。DSD及びファブリック入力、ファブリック出力、FIFO入力、及びFIFO出力の1若しくはそれ以上の状態に基づいて、CEは、ストール状況が存在するか否かを判断する(ストール?2603)。ストール状況が存在しない場合、CEは1若しくはそれ以上のソースデータ要素をファブリック及び/又はメモリから読み出す((次の)ソースデータ要素をキュー/メモリから読み出す2610)。
【0518】
ストール状況が存在する場合、CEは、マイクロスレッド処理が、
図23のDSRを用いて命令をフェッチ/復号化2303においてフェッチされた命令に対して可能であるか否かを判断する(マイクロスレッド処理が可能?2606)。可能な場合、CEは、マイクロスレッド処理された命令についての情報(例えば、DSDの更新された長さ、ストールの原因、及び/又は命令自体の全て又は任意の部分)を保存する(マイクロスレッド処理された命令の情報を保存2607)。CEは、次の命令を実行する(次の命令を実行2608)。幾つかの実施形態及び/又は使用状況では、次の命令は、マイクロスレッド処理された命令の直後の命令である。幾つかの他の実施形態及び/又は使用モデルでは、次の命令は異なるタスク(例えば、実行のためにスケジューラにより選択されたタスク)の部分である。
【0519】
CEは周期的に、例えば、コア・クロック・サイクル毎に、ストール状況をモニタし(例えば、動作2603において検出される)、ストール状況が鎮まり、オペランドが使用可能であるか否かを検出する(ストール解決?2609)。ストールが解決されていない場合、CEは次の命令を引き続き実行する(動作2608)。ストールが解決された場合、CEは、ソースデータ要素を読み出す((次の)ソースデータ要素をキュー/メモリから読み出す2610)ことにより、マイクロスレッド処理された命令の実行を再開し、それにより、フローを終える。マイクロスレッド処理が可能ではない場合、CEは、ストール状況が鎮まり、オペランドが使用可能になる(ストール解決?2605)まで処理をストールする。ストールが解決された場合、CEは、ソースデータ要素を読み出す((次の)ソースデータ要素をキュー/メモリから読み出す2610)ことにより、命令の実行を再開し、それにより、フローを終える。
【0520】
様々な実施形態及び/又は使用状況では、フロー2600の動作は概念上、CE、例えば、
図8のCE800に関連する。動作2304は、
図23の動作2304の特定の例であり、DSRの少なくとも1つは、マイクロスレッド処理を可能にする(例えば、UE2103及びUE2123の1つがそれぞれイネーブルされる)ファブリックDSD(例えば、
図21Aのファブリック入力データ構造記述子2100及び
図21Bのファブリック出力データ構造記述子2120の1つに従う)を保持する。幾つかの実施形態では、ストールは、データ要素への空間が不十分な宛先FIFO(例えば、
図21Eの循環メモリ・バッファ・データ構造記述子2180及び
図22Aの循環メモリバッファ拡張データ構造記述子2210に従う)、不十分なデータ要素を有するソースFIFO、不十分なデータ要素を有する入力キュー(例えば、入力Q897の1つ)を有する仮想チャネルのソース・ファブリック・ベクトル、及びデータ要素への空間が不十分な出力キュー(例えば、出力キュー859の1つ)を有する仮想チャネルの宛先ファブリックベクトルの1若しくはそれ以上により生じる。幾つかの実施形態及び/又は使用状況では、十分な数のデータ要素及び/又は十分な空間は、動作2304において読み出されたDSDのSIMD幅に従って判断される(例えば、
図21Aのファブリック入力データ構造記述子2100のSW2104)。
【0521】
幾つかの実施形態及び/又は使用状況では、動作2607は、マイクロスレッド処理された命令(例えば、デコーダ840から)についての情報をUT状態845に保存する。様々な実施形態では、情報は、動作2609においてモニタするストール状況(例えば、不十分な空間を有するFIFO、不十分なデータ要素を有するFIFO、ファブリック入力、及びファブリック出力の1若しくはそれ以上を待つ)、DSDの部分(例えば、D配列844及びDSR846の1若しくはそれ以上からのキューを識別する情報)、及び/又は命令自体の全て又は任意の部分の1若しくはそれ以上を含む。様々な実施形態では、CEは、動作2304において読み出された各DSDに関連付けられた状態を書き込む。例えば、ファブリック入力から32個のデータ要素を読み出し、32個のデータ要素を1Dメモリベクトルに書き込むことを指定する、マイクロスレッド処理された命令は、4つのデータ要素を読み出し書き込んだ後、ストールする。長さが現在、28データ要素であることを示すソースDSDの長さ2101及び宛先DSDの長さ2141は書き込まれる。CEはまた、次のアドレスを宛先DSDのベースアドレス2142に書き込む(例えば、4つのデータ要素の長さにストライド2153を掛けたものだけアドレスを増分する)。幾つかの他の実施形態では、CEは、動作2304において読み出された各DSDのシャドーバージョンに命令情報の全て又は任意の部分を書き込む。
【0522】
幾つかの実施形態及び/又は使用状況では、動作2610は、UT状態845内のマイクロスレッド処理された命令について記憶された情報及び動作2607において更新された各DSDに従って実行される。例えば、動作2609が動作2610に流れる場合、部分リストアが任意選択で及び/又は選択で、UT状態845から情報を読み出すことにより実行される。様々な他の実施形態では、動作2610は、UT状態845内のマイクロスレッド処理された命令について記憶された情報及び動作2607において更新されたDSDの各シャドーバージョンに従って実行される。例えば、動作2609が動作2610に流れる場合、部分リストアが任意選択で及び/又は選択で、UT状態845と、動作2607において更新されたDSDの各シャドーバージョンとの任意の組合せから情報を読み出すことにより実行される。
【0523】
ディープ・ラーニング・アクセラレータ使用例
様々な実施形態及び/又は使用状況では、本明細書の他の箇所に記載されるように、PEのファブリック(例えば、ウェーハスケール集積を介して実施され、例えば、
図4に図示されるような)等のディープ・ラーニング・アクセラレータは、ニューラルネットワークのトレーニング及び/又はトレーニングされたニューラルネットワークに関して推論を実行するのに使用可能である。トレーニングは、幾つかの状況では、トレーニング刺激に応答してニューラルネットワークの重みを決定することを含む。確率勾配降下(Stochastic Gradient Descent:SGD)、ミニバッチ勾配降下(Mini-Batch Gradient Descent:MBGD)、連続伝搬勾配降下(Continuous Propagation Gradient Descent:CPGD)、及びリバース・チェック・ポイント(Reverse CheckPoint:RCP)等の様々な技法がトレーニングに使用可能である。以下、CPGDを他の技法と対比し、次に、SGD、MBGD、CPGD、及びRCPのそれぞれについてより詳細に説明する。
【0524】
従来のディープ・ニューラル・ネットワーク・トレーニング手法(例えば、SGD及びMBGD)は、いわゆる固定デルタ(anchored-delta)学習を使用していた。すなわち、デルタ導出重み更新は、トレーニングセット分岐又はミニバッチの全ての活性化の処理が完了するまで、「固定」又は一定に保持された。幾つかの状況では、固定デルタ学習のレイヤシーケンシャル性により、高レイテンシ・シーケンシャル・パラメータ更新(例えば、重み更新を含む)に繋がり、これにより収束が遅くなる。幾つかの状況では、固定デルタ学習は、限られたレイヤ並列性を有し、したがって、同時性が限られる。
【0525】
逆に、幾つかの状況では、ディープ・ニューラル・ネットワーク・トレーニングへの連続伝搬(別名即時デルタ(immediate-delta))学習ルールの使用は、本明細書において教示されるように、レイヤ並列性を可能にすることにより、より高速の収束を提供し、パラメータ更新のレイテンシを低減し、同時性を増大させる。即時ネットワークパラメータから計算されるデルタは、現在パラメータ傾きに対応する更新情報を使用する。連続伝搬は、各レイヤが明示的な同期なしで他のレイヤと同時に学習できるようにすることによりレイヤ並列性を可能にする。その結果、ネットワークの深度に沿った並列性により、より多くの計算リソースをトレーニングに適用できるようになる。連続伝搬で利用可能な並列性は、幾つかの使用状況では、MBGD技法と比較して最高で10倍のウォールクロック時間改善を実現する。連続伝搬手法はまた、活性化の複数のベクトルのモデルパラメータ値を記憶する追加のメモリの使用を回避できるようにもする。
【0526】
幾つかの実施形態及び/又は使用状況では、ニューラルネットワークは、SGDを実行する刺激の連続伝搬を使用してトレーニングされる。CPGDを介したトレーニングの幾つかの実施形態では、RCPは、選択された活性化を再計算することにより、メモリに保持される活性化の数を低減(ひいてはメモリフットプリントを低減)できるようにする。幾つかの状況では、活性化の再計算はまた、重みのトレーニング推定精度も改善する。RCPなしのトレーニングでは、1若しくはそれ以上の順方向パス中、ニューロンのあらゆるレイヤが活性化を受信し、順方向パスに関連付けられた1若しくはそれ以上の逆方向パス(例えば、順方向パスに関連付けられた1若しくはそれ以上のデルタパス、チェインパス、及び重み更新パス)中に実行される計算に再使用するために、活性化を保存する。幾つかの状況(例えば、比較的深いニューラルネットワーク)では、活性化の保存から関連付けられた逆方向パスまでの時間は比較的長く、全ての活性化の保存は、全て未満の活性化の保存よりも比較的多くのメモリを使用する。
【0527】
例えば、ニューロンのレイヤの幾つか(例えば、あらゆる偶数レイヤ)のみが、各活性化を保存し、他のレイヤは各活性化を破棄する(例えば、あらゆる奇数レイヤ)。活性化が保存されたレイヤ(例えば、あらゆる偶数レイヤ)は、最新の重みを使用して活性化を再計算し、活性化を破棄したレイヤ(例えば、あらゆる奇数レイヤ)に再計算された活性化を送信する。幾つかの状況では、再計算された活性化は破棄された活性化と異なり、その理由は、最新の重みが、順方向パス中に利用可能であった重みと異なる(例えば、順方向パスと関連付けられた逆方向パスとの間で、1若しくはそれ以上の重み更新が行われた)ためである。様々な実施形態では、活性化を保存するレイヤ及び活性化を破棄するレイヤの数及びタイプは、メモリの使用低減と計算の増大との所望のバランスに向けて最適化されるように選択される。一例として、3つ置きのレイヤが活性化を保存し、他の全てのレイヤは活性化を破棄する。別の例として、畳み込みレイヤが、活性化を保存するように選択され、他のレイヤは活性化を破棄するように選択される。
【0528】
様々な実施形態及び/又は使用状況では、SGD、MBGD、及びCPGDの任意の1若しくはそれ以上は、RCPあり又はなしで、処理要素のファブリック(例えば、
図4に図示されるような)、1若しくはそれ以上のGPU、1若しくはそれ以上のCPU、1若しくはそれ以上のDSP、1若しくはそれ以上のFPGA、及び1若しくはそれ以上のASICの1若しくはそれ以上を介して実施される。
【0529】
例えば、逆方向伝搬ありのSGDは、ニューラルネットワークのトレーニングに使用可能である(本明細書の他の箇所に記載されるように)。しかしながら、勾配降下を介した学習は、各重み更新が、ニューラルネットワーク全体を通した完全な順方向パスの完了後に行われる勾配測定からの情報を使用するため、本質的にシーケンシャルである。さらに、重み更新は、ニューラルネットワーク全体を通した対応する逆方向パス(順方向パス後の順方向パスに対応する)中に行われ、したがって、最後の重み更新は、対応する逆方向パス全体の完了後に行われる。
【0530】
MBGDでは、ミニバッチにわたる勾配平均化によりSGDよりも高い並列性が可能であり、幾つかの活性化(活性化の「ミニバッチ」)を並列処理する。しかしながら、シーケンシャル更新の速度は、SGDと比較して変わらず、重み更新は、SGDと同様に、ニューラルネットワーク全体を通した全ての対応する逆方向パスの完了後に完了する。より多くの活性化を並列処理することによりミニバッチサイズが増大するにつれて、勾配ノイズは低減する。勾配ノイズが低減するポイントを超えると、幾つかの状況では、一般化が不良になる。
【0531】
CPGDでは、活性化がレイヤ全体を通してストリームで伝搬する間、ニューラルネットワークの全てのレイヤで重みを並列処理し更新することができる。したがって、CPGDは、幾つかの実施形態及び/又は使用状況では、SGD及びMBGDのシーケンシャル処理制限を克服する。
【0532】
RCPでは、RCPを用いない場合には記憶される活性化を(再)計算することを介してメモリの使用を低減することができ、SGD、MBGD、及びCPGDと組み合わせて使用可能である。
【0533】
パイプライン流れ図は、様々なSGD技法、MBGD技法、CPGD技法、及びRCPありのCPGD技法の比較及び対比に使用可能である。パイプライン流れ図を用いて、トレーニング技法における情報フロー及び同時性が見られる。
図27A~
図27Dは、左から右へのニューラルネットワークのレイヤのパイプラインフローの実施形態を図示し、例えば、活性化は左から入り、レイヤ計算の順方向パス伝搬は右に流れる。勾配計算は最も右側のレイヤで実行され、右から左への重み更新を含むレイヤ計算の逆方向パス伝搬が開始される。
【0534】
図27Aは、SGDのパイプラインフローの一実施形態を図示する。ニューラルネットワークのレイヤの重み更新は、ニューラルネットワークの全てのレイヤを通した対応する完全な順方向パス及び対応する完全な逆方向パスの完了後に完了する。次の順方向パスは、直前の順方向パスに対応する重み更新の完了後でのみ、開始される。図示のように、第1の順方向パス2711は実行される(図中、左から右に図示される最初のレイヤから最後のレイヤに)。次に、第1の逆方向パス2721が実行される(図中、右から左に図示される最後のレイヤから最初のレイヤに)。第1の逆方向パス2721中、重みは最後のレイヤから最初のレイヤに更新される。最後の重み更新(最初のレイヤの)は、第1の逆方向パス2721が完了するときに完了する。次に、第2の順方向パス2712が実行され(第1の逆方向パス2721中に更新された重みを使用して)、その後、第2の逆方向パス2722が続き、第2の逆方向パス2622中、重み更新が実行される。
【0535】
図27Bは、MBGDのパイプラインフローの一実施形態を図示する。複数の活性化は同一の重みを用いて処理される。調整された平穏時(quiet time)を使用して、重み更新を同期する。幾つかの実施形態及び/又は使用状況では、MBGD処理は、ミニバッチサイズ(N)2731、オーバーヘッド2732、及び更新間隔(U)2733を特徴とする。
【0536】
勾配推定の計算に、ネットワークを通した完全な順方向パス及び完全な逆方向パスを使用し、したがって、順次依存性を生み出す勾配降下技法(例えば、SGD及びMBGD)と異なり、CPGDは異なる構造を使用して、順次依存性を、持続した勾配生成を有する連続モデルで置換する。幾つかの実施形態及び/又は使用状況では、CPGDでは、明示的な同期なしでニューラルネットワークの各レイヤを他のレイヤと同時にトレーニング(例えば、「学習」)できるようにすることによりレイヤ並列性が可能である。したがって、ニューラルネットワークの深度に沿った並列性により、より多くの計算リソースをトレーニングに適用することができる。様々な実施形態及び/又は使用状況では、CPGDは、他の技法と比較して、同等の精度及びトレーニングの画期的な出来事として表される収束率の改善を提供する。
【0537】
図27Cは、CPGDのパイプラインフローの一実施形態を図示する。CPGD処理は、モデルを流動的に維持する。隠れ表現及びデルタは、あらゆる時間ステップであらゆるレイヤに入り、あらゆる時間ステップで重みが更新される。CPGD処理は同期調整演算である。幾つかの実施形態及び/又は使用状況では、CPGD処理は、それぞれ幾つかの順方向パスの1つ及び幾つかの対応する逆方向パスの1つを表す順方向パス2751及び対応する逆方向パス2761を特徴とする。動作において、複数の順方向パスの各順方向パスは互いと並列して動作し、複数の逆方向パスの各逆方向パスは互いと並列して動作し、複数の順方向パス及び複数の逆方向パスは、互いと並列して動作する。重み更新(逆方向パス中に行われる)は、重み更新が利用可能になるとすぐに、順方向パス及び逆方向パスによって使用される。
【0538】
特定の例として、順方向パス2765が開始され、後に順方向パス2766が開始される。順方向パス2765の少なくとも一部は、順方向パス2766の少なくとも一部と並列動作する。順方向パス2765の対応する逆方向パスの少なくとも一部は、順方向パス2766の少なくとも一部と並列動作する。さらに、対応する逆方向パスは、例としての重み更新使用2767により示されるように、順方向パス2766により使用される少なくとも幾つかの重み更新を含む。
【0539】
図27Dは、RCPありのCPGDのパイプラインフローの一実施形態を図示する。RCPありのCPGDは、選択された活性化の保存を省き、その代わり、選択された活性化を再計算する。幾つかの実施形態及び/又は使用状況では、再計算は、更新された重みを用いて実行される。したがって、リバース・チェック・ポイントにより、メモリの低減が可能であり(時間の進行に伴う保存された隠れ表現にわたる垂直線で覆われたエリアの低減として図示される)、計算された隠れ表現と対応するデルタとの時間不一致が低減する。
【0540】
特定の例として、RCPありのCPGD処理は、順方向パス2771及び対応する逆方向パス2781を特徴とする。第1の活性化は、順方向パス中に計算され、活性化記憶2785に図示されるように、対応する逆方向パスで使用するためにレイヤに記憶される。活性化記憶2785は、順方向パス及び逆方向パスの部分中に行われ、他の用途では利用不可能である。メモリ低減の特定の例は、再計算された活性化の記憶2786で図示される。第2の活性化は、順方向パス中に計算されるが、破棄され、いかなる記憶も必要としない。逆方向パス中、第2の活性化は再計算され、再計算された活性化の記憶2786で図示されるように、逆方向パスでの使用のためにレイヤに記憶される。再計算された活性化の記憶2786は、順方向パス全体を通して占有されず、他の使用(例えば、他の順方向パス、他の逆方向パス)に利用可能であり、それにより、必要とされるメモリを低減する。
【0541】
並列化をより一般に考えると、幾つかの実施形態及び/又は使用状況では、計算(例えば、ニューラル・ネットワーク・トレーニング)の並列化は、同時に動作する複数の別個の計算ユニットに計算を拡散させる。モデル並列状態では、別個のユニットが、別個のモデルパラメータを使用して同じニューラルネットワークを同時に評価する。データ並列状態では、別個の作業者が、同じ正式モデルパラメータを使用して別個のネットワークの入力を同時に評価する。幾つかのスケーリング技法は、レイヤにわたり及びクラスタ内のユニットの中で微細粒度データ並列化を使用する。
【0542】
MBGDは、幾つかの実施形態及び/又は使用状況では、ミニバッチサイズnの関数として勾配推定精度を改善する。しかしながら、ミニバッチサイズnでのMBGDを実行する計算は、nステップのSGDを実行する計算に概ね等しい。幾つかの状況では、nステップのSGDはミニバッチサイズnのMBGDよりも概ねnの平方根だけ効率的である。したがって、より高い並列性(例えば、MBGDのように)及びより高い効率(例えば、SGDのように)は相互に排他的であることがある。
【0543】
幾つかの実施形態及び/又は使用状況では、ディープ・ニューラル・ネットワークは、有向非循環グラフとして表されることもある、高次元パラメータ化関数である。逆伝搬技法は循環グラフで表されることもある。グラフ内の循環はフィードバック反復である。反復は連続微分系の離散近似であるため、最初の完全ネットワーク評価によって生成された勾配は、次の反復で使用される重みを変える。離散近似は、時変統計を有する不偏連続ノイズプロセスを含む。ノイズプロセスは正規化を提供して、連続系が、離散時間学習系で観測された現象をモデリングできるようにする。離散事例では、正規化は、サンプリング手順(例えば、SGD)により、学習率により、及び/又は他の明示的なメカニズムにより提供される。時間依存ノイズプロセスは、パラメータ空間における局所高周波数輪郭をなくす学習率スケジュールを使用できるようにする。正確な領域に近づくにつれて、正規化は低減し、幾つかの状況では、よりよい最終解をもたらす。
【0544】
CPGDは、任意フィードフォワード(arbitrary feed-forward)ニューラルネットワークの概念上の枠組みでは、全てのノードを時間の関数として表現し、機能構成を適用して、内部状態及び内部状態が受ける刺激に関して表現を公式化する。因数分解により、独立した局所力学を有する系としての個々のレイヤが生成される。2つの次元はネットワークの深度及びパラメータの時間進化である。空間において分離された計算ユニットにネットワークレイヤをマッピングすることにより加速化を実施する幾つかの実施形態及び/又は使用状況では、ネットワークレイヤ間での通信にレイテンシがある。したがって、レイヤ間の通信に時間遅延がある。CPGDの幾つかの実施は、時間遅延を説明する同期実施である。
【0545】
CPGD処理中、活性化ベクトル及び関連付けられた隠れ表現は、活性化ベクトルの順方向パス中、異なる時間ステップでモデルパラメータと結合される。異なる時間ステップでのモデルパラメータと同じ時間ステップでのモデルパラメータとの違いは、順方向に進む活性化ベクトルによって検出可能ではない。概念的に、まるで連続時間ステップからの固定パラメータセットが、次に学習に使用される集計パラメータ状態の形成に使用されるかのようである。
【0546】
逆方向パス(例えば、デルタ伝搬)中、更新後、即値パラメータ(例えば、重み)を使用するか、又は対応する順方向パスが実行されたときに固定された過去のパラメータを検索するか選択される。即値パラメータから計算されたデルタは、現在のパラメータの傾きに対応する更新された情報を使用する。幾つかの実施形態及び/又は使用状況は即値パラメータを使用する。幾つかの実施形態及び/又は使用状況は、過去のパラメータを使用する。
【0547】
CPGDの幾つかの実施は、SGDと同様の順序でメモリを使用する。リバース・チェック・ポイント(本明細書の他の箇所に記載される)は、メモリ使用を低減する等のために、CPGDと併用可能である。リバース・チェック・ポイントの幾つかの実施形態及び/又は使用状況は、即値パラメータ(例えば、重み)を使用して、活性化を再計算する。リバース・チェック・ポイントの幾つかの実施形態及び/又は使用状況は、過去のパラメータを使用して、活性化を再計算する。即値パラメータを使用して、活性化を再計算する幾つかの実施形態及び/又は使用状況では、順方向伝搬活性化の計算に使用されるパラメータと逆方向伝搬デルタとの時間不一致は、波面の位置合わせにおいて低減される。
【0548】
連続伝搬技法は、ミニバッチ様式処理(例えば、MBGD)と併せて使用可能である。幾つかの実施形態及び/又は使用状況では、概念的に非同期SGDと同様に、続くバッチは、直前のバッチが完了する前に開始される。パイプライン内のパラメータ不一致は、1つ以下の分岐境界に制限される。
【0549】
幾つかの実施形態及び/又は使用状況では、データがニューラルネットワークを通してストリーミングし、グローバル同期境界なしで計算を実行できるようにすることにより、本発明を用いない場合には抽出されない学習情報を抽出することができる。幾つかの実施形態及び/又は使用状況では、学習率の低さのほうが、大きなバッチサイズよりも重要である。幾つかの実施形態及び/又は使用状況では、隠れた活動及び/又はデルタ弧は概念的に、個々のベクトル又は代替的にバッチ行列として解釈される。バッチ行列解釈により、GPU、CPU、DSP、FPGA、及び/又はASICで直接、本明細書に記載される技法を実施することが可能になる。
【0550】
図28A~
図28Eは、SGD、MBGD、CPGD、及びRCP処理による順方向パス及び逆方向パス実施形態の様々な態様を図示する。図中、ニューロンの2つのレイヤが図示され、例えば、ディープ・ニューラル・ネットワークの一部の各レイヤを表す。様々な実施形態及び/又は使用状況では、ディープ・ニューラル・ネットワークは数千以上のレイヤ及びレイヤごとに数千以上のニューロンを有する。様々な実施形態及び/又は使用状況では、第1のレイヤは、ディープ・ニューラル・ネットワーク外部のエージェントからトレーニングのための活性化を受信する入力レイヤである。様々な実施形態及び/又は使用状況では、第2のレイヤは、順方向パスが完了し、逆方向パスが開始される出力レイヤである。様々な実施形態及び/又は使用状況では、第1のレイヤ及び第2のレイヤは内部レイヤである。
【0551】
図28A及び
図28Bはそれぞれ、RCPなしのSGD、MBGD、及びCPGDによる順方向パス及び逆方向パス実施形態を図示する。2つのレイヤは、前のレイヤ2801及び後続レイヤ2802として図示される。前のレイヤ2801は計算2810及び記憶2815を有する。後続レイヤ2802は計算2820及び記憶2825を有する。計算2810及び計算2820は計算リソースの例であり、記憶2815及び記憶2825は記憶リソースの例である。
【0552】
図28C~
図28Eは、RCPありのSGD、MBGD,及びCPGDによる順方向パス及び逆方向パス実施形態を図示する。2つのレイヤは、前のレイヤ2803及び後続レイヤ2804として図示される。前のレイヤ2803は計算2830及び記憶2835を有する。後続レイヤ2804は計算2840及び記憶2845を有する。計算2830及び計算2840は計算リソースの例であり、記憶2835及び記憶2845は記憶リソースの例である。
【0553】
図28A~
図28Eにおける同様に付番された要素は、同一の構造及び動作を有するが、計算リソースは、異なる入力に応じて異なる結果を生成し、記憶リソースは、記憶される異なる値に応じて異なる値を提供する。順方向パス及び逆方向パスの計算及び記憶に使用可能な異なる計算リソース及び/又は異なる記憶リソースを有する他の実施形態も考えられる。例えば、逆方向パスは、順方向パスにより使用されない転置重み記憶を使用する。異なる順方向パス及び逆方向パス実施に使用可能な異なる計算リソース及び/又は記憶リソースを有する他の実施形態も考えられる。例えば、RCPベースの実施形態は、RCPなしの順方向パス又は逆方向パス処理に使用される計算リソースより他の、追加の計算リソース(図示せず)を使用する。
【0554】
図28Aに関して、計算2810は、順方向パス計算F 2811等の計算を実行することができる。記憶2815は、A 2816等に活性化を記憶することができる。記憶2815は、W 2817等に更に重みを記憶することができる。計算2820、F 2821、記憶2825、A 2826、及びW 2827はそれぞれ、様々な実施形態及び/又は使用状況では、構造及び/又は演算において、計算2810、F 2811、記憶2815、A 2816、及びW 2817と略同様又は同一である。
【0555】
SGD又はMBGDでの順方向パス演算では、活性化A1,t2881は、前のレイヤ2801により受信され、A 2816に記憶される(逆方向パス中、後に使用するため)。次に、A1,t2881及び前にW 2817に記憶された重みW1,tは、F 2811に従って処理されて、活性化A2,t2882を生成する。A2,t2882は次に、後続レイヤ2802に渡される。前のレイヤと同様に、A2,t2882は後続レイヤ2802により受信され、A 2826に記憶される(逆方向パス中、後に使用するため)。次に、A2,t2882及び前にW 2827に記憶された重みW2,tは、F 2821に従って処理されて、活性化A3,t2883を生成する。次に、A3,t2883は、処理のために次の後続レイヤ(存在する場合)に提供され、順方向パスが完了し、逆方向パスが開始するまで以下同様である。後続レイヤ2802が出力レイヤである場合、順方向パスは完了し、順方向パスに対応する逆方向パスが開始される。
【0556】
図28Bに関して、明確にするために、順方向パス処理専用の計算2810及び計算2820の要素(F 2811及びF 2821)は省かれている。
図28Aに関して図示され説明された構造及び演算に関して、
図28Bは、計算2810がさらに、逆方向パス計算B 2812等の追加の計算を実行することができ、計算2820がさらに、逆方向パス計算B 2822等の追加の計算を実行することができることを示す。記憶2815はさらに、計算された重みをW 2818等に記憶することができ、記憶2825はさらに、計算された重みをW 2828等に記憶することができる。B 2822及びW 2828は、様々な実施形態及び/又は使用状況では、構造及び/又は演算において、B 2812及びW 2818と略同様又は同一である。
【0557】
SGD又はMBGDでの逆方向パス演算では、デルタΔ3,t2893は、逆方向パス処理中、次の後続レイヤ(存在する場合)から受信される。後続レイヤ2802が出力レイヤである場合、後続レイヤ2802は、例えば、後続レイヤの出力(例えば、推定出力)とトレーニング出力(例えば、所望の出力)との差の関数としてデルタルールに従ってデルタΔ3,tを計算する。次に、Δ3,t2893、前にW 2827に記憶された重みW2,t、及び前にA 2826に記憶された活性化A2,tは、B 2822に従って(例えば、デルタルールに従って)処理されて、デルタΔ2,t2892及び新しい重みW2,t+1を生成し、新しい重みW2,t+1は、次の順方向パスで使用するためのW 2828に記憶される。次に、Δ2,t2892は前のレイヤ2801に渡される。後続レイヤと同様に、デルタΔ2,t2892、前にW 2817に記憶された重みW1,t、及び前にA 2816に記憶された活性化A1,tは次に、B 2812に従って処理されて、デルタΔ1,t2891及び新しい重みW1,t+1を生成し、次に、新しい重みW1,t+1は、次の順方向パスで使用するためにW 2818に記憶される。Δ1,t2891は次に、処理のために次の前のレイヤ(存在する場合)に渡され、逆方向パスが完了し、次の順方向パスが開始されるまで以下同様である。前のレイヤ2801が入力レイヤである場合、逆方向パスは完了し、次の順方向パスが開始される。
【0558】
SGD及びMBGDでは(CPGDと異なり)、前の逆方向パスが完了するまで、例えば、W 2817及びW 2827が同じ順方向パスに使用された後、W 2817及びW 2827がそれぞれW 2818及びW 2828で更新されるまで、次の順方向パスは遅延され、同じことが逆方向パスにも対応する。したがって、次の順方向パスは、同じ逆方向パスからの重みを使用して実行される。
【0559】
図28Aは、SGD及びMBGD順方向パス処理の図示に加えて、CPGD順方向パス処理も図示する。しかしながら、CPGDの演算は、重み更新及び次の順方向パスが、前の逆方向パスの完了まで遅延するのではなく、可能な限りすぐに実行されるという点で、SGD及びMBGDと比較して異なる。例えば、W 2817及びW 2827はそれぞれ、可能な限りすぐにW 2818及びW 2828で更新される。したがって、次の順方向パスは、前の反復からの重みに対して選択的アクセスを有し、したがって、SGD及びMBGDにより同じ条件下で生成されるものとは異なる活性化を選択的に生成する。
【0560】
より具体的には、前のレイヤ2801において、SGD及びMBGDと同一に、A1,t2881が受信され、A 2816に記憶される。A1,t2881及び前にW 2817に記憶された重みW1,t-k-jは次に、F 2811に従って処理されて、活性化A2,t2882を生成する。重みW1,t-k-jは、現在の順方向パスのk-j個の順方向パスだけ前の順方向パスに対応する逆方向パスにより生成され記憶された。次に、A2,t2882は後続レイヤ2802に渡され、前のレイヤと同様に、A2,t2882は受信され、SGD及びMBGDと同一にA 2826に記憶される。A2,t2882及び前にW 2827に記憶された重みW2,t-kは次に、F 2821に従って処理されて、活性化A3,t2883を生成する。重みW2,t-kは、現在の順方向パスのk個の順方向パスだけ前の順方向パスに対応する逆方向パスにより生成され記憶された。なお、前のレイヤ及び後続レイヤは、同じ順方向パスを処理するために、異なる逆方向パスからの重みを使用する。SGD及びMBGDと同様に、次に、A3,t2883は、処理のために次の後続レイヤ(存在する場合)に渡され、順方向パスが完了し、逆方向パスが開始されるまで、以下同様である。後続レイヤ2802が出力レイヤである場合、順方向パスは完了し、順方向パスに対応する逆方向パスが開始される。幾つかの実施形態及び/又は使用状況では、jの値は0であり、(k-j)及び(k)は等しい。様々な実施形態及び/又は使用状況では、前のレイヤ及び後続レイヤは、異なる順方向パス、異なる逆方向パス、並びに順方向パス及び異なる逆方向パスの1つを同時に処理する。
【0561】
図28Bは、SGD及びMBGD逆方向パス処理に加えて、CPGD逆方向パス処理も図示する。CPGDでの逆方向パスの処理は、SGD及びMBGDの逆方向パスの処理と同一である。しかしながら、選択された結果(例えば、選択された重み)は、SGD及びMBGDよりも早く使用される。例えば、逆方向パスt-k-jにより生成されるW
1,t-k-j及び逆方向パスt-kにより生成されるW
1,t-kは、SGD及びMBGDよりも、例えば、順方向パスtよりも早く使用される。
【0562】
図28Cは、RCPと組み合わせたSGD、MBGD、及びCPGDのいずれかの順方向パス処理の一実施形態を図示する。計算2830及び記憶2835はそれぞれ、様々な実施形態及び/又は使用状況では、構造及び/又は動作において計算2810及び記憶2815と略同様又は同一である。計算2840及び記憶2845はそれぞれ、様々な実施形態及び/又は使用状況では、記憶2845において相手方を有さない記憶2825のアクティベーションA2826の記憶が省かれること以外は、構造及び/又は動作において計算2820及び記憶2825と略同様又は同一である。
【0563】
順方向パス演算では、前のレイヤ2803に関して、
図28Aに関して説明したように、活性化A
1,t2881は計算2830において受信され、順方向パス処理に従って処理され、記憶2835に記憶される。しかしながら、後続レイヤ2804に関して、活性化A
2,t2882は計算2840において受信され、順方向パス処理に従って処理されるが、記憶されない(その代わり、逆方向パス処理中、RCPに従って再計算される)。
【0564】
図28D及び
図28Eはそれぞれ、RCPと組み合わせた任意のSGD、MBGD、及びCPGDの逆方向パス処理の一実施形態の第1及び第2の部分を図示する。明確にするために、順方向パス処理専用の計算2830及び計算2840の要素(F 2821)は省かれている。
図28Cに関して図示され説明された構造及び演算に関して、
図28D及び
図28Eは、計算2830がさらに、逆方向パス計算B 2812等の追加の計算を実行することができ、計算2840がさらに、逆方向パス計算B 2822等の追加の計算を実行することができることを示す。記憶2835はさらに、計算された重みをW 2818等に記憶することができ、記憶2845はさらに、計算された重みをW 2828等に記憶し、再計算された活性化をA 2829等に記憶することができる。
【0565】
逆方向パス演算の第1の部分において、対応する順方向パスで記憶されない活性化は再計算される。SGD及びMBGD状況では、再計算された活性化は、F 2811に従ってA 2816における順方向パスから記憶された活性化及びW 2817に記憶された重みを処理して、活性化A'2,t2884を生成することにより、前のレイヤ2803において表現され、次に、活性化A'2,t2884は後続レイヤ2804のA 2829に記憶される。SGD及びMBGDは、順方向パス及び対応する逆方向パスが完了するまで、重み更新及び次の順方向パスの開始を遅延させるため、A'2,t2884は、順方向パス中に破棄される値A2,t2882と同一である。
【0566】
CPGD状況では、再計算された活性化は、SGD及びMBGD状況と同じトポロジに従って表現される。しかしながら、CPGDは、遅延なしで更新を実行し、前の逆方向パスの完了に関係なく、次の順方向パスを開始できるようにする。したがって、実施形態及び/又は使用状況により、逆方向パスのときに、例えば、W 2817に記憶された重み値は、対応する順方向パス中に記憶された重みと選択的に異なる。特定の例として、
図28Cによれば、W 2817は、順方向パス中、W
1,t-k-jを記憶した。しかしながら、逆方向パス中、例えば、m反復に対応する追加の重み更新が行われ、この時点で、W 2817はW
1,t-k-j+mを記憶する。したがって、A'
2,t2884は、順方向パス中に破棄された値A
2,t2882から選択的に異なる。
【0567】
逆方向パス演算の第2の部分では、計算は、再計算された活性化を使用して進められる。SGD及びMBGD状況では、再計算される活性化は破棄される活性化と同一である(例えば、概念的に、A 2829に記憶される値は、A 2826に記憶される値と同一である)ため、逆方向処理は、
図28Bに関して説明した結果と同一の結果を生成する。例えば、Δ'
3,t2896、Δ'
2,t2895、及びΔ'
1,t2894はそれぞれ、Δ
3,t2893、Δ
2,t2892、及びΔ
1,t2891と同一である。CPGDの状況では、再計算された活性化は破棄された活性化から選択的に異なるため、逆方向処理は、
図28Bに関して説明した結果から選択的に異なる結果を生成する。例えば、Δ'
3,t2896、Δ'
2,t2895、及びΔ'
1,t2894はそれぞれ、Δ
3,t2893、Δ
2,t2892、及びΔ
1,t2891と選択的に異なる。
【0568】
幾つかの実施形態及び/又は使用状況では、W 2817はW 2818と別個であり(図示のように)、幾つかの実施形態及び/又は使用状況では、W 2818及びW 2817は、記憶(図示せず)の同じ部分であり、したがって、新しい値をW 2818に保存すると、W 2817に前に保存された値に上書きされる。同様に、W 2827はW 2828と様々に異なるか、又は同じである。様々な実施形態及び/又は使用状況では、A 2829は、A 2826よりも少数のメモリロケーションを使用し、及び/又はA 2826よりも短い時間で同数のメモリロケーションを使用するように、様々に実施される。
【0569】
様々な実施形態及び/又は使用状況では、活性化及び/又は重みは、任意の1若しくはそれ以上のスカラー、ベクトル、行列、及びより高次元のデータ構造により実施及び/又は表現される。例えば、A 2816、A 2826、A 2829、W 2817、W 2827、W 2818、及びW 2828の任意の1若しくはそれ以上は、1若しくはそれ以上のスカラー、1若しくはそれ以上のベクトル、1若しくはそれ以上の行列、及び1若しくはそれ以上のより高次元のアレイの任意の1若しくはそれ以上を記憶することができる。
【0570】
様々な実施形態及び/又は使用状況では、前のレイヤ2801及び後続レイヤ2802の1若しくはそれ以上の要素は、各PEにより、例えば、PE499の一部又は
図4の同様の要素により実施される。例えば、PE497は前のレイヤ2801を実施し、PE498は後続レイヤ2802を実施する。活性化A
2,t2882及びデルタΔ
2,t2892は、東結合431を介して通信される。幾つかの実施形態及び/又は使用状況では、前のレイヤ2801及び後続レイヤ2802の1若しくはそれ以上の要素は、CPU、GPU、DSP、及びFPGAの1若しくはそれ以上により実施される。
【0571】
様々な実施形態及び/又は使用状況では、F 2811、F 2821、B 2812、及びB 2822の要素の全て又は任意の部分は概念的に、
図2のPE上のタスクSW260の命令の実行の全て又は任意の部分に対応する。
【0572】
浮動小数点演算状況及び確率的丸め演算
幾つかの状況では、FP計算により、数フォーマットにより表現可能なものよりも高い精度を有する値が生成される。例えば、丸めなしの場合、FP乗算結果は入力の精度の2倍である。丸めは、追加の精度の除去に使用され、例えば、結果は数フォーマットと同じ精度である。IEEE754規格は、5つの異なる(決定論的)丸めモードを記載している。2つのモードは最近値に丸めるが、均衡を破るために異なるルールが用いられる。幾つかの計算のデフォルトモードは、最近に丸められ、均衡はULPにおいて「0」を有する最近値に丸められる。第2のモードは最近に丸められ、均衡はゼロから離れて丸められる。3つのモードは特定のルールに従って丸められる。ゼロへの丸めは切り捨てに等しく、単にULP後の全てのビットを除去する。無限への丸めは切り上げに等しく、負の無限大への丸めは切り下げに等しい。IEEE754FP算術は時折、5つの丸めモードの1つに従って実行されることがある。
【0573】
幾つかのニューラルネットワーク実施形態及び/又は使用状況では、トレーニングプロセスは、長い依存鎖を形成する多くのFP計算を通して繰り返される。例えば、1つの繰り返しは、それぞれが長い依存鎖を有する多くのベクトル及び/又は行列FP演算を含む。別の例では、多くの繰り返しが実行され、各繰り返しはその繰り返しの前の繰り返しの1つに依存し、それにより長い依存鎖が生成される。幾つかの状況では、長い依存鎖により、丸めにおける小さなバイアスが多くの計算にわたり累積し、系統的なバイアス結果になり、したがって、正確性を下げ、トレーニング時間を増大させ、推論待ち時間を増大させ、及び/又はエネルギー効率を下げる。幾つかの状況及び/又は実施形態では、FPの統計的丸めの使用により、系統的バイアスが低減し、それにより、正確性が改善し、トレーニング時間が短縮し、推論待ち時間が短縮し、及び/又はエネルギー効率が増大する。幾つかの状況及び/又は実施形態では、丸めは依存FP演算(例えば、FP乗算-累積演算)の結果に対して実行され、次に、丸められた結果は続く依存FP演算にフィードバックされ、丸められた演算/結果の長い依存鎖を生成する。
【0574】
幾つかの状況では、確率的丸めを実行することにより、非確率的(例えば、決定論的)丸めを実行する場合に失われる幾らかの精度を保持することができる。例えば、数千又は数百万のパラメータを有する層を有し、各パラメータがNビット仮数を用いる浮動小数点数により表れるニューラルネットワークを用いる状況を考える。パラメータ更新の平均大きさが小さい(例えば、更新の10%はN+1ビット仮数により表され、残りは更に小さい)場合、確率的丸めなしでは、パラメータ更新はゼロに丸められ、学習は行われない。確率的丸めを用いる場合、重みの約10%が更新され、学習は行われ、基本的に、Nビット仮数により失われた幾らかの数値精度が回復され、それにより、ニューラルネットワークをトレーニングする待ち時間を改善し、及び/又はトレーニングされたニューラルネットワークの正確性を改善する。
【0575】
幾つかの状況では、ニューラルネットワーク計算は概念上、統計的であり、非確率的丸めの代わりに確率的丸めを実行することにより、特定のFP精度に鑑みて、確率的丸めを実行しない場合よりも実質的に高い精度が可能になる。確率的丸めの精度改善により、より小さくより電力効率のよい計算論理(例えば、FPU)及びより小さくより電力効率のよい記憶装置(例えば、ラッチ、レジスタ、及びメモリ)が可能になり、したがって、ニューラルネットワークのトレーニング及びトレーニングされたニューラルネットワークを用いての推論実行に対して、より高い性能、より低い待ち時間、より高い正確性、及び/又はより電力効率的なシステムを可能にする。
【0576】
様々な実施形態及び/又は使用状況では、確率的丸めは、少なくとも部分的に1若しくはそれ以上のPRNGを介して実施される。PRNGの一例は、初期シード値により決定される疑似乱数シーケンスを決定論的に生成するRNGである。LFSRはPRNGの一例である。様々なPRNGは、生成された乱数のビット数に関して様々な長さのLFSRを用いて実施される。第1の例では、3ビットPRNGが3ビットLFSRを用いて実施される。第2の例では、32ビットLFSRを使用して、3ビットPRNGとしてLFSRの3つのLSBを使用する等により3ビットPRNGを実施する。本明細書における説明全体を通して、乱数生成器(RNG)という用語は、別段のことが明示的に指定される場合を除き、疑似乱数生成器(PRNG)を意味するものと理解されよう。
【0577】
図29は、FPU2901を有し、任意選択で及び/又は選択で、浮動小数点、整数、及び/又は固定小数点結果を生成する浮動小数点演算の確率的丸めを実行することができるプロセッサ2900の選択された細部を図示する。幾つかの実施形態では、プロセッサ2900は、ディープ・ラーニング・アクセラレータ、CPU、GPU、ASIC、若しくはFPGAを有し、又はディープ・ラーニング・アクセラレータ、CPU、GPU、ASIC、若しくはFPGAの部分である。様々な実施形態では、ディープ・ラーニング・アクセラレータ、CPU、GPU、ASIC、及びFPGAの任意の1若しくはそれ以上は、
図29に図示されるような技法を組み込む。
【0578】
様々な実施形態は、プロセッサ2900の複数のインスタンス及び/又はその変形を有する。様々な実施形態では、二次元(又はより多数の次元の)アレイは、プロセッサ2900の複数のインスタンスを有する。様々な実施形態では、アレイの次元は、物理的構成、論理的構成、仮想的構成、及び通信構成の任意の1若しくはそれ以上として実施される。様々な使用状況では、インスタンスの全て又は任意の部分は、長い依存鎖である演算の全て又は任意の部分を実行する。様々な使用状況では、インスタンスは、計算、部分計算、中間計算の結果、フィードバック値等を通信する等のために、長い依存鎖に従って互いと通信する。様々な使用状況では、長い依存鎖は、FP計算の長い依存鎖を含む。様々な使用状況では、長い依存鎖は全体的又は部分的に、1若しくはそれ以上のニューラルネットワークをトレーニングするため及び/又は1若しくはそれ以上のトレーニングされたニューラルネットワークに関して推論を実行するために実行される。様々な使用状況では、丸めバイアスは、プロセッサ2900の各インスタンスに含まれるRNG2921の各インスタンスにより提供される乱数情報により可能になる等の確率的丸めを使用することにより、長い依存鎖(又はその1若しくはそれ以上の部分)の少なくとも幾つかにおいて低減される。幾つかの実施形態では、プロセッサ2900はニューラル・ネットワーク・アクセラレータの部分である。
【0579】
FPU2901は、命令復号化論理2920、RNG2921、FP制御レジスタ2925、乗算器2911、累積器2912、正規化器2913、及び指数DP2915並びにNビット加算器2922及びインクリメンタ2914等の丸め論理等のFP制御及び実行論理を有する。プロセッサ2900は、命令2950を受信し、命令2950を復号化して、FPU2901により実行される演算にすることができる命令復号化論理2920を有する。
図30Aは、命令2950の選択された細部を図示する。様々な実施形態では、プロセッサ2900は1若しくはそれ以上のRNG2921を有し、命令復号化論理2920は1若しくはそれ以上のRNG2919に結合される。他の実施形態では、プロセッサ2900はFPU2901を有し、FPU2901は1若しくはそれ以上のRNG2921を有する。様々な実施形態では、RNG2921の1若しくはそれ以上は1若しくはそれ以上のLFSRを有する。
【0580】
様々な実施形態では、RNG2921は、構成命令によりシード値を用いて初期化され、構成命令により読み出し可能であり、及び/又は構成命令により書き込み可能である。幾つかの使用状況では、RNG2921は、プロセッサ2900により部分的に実施される計算システムの時間共有を可能にするように管理される。例えば、RNG2921は、第1のニューラルネットワーク計算を初期化する一環として初期化され、第1の計算の部分が完了した後、RNG2921は読み出され、不揮発性メモリ(図示せず)の第1の部分に保存される。次に、RNG2921は、第2のニューラルネットワーク計算を初期化する一環として初期化され、第2の計算の部分が完了した後、RNG2921は読み出され、メモリの第2の部分に保存される。次に、RNG2921は、メモリの第1の部分から保存された値を使用して書き込まれ、第1の計算は再開される。幾つかの実施形態では、PRNGは、幾つかの使用状況で有利である決定論的乱数生成を可能にし、例えば、再現性のある計算を可能にする。様々な実施形態では、RNG2921は、擬似ランダムではない(例えば、真にランダム又は準ランダム)エントロピーソースを有する。幾つかの実施形態では、RNG2921は1つの乱数生成器(例えば、1つのPRNG、LFSRを有する1つのPRNG)を有する。
【0581】
命令復号化論理2920は、FPU2901に結合され、任意選択の確率的丸めを用いるFP乗累積演算、任意選択の確率的丸めを用いるFP乗算演算、任意選択の確率的丸めを用いる整数からFPへのデータ変換等のFPU2901により実行される演算を通信する。実行される演算は、命令2950の演算コードビット3023により指定される(
図30A参照)。FPU2901は、演算を実行する実行ハードウェアを有する。様々な実施形態では、乗算器2911及び累積器2912は、レジスタ、フロップ、ラッチ、バイパスネットワーク、キャッシュ、明示的にアドレス指定されるRAM/DRAM/SRAM、及び累積リソース等の様々なデータ記憶ロケーションに結合される。乗算器2911は、命令2950のソースビット3024により指定されるデータ記憶ロケーションからオペランドとしてSrc A2951及びSrc B2952を受信し(
図30A参照)、オペランドのFP乗算を実行し(正規化なし及び丸めなし)、中間結果2953(指数部分及び仮数部分を有する)を生成する。累積器2912は乗算器2911及びデータ記憶ロケーションに結合される。累積器2912は、オペランドとして乗算器2911から中間結果2953及び命令2950のソースビット3024により指定されるデータ記憶ロケーションからSrc C2954を受信し、オペランドのFP加算(正規化なし及び丸めなし)を実行して、仮数2955(及び指数DP2915に提供される指数)を生成する。
【0582】
図29、
図30C、及び
図30Dを参照すると、正規化器2913は累積器2912に結合され、仮数2955を累積器2912から受信する。使用状況により、仮数2955は、先行ゼロ2955.1で示されるゼロ若しくはそれ以上の上位ゼロビットを有する。仮数2955の下位ビットの残りは他のビット2955.2として示される。正規化器2913は、先行ゼロ2955.1を検出し、他のビット2955.2を左にシフトさせ、先行ゼロ2955.1を除去して、丸めを受ける仮数ビット2958と、N個の最下位ビット2957.1とを有する正規化仮数2956を生成することにより、仮数2955を正規化する。正規化器2913は、インクリメンタ2914及びNビット加算器2922に結合される。正規化器2913は、丸めを受ける仮数ビット2958をインクリメンタ2914に提供し、N個の最下位ビット2957.1をNビット加算器2922に提供する。様々な実施形態では、丸めを受ける仮数ビット2958及び確率的に丸められた仮数2964のビット幅は、FPデータフォーマット及び/又はFPデータ精度に従って様々である。例えば、丸めを受ける仮数ビット2958及び確率的に丸められた仮数2964のビット幅は、半精度の場合11ビットであり、単精度の場合24ビットであり、倍精度の場合53ビットである。
【0583】
命令復号化論理2920は、RNG2921の乱数リソースを選択することができる。命令復号化論理2920は、丸めモードビット3021を復号化して、演算の処理(演算コードビット3023により指定される演算)に関連付けられた丸めモードを決定する。丸めモードビット3021が確率的丸めを指定する場合、命令復号化論理2920はRNGビット3022を復号化して、RNGセレクタ2961を生成する。RNG2921は、RNGセレクタ2961に応答して、Nビット乱数2962を提供する。様々な実施形態では、RNG2921は、RNGセレクタ2961に更に応答して、選択された乱数リソースを進めて、次の乱数を生成する。例えば、RNG2921は、0、1、2、及び3としてそれぞれ指定、選択、及び識別される4つの乱数リソースを実施する。各乱数リソースは別個のLFSRを有する。値「1」を有するRNGビット3022に応答して、命令復号化論理2920は値「1」をRNGセレクタ2961に提供する。「1」であるRNGセレクタ2961に応答して、RNG2921は、Nビット乱数2962としてLFSRの値「1」を提供し、続けてLSFR「1」の状態を次の状態に進める。様々な実施形態では、RNG2921の1若しくはそれ以上の乱数リソースは、Src A2951、Src B2952、及びSrc C2954等の命令のソースオペランドとして使用可能であり、それにより、命令の入力データとして乱数を提供する。
【0584】
幾つかの実施形態では、Nビット加算器2922は、2つの入力:N最下位ビット2957.1及びNビット乱数2962を受信し合算することができる整数加算器である。Nビット加算器2922は、キャリービット2963として和のキャリーアウトを提供する。インクリメンタ2914は、丸めを受ける仮数ビット2958及びキャリービット2963を受信する。インクリメンタ2914は、確率的に丸められた仮数2964として、丸めを受ける仮数ビット2958の条件付き増分である出力を提供する。キャリービット2963がアサートされる場合、インクリメンタ2914は、確率的に丸められた仮数2964として丸めを受ける仮数ビット2958の増分(ULP3002.1において開始)を提供する。キャリービット2963がデアサートされる場合、インクリメンタ2914は、確率的に丸められた仮数2964として、変更なしの丸めを受ける仮数ビット2958を提供する。様々な実施形態では、インクリメンタ2914のビット幅は、丸めを受ける仮数ビット2958のビット幅に適応して様々である。例えば、丸めを受ける仮数ビット2958のビット幅が11ビット(半精度)である場合、インクリメンタ2914も11ビットである。様々な実施形態では、Nは3であり、N最下位ビット2957.1は3ビットを有し、Nビット乱数2962は3ランダムビットを有し、Nビット加算器2922は3ビット加算器を有する。様々な他の実施形態では、Nは様々に4、5、7、又は任意の整数である。
【0585】
指数DP2915は、正規化器2913から受信される正規化情報に従って、累積器2912から受信した指数を調整するFP指数データパスである。幾つかの実施形態及び/又は使用状況では、指数DP2915は、インクリメンタ2914から丸め情報(確率的丸め情報等)を受信し、それに従って指数を更に調整し、確率的に丸められた指数2965を生成する。完全なFP結果から一緒にとられ、例えば、後に使用するための記憶又は続く演算の入力オペランドとしてのSrc A2951、Src B2952、及びSrc C2954のいずれかへのフィードバックに適する確率的に丸められた指数2965及び確率的に丸められた仮数2964。
【0586】
様々な実施形態では、プロセッサ2900はFP制御レジスタ2925を有する。幾つかの実施形態では、FPU2901はFP制御レジスタ2925を有する。幾つかの実施形態では、FP制御レジスタ2925は、演算の全て又は任意の部分(全てのFP乗算及び全てのFP乗累算等)が、指定された丸めモード(例えば、複数の丸めモードのうちの確率的丸めモード)を使用して実行されることを指定する。様々な実施形態では、命令2950からの丸めモード情報は、FP制御レジスタ2925からの指定された丸めモードをオーバーライドする(命令毎等)。幾つかの実施形態では、FP制御レジスタ2925は、全ての確率的丸め演算が、RNG2921の指定された1若しくはそれ以上の乱数リソースを使用して実行されることを指定する乱数リソース選択情報を提供する。様々な実施形態では、命令2950からの乱数リソース選択情報は、FP制御レジスタ2925からの乱数リソース選択情報をオーバーライドする。
【0587】
図29における分割は単なる例示である。様々な実施形態では、
図29の2つ以上の要素は1つのユニットとして実施される。例えば、幾つかの実施形態では、乗算器2911及び累積器2912は融合FP乗算器-累積器として実施される。
【0588】
図示されるように、FPU2901は、任意選択の確率的丸めを用いてFP乗算-累積演算を実行することができる。幾つかの実施形態では、追加のハードウェア(図示せず)は、FPU2901が、加算、減算、乗算、除算、逆数、比較、絶対値、否定、最大、最小、初等関数、平方根、対数、指数、正弦、余弦、正接、逆正接、異なるフォーマットへの変換、及び整数から/整数への変換等の任意選択の確率的丸めを用いた追加のFP演算を実行できるようにする。
【0589】
様々な実施形態及び/又は使用状況では、プロセッサ2900は、命令記憶要素から命令ストリームをフェッチし、フェッチされた命令を命令2950の各インスタンスとして命令復号化論理2920に提供するハードウェア論理を有する。様々な実施形態では、命令記憶要素は、コンピュータ可読記憶媒体(例えば、ディスク等の光学及び/又は磁気大容量記憶装置における媒体又はフラッシュ記憶装置等の不揮発性記憶装置を有する集積回路)等のコンピュータ可読媒体等の非一時的媒体を実施する。
【0590】
図30Aは、任意選択で確率的丸めを指定する浮動小数点命令2950の選択された細部を図示する。命令2950は数ビットフィールドを有する。様々な実施形態及び/又は使用状況では、命令2950は、演算コードビット3023、ソースビット3024、宛先ビット3025、丸めモードビット3021、及び/又はRNGビット3022の任意のゼロ若しくはそれ以上を有する。演算コードビット3023は、加算、減算、乗算、除算、逆数、比較、絶対値、否定、最大、最小、初等関数、平方根、対数、指数、正弦、余弦、正接、逆正接、異なるフォーマットへの変換、及び整数から/整数への変換の任意の1若しくはそれ以上等の実行する1若しくはそれ以上のFP演算を指定する。様々な実施形態では、演算コードビット3023は任意選択で、整数データ型、浮動小数点データ型、半精度浮動小数点データ型、単精度浮動小数点データ型、及び倍精度浮動小数点データ型の任意の1若しくはそれ以上等の演算に関連付けられた1若しくはそれ以上のデータ型を指定する。ソースビット3024は任意選択で、演算の入力データのロケーションに対応する1若しくはそれ以上のソースオペランドを指定する。宛先ビット3025は任意選択で、演算の出力データを記憶するロケーションに対応する1若しくはそれ以上の宛先オペランドを指定する。様々な実施形態では、ソース及び/又は宛先オペランドは、レジスタ、フロップ、ラッチ、バイパスネットワーク、キャッシュ、明示的にアドレス指定されるRAM/DRAM/SRAM、及び累積リソース等の様々な記憶ロケーションである。様々な実施形態では、ソース及び/又は宛先オペランドは、バイパスネットワークの要素等の様々な他の要素である。
【0591】
丸めモードビット3021は任意選択で、確率的丸め、任意のIEEE754規格丸め、及び任意の他の丸めモード等の演算を実行する場合、使用する1若しくはそれ以上の丸めモードを指定する。RNGビット3022は任意選択で、確率的丸めを実行する場合等の演算を実行する場合、使用するRNG2921の1若しくはそれ以上の乱数リソースを指定する。
【0592】
図30Bは、確率的丸めの制御に関連付けられたFP制御レジスタ2925の選択された細部を図示する。様々な実施形態では、FP制御レジスタ2925は、FPU2901により実行される演算に使用する丸めモードを指定するビットフィールドである静的丸めモードビット2925.1を有する。様々な実施形態では、静的丸めモードビット2925.1は、確率的丸めモード又は5つのIEEE754規格丸めモード(5つのIEEE754丸めモードは、丸める入力データのみに依存する決定論的丸めモードである)の1つを指定する。幾つかの状況では、FPU2901により実行される全ての演算は、静的丸めモードビット2925.1により指定される丸めモードを使用する。幾つかの実施形態では、静的丸めモードビット2925.1は、構成命令により設定される。例えば、構成命令は、確率的丸めモードを指定するように静的丸めモードビット2925.1を設定し、続けて実行される全ての演算は、静的丸めモードビット2925.1が、異なる丸めモードを指定するように変更されるまで、確率的丸めを使用する。幾つかの実施形態及び/又は使用状況では、命令2950の丸めモードビット3021は、命令毎等にFP制御レジスタ2925の静的丸めモードビット2925.1をオーバーライドする。
【0593】
幾つかの実施形態では、FP制御レジスタ2925は、非正規化FP数の挙動を制御するビットフィールドFTZ2925.3を有する。FTZ2925.3が第1の値(例えば、1)に設定される場合、FPU2901は演算の非正規化結果をフラッシュしてゼロにする。FTZ2925.3が第2の値(例えば、0)に設定される場合、FPU2901は演算の非正規化結果をフラッシュして最小正規化数にする。様々な実施形態では、FP制御レジスタ2925は、最大充足2925.4及び/又は最小充足2925.5というビットフィールドを有する。最大充足2925.4が第1の値(例えば、0)に設定される場合、FP表現をオーバーフローするFPU2901により実行される演算は、無限を返し、一方、その他の場合、指定された(例えば、丸めモードビット3021により)丸めモードの挙動を保持する。最大充足2925.4が第2の値(例えば、1)に設定される場合、FP表現をオーバーフローするFPU2901により実行される演算は、無限を返すのではなく最大正規化大きさ値を返し、一方、その他の場合、指定された(例えば、丸めモードビット3021により)丸めモードの挙動を保持する。最小充足2925.5が第1の値(例えば、0)に設定される場合、FP表現をアンダーフローするFPU2901により実行される演算は、ゼロを返し、一方、その他の場合、指定された(例えば、丸めモードビット3021により)丸めモードの挙動を保持する。最小充足2925.5が第2の値(例えば、1)に設定される場合、FP表現をアンダーフローするFPU2901により実行される演算は、ゼロを返すのではなく、最小正規化大きさ値(例えば、ゼロにフラッシュ丸めモードにおいて)又は最小非正規化値(例えば、別の丸めモードにおいて)を返し、一方、その他の場合、指定された(例えば、丸めモードビット3021により)丸めモードの挙動を保持する。
【0594】
様々な実施形態では、RNG2921により実施される乱数リソースの数はそれぞれ1、2、4、及び7である。様々な使用状況では、命令の各群は、RNG2921の乱数リソースのそれぞれ1つを使用するように指定する(RNGビット3022及び/又は静的RNGビット2925.2の各値を介して)。例えば、命令の第1の群における各RNGビット3022の値は同じ第1の値であり、第1の群内の全ての命令が、確率的丸めにRNG2921の同じ第1の乱数リソースを使用することを指定する。この例を続けると、命令の第2の群における各RNGビット3022の値は同じ第2の値であり、第2の群内の全ての命令が、確率的丸めにRNG2921の同じ第2の乱数リソースを使用することを指定する。別の例では、命令の第1の群の実行に先立ち、静的RNGビット2925.2は、確率的丸めにRNG2921の第1の乱数リソースを指定するように第1の構成命令により設定される。この例を続けると、命令の第1の群は、第1の乱数リソースに従って実行される。次に、命令の第2の群の実行に先立ち、静的RNGビット2925.2は、確率的丸めにRNG2921の第2の乱数リソースを指定するように第2の構成命令により設定される。この例を続けると、命令の第2の群は、第2の乱数リソースに従って実行される。幾つかの実施形態では、どのRNGを命令に使用するかの指定は、予め決定及び/又は暗示される。例えば、1つのRNGを用いる実施形態では、RNGビット3022又は静的RNGビット2925.2を参照せずに1つのRNGが使用される。
【0595】
群の命令に関して記憶又は実行における構成への要件はない。様々な実施形態及び使用状況では、第1の群内の命令は、プログラム記憶及び/又は実行順において互いに関して連続し、プログラム記憶及び/又は実行順において互いに関して連続せず、命令の任意の他の群の1若しくはそれ以上の命令と混ざる及び命令の第2の群及び任意の他の群で同様等、互い及び他の命令に関して様々に配置される。幾つかの実施形態及び/又は使用状況では、命令の群の同じ乱数リソースを使用することで、決定論及び/又は実行の再現性は改善する。
【0596】
乱数リソース選択が比較的頻繁に変わる幾つかの状況では、命令は、乱数リソース選択がRNGビット3022内の各値を介し、各値が任意選択である命令から次の命令で変わることを指定する。乱数選択が頻繁には変わらない幾つかの状況では、命令は、乱数リソース選択が静的RNGビット2925.2を介し、静的RNGビット2925.2内の値が幾つかの命令で一定に保持されることを指定する。
【0597】
図30Cは、仮数2955(正規化及び丸めを受ける浮動小数点演算の結果の仮数)の選択された細部を図示し、MSBは左側にあり、LSBは右側にある。幾つかの実施形態では、仮数2955は、FP演算により使用されるFPデータフォーマットの仮数よりも多くのビットを有する。幾つかの実施形態では、半精度乗累積演算の仮数2955は45ビットであり、仮数2955は、11ビット仮数を有する16ビット表現に正規化され丸められる。図示の仮数2955は2つのフィールド:ゼロ若しくはそれ以上の連続先行ゼロ2955.1及び残りのビットである他のビット2955.2(値「1」の最上位ビットを有する)を有する。
【0598】
図30Dは、正規化仮数2956(正規化後であり、丸めを受ける浮動小数点演算の結果の仮数)の選択された細部を図示し、MSBは左側にあり、LSBは右側にある。図示の正規化仮数2956は2つのフィールド:丸めを受ける仮数ビット2958及び下位ビット3003を有する。正規化仮数2956のMSBは先行「1」である(しかし、幾つかの実施形態では、先行「1」は明示的に記憶されない)。丸めを受ける仮数ビット2958のLSBはULP3002.1である。下位ビット3003は、ULP3002.1よりも下位のビットである。図示の下位ビット3003は2つのフィールド:N最上位下位ビット2957.1及び最下位下位ビット3003.2を有する。様々な実施形態では、確率的丸めは、N最下位ビット2957.1が、ULP3002.1において開始される丸めを受ける仮数ビット2958の丸めに再現可能に影響できるようにする。幾つかの実施形態及び/又は使用状況では、再現可能に影響することにより、ニューラルネットワーク計算に関連付けられた長い依存鎖等の長い依存鎖の部分を含む計算における系統的丸めバイアスを低減することができる。
【0599】
図31は、任意選択の確率的丸めを用いる浮動小数点命令を実行するプロセッサ2900の選択された細部の流れ図を図示する。説明のために、命令はFP乗累積命令である。他の実施形態及び/又は使用状況では、命令は、加算、減算、乗算、除算、逆数、比較、絶対値、否定、最大、最小、初等関数、平方根、対数、指数、正弦、余弦、正接、逆正接、異なるフォーマットへの変換、及び整数から/整数への変換等の任意のFP命令である。
【0600】
命令2950の処理は動作3100において開始される。動作3110において、プロセッサ2900は命令及び命令内の様々な指定子を復号化する。指定子は、演算指定子(演算コードビット3023における特定の符号化を介してFP乗累算演算を指定する等)を含む。様々な実施形態では、FP乗累算命令は、半精度、単精度、及び倍精度のデータ及び演算の1つを指定する。幾つかの実施形態では、データ及び演算の精度は、演算コードビット3023により指定され、他の実施形態では、データ及び演算の精度は、命令2950内の別個のビットフィールド(図示せず)により指定される。
【0601】
動作3120において、乗算器2911は、Src A2951及びSrc B2952のFP乗算を実行し、結果として中間結果2953(指数部分及び仮数部分を有する)を生成する。次に、累積器2912は、中間結果2953及びSrc C2954のFP加算を実行し、結果として仮数2955(及び指数DP2915に提供される指数)を生成する。動作3130において、正規化器2913は仮数2955を正規化し、先行ゼロ2955.1を検出し(もしあれば)、他のビット2955.2を左にシフトし、先行ゼロ2955.1を除去して、正規化仮数2956を生成する。
【0602】
動作3140において、プロセッサ2900は、例えば、丸めモードビット3021を復号化することにより丸めモードを決定する。丸めモードビット3021が確率的丸めモード3142を指定する場合、フローは動作3160に進む。丸めモードビット3021が確率的丸めモード以外(例えば、最も近い偶数に丸める)3141を指定する場合、フローは動作3150に進む。動作3150において、FPU2901は、指定された丸めモードに従って決定論的に丸め(例えば、確率的丸めなしで)、フローは動作3198に進む。
【0603】
動作3160において、プロセッサ2900はRNG2921の乱数リソースを選択する(例えば、RNGビット3022の復号化に基づいて)。幾つかの実施形態では、RNG2921の乱数リソースは、静的RNGビット2925.2に基づいて選択される。選択された乱数リソースは、Nビット乱数2962として提供される。動作3170において、Nビット乱数2962及びN最上位下位ビット2957.1は、Nビット加算器2922により一緒に加算される(整数加算)。
【0604】
動作3180において、続くフローは条件付きで、Nビット加算器2922により実行された加算がキャリーを生成するか(キャリービット2963がアサートされる)否かに依存する。依存する場合3182、フローは動作3190に進む。依存しない場合3181、丸めを受ける仮数ビット2958は、確率的に丸められた仮数2964として変更(インクリメンタ2914のパススルー関数による等)なしで提供され、フローは動作3198に進む。動作3190において、インクリメンタ2914は、丸めを受ける仮数ビット2958の増分(ULP3002.1において開始)を確率的に丸められた仮数2964として提供する。次に、フローは動作3198に進み、動作3198において、確率的に丸められた指数2965及び確率的に丸められた仮数2964はまとめて、宛先オペランド指定子(宛先ビット3025)に従って宛先に提供される。次に、命令の処理は動作3199において完了する。
【0605】
幾つかの実施形態及び/又は使用状況では、動作3170は概念上、Nビット乱数2962及びN最上位下位ビット2957.1を比較して、切り上げる(3182)か、それとも切り下げるか(3181)を判断するメカニズムである。Nビット乱数2962を比較ソースとして使用することにより、切り上げる/下げる判断の確率は、N最上位下位ビット2957.1によって表される割合に等しく(例えば、ゼロから離れた丸めの確率は、N最上位下位ビット2957.1により表される割合である)、バイアスのない丸めを可能にする。幾つかの実施形態では、確率的丸めを実行する場合、最下位下位ビット3003.2は無視される。幾つかの実施形態では、N最上位下位ビット2957.1のLSBは、普通ならN最上位下位ビット2957.1であるものと最下位下位ビット3003.2の1若しくはそれ以上のビットとの論理ORで置換される。
【0606】
幾つかの実施形態及び/又は使用状況では、プロセッサ2900は任意選択で及び/又は選択で、整数結果又は固定小数点結果を生成する浮動小数点演算に確率的丸めを実行することができる。例えば、プロセッサ2900は、浮動小数点から整数への変換演算に確率的丸めを実行することができ、確率的丸めは、結果の整数値に影響する。別の例では、プロセッサ2900は、浮動小数点から固定小数点への変換演算に確率的丸めを実行することができ、確率的丸めは、結果の固定小数点値に影響する。
【0607】
様々な実施形態及び/又は使用状況では、長い依存鎖を形成するFP計算を用いたトレーニングプロセスは、「ディープ・ラーニング・アクセラレータ使用例」セクション(例えば、
図27A~
図28E及び関連する文章参照)及び「一例の作業負荷マッピング及び例示的なタスク」セクション(例えば、
図11及び
図12並びに関連する文章参照)において開示される概念に概念的に対応及び/又は概念的に関連する。例えば、
図27Aの第1の順方向パス2711、
図27Cの順方向パス2751、及び
図27Dの順方向パス2771はそれぞれ、長い依存鎖を有するFP計算に対応する。別の例では、
図11のf_psm:prop1103は、FP計算の長い依存鎖の要素に対応する。
【0608】
様々な実施形態及び/又は使用状況では、
図29のプロセッサ2900の全て又は任意の部分は、PEの全て又は任意の要素又はPEのCEに概念的に対応及び/又は関連する。例えば、プロセッサ2900のインスタンスは、
図4のPE499のインスタンスに対応する。別の例では、プロセッサ2900のインスタンスの二次元アレイは、
図4に図示されるように相互接続されたPE499のインスタンスの二次元アレイに対応する。別の例では、プロセッサ2900は
図8のCE800に対応する。別の例では、FPU2901の全て又は任意の部分は、
図8のデータパス852の様々な要素に概念的に対応及び/又は関連する。別の例では、命令復号化論理2920の全て又は任意の部分は、
図8のデコーダ840の要素に概念的に対応又は関連する。別の例では、FP制御レジスタ2925の全て又は任意の部分は、CE800において実施される。別の例では、RNG2921の全て又は任意の部分は、様々なデータパス852に概念的に対応及び/又は関連する。様々な実施形態及び/又は使用状況では、命令2950の1若しくはそれ以上は、
図8のメモリ854に記憶される。
【0609】
様々な実施形態及び/又は使用状況では、命令2950の1若しくはそれ以上は、
図2のPE上のタスクSW260の全て又は任意の部分に対応し、及び/又は
図3の順方向パス、デルタパス、チェインパス、更新重み350の全て又は任意の部分に対応する。様々な実施形態及び/又は使用状況では、
図31に図示される動作の全て又は任意の部分は、
図9Aのフェッチされた命令を実行906の全て又は任意の部分に対応する。
【0610】
様々な実施形態及び/又は使用状況では、命令2950の全て又は任意の部分は、命令、例えば、
図25Aの複数のオペランド命令2510、
図25Bの1ソース0宛先オペランド命令2520、及び
図25Cの即値命令2530に概念的に対応及び/又は関連する。例えば、演算コードビット3023は
図25Aの演算コード2512に対応する。別の例では、ソースビット3024は
図25Aのオペランド0符号化2513に対応する。別の例では、宛先ビット3025は
図25Aのオペランド0符号化2513に対応する。別の例では、丸めモードビット3021は、
図25Aのオペランド1符号化2514から決定可能である。
【0611】
大規模ディープ・ニューラル・ネットワークの拡張性
ディープ・ニューラル・ネットワーク(DNN)を実施するハードウェアアーキテクチャの評価における考慮事項は、DNNに関連付けられた重みの記憶要件と比較したハードウェアの記憶容量である。重みは、ニューラルネットワークのパラメータの一例である。しかしながら、順方向部分和、アクティベーション(これに限定されるものではないが、層出力を含む)、及び他の実施オーバーヘッド(例えば、畳み込みの)に求められる追加の記憶は、幾つかの状況では、重みの記憶要件と比較してささやかである。学術的及び産業的ベンチマークの状況では、人気のあるDNNにはLeNet-5、AlexNet、VGG-16、GoogLeNet(v1)、及びResNet-50がある。人気のあるDNNは4層から50層の範囲であり、全層にわたり合計で341k~15.5GのMAC(乗累算)演算を必要とし、60k~138Mの重みを必要とする。各重みが16ビット精度を必要とすると仮定すると、任意のあるDNNは、トレーニング後、重みだけで120kB~276MBの記憶要件を有する。32ビット精度の場合、要件は2倍になる。トレーニング中、例えば、勾配累積、デルタ部分和、層エラー、及び複製重みのために追加の記憶が必要とされる。幾つかのトレーニング方法(例えば、ミニバッチ)では、重みは複数回複製され、それに従って重み記憶要件を増大させる。
【0612】
様々な要因が、命令とデータとの間、更には様々なタイプのデータ間、例えば、重み、勾配累積、順方向部分和、デルタ部分和、及び順方向パスアクティベーションの間でのディープ・ニューラル・ネットワークのハードウェアアクセラレータのメモリ、例えば、
図8のメモリ854の使用に影響する。例えば、様々な要因には、実行されるデータフローグラフ及び使用される特定のアルゴリズムがある。様々な実施形態及び/又は使用状況では、メモリ854を有するPEに関して、メモリ854は、ニューロン入力、ニューロン出力、及びPEにマッピングされたニューロンのシナプス重みに統一された記憶装置をプライベートメモリ空間に提供する。畳み込み層の場合、ニューロンという用語がフィルタ又はカーネルを表すことが理解される。様々な実施形態及び/又は使用状況では、メモリ854が48kBを保持する500,000個のPEがあり、PE毎に16kBは命令に使用され、32kBはデータに使用され、メモリは合計で24GBである。実施形態によればさらに、例えば、ASIC毎に20,000個~40,000個のPEがあり、各ASICは0.96GB~1.92GBを保持し、ASIC毎に0.24GB~0.48GBは命令に使用され、0.72GB~1.44GBはデータに使用される。様々な実施形態及び/又は使用状況では、メモリ854が8kBを保持する300万超のPEがあり、PE毎に2kBは命令に使用され、6kBはデータに使用され、メモリは合計で24GBである。実施形態によればさらに、例えば、ASIC毎に20,000個~40,000個のPEがあり、各ASICは0.16GB~0.32GBを保持し、ASIC毎に0.04GB~0.08GBは命令に使用され、0.12GB~0.24GBはデータに使用される。
【0613】
16ビット又は32ビット精度重みを使用して、メモリ854が48kBを保持する任意の上記実施形態は、上述した人気のあるDNNのうちの最も要求の厳しいもの(VGG-16)を1つのASICにおいて最小に実施することができ、全ての層は、推論及びトレーニングの一方又は両方で(例えば、順方向伝搬及び逆方向伝搬の一方又は両方で)同時に存在し、DNNの任意の中間(まだ最終ではない)状態の外部チェックポイント又は他の外部(オフチップ又はオフウェーハ)記憶を使用しない。メモリ854が8kB以上を保持する任意の上記実施形態は、ウェーハの小さな複数のASICにわたり任意の人気のある上記DNNを最小に実施することができ、全ての層は、推論及びトレーニングの一方又は両方で同時に存在し、DNNの任意の中間状態の外部チェックポイント又は他の外部(オフチップ又はオフウェーハ)記憶を使用しない。ASICの必要最小数は、実施形態(例えば、メモリ854が8kBであるか、それとも48kBであるか、及び例えば、使用される重みが16ビット精度であるか、それとも32ビット精度であるか)に依存する。別の言い方をすれば、大きなDNNのニューロン及びシナプスの全て(例えば、100%)は、ハードウェアにおいて(より具体的には、
図4のディープ・ラーニング・アクセラレータ400のウェーハ412において)実施可能であり、全ての層(入力、隠れ(別名中間)、及び出力)は、同時に存在して実行され、推論及びトレーニングの一方又は両方で同時に存在し、DNNの任意の中間(まだ最終ではない)状態の外部チェックポイント又は他の外部(オフチップ又はオフウェーハ)記憶を使用しない。
【0614】
様々な実施形態及び/又は使用状況では、
図8のデータパス852は、浮動小数点乗算、フォーマット変換、加算、シフト、及び論理にそれぞれ専用のハードウェアリソースを含む。様々な実施形態及び/又は使用状況では、データパス852は、半精度乗算器を使用して半精度(16ビット)及び単精度(32ビット)IEEE-754浮動小数点を実施する。様々な実施形態及び/又は使用状況では、データパス852は、11×11乗算器アレイ、8×8乗算器アレイ、22ビット加算器、16ビット加算器、22ビットシフタ、及び16ビット論理ユニットを有する。実施形態によれば更に、500,000個~300万個のPEがあり、これは、ウェーハ毎に例えば、データパス852の500,000個~300万個のインスタンスに対応し、欠陥を除き、ウェーハ毎に対応する数の乗算器、加算器、シフタ、及び論理ユニットに対応する。実施形態によれば更に、ASIC毎に20,000個~40,000個のPEがあり、これは、データパス852の20,000~40,000個のインスタンスに対応し、欠陥を除き、ASIC毎に対応する数の乗算器、加算器、シフタ、及び論理ユニットに対応する。
【0615】
上述したように、メモリ854が8kB~48kBを保持する上記実施形態は、ウェーハの小さな複数のASICを介して、上述した任意の人気のあるDNNを最小に実施することができる。しかしながら、大規模DNNに必要とされる多数のMAC演算(例えば、VGG-16の場合、15.5GのMAC演算)に鑑みて、そのような大規模DNNの最小実施の性能(「壁時計時間」に関して見られることが多い)は、様々な実施形態及び/又は使用状況では、必ず再使用されるデータパスリソース数、特に乗算器の数により制約される。それにもかかわらず、実施形態によれば、システム全体は、データパス852の500k~3Mのインスタンス又は1つのASICとして25倍~150倍の数を有することになる。スメアリング(本明細書の他の箇所で詳述される)及び/又はDNNのニューロンの拡散(ウェーハのより多くのPE及びより多くのASICにわたるが、拡散ニューロン間の転送待ち時間に配慮)は、特に乗算器の同時使用の増大を可能にすることを介して潜在的な加速(及び対応する壁時計時間の短縮)を提供する。別の言い方をすれば、様々な実施形態及び/又は使用状況では、データフローグラフ(例えば、DNN)のトレーニング及び/又は演算を実行するにあたり、システムは、ディープ・ラーニング・アクセラレータ400におけるデータパス852の多数のインスタンスの利用を変更する(例えば、より多数の乗算器の並列動作を増大させる)(例えば、データフローグラフのノード又はDNNのニューロンの選択的拡散及び/又はスメアリングを介して)ように配置(PEへのDNNのマッピング)を変更することにより、1桁又は2桁(例えば、実施形態によれば、潜在的に25倍~150倍)性能をスケーリング(例えば、壁時計時間を短縮)することができる。
【0616】
他の実施形態の詳細
図1~
図31に関して説明した実施形態及び使用状況は概念的に、プログラマブルである、例えば、命令に従ってデータを処理するCEを有するPEに関する。部分的又は全体的に接続されている、例えば、命令なしで動作可能な1若しくはそれ以上の固定回路処理要素に従ってデータを処理するCEの1若しくはそれ以上を有する他の実施形態も考えられる。特定の例として、特定のCEは、LSTMユニットの全て又は一部を実施するハードウェア論理ユニット回路を有する。特定のCEは、他のPEを有するファブリックで動作可能な特定のPE内のルータを有する。他のPEの幾つかは、特定のPEと同様又は同一であり、他のPEの幾つかは、
図4のPE499と同様又は同一である。
【0617】
実施技法例
幾つかの実施形態では、加速化ディープラーニング、加速化ディープラーニングの確率的丸め、加速化ディープラーニングのマイクロスレッド処理、加速化ディープラーニングのタスクアクティベーション、加速化ディープラーニングの背圧、加速化ディープラーニングのデータ構造記述子及びファブリックベクトル、加速化ディープラーニングのニューロンスメアリング、加速化ディープラーニングのタスク同期、加速化ディープラーニングのデータフロー・トリガー・タスク、加速化ディープラーニングの制御ウェーブレット、及び/又は加速化ディープラーニングのウェーブレット表現のいずれかに実行される動作及び/又は関連付けられた構造の全て又は任意の部分及びプロセッサ、マイクロプロセッサ、システムオンチップ、特定用途向け集積回路、ハードウェアアクセラレータ、又は上記動作の全て又は部分を提供する他の回路の部分の様々な組合せが、コンピュータシステムによる処理と互換性がある用途により指定される。仕様は、ハードウェア記述言語、回路記述、ネットリスト記述、マスク記述、又はレイアウト記述等の様々な記述に従う。記述例には、Verilog、VHDL、SPICE、PSpice等のSPICEバリアント、IBIS、LEF、DEF、GDS-II、OASIS、又は他の記述がある。様々な実施形態では、処理は、1若しくはそれ以上の集積回路への包含に適する論理及び/又は回路を生成、検証、又は指定するための解釈、コンパイル、シミュレーション、及び合成の任意の組合せを含む。各集積回路は、様々な実施形態によれば、様々な技術による設計及び/又は製造と互換性がある。技法は、プログラマブル技法(フィールド又はマスクプログラマブル・ゲート・アレイ集積回路等)、セミカスタム技法(全体的又は部分的にセルベースの集積回路等)、及びフルカスタム技法(実質的に専用の集積回路等)、それらの任意の組合せ、又は集積回路の設計及び/又は製造と互換性がある任意の他の技法を含む。
【0618】
幾つかの実施形態では、命令セットが記憶されたコンピュータ可読媒体により記述される動作の全て又は部分の様々な組合せは、1若しくはそれ以上のプログラム命令の実行及び/又は解釈により、1若しくはそれ以上のソース言語及び/又はスクリプト言語ステートメントの解釈及び/又はコンパイルにより、又はプログラミング及び/又はスクリプト言語ステートメントで表現される情報のコンパイル、翻訳、及び/又は解釈により生成されるバイナリ命令の実行により実行される。ステートメントは、任意の標準プログラミング又はスクリプト言語(C、C++、Fortran、Pascal、Ada、Java(登録商標)、VBscript、及びShell等)と互換性がある。プログラム命令、言語ステートメント、又はバイナリ命令の1若しくはそれ以上は任意選択で、1若しくはそれ以上のコンピュータ可読記憶媒体要素に記憶される。様々な実施形態では、プログラム命令の幾つか、全て、又は様々な部分は、1若しくはそれ以上の関数、ルーチン、サブルーチン、インラインルーチン、プロシージャ、マクロ、又はそれらの部分として実現される。
【0619】
結論
特定の選択は、説明において、テキスト及び図面を準備するに当たり単に好都合であるため、行われ、逆の指示がない限り、選択はそれ自体、記載される実施形態の構造又は動作に関して追加情報を伝達するものとして解釈されるべきではない。選択の例には、図の付番に使用される名称の特定の編成又は割り当て及び実施形態の特徴及び要素の識別及び参照に使用される要素識別子(例えば、呼称又は数値指示子)の特定の編成又は割り当てがある。
【0620】
「含む(include)」及び「有する(comprise)」という言葉の様々な形態は特に、オープンエンド範囲の論理集合を記述する抽象として解釈されることが意図され、明示的に記載される場合(「内に(within)」という言葉が続く等)を除き、物理的な包含を伝達する意図はない。
【0621】
上記実施形態は、説明の明確性及び理解のために幾らか詳細に説明されたが、本発明は、提供された詳細に限定されない。本発明の多くの実施形態がある。開示された実施形態は例示であり、限定ではない。
【0622】
説明と一貫して構造、構成、及び使用の多くの変形が可能であり、発行される特許の特許請求の範囲内にあることが理解される。例えば、相互接続及び機能ユニットビット幅、クロック速度、及び使用される技術のタイプは、各構成要素ブロック内で様々な実施形態により可変である。相互接続及び論理に当たられた名前は単に例示であり、記載される概念の限定として解釈されるべきではない。フローチャート及び流れ図のプロセス、動作、及び機能要素の順序及び配置は、様々な実施形態により可変である。また、逆のことが特に記載される場合を除き、指定された値範囲、使用される最大値及び最小値、又は他の特定の仕様(ファイルタイプ並びにレジスタ及びバッファ内のエントリ又は段の数等)は単に、記載された実施形態のものであり、実装技術の改善及び変化を辿ることが予期され、限定として解釈されるべきではない。
【0623】
当技術分野で既知の機能的に均等な技術は、様々な構成要素、サブシステム、演算、機能、ルーチン、サブルーチン、インラインルーチン、プロシージャ、マクロ、又はそれらの部分を実施するように記載されたものの代わりに利用可能である。実施形態の多くの機能態様が選択的に、実施形態依存の設計制約並びにより高速の処理の技術トレンド(前はハードウェアであった機能のソフトウェアへの移行を促進する)及びより高い集積密度(前はソフトウェアであった機能のハードウェアへの移行を促進する)に応じて、ハードウェア(例えば、一般に専用回路)又はソフトウェア(例えば、何らかの様式のプログラムされたコントローラ又はプロセッサを介して)で実現可能であることも理解される。様々な実施形態での特定の変形は、これに限定されるものではないが、分割の違い、ファクタ及び構成の違い、異なるオペレーティングシステム及び他のシステムソフトウェアの使用、異なるインターフェース規格、ネットワークプロトコル、又は通信リンクの使用、及び特定の用途の独自の工学及びビジネス制約に従って本明細書に記載される概念を実施する場合に予期される他の変形を含む。
【0624】
実施形態は、記載された実施形態の多くの態様の最小の実施に必要とされるものを優に超えた詳細及び環境状況で説明した。幾つかの実施形態が、残りの要素間の基本連携を変更せずに、開示された構成要素又は特徴を省略することを当業者は認識しよう。したがって、開示された詳細の多くが、記載された実施形態の様々な態様の実施に必要とされないことが理解される。残りの要素が従来技術から区別可能である限り、省略された構成要素及び特徴は、本明細書に記載される概念に制限を課さない。
【0625】
設計の全てのそのような変形は、記載された実施形態により伝達される技術にわたるごく僅かな変更である。本明細書に記載された実施形態が、他の計算及びネットワーキング用途に広く適用可能であり、記載された実施形態の特定の用途又は業界に限定されないことも理解される。したがって、本発明は、発行される特許の特許請求の範囲内に包含される可能な変更及び変形の全てを包含するものとして解釈されるべきである。
【符号の説明】
【0626】
100 ニューラル・ネットワーク・システム
110 結合サーバ
111 LAN
112 100Gb
113 配置
114 重み
115 重み
120 ディープ・ラーニング・アクセラレータ
121 FPGAs
122 PEs
123 結合
130 自律車両
131 CPUs
132 CRM
133 IEs
135 カメラ
140 携帯電話
141 CPUs
142 CRM
143 IEs
145 カメラ
150 配置サーバ
151 CPUs
152 CRM
160 接続サーバ
161 CPUs
162 CRM
164 NICs
180 インターネット
200 ニューラル・ネットワーク・ソフトウェア
210 配置サーバSW
212 ニューロンからPEへのマッピングSW
220 接続サーバSW
224 100Gb NICドライバ
225 トレーニング情報プロバイダSW
226 重み受信機SW
230 自律車両SW
232 ビデオカメラSW
233 推測エンジンSW
234 ナビゲートSW
240 携帯電話SW
242 静止カメラSW
243 推測エンジンSW
244 掲示SW
250 FPGA上の種々SW
260 PE上のタスクSW
300 ニューラル・ネットワーク・トレーニング/推論、全体
310 ニューロン配置
320 FPGA初期化
330 PE初期化
340 トレーニングデータ=>PE
350 順方向パス、デルタパス、チェインパス、重み更新
360 トレーニング完了?
370 重み出力
380 重みを推論に使用
400 ディープ・ラーニング・アクセラレータ
401 順方向
402 デルタ
403 チェイン
410 ASIC
411 ASIC
412 ウェーハ
420 I/O FPGA
430 北結合
431 東結合
432 南結合
433 西結合
497 特定のPE
498 特定のPE
499 PE
500 PE
510 ルータ
511 西
512 西スキップ
513 北
514 東スキップ
515 東
516 南
520 計算要素
521 オフランプ
522 オンランプ
600 ルータ
610 データイン
611 スキップX+
612 スキップX-
613 X+
614 X-
615 Y+
616 Y-
617 オンランプ
620 データアウト
621 スキップX+
622 スキップX-
623 X+
624 X-
625 Y+
626 Y-
627 オフランプ
630 ストールアウト
631 スキップX+
632 スキップX-
633 X+
634 X-
635 Y+
636 Y-
637 オンランプ
640 ストールイン
641 スキップX+
642 スキップX-
643 X+
644 X-
645 Y+
646 Y-
647 オフランプ
650 データキュー
651 書き込みデコーダ
652 アウト
653 発信元
654 スケジュール済みルータ
656 ストール生成
657 ストール
660 制御情報
661 宛先
662 送信元
670 Src
710 ウェーブレットイングレス
711 ウェーブレットを待つ
712 ウェーブレットを受信
713 ウェーブレット=>ルータQ
740 背圧情報を生成し提供、全体
741 PEのCE
742 PEのルータ
743 開始
744 閾値を超える入力Qを判断
745 入力Qに関連するカラーを特定
746 ストール/使用可能をルータに提供
747 ストール/使用可能に従ってウェーブレットをCEに提供
748 終わり
750 背圧情報の生成及び提供、全体
751 PEのルータ
752 PEのCE
753 近傍のルータ
755 開始
756 閾値を超えるデータキューを判断
757 カラーソースをチェック
758 CE、近傍のストール/使用可能カラーを判断
759 ストール/使用可能をCE、近傍に提供
760 ストール/使用可能に従ってウェーブレットをルータに提供
761 ストール/使用可能に従ってウェーブレットをルータに提供
762 終わり
780 ストール処理、全体
781 PEのCE
782 開始
783 満杯出力Qを特定
784 出力Qに関連付けられたカラーを特定
785 満杯出力Qに関連付けられたカラーの処理をストール
786 終わり
800 CE
812 終了
820 オフランプ
822 ハッシュ
824 Qdistr
830 ピッカー
834 PC
836 I配列
837 オンランプ
840 デコーダ
842 RF
844 D配列
845 UT状態
846 DSRs
847 オフランプ
848 Dストア
852 データパス
854 メモリ
859 出力キュー
859.0 出力Q0
859.N 出力QN
860 オンランプ
890 ベース
896 スケジューリング情報
897 入力Q
897.0 入力Q0
897.N 入力QN
898 アクティブビット
898.0 アクティブビット0
898.N アクティブビットN
899 ブロックビット
899.0 ブロックビット0
899.N ブロックビットN
900 タスク初期化のウェーブレット処理、全体
901 開始
902 タスク開始に使用可能なウェーブレットを選択
903 制御/データ?
904 (カラー*4)をベースレジスタに追加して、命令アドレスを形成
905 メモリの命令アドレスから命令をフェッチ
906 フェッチされた命令を実行
908 終了せず
909 終了
910 下位インデックスビットをベースレジスタに追加して、命令アドレスを形成
919 終わり
920 タスクアクティベーション、全体
921 開始
923 カラーの演算をアクティベート
924 カラーをアクティベート
925 ピッカーはカラーを選択
926 タスクを開始、カラーを非アクティベーション
929 終わり
940 ブロック及びブロック解除命令処理フロー、全体
941 開始
942 命令をフェッチし実行
943 ブロック命令?
944 カラーをブロック
945 ブロック解除命令?
946 カラーをブロック解除
947 命令を実行
949 終わり
1040 ニューラルネットワーク部分
1041 (ニューロン)A
1042 (ニューロン)B
1043 (ニューロン)C
1044 (ニューロン)D
1045 (ニューロン)E
1046 (ニューロン)F
1060 処理要素アレイ部分
1061 (アクティベーション)aA
1062 (アクティベーション)aB
1063 (アクティベーション)aC
1064 (アクティベーション)aD
1065 (アクティベーション)aE
1066 (アクティベーション)aF
1070 PE0
1071 PE1
1072 PE2
1073 PE3
1074 PE4
1075 PE5
1076 PE6
1077 PE7
1078 PE8
1080 (重み)wAD
1081 (重み)wAE
1082 (重み)wAF
1083 (重み)wBD
1084 (重み)wBE
1085 (重み)wBF
1086 (重み)wCD
1087 (重み)wCE
1088 (重み)wCF
1090 PSA
1091 PSA
1092 PSA
1101 f_rxact:acc
1102 f_rxact:close
1103 f_psum:prop
1104 f_txact:tx
1111 前の層からのアクティベーション
1112 前の層からのクローズアウト
1113 フロー
1114 ウェイク
1115 再スケジュール
1116 Psum開始
1121 次の層へのアクティベーション
1122 次の層へのクローズアウト
1130 Psumプロップ
1131 Psumプロップ
1200 活性化累積/クローズアウト及び部分和計算/クローズアウト、全体
1201 開始
1202 アクティベーションを受信
1203 アクティベーションを累積
1204 アクティベーションクローズアウトを受信
1205 部分和リングを開始
1206 部分和を受信
1207 部分和を計算
1208 部分和を送信
1209 アクティベーションを送信
1210 クローズアウトを送信
1211 終わり
1301 スパースウェーブレット
1302 スパース・ウェーブレット・ペイロード
1320 制御ビット
1321 インデックス
1321.1 下位インデックスビット
1321.2 上位インデックスビット
1322 スパースデータ
1324 カラー
1331 高密度ウェーブレット
1332 高密度ウェーブレットペイロード
1340 制御ビット
1343.1 高密度データ
1343.2 高密度データ
1344 カラー
1400 ウェーブレット作成フロー、全体
1401 開始
1402 PEを初期化
1403 発信元を設定
1404 宛先(ファブリック)DSRを設定
1405 宛先DSRを有する命令をフェッチ/復号化
1406 DSRを読み取る
1407 キュー/メモリから(次の)発信元データ要素を読み取る
1408 データ要素をウェーブレットとして出力キューに提供
1409 まだデータ要素があるか?
1411 ウェーブレットをファブリックに送信
1412 ファブリックからウェーブレットを受信
1410 終わり
1420 送信PEのCE
1430 送信PEのルータ
1440 受信PEのルータ
1500 ウェーブレット受信フロー、全体
1501 開始
1502 PEを初期化
1503 ルータにおいてウェーブレットを受信
1504 他のPEへ?
1505 ウェーブレットを出力に送信
1506 ローカルCEへ?
1507 ウェーブレットをピッカーキューに書き込む
1510 終わり
1520 受信PEのルータ
1530 受信PEのCE
1600 ウェーブレット消費フロー、全体
1601 開始
1602 ピッカーは処理するウェーブレットを選択
1603 命令をフェッチし実行
1604 終わり
1700 ニューラルネットワーク
1710 入力レイヤ
1711 N11
1712 N12
1713 N13
1720 内部レイヤ
1721 N21
1721.1, 1721.2 それぞれ1/2 N21部分
1722 N22
1722.1, 1722.2 それぞれ1/2 N22部分
1723 N23
1723.1, 1723.2 それぞれ1/2 N23部分
1724 N24
1724.1, 1724.2 それぞれ1/2 N24部分
1731 N31
1731.1, 1731.2, 1731.3, 1731.4 それぞれ1/4 N31部分
1732 N32
1732.1, 1732.2, 1732.3, 1732.4 それぞれ1/4 N32部分
1733 N33
1740 出力レイヤ
1741 N41
1742 N42
1791 通信
1791.1 通信部分
1792 通信
1792.1 通信部分
1793 通信
1793.1 通信部分
1820 PE0
1821 PE1
1822 PE2
1823 PE3
1824 PE4
1825 PE5
1910 in0
1911 in1
1912 in2
1913 in3
1914 in4
1915 in5
1920 out0
1921 out1
1922 out2
1923 out3
1924 out4
1925 out5
1930.1 1/2ローカル計算
1930.2 1/2ローカル計算
1940.1 1/2ローカル記憶
1940.2 1/2ローカル記憶
1950.1 追加の計算
1950.2 追加の計算
1960.1 追加の記憶
1960.2 追加の記憶
1970 追加の通信
2000 ウェーハ部分
2040,2041,2043,2044 それぞれ隣接PE間の結合
2050,2051,2052,2053,2054,2055,2056,2057 それぞれ隣接PE間の結合の部分
2060 通信
2100 ファブリック入力データ構造記述子
2101 長さ
2102 UTID(マイクロスレッド識別子)
2103 UE(マイクロスレッドイネーブル)
2104 SW(SIMD幅)
2105 AC(カラー活性化)
2106 Term(制御ウェーブレット時にマイクロスレッドを終了)
2107 CX(制御ウェーブレット変換イネーブル)
2108 US(マイクロスレッド・スパース・モード)
2109 タイプ
2110 SS(シングルステップ)
2111 SA(アドレス保存/条件付きシングル・ステップ・モード)
2112 SC(カラー指定,通常モード)
2113 SQ(キュー指定,通常モード)
2114 CH(カラー,ハイビット)
2120 ファブリック出力データ構造記述子
2121 長さ
2122 UTID(マイクロスレッド識別子)
2123 UE(マイクロスレッドイネーブル)
2124 SW(SIMD幅)
2125 AC(カラー活性化)
2126 カラー
2127 C(出力制御ビット)
2128.1 インデックスロー
2128.2 インデックスハイ
2129 タイプ
2130 SS(シングルステップ)
2131 SA(アドレス保存/条件付きシングル・ステップ・モード)
2132 WLI(ウェーブレットインデックス選択)
2140 1Dメモリデータ構造記述子
2141 長さ
2142 ベースアドレス
2149 タイプ
2150 SS(シングルステップ)
2151 SA(アドレス保存/条件付きシングル・ステップ・モード)
2152 WLI(ウェーブレットインデックス選択)
2153 ストライド
2160 4Dメモリデータ構造記述子
2161 長さ
2161.1 長さ下位ビット
2161.2 長さ上位ビット
2162 ベースアドレス
2169 タイプ
2170 SS(シングルステップ)
2171 SA(アドレス保存/条件付きシングル・ステップ・モード)
2172 WLI(ウェーブレットインデックス選択)
2180 循環メモリ・バッファ・データ構造記述子
2181 長さ
2182 ベースアドレス
2184 SW(SIMD幅)
2188 FW(FIFOラップビット)
2189 タイプ
2190 SS(シングルステップ)
2191 SA(アドレス保存/条件付きシングル・ステップ・モード)
2192 WLI(ウェーブレットインデックス選択)
2210 循環メモリバッファ拡張データ構造記述子
2211 タイプ
2212 開始アドレス
2213 終了アドレス
2214 FIFO
2215 カラープッシュ(活性化)
2216 カラーポップ(活性化)
2240 4Dメモリベクトル拡張データ構造記述子
2241 タイプ
2242 次元
2243 DF(次元フォーマット)
2244.1 ストライド選択(次元について)1
2244.2 ストライド選択(次元について)2
2244.3 ストライド選択(次元について)3
2244.4 ストライド選択(次元について)4
2245 ストライド
2300 データ構造記述子フロー、全体
2301 開始
2302 DSRを設定
2303 DSRを用いて命令をフェッチ/復号化
2304 DSRを読み取る
2305 (任意選択)XDSRを設定
2306 (任意選択)XDSRを読み取る
2310 (次の)ソースデータ要素をキュー/メモリから読み取る
2310A キュー/メモリから(次の)発信元データ要素を読み取る
2311 データ要素に対して(次の)演算を実行
2312 (次の)宛先データ要素をキュー/メモリに書き込む
2313 データ要素がまだあるか?
2316 終わり
2400 データ構造記述子復号化フロー、全体
2401 開始
2410 ファブリックベクトル
2411 タイプ=ファブリック?
2412 DSDを介してアクセス
2420 メモリベクトル
2421 タイプ=XDSR?
2422 DSDを介して指定されたXDSRを読み取る
2423 タイプ=4Dベクトル?
2424 (任意選択)ストライドレジスタを読み取る
2427 DSDを介して1Dにアクセス
2428 XDSDを介して4Dにアクセス
2429 XDSDを介して循環バッファにアクセス
2499 終わり
2510 複数オペランド命令
2511 命令タイプ
2512 演算コード
2513 オペランド0符号化
2513.1 オペランド0タイプ
2513.2 オペランド0
2514 オペランド1符号化
2514.1 オペランド1タイプ
2514.2 オペランド1
2515 終了
2520 1発信元0宛先オペランド命令
2521 命令タイプ
2522 演算コード
2523 オペランド1符号化
2523.1 オペランド1タイプ
2523.2 オペランド1
2524 即値
2525 終了
2530 即値命令
2531 命令タイプ
2532 演算コード
2533.2 オペランド0
2534.1 即値ロー
2534.2 即値ハイ
2534 即値
2600 マイクロスレッド処理された命令フロー、全体
2603 ストール?
2605 ストール解決?
2606 マイクロスレッド処理が可能?
2607 マイクロスレッド処理された命令の情報を保存
2608 次の命令を実行
2609 ストール解決?
2610 (次の)ソースデータ要素をキュー/メモリから読み出す
2711 第1の順方向パス
2712 第2の順方向パス
2721 第1の逆方向パス
2722 第2の逆方向パス
2731 ミニバッチサイズ(N)
2732 オーバーヘッド
2733 更新間隔(U)
2751 順方向パス
2761 逆方向パス
2765 順方向パス
2766 逆方向パス
2767 重み更新使用
2771 順方向パス
2781 逆方向パス
2785 活性化記憶
2786 再計算された活性化の記憶
2801 前のレイヤ
2802 後続レイヤ
2803 前のレイヤ
2804 後続レイヤ
2810 計算
2811 F
2812 B
2815 記憶
2816 A
2817 W
2818 W
2820 計算
2821 F
2822 B
2825 記憶
2826 A
2827 W
2828 W
2829 A
2830 計算
2835 記憶
2840 計算
2845 記憶
2881 A1,t
2882 A2,t
2883 A3,t
2884 A'2,t
2891 Δ1,t
2892 Δ2,t
2893 Δ3,t
2894 Δ'1,t
2895 Δ'2,t
2896 Δ'3,t
2900 プロセッサ
2901 浮動小数点ユニット(FPU)
2911 乗算器
2912 累積器
2913 正規化器
2914 インクリメンタ
2915 指数DP (データパス)
2920 命令復号化論理
2921 乱数生成器(RNGs)
2922 Nビット加算器
2925 FP制御レジスタ
2925.1 静的丸めモードビット
2925.2 静的RNGビット
2925.3 FTZ(ゼロにフラッシュ)
2925.4 最大充足
2925.5 最小充足
2950 命令
2951 Src A
2952 Src B
2953 即値結果
2954 Src C
2955 仮数
2955.1 先行ゼロ
2955.2 他のビット
2956 正規化仮数
2957.1 N最上位下位ビット
2958 丸めを受ける仮数ビット
2961 RNGセレクタ
2962 Nビット乱数
2963 キャリービット
2964 確率的に丸められた仮数
2965 確率的に丸められた指数
3002.1 最小精度単位 (ULP)
3003 下位ビット
3003.2 最下位下位ビット
3021 丸めモードビット
3022 RNGビット
3023 演算コードビット
3024 ソースビット
3025 宛先ビット
3100 開始
3110 FP乗累積命令を復号化
3120 FP乗累積演算を実行
3130 結果を正規化
3140 確率的丸め?
3141 いいえ
3142 はい
3150 結果の仮数を決定論的に丸める
3160 Nビット乱数を選択
3170 Nビット乱数及びN最上位下位ビットを加算
3180 キャリー?
3181 いいえ
3182 はい
3190 ULPを増分
3198 丸められた結果を提供
3199 終わり