IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ビーエヌエスエフ レイルウェイ カンパニーの特許一覧

特許7261527物理オブジェクトの欠陥を判定するためのシステム及び方法
<>
  • 特許-物理オブジェクトの欠陥を判定するためのシステム及び方法 図1
  • 特許-物理オブジェクトの欠陥を判定するためのシステム及び方法 図2
  • 特許-物理オブジェクトの欠陥を判定するためのシステム及び方法 図3
  • 特許-物理オブジェクトの欠陥を判定するためのシステム及び方法 図4
  • 特許-物理オブジェクトの欠陥を判定するためのシステム及び方法 図5
  • 特許-物理オブジェクトの欠陥を判定するためのシステム及び方法 図6
  • 特許-物理オブジェクトの欠陥を判定するためのシステム及び方法 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-12
(45)【発行日】2023-04-20
(54)【発明の名称】物理オブジェクトの欠陥を判定するためのシステム及び方法
(51)【国際特許分類】
   G01N 21/88 20060101AFI20230413BHJP
【FI】
G01N21/88 J
【請求項の数】 41
(21)【出願番号】P 2021514017
(86)(22)【出願日】2019-11-19
(65)【公表番号】
(43)【公表日】2022-01-31
(86)【国際出願番号】 US2019062145
(87)【国際公開番号】W WO2020106682
(87)【国際公開日】2020-05-28
【審査請求日】2021-05-06
(31)【優先権主張番号】16/196,990
(32)【優先日】2018-11-20
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】505220284
【氏名又は名称】ビーエヌエスエフ レイルウェイ カンパニー
【住所又は居所原語表記】2500 Lou Menk Drive, Fort Worth, Texas 76131 U.S.A.
(74)【代理人】
【識別番号】100120662
【弁理士】
【氏名又は名称】川上 桂子
(74)【代理人】
【識別番号】100216770
【弁理士】
【氏名又は名称】三品 明生
(74)【代理人】
【識別番号】100217364
【弁理士】
【氏名又は名称】田端 豊
(72)【発明者】
【氏名】コーラー、 レイチェル
(72)【発明者】
【氏名】クルーガー、 ダレル アール.
(72)【発明者】
【氏名】ローホン、 ケビン
(72)【発明者】
【氏名】スミトレイ、 ギャレット
【審査官】小野寺 麻美子
(56)【参考文献】
【文献】特開2010-139317(JP,A)
【文献】特開2018-005640(JP,A)
【文献】特開2012-026982(JP,A)
【文献】特開2016-109495(JP,A)
【文献】特表2008-505260(JP,A)
【文献】特開2017-187487(JP,A)
【文献】特表2008-502538(JP,A)
【文献】FAGHIH-ROOHI,S. et al.,Deep convolutional neural networks for detection of rail surface defects,2016 International Joint Conference on Neural Networks (IJCNN),2016年,pp.2584-2589,DOI: 10.1109/IJCNN.2016.7727522
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/84 - G01N 21/958
G06T 1/00 - G06T 1/40
G06T 3/00 - G06T 9/40
G01B 11/00 - G01B 11/30
E01B 1/00 - E01B 37/00
(57)【特許請求の範囲】
【請求項1】
方法であって、
欠陥検出器モジュールによって、物理オブジェクトの画像を受信するステップと、
前記欠陥検出器モジュールによって、前記物理オブジェクトの前記画像から1つ以上の第1の特徴を1つ以上の機械学習アルゴリズムを使用して1つ以上の第1の分類に分類するステップと、
前記欠陥検出器モジュールによって、前記1つ以上の第1の分類を分析するステップと、
前記欠陥検出器モジュールによって、前記1つ以上の第1の分類を分析するステップに基づいて、前記物理オブジェクトが欠陥を含むことを判定するステップと、
前記欠陥検出器モジュールによって、前記1つ以上の機械学習アルゴリズムを使用して前記物理オブジェクトの前記画像から1つ以上の第2の特徴を1つ以上の第2の分類に分類するステップであって、前記1つ以上の第2の特徴を前記1つ以上の第2の分類に分類することは前記1つ以上の第2の特徴を前記物理オブジェクトの1つ以上の構成要素として分類することを含むステップと、
前記欠陥検出器モジュールによって、前記物理オブジェクトの前記1つ以上の構成要素のトリミングされた画像を生成するために、前記1つ以上の第2の特徴を囲む領域で前記画像をトリミングするステップとを含み、
前記物理オブジェクトの前記画像から前記1つ以上の第1の特徴を1つ以上の第1の分類に分類するステップは、前記物理オブジェクトの前記トリミングされた画像からの前記1つ以上の第1の特徴を1つ以上の第1の分類に分類するステップを含む、
方法。
【請求項2】
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置を判定するステップと、
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置が前記物理オブジェクトの一部であることを判定するステップと、
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置および前記物理オブジェクトの地理的位置に少なくとも部分的に基づいて、前記物理オブジェクトの前記欠陥の地理的位置を判定するステップと、
を含む、請求項1に記載の方法。
【請求項3】
前記欠陥検出器モジュールによって、前記画像の前記1つ以上の第1の特徴を1つ以上のラベルでラベル付けするステップをさらに含む、請求項1に記載の方法。
【請求項4】
前記欠陥検出器モジュールによって、前記1つ以上の第1の特徴を示すサンプルデータを収集することによって、前記画像から前記1つ以上の第1の特徴を分類するために、前記1つ以上の機械学習アルゴリズムをトレーニングするステップをさらに含む、請求項1に記載の方法。
【請求項5】
前記物理オブジェクトは、レールジョイントであり、
前記欠陥は、破損したレールジョイントであり、
前記1つ以上の第1の分類は、
ボルト、破損、孔、及び不連続部のうちの1つ以上を含む、請求項1に記載の方法。
【請求項6】
前記1つ以上の第2の分類は、レールジョイントバー、レール間の不連続部、及びエンドポストのうちの少なくとも1つを含むステップを含む、請求項1に記載の方法。
【請求項7】
前記物理オブジェクトの前記画像は、前記物理オブジェクトに対して動く構成要素によって撮影される、請求項1に記載の方法。
【請求項8】
1つ以上のプロセッサと、前記1つ以上のプロセッサによって実行されるとき、前記1つ以上のプロセッサに動作を実行させる命令を格納するメモリと、を含むシステムであって、
前記動作は、
欠陥検出器モジュールによって、物理オブジェクトの画像を受信するステップと、
前記欠陥検出器モジュールによって、前記物理オブジェクトの前記画像から1つ以上の第1の特徴を1つ以上の機械学習アルゴリズムを使用して1つ以上の第1の分類に分類するステップと、
前記欠陥検出器モジュールによって、前記1つ以上の第1の分類を分析するステップと、
前記欠陥検出器モジュールによって、前記1つ以上の第1の分類を分析するステップに基づいて、前記物理オブジェクトが欠陥を含むことを判定するステップと、
前記欠陥検出器モジュールによって、前記1つ以上の機械学習アルゴリズムを使用して前記物理オブジェクトの前記画像から1つ以上の第2の特徴を1つ以上の第2の分類に分類するステップであって、前記1つ以上の第2の特徴を前記1つ以上の第2の分類に分類することは前記1つ以上の第2の特徴を前記物理オブジェクトの1つ以上の構成要素として分類することを含み、前記1つ以上の第2の分類は、レールジョイントバー、レール間の不連続部、及びエンドポストのうちの少なくとも1つを含むステップと、
前記欠陥検出器モジュールによって、前記物理オブジェクトの前記1つ以上の構成要素のトリミングされた画像を生成するために、前記1つ以上の第2の特徴を囲む領域で前記画像をトリミングするステップとを含み、
前記物理オブジェクトの前記画像から前記1つ以上の第1の特徴を1つ以上の第1の分類に分類するステップは、前記物理オブジェクトの前記トリミングされた画像からの前記1つ以上の第1の特徴を1つ以上の第1の分類に分類するステップを含む、
システム。
【請求項9】
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置を判定するステップと、
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置が前記物理オブジェクトの一部であることを判定するステップと、
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置および前記物理オブジェクトの地理的位置に少なくとも部分的に基づいて、前記物理オブジェクトの前記欠陥の地理的位置を判定するステップと、
を含む、請求項8に記載のシステム
【請求項10】
前記動作は、前記欠陥検出器モジュールによって、前記画像の前記1つ以上の第1の特徴を1つ以上のラベルでラベル付けするステップをさらに含む、請求項8に記載のシステム。
【請求項11】
前記動作は、前記欠陥検出器モジュールによって、前記1つ以上の第1の特徴を示すサンプルデータを収集することによって、前記画像から前記1つ以上の第1の特徴を分類するために、前記1つ以上の機械学習アルゴリズムをトレーニングするステップをさらに含む、請求項8に記載のシステム。
【請求項12】
前記物理オブジェクトは、レールジョイントであり、
前記欠陥は、破損したレールジョイントであり、
前記1つ以上の第1の分類は、
ボルト、破損、孔、及び不連続部のうちの1つ以上を含む、請求項8に記載のシステム。
【請求項13】
前記1つ以上の第2の分類は、レールジョイントバー、レール間の不連続部、及びエンドポストのうちの少なくとも1つを含む、請求項8に記載のシステム。
【請求項14】
前記物理オブジェクトの前記画像は、前記物理オブジェクトに対して動く構成要素によって撮影される、請求項8に記載のシステム。
【請求項15】
プロセッサによって実行されるとき、プロセッサに、動作を実行させる命令を含むコンピュータプログラムであって、
前記動作は、
欠陥検出器モジュールによって、物理オブジェクトの画像を受信するステップと、
前記欠陥検出器モジュールによって、前記物理オブジェクトの前記画像から1つ以上の第1の特徴を1つ以上の機械学習アルゴリズムを使用して1つ以上の第1の分類に分類するステップと、
欠陥検出器モジュールによって、前記1つ以上の第1の分類を分析するステップと、
前記欠陥検出器モジュールによって、前記1つ以上の第1の分類を分析するステップに基づいて、前記物理オブジェクトが欠陥を含むことを判定するステップと、
前記欠陥検出器モジュールによって、前記1つ以上の機械学習アルゴリズムを使用して前記物理オブジェクトの前記画像から1つ以上の第2の特徴を1つ以上の第2の分類に分類するステップであって、前記1つ以上の第2の特徴を前記1つ以上の第2の分類に分類することは前記1つ以上の第2の特徴を前記物理オブジェクトの1つ以上の構成要素として分類することを含み、前記1つ以上の第2の分類は、レールジョイントバー、レール間の不連続部、及びエンドポストのうちの少なくとも1つを含むステップと、
前記欠陥検出器モジュールによって、前記物理オブジェクトの前記1つ以上の構成要素のトリミングされた画像を生成するために、前記1つ以上の第2の特徴を囲む領域で前記画像をトリミングするステップとを含み、
前記物理オブジェクトの前記画像から前記1つ以上の第1の特徴を1つ以上の第1の分類に分類するステップは、前記物理オブジェクトの前記トリミングされた画像からの前記1つ以上の第1の特徴を1つ以上の第1の分類に分類するステップを含む、
コンピュータプログラム。
【請求項16】
前記動作は、
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置を判定するステップと、
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置が前記物理オブジェクトの一部であることを判定するステップと、
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置および前記物理オブジェクトの地理的位置に少なくとも部分的に基づいて前記物理オブジェクトの前記欠陥の地理的位置を判定するステップと、
をさらに含む、請求項15に記載のコンピュータプログラム。
【請求項17】
前記動作は、
前記欠陥検出器モジュールによって、前記画像の前記1つ以上の第1の特徴を1つ以上のラベルでラベル付けするステップをさらに含む、請求項15に記載のコンピュータプログラム。
【請求項18】
前記動作は、
前記1つ以上の第1の特徴を示すサンプルデータを収集することによって、前記画像から前記1つ以上の第1の特徴を分類するために、前記1つ以上の機械学習アルゴリズムをトレーニングするステップをさらに含む、請求項15に記載のコンピュータプログラム。
【請求項19】
前記物理オブジェクトは、レールジョイントであり、
前記欠陥は、破損したレールジョイントであり、
前記1つ以上の第1の分類は、
ボルト、破損、孔、不連続部のうちの1つ以上を含む、
請求項15に記載のコンピュータプログラム。
【請求項20】
前記1つ以上の第2の分類は、レールジョイントバー、レール間の不連続部、及びエンドポストのうちの少なくとも1つを含むステップを含む、請求項15に記載のコンピュータプログラム。
【請求項21】
方法であって、
欠陥検出器モジュールによって、物理オブジェクトの画像を受信するステップと、
前記欠陥検出器モジュールによって、前記物理オブジェクトの前記画像から1つ以上の第1の特徴を1つ以上の機械学習アルゴリズムを使用して1つ以上の第1の分類に分類するステップと、
前記欠陥検出器モジュールによって、前記1つ以上の第1の分類を分析するステップと、
前記欠陥検出器モジュールによって、前記1つ以上の第1の分類を分析するステップに基づいて、前記物理オブジェクトが欠陥を含むことを判定するステップと、
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置を判定するステップと、
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置が前記物理オブジェクトの一部であることを判定するステップと、
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置および前記物理オブジェクトの地理的位置に少なくとも部分的に基づいて、前記物理オブジェクトの前記欠陥の地理的位置を判定するステップと、
を含む、
方法。
【請求項22】
前記物理オブジェクトの欠陥の地理的位置を判定するステップは、前記画像に関連する緯度及び経度を判定するステップを含む、請求項21に記載の方法。
【請求項23】
前記欠陥検出器モジュールによって、前記画像の前記1つ以上の第1の特徴を1つ以上のラベルでラベル付けするステップをさらに含む、請求項21に記載の方法。
【請求項24】
前記欠陥検出器モジュールによって、前記1つ以上の第1の特徴を示すサンプルデータを収集することによって、前記画像から前記1つ以上の第1の特徴を分類するために、前記1つ以上の機械学習アルゴリズムをトレーニングするステップをさらに含む、請求項21に記載の方法。
【請求項25】
前記物理オブジェクトは、レールジョイントであり、
前記欠陥は、破損したレールジョイントであり、
前記1つ以上の第1の分類は、
ボルト、破損、孔、及び不連続部のうちの1つ以上を含む、請求項21に記載の方法。
【請求項26】
前記欠陥検出器モジュールによって、前記1つ以上の機械学習アルゴリズムを使用して前記物理オブジェクトの前記画像から1つ以上の第2の特徴を1つ以上の第2の分類に分類するステップであって、前記1つ以上の第2の特徴を前記1つ以上の第2の分類に分類することは前記1つ以上の第2の特徴を前記物理オブジェクトの1つ以上の構成要素として分類することを含み、前記1つ以上の第2の分類は、レールジョイントバー、レール間の不連続部、及びエンドポストのうちの少なくとも1つを含むステップと、
前記欠陥検出器モジュールによって、前記物理オブジェクトの前記1つ以上の構成要素のトリミングされた画像を生成するために、前記1つ以上の第2の特徴を囲む領域で前記画像をトリミングするステップとをさらに含み、
記物理オブジェクトの前記画像から前記1つ以上の第1の特徴を1つ以上の第1の分類に分類するステップは、前記物理オブジェクトの前記トリミングされた画像からの前記1つ以上の第1の特徴を1つ以上の第1の分類に分類するステップを含む、
請求項21に記載の方法。
【請求項27】
前記物理オブジェクトの前記画像は、前記物理オブジェクトに対して動く構成要素によって撮影される、請求項21に記載の方法。
【請求項28】
1つ以上のプロセッサと、前記1つ以上のプロセッサによって実行されるとき、前記1つ以上のプロセッサに動作を実行させる命令を格納するメモリと、を含むシステムであって、
前記動作は、
欠陥検出器モジュールによって、物理オブジェクトの画像を受信するステップと、
前記欠陥検出器モジュールによって、前記物理オブジェクトの前記画像から1つ以上の第1の特徴を1つ以上の機械学習アルゴリズムを使用して1つ以上の第1の分類に分類するステップと、
前記欠陥検出器モジュールによって、前記1つ以上の第1の分類を分析するステップと、
前記欠陥検出器モジュールによって、前記1つ以上の第1の分類を分析するステップに基づいて、前記物理オブジェクトが欠陥を含むことを判定するステップと、
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置を判定するステップと、
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置が前記物理オブジェクトの一部であることを判定するステップと、
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置および前記物理オブジェクトの地理的位置に少なくとも部分的に基づいて前記物理オブジェクトの前記欠陥の地理的位置を判定するステップと、
を含む、
システム。
【請求項29】
前記物理オブジェクトの欠陥の地理的位置を判定するステップは、前記画像に関連する緯度及び経度を判定するステップを含む、請求項28に記載のシステム。
【請求項30】
前記動作は、前記欠陥検出器モジュールによって、前記画像の前記1つ以上の第1の特徴を1つ以上のラベルでラベル付けするステップをさらに含む、請求項28に記載のシステム。
【請求項31】
前記動作は、前記欠陥検出器モジュールによって、前記1つ以上の第1の特徴を示すサンプルデータを収集することによって、前記画像から前記1つ以上の第1の特徴を分類するために、前記1つ以上の機械学習アルゴリズムをトレーニングするステップをさらに含む、請求項28に記載のシステム。
【請求項32】
前記物理オブジェクトは、レールジョイントであり、
前記欠陥は、破損したレールジョイントであり、
前記1つ以上の第1の分類は、ボルト、破損、孔、不連続部のうちの1つ以上を含む、
請求項28に記載のシステム。
【請求項33】
前記欠陥検出器モジュールによって、前記1つ以上の機械学習アルゴリズムを使用して前記物理オブジェクトの前記画像から1つ以上の第2の特徴を1つ以上の第2の分類に分類するステップであって、前記1つ以上の第2の特徴を前記1つ以上の第2の分類に分類することは前記1つ以上の第2の特徴を前記物理オブジェクトの1つ以上の構成要素として分類することを含み、前記1つ以上の第2の分類は、レールジョイントバー、レール間の不連続部、及びエンドポストのうちの少なくとも1つを含むステップと、
前記欠陥検出器モジュールによって、前記物理オブジェクトの前記1つ以上の構成要素のトリミングされた画像を生成するために、前記1つ以上の第2の特徴を囲む領域で前記画像をトリミングするステップとをさらに含み、
前記物理オブジェクトの前記画像から前記1つ以上の第1の特徴を1つ以上の第1の分類に分類するステップは、前記物理オブジェクトの前記トリミングされた画像からの前記1つ以上の第1の特徴を1つ以上の第1の分類に分類するステップを含む、
請求項28に記載のシステム。
【請求項34】
前記物理オブジェクトの前記画像は、前記物理オブジェクトに対して動く構成要素によって撮影される、請求項28に記載のシステム。
【請求項35】
プロセッサによって実行されるとき、プロセッサに、動作を実行させる命令を含むコンピュータプログラムであって、
前記動作は、
欠陥検出器モジュールによって、物理オブジェクトの画像を受信するステップと、
前記欠陥検出器モジュールによって、前記物理オブジェクトの前記画像から1つ以上の第1の特徴を1つ以上の機械学習アルゴリズムを使用して1つ以上の第1の分類に分類するステップと、
欠陥検出器モジュールによって、前記1つ以上の第1の分類を分析するステップと、
前記欠陥検出器モジュールによって、前記1つ以上の第1の分類を分析するステップに基づいて、前記物理オブジェクトが欠陥を含むことを判定するステップと、
記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置を判定するステップと、
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置が前記物理オブジェクトの一部であることを判定するステップと、
前記欠陥検出器モジュールによって、前記画像内の前記欠陥の位置および前記物理オブジェクトの地理的位置に少なくとも部分的に基づいて前記物理オブジェクトの前記欠陥の地理的位置を判定するステップと、
を含む、
コンピュータプログラム。
【請求項36】
前記物理オブジェクトの欠陥の地理的位置を判定するステップは、前記画像に関連する緯度及び経度を判定するステップを含む、請求項35に記載のコンピュータプログラム。
【請求項37】
前記動作は、前記欠陥検出器モジュールによって、前記画像の前記1つ以上の第1の特徴を1つ以上のラベルでラベル付けするステップをさらに含む、請求項35に記載のコンピュータプログラム。
【請求項38】
前記動作は、前記1つ以上の第1の特徴を示すサンプルデータを収集することによって、前記画像から前記1つ以上の第1の特徴を分類するために、前記1つ以上の機械学習アルゴリズムをトレーニングするステップをさらに含む、請求項35に記載のコンピュータプログラム。
【請求項39】
前記物理オブジェクトは、レールジョイントであり、
前記欠陥は、破損したレールジョイントであり、
前記1つ以上の第1の分類は、
ボルト、破損、孔、不連続部のうちの1つ以上を含む、
請求項35に記載のコンピュータプログラム。
【請求項40】
前記動作は、
前記欠陥検出器モジュールによって、前記1つ以上の機械学習アルゴリズムを使用して前記物理オブジェクトの前記画像から1つ以上の第2の特徴を1つ以上の第2の分類に分類するステップであって、前記1つ以上の第2の特徴を前記1つ以上の第2の分類に分類することは前記1つ以上の第2の特徴を前記物理オブジェクトの1つ以上の構成要素として分類することを含み、前記1つ以上の第2の分類は、レールジョイントバー、レール間の不連続部、及びエンドポストのうちの少なくとも1つを含むステップと、
前記欠陥検出器モジュールによって、前記物理オブジェクトの前記1つ以上の構成要素のトリミングされた画像を生成するために、前記1つ以上の第2の特徴を囲む領域で前記画像をトリミングするステップとをさらに含み、
前記物理オブジェクトの前記画像から前記1つ以上の第1の特徴を1つ以上の第1の分類に分類するステップは、前記物理オブジェクトの前記トリミングされた画像からの前記1つ以上の第1の特徴を1つ以上の第1の分類に分類するステップを含む、
請求項35に記載のコンピュータプログラム。
【請求項41】
請求項15~20、35~40のいずれか一項に記載のコンピュータプログラムを記録した、1つ以上のコンピュータ可読記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に欠陥の判定、より具体的には、物理オブジェクトの欠陥の判定に関する。
【背景技術】
【0002】
物理オブジェクトは、ビジネスの目的を実行するために様々な産業で使用される。例えば、鉄道車両は、線路上で貨物を移動する。鉄道車両と線路は、いくつかの物理オブジェクトの組み合わせを含む。時間の経過とともに、物理オブジェクトは、摩耗、破損、又はその他の欠陥を有する可能性があり、鉄道車両と線路を継続して安全に運用するためには、欠陥の修理が必要になる場合がある。通常、鉄道の構成要素などの物理オブジェクトは、欠陥を特定するために技術者が手動で検査を行う。
【発明の概要】
【課題を解決するための手段】
【0003】
一実施形態によれば、方法は、欠陥検出器モジュールによって、物理オブジェクトの画像を受信するステップと、欠陥検出器モジュールによって、物理オブジェクトの画像から1つ以上の第1の特徴を1つ以上の機械学習アルゴリズムを使用して1つ以上の第1の分類に分類するステップとを含む。方法はさらに、欠陥検出器モジュールによって、1つ以上の第1の分類を分析するステップと、欠陥検出器モジュールによって、1つ以上の第1の分類を分析するステップに基づいて、物理オブジェクトが欠陥を含むことを判定するステップとを含む。
【0004】
別の実施形態によれば、システムは、1つ以上のプロセッサと、1つ以上のプロセッサによって実行されるとき、1つ以上のプロセッサに欠陥検出器モジュールによって物理オブジェクトの画像を受信するステップ、及び欠陥検出器モジュールによって、物理オブジェクトの画像から1つ以上の第1の特徴を1つ以上の機械学習アルゴリズムを使用して1つ以上の第1の分類に分類するステップを含む動作を実行させる命令を格納するメモリと、を含む。動作はさらに、欠陥検出器モジュールによって1つ以上の第1の分類を分析するステップ、及び欠陥検出器モジュールによって、1つ以上の第1の分類を分析するステップに基づいて、物理オブジェクトが欠陥を含むことを判定するステップをさらに含む。
【0005】
さらに別の実施形態によれば、1つ以上のコンピュータ可読記憶媒体は、プロセッサによって実行されるとき、プロセッサが欠陥検出器モジュールによって物理オブジェクトの画像を受信するステップ、及び欠陥検出器モジュールによって物理オブジェクトの画像から1つ以上の第1の特徴を1つ以上の機械学習アルゴリズムを使用して1つ以上の第1の分類に分類するステップを含む動作を実行させる命令を内蔵する。動作はさらに、欠陥検出器モジュールによって1つ以上の第1の分類を分析するステップ、及び欠陥検出器モジュールによって、1つ以上の第1の分類を分析するステップに基づいて、物理オブジェクトが欠陥を含むことを判定するステップを含む。
【0006】
本開示内容の特定の実施形態の技術的利点には、以下のうちの1つ以上を含み得る。開示された画像撮影システムは、物理オブジェクトの画像を自動で撮影して、手動のデータ収集及び人的労力が排除又は削減され、時間及び費用が節約される。画像撮影システムは、手動検査では識別できない角度から鉄道の構成要素などの物理オブジェクトの画像を撮影することができ、これにより、物理オブジェクトの欠陥を検出する精度が向上し得る。開示された欠陥検出器モジュールは、機械学習アルゴリズムを使用して物理オブジェクトの欠陥を自動で検出することができ、これは、潜在的な欠陥の画像をスキャンしてラベル付けする手作業を排除することができる。本開示で説明されるシステム及び方法は、鉄道、道路、及び水路を含む異なる輸送インフラで一般化され得る。
【0007】
他の技術的利点は、以下の図、説明、及び特許請求の範囲から当業者には容易に明らかになるであろう。さらに、特定の利点が上に列挙されたが、様々な実施形態は、列挙された利点の全てか一部を含む、又は全く含まない場合がある。
【0008】
本開示内容の理解を助けるために、添付の図面と併せて以下の説明を参照する。
【図面の簡単な説明】
【0009】
図1】物理オブジェクトの欠陥を判定するための例示的なシステムを示す。
図2】物理オブジェクトの欠陥を判定するための例示的な方法を示す。
図3】物理オブジェクトの欠陥を判定するための別の例示的な方法を示す。
図4】例示的な画像撮影システムを示す。
図5図4の画像撮影システムによって使用され得る例示的なモジュールを示す。
図6】特徴をラベルでタグ付けするための例示的な方法を示す。
図7】本明細書で説明するシステム及び方法によって使用され得る例示的なコンピュータシステムを示す。
【発明を実施するための形態】
【0010】
鉄道の構成要素などの物理オブジェクトは、ビジネスの目的を実行するために様々な産業で使用される。時間の経過とともに、物理オブジェクトが破損したり、欠陥が生じたりする可能性があり、欠陥は、鉄道車両を継続して安全に運用するために、修理が必要な場合がある。一般に、鉄道の構成要素などの物理オブジェクトは、欠陥を特定するために技術者が手動で検査を行う。
【0011】
状態及び欠陥分析アルゴリズムは、1つ以上の従来のコンピュータビジョン技術(例えば、関心領域分析、フィルタリング、閾値、ブロブ技術、エッジ分析、輪郭抽出、ヒストグラム分析など)、及び様々な条件の検出を自動化するための共通の資産及び/又は欠陥ヒューリスティック(defect heuristics)を活用してもよい。このような技術は、非常に具体的で一貫性のある場合に効果的であるが、実際の条件下では脆弱なことが多く、保守、修正、及び強化に多くの時間を必要とし得る。
【0012】
画像の分類及びセグメンテーションタスクのための機械学習アルゴリズムを使用することには、従来の算出方法とは根本的に異なる画像分析手法の方式が含まれる。ピクセルマトリックスでアルゴリズムによるフィルタリング、歪み、グループ化、セグメント化、及び算出を行う代わりに、機械学習アルゴリズム(例えば、ニューラルネットワーク)は、画像又は画像の一部が通過する一連のトレーニングされたネットワークレイヤを利用して画像の内容に対する予測を行う。
【0013】
本開示の実施形態は、視覚的画像を撮影(capture)及び分析するために深層機械学習を使用する。開示されたシステム及び方法は、移動中の車両(例えば、レール上を移動する車両、レールに沿って移動する車両など)の特定のハードウェア構成からみた物理オブジェクト(例えば、鉄道の構成要素)を認識し、及び継続的に撮影、プール、及び重み付けされた、ラベル付けされたトレーニングデータの量、多様性、及び精度に基づいて視覚的データを解釈する。開示されたシステム及び方法は、撮影された様々な物理オブジェクトのより高い精度及びより高いレベルの分析を得るために、物理オブジェクトの撮影された画像データに対してトレーニングされたモデルを使用することによって解釈を行う。機械学習アルゴリズムは、ハードウェア構成ごとにカスタムトレーニングされおり、様々な物理オブジェクトごとに最適な連続撮影及び分析を実現する。アルゴリズムは、物理オブジェクトの画像から特定の特徴を分類するために使用される。次に、分類を使用して、物理オブジェクトの欠陥を判定する。
【0014】
図1図7は、物理オブジェクトの欠陥を判定するための例示的なシステム及び方法を示す。図1は、物理オブジェクトの欠陥を判定するための例示的なシステムを示す。図2及び図3は、物理オブジェクトの欠陥を判定する例示的な方法を示す。図4は、例示的な画像撮影システム(image capturing system)を示す。図5は、図4の画像撮影システムによって使用され得る例示的なモジュールを示す。図6は、特徴をラベルでタグ付けするための例示的な方法を示す。図7は、本明細書で説明するシステム及び方法によって使用され得る例示的なコンピュータシステムを示す。
【0015】
図1は、物理オブジェクトの欠陥を判定するための例示的なシステム100を示す。図1のシステム100は、ネットワーク110、欠陥検出器モジュール(defect detector module)120、及び画像撮影システム170を含む。システム100又はその一部は、企業、会社(例えば、鉄道会社、運輸会社など)のような任意のエンティティ、又は物理オブジェクトの欠陥を判定できる政府機関(例えば、交通部、公共安全部など)を含んでもよく、エンティティに関連付けられてもよい。システム100の要素は、ハードウェア、ファームウェア、及びソフトウェアの任意の適切な組み合せを使用して実装され得る。
【0016】
ネットワーク110は、システム100の構成要素間の通信を容易にする任意のタイプのネットワークであり得る。ネットワーク110は、欠陥検出器モジュール120とシステム100の画像撮影システム170とを接続してもよい。本開示は、ネットワーク110が特定の種類のネットワークであることを示しているが、本開示は、任意の適切なネットワークを企図する。ネットワーク110の1つ以上の部分は、アドホックネットワーク、イントラネット、エクストラネット、仮想私設通信網(VPN)、ローカルエリアネットワーク(LAN)、無線LAN(WLAN)、広域ネットワーク(WAN)、無線WAN(WWAN)、大都市圏ネットワーク(MAN)、インターネットの一部、公衆交換電話網(PSTN)の一部、携帯電話網、3Gネットワーク、4Gネットワーク、5Gネットワーク、LTE(Long Term Evolution)セルラ通信網、これらの2つ以上の組み合わせ、又はその他の適切なタイプのネットワークを含み得る。ネットワーク110の1つ以上の部分は、1つ以上のアクセス(例えば、モバイルアクセス)、コア、及び/又はエッジネットワークを含み得る。ネットワーク110は、プライベートネットワーク、パブリックネットワーク、インターネットを介した接続、モバイルネットワーク、WI-FIネットワーク、ブルートゥース(登録商標)ネットワークなどの任意の通信ネットワークであってもよい。ネットワーク110は、1つ以上のネットワークノードを含み得る。ネットワークノードは、ネットワーク110を介してデータを受信、生成、格納、及び/又は送信することができる接続ポイントである。ネットワーク110は、クラウドコンピューティング機能を含み得る。システム100の1つ以上の構成要素は、ネットワーク110を介して通信してもよい。例えば、欠陥検出器モジュール120は、画像撮影システム170からの情報の受信を含んでネットワーク110を介して通信してもよい。
【0017】
システム100の欠陥検出器モジュール120は、物理オブジェクトの欠陥156を判定するのに使用され得る任意の適切なコンピューティング構成要素を示す。欠陥156は、物理オブジェクトの有用性を潜在的に破損させる欠点である。物理オブジェクトは、識別可能な物質の集りである。物理オブジェクトには、道路、鉄道、航空路、水路、運河、パイプライン、及びターミナルの構成要素など輸送インフラの構成要素が含まれてもよい。鉄道の構成要素の例には、ジョイント、転轍機、フロッグ(frog)、レール頭部、アンカー、締結装置、ゲージプレート、バラスト、枕木(例えば、コンクリートの枕木及び木の枕木)などが含まれる。
【0018】
欠陥検出器モジュール120は、インタフェース122、メモリ124、及びプロセッサ126を含む。欠陥検出器モジュール120のインタフェース122は、ネットワーク110から情報を受信、ネットワーク110を介して情報を送信、情報の適切な処理を実行、図1のシステム100の他の構成要素(例えば、画像撮影システム170の構成要素)と通信、又はこれらの任意の組み合せであり得る任意の適切なコンピュータ要素を示す。インタフェース122は、ハードウェア、ファームウェア、及びソフトウェアの任意の適切な組み合せを含んで実際の又は仮想の任意のポート又は接続を示し、LAN、WAN、又は図1のシステム100がシステム100の構成要素の間で情報を交換するための他の通信システムを介して通信するためのプロトコル変換及びデータ処理能力を含む。
【0019】
欠陥検出器モジュール120のメモリ124は、永久的及び/又は一時的に受信及び送信された情報だけでなく、システムソフトウェア、制御ソフトウェア、欠陥検出器モジュール120のための他のソフトウェア、及びその他の様々な情報を格納する。メモリ124は、プロセッサ126による実行のための情報を格納し得る。メモリ124は、情報を格納するのに適した揮発性又は不揮発性のローカル又は遠隔装置のいずれか1つ又は組み合せを含む。メモリ124は、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、磁気記憶装置、光学記憶装置、又は任意の他の適切な情報記憶装置、又はこれら装置の組み合わせを含み得る。メモリ124は、欠陥検出器モジュール120の動作で使用するための任意の適切な情報を含み得る。さらに、メモリ124は、欠陥検出器モジュール120の外部(又は部分的に外部)の構成要素であり得る。メモリ124は、メモリ124が欠陥検出器モジュール120と通信するのに適した任意の場所に配置され得る。欠陥検出器モジュール120のメモリ124は、画像収集エンジン130、分類エンジン132、欠陥検出器エンジン134、報告エンジン136、ラベリングエンジン138、及びトレーニングエンジン140を格納し得る。別の例として、画像収集エンジン130、分類エンジン132、欠陥検出器エンジン134、報告エンジン136、ラベリングエンジン138、及びトレーニングエンジン140は、メモリ124及び/又は欠陥検出器モジュール120の外部にあってもよい。
【0020】
欠陥検出器モジュール120の画像収集エンジン130は、物理オブジェクトの画像152を収集するアプリケーションである。画像収集エンジン130は、ネットワーク110を介して画像撮影システム170から1つ以上の物理オブジェクトの1つ以上の画像152を受信し得る。画像収集エンジン130は、物理オブジェクトが画像撮影システム170によって撮影されるときに、リアルタイム又は略リアルタイムで物理オブジェクトの画像152を受信し得る。画像収集エンジン130は、スケジュール(例えば、毎分、時間、毎週など)に従って、物理オブジェクトの画像152を受信し得る。画像収集エンジン130は、1つ以上の画像152を結合して(例えば、つなぎ合わせて)結合した画像152を生成し得る。画像収集エンジン130は、物理オブジェクトなどの任意の適切な組み合せによって画像152をグループ化することができ、画像撮影システム170によって画像152が撮影され、画像収集エンジン130によって画像152が受信された時間、及び/又は画像152が撮影された位置158(例えば、地理的位置158)によって撮影される。
【0021】
欠陥検出器モジュール120の分類エンジン132は、1つ以上の物理オブジェクトの1つ以上の画像152から特徴154を1つ以上の分類155に分類するアプリケーションである。各特徴154は、画像152の特徴であり得る。例えば、特徴154は、ボルト頭部などの鉄道の構成要素を含んでもよい。特徴154は、物理オブジェクト自体又は物理オブジェクトの1つ以上の構成要素を示し得る。例えば、第1の特徴154は、物理オブジェクト(例えば、レールジョイント)を示してもよく、1つ以上の第2の特徴154は、レールジョイントの構成要素(例えば、ボルト頭部、四角ナット、六角ナット、丸ナット、孔など)を示してもよい。
【0022】
分類エンジン132は、1つ以上の機械学習アルゴリズムを適用することによって、画像152からのデータを分析する。機械学習アルゴリズムは、1つ以上のニューラルネットワーク(例えば、ディープニューラルネットワーク)、1つ以上のディープラーニングアルゴリズム、1つ以上の畳み込みニューラルネットワーク(CNN)、人工知能(AI)、その他の適切なアプリケーション、又は上記の任意の適切な組み合せと関連し得る。各機械学習アルゴリズムは、1つ以上の画像152から1つ以上の特徴154を認識するために、ラベル付けされた画像データに対してトレーニングされてもよい。分類エンジン132によって使用される1つ以上の機械学習アルゴリズムは、画像撮影システム170の1つ以上の構成要素(例えば、1つ以上のカメラ)によって見られる特定の物理オブジェクト(例えば、鉄道の構成要素)を認識するようにトレーニングされる。例えば、1つ以上のCNN166は、画像152の内容についての予測を判定するために、画像152又は画像152の一部が通過する、一連の畳み込み、プーリング、縮小、及び完全に接続された層を使用することができる。1つ以上の機械学習アルゴリズムは、確実性のレベル内の1つ以上の画像152の1つ以上の特徴154を説明する1つ以上の分類155を出力する。確実性のレベルは、分類155の数、所望の精度、各分類155のサンプルトレーニングデータの可用性などによって変わり得る。確実性のレベルは確率として示すことができる。
【0023】
1つ以上の特徴154を識別するために、1つ以上の分類155が使用される。例えば、第1の分類155は、レールジョイントの第1の特徴154を示すことができ、1つ以上の第2の分類155は、ボルト頭部、四角ナット、六角ナット、丸ナット、孔などのレールジョイントに関する1つ以上の第2の特徴154を示すことができる。分類155は、画像152内の特徴154の位置を含み得る。例えば、「ボルト頭部」の分類155は、物理オブジェクト(例えば、レールジョイント)の一部であってもよく、画像152内のボルト頭部の位置を含み得る。
【0024】
1つ以上の分類155は、1つ以上の欠陥156を含み得る。欠陥156は、欠点又は欠乏である物理オブジェクトの任意の属性を含む。欠陥155は、亀裂、破損、孔、不一致、欠け、摩耗などのような欠点を含み得る。例えば、レールジョイントの欠陥155は、ボルトの欠落、破損、亀裂、枕木の状態(例えば、枕木の劣化)、レールの不一致、レール端部の割れ目、レール端部のつぶれ、バラストの状態(例えば、バラストの劣化)、適格サイズのジョイントバーなどを含み得る。別の例として、鉄道の転轍機の欠陥156は、つぶれたポイント、破損したポイント、欠落した締結装置(例えば、基本レール)、曲がった転轍ロッド、転轍機のポイントでのレール動作(rail run)、不適切な枕木間隔、不適切なロッド間隔、不適切なフランジウェー幅などを含み得る。鉄道のフロッグの欠陥156は、つぶれたポイント、破損したポイント、トレッド摩耗、破損したゲージプレート、曲がったゲージプレート、欠落した締結装置(例えば、欠落したフロッグボルト)、欠落したプレート、破損したガードレールなどを含み得る。
【0025】
レール頭部の欠陥156は、レール波状摩滅、レール剥離、レールシェリング、破損したレールなどを含み得る。鉄道アンカー及び/又は締結装置の欠陥156は、アンカー及び/又は締結装置の欠落、不適切なアンカーパターン、クリップの欠落、スパイクの欠落などを含み得る。鉄道ゲージプレートの欠陥156は、曲がったゲージプレート、破損したゲージプレートなどを含み得る。鉄道バラストの欠陥156は、不十分なバラスト、汚れたバラスト、腐ったバラストなどを含み得る。鉄道のコンクリートの枕木の欠陥156は、破損した枕木、ひびが入った枕木、劣化した枕木、枕木間の不十分な距離などを含み得る。鉄道の木の枕木の欠陥156は、プレートカット(plate cut)、ホイールカット(wheel cut)、枕木間の不十分な距離、腐った枕木、中空の枕木などを含み得る。他の欠陥156は、撮影される物理オブジェクトに基づいて識別又は定義され得る。
【0026】
欠陥検出器モジュール120の欠陥検出器エンジン134は、1つ以上の機械学習アルゴリズム(例えば、CNN166)の出力分析に基づいて物理オブジェクトが1つ以上の欠陥156を含むか否かを判定するアプリケーションである。例えば、欠陥検出器エンジン134は、1つ以上の機械学習アルゴリズムによって出力された1つ以上の分類155を分析し得る。欠陥検出器エンジン134は、1つ以上のアルゴリズムを検出結果(例えば、分類155)に適用して、1つ以上の欠陥156を判定(例えば、光学的に識別)し得る。
【0027】
欠陥検出器エンジン134は、1つ以上の欠陥156を識別するために1つ以上の分類155を分析し得る。例えば、欠陥検出器エンジン134は、物理オブジェクトに関連する分類155が欠陥156(例えば、破損)である場合、物理オブジェクト(例えば、レールジョイント)が欠陥156を含むと判定し得る。欠陥検出器エンジン134は、欠陥156に対する追加情報を生成するために、物理オブジェクトの他の特徴154に関する物理オブジェクト上の欠陥156の位置158を判定し得る。例えば、欠陥検出器エンジン134は、「破損」及び「ジョイントバー」の分類155を含む1つ以上の機械学習アルゴリズムの結果に基づいて、ジョイントバーの破損を識別し得る。欠陥検出器エンジン134は、ジョイントバーが「ボルト」の分類155に基づくボルトを含むと判定し得る。欠陥検出器エンジン134は、ボルトに対する破損の位置158を判定し得る。欠陥検出器エンジン134は、その相対位置158に基づいて、破損に対する追加情報を生成し得る。例えば、欠陥検出器エンジン134は、破損が2つの中間ボルトの間にある場合、破損を「中央破損欠陥」として分類してもよい。別の例として、欠陥検出器エンジン134は、破損が2つの中間ボルトの外部にある場合、破損を「1/4破損欠陥」として分類してもよい。
【0028】
欠陥検出器エンジン134は、物理オブジェクトの欠陥156の地理的位置158を判定し得る。欠陥検出器エンジン134は、画像収集エンジン130から受信した情報を使用して地理的位置158を判定し得る。画像収集エンジン130は、1つ以上の画像152と関連付けられた1つ以上の地理的位置158を示す情報(例えば、緯度及び経度)を保存(capture)してこの情報を欠陥検出器エンジン134に送信してもよい。欠陥検出器エンジン134は、画像収集エンジン130から受信した情報を任意の適切なフォーマットに変換してもよい。例えば、欠陥検出器エンジン134は、画像収集エンジン130から受信した緯度及び経度を線路タイプ、番線、ラインセグメント、マイルポストの情報などに変換してもよい。欠陥検出器エンジン134は、1つ以上のアルゴリズム(例えば、最も近い点のアルゴリズム)を使用して、地図(例えば、鉄道線路の既存地図)上の地理的位置158を特定し得る。
【0029】
特定の実施形態では、欠陥検出器エンジン134は、レールの画像152内の溶接(例えば、テルミット溶接)を検出し、溶接位置を使用してマイルポストを識別し得る。それぞれの画像152は、幅が「n」フィート(例えば、5フィート)である「n」フィート(例えば、5フィート)のレールを意味してもよく、ここでnは、任意の適切な数を示す。欠陥検出器エンジン134は、マイルポストに関連する物理オブジェクトの画像152から映像を判定することによって、物理オブジェクトの地理的位置158を判定してもよい。欠陥検出器エンジン134は、マイルポストの上昇方向及び/又は下降方向における物理オブジェクトからの映像によって、物理オブジェクトの地理的位置158を判定し得る。例えば、欠陥検出器エンジン134は、物理オブジェクトがマイルポスト100を過ぎた特定のフィート数(例えば、1000フィート)であると判定することができ、これは「MP 100.0+1000フィート」で表せ得る(例えば、出力)。別の例として、欠陥検出器エンジン134は、物理オブジェクトがマイルポスト137の前に特定のフィート数(例えば、1000フィート)であると判定することができ、これは「MP 100.0-1000フィート」で表され得る(例えば、出力)。特定の実施形態では、欠陥検出器エンジン134は、地理的位置158を全地球測位システム(GPS)座標として表すことができる。
【0030】
欠陥検出器エンジン134は、物理オブジェクトに対する欠陥156の位置158に少なくとも部分的に基づいて地理的位置158を判定し得る。例えば、欠陥検出器エンジン134は、レールジョイントに対する破損の位置158に部分的に基づいてレールジョイントの破損の地理的位置158を判定してもよい。欠陥検出器エンジン134は、システム100(例えば、画像撮影システム170)内に位置する1つ以上のセンサ(例えば、位置センサ)に少なくとも部分的に基づいて地理的位置158を判定してもよい。地理的位置158は、座標(例えば、経度及び緯度)によって定義され得る。
【0031】
欠陥検出器エンジン134はまた、物理オブジェクトの識別マークを判定し得る。物理オブジェクトの識別マークは、物理オブジェクトを識別するのに適した任意の文字(例えば、数字、文字など)を含んでもよい。物理オブジェクトの識別マークは、物理オブジェクトの所有者及び/又は製造業者(例えば、鉄道製造業者)を識別し得る。物理オブジェクトの識別マークは、物理オブジェクトの出所を追跡するのに使用されてもよい。例えば、識別マークには、物理オブジェクトを特定の製造バッチまで追跡できるバッチコードが含まれてもよい。欠陥検出器エンジン134は、物理オブジェクトの地理的位置158に基づいて及び/又は物理オブジェクトの1つ以上の画像152を分析することによって物理オブジェクトの識別マークを判定してもよい。
【0032】
欠陥検出器モジュール120の報告エンジン136は、1つ以上の報告書160を生成するアプリケーションである。報告エンジン136は、欠陥検出器エンジン134が物理オブジェクトに欠陥156が含まれないと判定した場合、物理オブジェクトに欠陥がないことを示す報告書160を生成し得る。報告エンジン136は、欠陥検出器エンジン134が物理オブジェクトに欠陥156が含まれていると判断した場合、物理オブジェクトに欠陥があることを示す報告書160を生成し得る。報告書160は、欠陥156を伝達するための任意の適切な形態(例えば、書面及び/又は口頭)であってもよい。報告書160は、物理オブジェクト、特徴154、分類155、位置158、ラベル162などに関連する情報を含み得る。例えば、報告書160は、図6に示されるラベル162、位置158(例えば、地理的位置158)及び/又は識別マークを含んでもよい。報告書160は、1つ以上の図、表、リスト、グラフ、及び/又は情報を伝達するための他の任意の適切なフォーマットを含んでもよい。報告エンジン136は、報告書160をシステム100の1つ以上の構成要素(例えば、画像撮影システム170)及び/又はシステム100のユーザ(例えば、管理者、技術者など)に伝達してもよい。
【0033】
欠陥検出器モジュール120のラベリングエンジン138は、1つ以上のラベル162を生成するアプリケーションである。ラベル162は、特徴154、分類155、欠陥156、及び/又は位置158に関連する視覚情報を提供する。ラベリングエンジン138は、ラベル162を有する1つ以上の物理オブジェクトの特徴154をタグ付けする。それぞれのラベル162は、物理オブジェクトに関連する情報を含み得る。それぞれのラベル162は、特徴154、分類155、位置158などに関する特徴154、確率、サイズ(例えば、直径、面積など)を含み得る。例えば、ラベル162は、「ボルト頭部」の分類155、及び特徴154がボルト頭部として正確に識別される確率0.77(即ち、77%)を説明するために、特徴154を「ボルト頭部(0.77)」として示してもよい。
【0034】
ラベリングエンジン138は、物理オブジェクト(例えば、レールジョイント)の特徴154を示すラベル162の1つ以上の部分を物理オブジェクトの図に挿入し得る。ラベリングエンジン138は、関連する特徴154が物理オブジェクトで発生する位置158の図上のラベル162の1つ以上の部分を挿入し得る。例えば、ボルト頭部の特徴154の場合、ラベリングエンジン138は、ボルト頭部が物理オブジェクト上に配置される位置158で物理オブジェクトの図上にラベル162の1つ以上の部分を挿入してもよい。ラベル162は、任意の適切な形状又は文字で特徴154を示してもよい。例えば、ボルト頭部の特徴154を示すラベル162は、正方形又は長方形の形状を有する境界ボックスであってもよい。欠陥検出器エンジン134は、以下の図6に説明されるように、欠陥156をさらに分類するためにラベル162を使用してもよい。
【0035】
欠陥検出器モジュール120のトレーニングエンジン140は、1つ以上の機械学習アルゴリズム(例えば、CNN166)をトレーニングするアプリケーションである。トレーニングエンジン140は、トレーニングデータ(例えば、トレーニング画像164)を使用して機械学習アルゴリズムをトレーニングし、それによって、物理オブジェクトを正確に認識するように重みを調整し得る。機械学習アルゴリズムは、各分類155に最高の精度を提供するために、画像撮影システム170の特定のカメラアングルのそれぞれに対してトレーニングされ得る。トレーニングエンジン140は、各分類155を示すサンプルデータ(例えば、トレーニング画像164)を収集することによって、1つ以上の機械学習アルゴリズムをトレーニングし得る。トレーニングエンジン140は、1つ以上の機械学習アルゴリズムをトレーニングして各分類155を認識するように、サンプルデータにラベル162でラベル付け、及びラベル付けされたデータを使用してもよい。トレーニングエンジン140は、各機械学習アルゴリズムの精度を検査するために、ラベル付けされた画像のサブセットを使用してもよい。
【0036】
トレーニングエンジン140は、システム100の管理者から初期トレーニングデータを受信し得る。1つ以上の機械学習アルゴリズムによって使用されるトレーニングデータ(例えば、トレーニング画像164)の量及び多様性は、分類155の数、所望の精度、及び各分類155のサンプルデータの可用性によって異なる。
【0037】
メモリ124は、データベース150を格納し得る。データベース150は、欠陥検出器モジュール120に関する特定のタイプの情報を格納し得る。例えば、データベース150は、画像152、特徴154、分類155、欠陥156、位置158、報告書160、ラベル162、トレーニング画像164、及び機械学習アルゴリズム(例えば、CNN166)を格納してもよい。データベース150は、情報を格納するのに適した揮発性又は不揮発性ローカル又は遠隔装置のうちのいずれか1つ又は組み合せであってもよい。データベース150は、RAM、ROM、磁気記憶装置、光学記憶装置、又は他の任意の適切な情報記憶装置、又はこれらの装置の組み合わせを含んでもよい。データベース150は、欠陥検出器モジュール120の外部の構成要素であってもよい。データベース150は、欠陥検出器モジュール120の情報を格納するためにデータベース150に適した任意の位置に配置してもよい。例えば、データベース150は、クラウド環境に配置されてもよい。
【0038】
欠陥検出器モジュール120のプロセッサ126は、インタフェース122及びメモリ124から受信する、又はプロセッサ126によってアクセスされる情報を処理することによって、欠陥検出器モジュール120の特定の動作を制御する。プロセッサ126は、インタフェース122及びメモリ124に通信的に結合される。プロセッサ126は、情報を制御及び処理するように動作する任意のハードウェア及び/又はソフトウェアを含み得る。プロセッサ126は、プログラミング可能なロジックデバイス、マイクロコントローラ、マイクロプロセッサ、任意の適切な処理装置、又はこれらの任意の適切な組み合せであってもよい。さらに、プロセッサ126は、欠陥検出器モジュール120の外部の構成要素であってもよい。プロセッサ126は、プロセッサ126が欠陥検出器モジュール120と通信するのに適した任意の位置に配置されてもよい。欠陥検出器モジュール120のプロセッサ126は、画像収集エンジン130、分類エンジン132、欠陥検出器エンジン134、報告エンジン136、ラベリングエンジン138、及びトレーニングエンジン140の動作を制御する。
【0039】
欠陥検出器モジュール120の1つ以上の構成要素は、クラウドで動作し得る。クラウドは、ネットワーク110を介して欠陥検出器モジュール120に異なるサービス(例えば、アプリケーション、サーバ、及びストレージ)を提供し得る。クラウドは、ハードウェア、ファームウェア、及びソフトウェアの適切な組み合せを使用して実装され得る。例えば、クラウドは、図7のコンピュータシステムの1つ以上の構成要素を使用して実装されてもよい。
【0040】
システム100の画像撮影システム170は、物理オブジェクトの画像152を撮影するためのシステムを示す。画像撮影システムは、サブフレーム172、ビーム174、1つ以上のモジュール176、照明システム178、暖房、換気、及び空調(HVAC)システム180、データシステム182、及び1つ以上のコントローラ184を含む。画像撮影システム180の構成要素は、車両(例えば、機関車)に取り付け(例えば、物理的に取り付け)られる。画像撮影システム170は、車両が物理オブジェクトに対して移動する間に、物理オブジェクトの1つ以上の画像152を撮影し得る。例えば、画像撮影システム170は、機関車に取り付けられ、画像撮影システム170は、機関車が鉄道線路に沿って移動する間にレールジョイントの画像152を撮影してもよい。画像撮影システム170は、停止した物理オブジェクトの画像152を撮影する間、画像撮影システム170が動いていることを除いて、フラットベッドドキュメントスキャナ(flatbed document scanner)と同様に動作し得る。画像撮影システム170は、以下の図4でより詳細に説明される。
【0041】
図1は、ネットワーク110、欠陥検出器モジュール120、インタフェース122、メモリ124、プロセッサ126、画像収集エンジン130、分類エンジン132、欠陥検出器エンジン134、報告エンジン136、ラベリングエンジン138、トレーニングエンジン140、データベース150、及び画像撮影システム170の特定の配置を示しているが、本開示は、ネットワーク110、欠陥検出器モジュール120、インタフェース122、メモリ124、プロセッサ126、画像収集エンジン130、分類エンジン132、欠陥検出器エンジン134、報告エンジン136、ラベリングエンジン138、トレーニングエンジン140、データベース150、及び画像撮影システム170の任意の適切な配置を企図する。ネットワーク110、欠陥検出器モジュール120、インタフェース122、メモリ124、プロセッサ126、画像収集エンジン130、分類エンジン132、欠陥検出器エンジン134、報告エンジン136、ラベリングエンジン138、トレーニングエンジン140、データベース150、及び画像撮影システム170は、物理的又は論理的に互いに全体的又は部分的に同じ場所に配置され得る。
【0042】
図1は、特定の数のネットワーク110、欠陥検出器モジュール120、インタフェース122、メモリ124、プロセッサ126、画像収集エンジン130、分類エンジン132、欠陥検出器エンジン134、報告エンジン136、ラベリングエンジン138、トレーニングエンジン140、データベース150、及び画像撮影システム170を示しているが、本開示は、ネットワーク110、欠陥検出器モジュール120、インタフェース122、メモリ124、プロセッサ126、画像収集エンジン130、分類エンジン132、欠陥検出器エンジン134、報告エンジン136、ラベリングエンジン138、トレーニングエンジン140、データベース150、及び画像撮影システム170の任意の適切な配置を企図する。欠陥検出器モジュール120及び/又は画像撮影システム170の1つ以上の構成要素は、図7のコンピュータシステムの1つ以上の構成要素を使用して実装され得る。
【0043】
図1は、物理オブジェクトで欠陥156を判定するためのシステム100を説明しているが、システム100の1つ以上の構成要素は、他の実装に適用されてもよい。例えば、欠陥検出器モジュール120及び/又は画像撮影システム170の1つ以上の構成要素は、資産の識別(set identification)及び/又は目録(inventory)のために使用されてもよい。例えば、欠陥検出器モジュール120の分類エンジン132は、物理オブジェクト(例えば、レールジョイントバー、転轍機、クロッシング、フロッグなど)を識別して、識別された物理オブジェクトの目録を記録するのに使用されてもよい。
【0044】
作動時、欠陥検出器モジュール120の画像収集エンジン130は、画像撮影システム170から物理オブジェクト(例えば、レールジョイント)の画像152を受信する。欠陥検出器モジュール120の分類エンジン132は、1つ以上の機械学習アルゴリズム(例えば、CNN166)を使用して、物理オブジェクトの画像152からの特徴154(例えば、ボルト、破損、不連続部、及び孔)を分類(例えば、ボルト、破損、不連続部、及び孔)に分類する。欠陥検出器モジュール120の欠陥検出器エンジン134は、分類155を分析し、分析に基づいて物理オブジェクトが欠陥156(例えば、破損)を含むと判定する。欠陥検出器エンジン134は、画像152を使用して物理オブジェクトの他の特徴154に対する欠陥156の位置158を判定する。欠陥検出器エンジン134は、物理オブジェクトの他の特徴154に対する欠陥156の位置158に少なくとも部分的に基づいて、物理オブジェクトの欠陥156の地理的位置158を判定する。報告エンジン136は、物理オブジェクトが欠陥156を含むことを示す報告書160を生成する。報告書160には、欠陥156の地理的位置158が含まれる。ラベリングエンジン138は、1つ以上のラベル162で画像152の1つ以上の第1の特徴154にラベル付けする。ラベル162は、物理オブジェクトの欠陥156(例えば、破損)を示すラベル162を含む。
【0045】
このように、図1の手動検査の必要性を削減又は排除するシステム100は、物理オブジェクトの画像152を撮影し、画像152を分析し、1つ以上の機械学習アルゴリズムを使用して画像152から特徴154を分類し、及び分類155に基づいて欠陥156を判定することによって物理オブジェクトの欠陥156を判定する。
【0046】
図2は、物理オブジェクトの欠陥を判定するための例示的な方法200を示す。方法200は、ステップ210で開始される。ステップ220で、欠陥検出器モジュール(例えば、図1の欠陥検出器モジュール120)は、画像撮影システム(例えば、図1の画像撮影システム170)から物理オブジェクトの画像(例えば、図1の画像152)を受信する。例えば、欠陥検出器モジュールの画像収集エンジン(例えば、図1の画像収集エンジン130)は、画像撮影システムからレールジョイントの画像を受信してもよい。画像撮影システムは、構成要素(例えば、機関車)に取り付けられてもよく、画像撮影システムは、構成要素が物理オブジェクトに対して動く間に画像を撮影してもよい。
【0047】
ステップ230で、欠陥検出器モジュールは、1つ以上の機械学習アルゴリズム(例えば、図1のCNN166)を使用して、画像から1つ以上の特徴(例えば、図1の特徴154)を1つ以上の分類(例えば、図1の分類155)に分類する。例えば、欠陥検出器モジュールの分類エンジン(例えば、分類エンジン132)は、四角ナット、ボルト頭部、破損、孔、不連続部、及びバー(bar)などの特徴を、四角ナット、ボルト頭部、破損、孔、不連続部、及びバーのそれぞれを含む分類に分類するために1つ以上のCNNを使用してもよい。四角ナットとボルト頭部との間の視覚的区分は、ボルトの物理的表現に等しいため、1つ以上のアルゴリズムで四角ナットとボルト頭部の分類を単一のボルト分類に論理的に減らしてもよい。
【0048】
ステップ240で、欠陥検出器モジュールは、1つ以上の分類を分析する。欠陥検出器モジュールの欠陥検出器エンジン(例えば、図1の欠陥検出器エンジン134)は、物理オブジェクトにおける欠陥(例えば、図1の欠陥156)の存在を識別するために、1つ以上の分類を分析してもよい。ステップ250にて、欠陥検出器モジュールは、分類に基づいて物理オブジェクトが欠陥であるか否かを判定する。欠陥検出器エンジンは、1つ以上の分類が欠陥(例えば、破損)を含む場合、物理オブジェクトに欠陥があるか否かを判定してもよい。
【0049】
欠陥検出器モジュールが分類に基づいて物理オブジェクトに欠陥がないと判定した場合、方法200は、ステップ250からステップ260に進み、ここで報告エンジン(例えば、図1の報告エンジン136)は、物理オブジェクトに欠陥がないことを示す報告書を生成する。次に、方法200はステップ280に移動し、そこで方法200は終了する。欠陥検出器モジュールが分類に基づいて物理オブジェクトに欠陥があると判定した場合、方法200は、ステップ250からステップ270に進み、そこで報告エンジンは、物理オブジェクトに欠陥があることを示す報告書を生成する。次に、方法200はステップ280に移動し、そこで方法200は終了する。
【0050】
図2に示される方法200に対して、修正、追加、又は省略を行うことができる。方法200は、より多くの、より少ない、又は他のステップを含み得る。例えば、方法200は、画像内の特徴を正確に認識して分類するための欠陥検出器モジュールのトレーニングエンジン(例えば、図1のトレーニングエンジン140)、1つ以上のニューラルネットワーク、及び/又はアルゴリズム(例えば、CNN)によるトレーニングを含んでもよい。別の例として、方法200は、欠陥検出器モジュールのラベリングエンジン(例えば、図1のラベリングエンジン138)によって、1つ以上の特徴を示す1つ以上のラベル(例えば、図1のラベル162)を生成するステップを含んでもよい。ステップは、並行して、又は任意の適切な順序で実行されてもよい。方法200のステップを完了する特定の構成要素として論じられているが、任意の適切な構成要素は、方法200の任意のステップを実行してもよい。
【0051】
図3は、物理オブジェクトの欠陥を判定するための例示的な方法300を示す。方法300は、ステップ305で開始される。ステップ310において、欠陥検出器モジュール(例えば、図1の欠陥検出器モジュール120)の画像収集エンジン(例えば、図1の画像収集エンジン130)は、画像撮影システム(例えば、図1の画像撮影システム170)からの物理オブジェクトの画像(例えば、図1の画像152)を受信する。欠陥検出器モジュールの画像収集エンジンは、画像内のレールジョイントの存在を検出し得る。
【0052】
ステップ315で、欠陥検出器モジュールは、画像からの第1の特徴(例えば、図1の特徴154)を第1の分類(例えば、図1の分類155)に分類する。例えば、1つ以上のCNNは、「バー」、「不連続部」、及び「端柱(end post)」などの分類を検出するようにトレーニングされてもよく、欠陥検出器モジュールの分類エンジン(例えば、図1の分類エンジン132)は、1つ以上のCNNを使用してバーの第1の特徴を「バー」の分類に分類してもよい。ステップ320にて、欠陥検出器モジュールは、画像を第1の特徴を囲んだ領域でトリミングする。例えば、分類エンジンは、レールジョイントのバーを囲む領域で画像をトリミングしてもよい。
【0053】
ステップ325にて、欠陥検出器モジュールは、1つ以上のCNNを使用して、画像から1つ以上の第2の特徴を1つ以上の第2の分類に分類する。例えば、1つ以上のCNNが、「ボルト頭部」、「四角ナット」、「六角ナット」、「丸ナット」、「孔」、及び「破損」などの第2の分類を検出するようにトレーニングしてもよく、欠陥検出器モジュールの分類エンジンは、1つ以上のCNNを使用して、破損の第2の特徴を「破損」の分類に分類してもよい。
【0054】
ステップ330にて、欠陥検出器モジュールは、1つ以上の第2の分類を分析する。ステップ335にて、欠陥検出器モジュールは、1つ以上の第2の分類を分析することに基づいて、画像が欠陥(例えば、図1の欠陥156)を含むか否かを判定する。例えば、欠陥検出器モジュールの欠陥検出器エンジン(例えば、図1の欠陥検出器エンジン134)は、1つ以上の第2の分類が欠陥である場合、物理オブジェクトの画像に欠陥(例えば、図1の欠陥156)が含まれると判定してもよい。
【0055】
欠陥検出器モジュールが1つ以上の第2の分類に基づいて画像に欠陥が含まれていないと判定した場合、方法300は、ステップ335からステップ345に進み、ここで報告エンジン(例えば、図1の報告エンジン136)は、物理オブジェクトに欠陥がないことを示す報告書を生成する。次に、方法300は、ステップ345からステップ365に移動し、ここで方法300は終了する。
【0056】
欠陥検出器モジュールが1つ以上の第2の分類に基づいて画像に欠陥が含まれていると判定した場合、方法300は、ステップ335からステップ340に進む。ステップ340で、欠陥検出器モジュールは、欠陥が物理オブジェクトの一部であるか否かを判定する。例えば、欠陥検出器エンジンは、欠陥の位置が画像の物理オブジェクトの一部である場合、物理オブジェクトが欠陥を含むと判定し得る。別の例として、欠陥検出器エンジンは、欠陥の位置が画像の物理オブジェクトの外側にある場合(例えば、同じ画像の異なる物理オブジェクトの一部)、物理オブジェクトが欠陥を含まないと判定し得る。欠陥検出器モジュールが、欠陥が物理オブジェクトの一部ではないと判定した場合、方法300は、ステップ340からステップ345に進み、そこで、報告エンジンは、物理オブジェクトに欠陥がないことを示す報告書を生成する。次に、方法300は、ステップ345からステップ365に移動し、ここで方法300は終了する。
【0057】
欠陥検出器モジュールが、欠陥が物理オブジェクトの一部であると判定した場合、方法300は、ステップ340からステップ350に進み、ここで、欠陥検出器モジュールは、トリミングされた画像内の欠陥の位置を判定する。ステップ355で、欠陥検出器モジュールは、画像内の欠陥の位置及び画像撮影システム(例えば、図1の画像撮影システム170)から取得されたセンサ情報を使用して、物理オブジェクト欠陥の地理的位置(例えば、GPS位置)を判定する。次に、方法300はステップ360に進み、報告エンジンが物理オブジェクトに欠陥があることを示す報告書を生成する。報告書は、物理オブジェクトの欠陥の地理的位置を示す場合もある。次に、方法300は、ステップ360からステップ365に移動し、ここで方法300は終了する。
【0058】
図3に示される方法300に対して、修正、追加、又は省略を行うことができる。方法300は、より多くの、より少ない、又は他のステップを含み得る。例えば、方法300は、物理オブジェクト(例えば、レールジョイントバー)の欠陥(例えば、破損)を、物理オブジェクトの他の特徴(例えば、ボルト、孔、及び不連続部)に関する欠陥の位置に基づくより具体的な欠陥(例えば、中央破損ジョイントバー又は1/4破損ジョイントバー)に分類するステップをさらに含んでもよい。ステップは、並行して、又は任意の適切な順序で実行することができる。方法300のステップを完了する特定の構成要素として論じられているが、任意の適切な構成要素は、方法300の任意のステップを実行してもよい。
【0059】
図4は、例示的な画像撮影システム170を示す。画像撮影システム170は、物理オブジェクトの画像(例えば、図1の画像152)を撮影し、画像を欠陥検出器モジュール(例えば、図1の欠陥検出器モジュール120)に伝達する。画像撮影システム170又はその一部は、企業、会社(例えば、鉄道会社、運輸会社など)のような任意のエンティティ、又は画像を撮影する政府機関(例えば、交通部、公共安全部など)を含んでもよく、エンティティと関連付けられてもよい。システム100の要素は、ハードウェア、ファームウェア、及びソフトウェアの任意の適切な組み合せを使用して実装され得る。
【0060】
図4の画像撮影システム170は、車両410、回転位置エンコーダ420、サブフレーム172、及びビーム174を含む。車両410は、ビーム174が接続され得る任意の機械である。車両410は、エンジン及び/又は車輪を有し得る。車両410は、自動車、機関車、トラック、バス、航空機、又は移動に適した他の任意の機械であり得る。車両410は、ビーム174の1つ以上の構成要素(例えば、センサ、カメラなど)が画像の撮影を許容する任意の速度で作動してもよい。例えば、車両410は、時速70マイルを走行する鉄道車両であってもよい。
【0061】
画像撮影システム170の回転位置エンコーダ420は、車軸回転を測定するために使用されるホイールエンコーダ又は他のタイミング装置である。回転位置エンコーダ420は、車軸が回転する回数を測定し得る。回転位置エンコーダ420は、車両410の軸に取り付けられ得る。回転位置エンコーダ420は、画像撮影システム170の1つ以上の構成要素に物理的に及び/又は論理的に接続され得る。例えば、回転位置エンコーダ420は、モジュール176の1つ以上のカメラ及び/又はセンサに物理的に及び/又は論理的に接続されてもよい。別の例として、回転位置エンコーダ420は、コントローラ184に物理的に及び/又は論理的に接続されてもよい。
【0062】
回転位置エンコーダ420は、車両410の移動速度に関係なく、カメラが同じ遠近及び比率の画像を確実に撮影するようにモジュール176のカメラと通信してもよい。例えば、回転位置エンコーダ420は、ビーム174の複数のカメラと同期して、全てのカメラが同時に画像を確実に撮影するようにしてもよい。別の例として、回転位置エンコーダ420は、第1の速度(例えば、時速7マイル)で車両410と共に移動するカメラが、第2の速度(例えば、時速70マイル)で車両410と共に移動するカメラと同じ遠近及び比率である画像を確実に撮影するようにビーム174のカメラと同期してもよい。
【0063】
画像撮影システム170のサブフレーム172は、車両410をビーム174に接続する中間構造である。サブフレーム172は、複数の位置で車両410と係合する。サブフレーム172は、1つ以上のボルト430、溶接部、及び/又は任意の他の適切な結合を用いて車両410及び/又はビーム174に接続し得る。サブフレーム172のスロット440は、ビーム174のレベル及び/又は高さの調整を提供する。スロット440は、垂直及び/又は水平であり得る。サブフレーム172の垂直に配向したスロット440は、ビーム174の高さ調整を提供する。サブフレーム174は、車両410の前方端部、車両410の後方端部、車両410の側面、又は、車両410をビーム174に接続するための他の任意の適切な場所に接続され得る。サブフレーム172は、金属(例えば、鋼鉄又はアルミニウム)、プラスチック、又は車両410とビーム174を接続するのに適した他の任意の材料で製造されてもよい。特定の実施形態では、サブフレーム172は、ビーム174が車両410に直接取り付けられるように省略されてもよい。
【0064】
画像撮影システム170のビーム174は、画像を撮影するために使用される構成要素(例えば、カメラ及びセンサ)を含んで方向付ける構造である。特定の実施形態では、ビーム174は、固定された物理オブジェクトの画像152を撮影している間、ビーム174が動いている点を除いて、フラットベッドドキュメントスキャナと同様に作動する。ビーム174は、サブフレーム172と係合する。例えば、ビーム174は、ボルト430でサブフレーム172にボルトで固定されてもよい。図4に示した実施形態では、ビーム174は、2つの端部セクション及び中央セクションを含む3つのセクションを有する。ビーム174は、中央セクションがビーム174の中央に向かって内側に曲がるようなガルウィング構成(gullwing configuration)を有する。ガルウィング構成は、ビーム174内のモジュール176の画像撮影構成要素(例えば、センサ、カメラなど)が撮影される物理オブジェクトに対して適切に配向されるようにする。特定の実施形態では、ビーム174の中央セクションは省略されてもよく、各端部セクションは、サブフレーム172に接続される。ビーム174は、金属(例えば、鋼鉄又はアルミニウム)、プラスチック、又はビーム174の構成要素を収容し、ビーム174をサブフレーム172に取り付けるのに適した他の任意の材料で製造されてもよい。
【0065】
ビーム174は、1つ以上の開口部450を含み得る。開口部450は、ビーム174内にモジュール176の配置を提供し得る。開口部は、モジュール176の設置、調整、及びメンテナンスを可能にし得る。ビーム174が特定のサイズ及び形状を有するものとして図4に示されているが、ビーム174は、その構成要素(例えば、モジュール176)を収容及び配向するのに適した任意のサイズ及び形状を有し得る。ビーム174の設計に寄与できる他の要素には、耐衝撃性、耐振動性、耐候性の考慮事項、耐久性、メンテナンスの容易さ、校正の考慮事項、及び設置の容易さが含まれる。
【0066】
ビーム174は、モジュール176、照明システム178、HVACシステム180、データシステム182、及びコントローラ184を含む。モジュール176は、画像を撮影するための構成要素を収容する。各モジュール176は、1つ以上のセンサ、カメラなどを含み得る。モジュール176は、ビーム174内に配置され、ビーム174内の画像撮影構成要素の位置決め及び支持をサポートする。モジュール176は、保守性と調整を可能にするように設計されている。
【0067】
特定の実施形態では、ビーム174の各端部セクションは、1つ以上のカメラモジュール176を収容する。例えば、ビーム174の第1端部セクションは、レールの枕木及びバラスト領域の画像を撮影する2つの下向きカメラを含むモジュール176を収容し得る。ビーム174の第1端部セクションは、レールに対して実質的に水平である第1端部セクションの部分に2つの下向きのカメラを収容し得る。第1端部セクションに対向するビーム174の第2端部セクションは、各モジュールがレール及びレール固定システムの両側の画像を撮影する2つの角度付きカメラを含む2つのモジュール176を収容し得る。ビーム174の第2端部セクションは、レールに対してある角度(例えば、45度の角度)にある第2端部セクションの部分に4つの角度付きカメラを収容し得る。
【0068】
画像撮影システム170のモジュール176は、検出及び/又は測定の要件に応じて、様々なタイプのセンサを収容し得る。モジュール176によって収容されるセンサは、光学センサ(例えば、可視光線(単色及びカラー)、赤外線、紫外線、及び/又は熱用のカメラ)、モーションセンサ(例えば、ジャイロスコープ、及び加速度計)、光検出及び距離測定(LIDAR)センサ、超分光センサ、GPSセンサなどを含み得る。偏向又はプロファイルを測定するためのレーザ三角測量を行うために、光学センサとレーザを共に使用してもよい。LIDARセンサは、3次元(3D)点群データを生成するのに使用してもよい。ハイパースペクトルセンサは、特定の波長応答に使用してもよい。例示的なモジュール176は、以下の図5で説明される。
【0069】
画像撮影システム170の照明システム178は、画像を撮影するための外部照明を提供する。照明システム178は、日中及び暗闇で画像を撮影するための照明を提供する。照明システム178は、照明システム178が所定の速度(例えば、時速70マイル)で移動する間に、固定された物理オブジェクトの画像を撮影するのに十分な照明強度を提供し、照明を適切に配向するためのメカニズムを含み得る。照明システム178は、画像撮影のための適切な照明を提供するのに適した任意のタイプの照明を含み得る。照明システム178は、発光ダイオード(LED)照明(例えば、白色LED照明、オフロード競走LED照明など)、ライトバー(例えば、オフロード競走LEDライトバー)、補助照明(例えば、LED補助照明)、赤外線照明、これらの組み合せ、又はその他の適切なタイプの照明を含んでもよい。照明システム178は、レーザ照明、赤外線照明、紫外線照明、又はモジュール176の1つ以上の構成要素(例えば、センサ、カメラなど)によって必要とされる任意の他の適切なタイプの照明を提供する1つ以上の構成要素を含んでもよい。
【0070】
画像撮影システム170のHYACシステム180は、画像撮影システム170のビーム174に暖房、換気、及び/又は空調を提供する。HYACシステム180は、ビーム174の環境条件(例えば、内部温度、湿度など)を調節し得る。HYACシステム180は、ビーム174のモジュール176の動作要件が満たされていることを保障するために、ビーム174の環境条件を監視し得る。例えば、HYACシステム180は、モジュール176(例えば、カメラ及びセンサ)が厚い時期に動作するための強化された環境を保障するために、ビーム174に冷却を提供してもよい。HYACシステム180は、凝縮器、蒸発器、圧縮機、膨張弁、ベルト、ホース、冷媒などのうちの1つ以上を含む従来のHYACシステムであってもよい。
【0071】
HYACシステム180は、空気動力渦発生装置(air-powered vortex generator)を介してビーム174に冷却を提供し得る。車両410(例えば、機関車)の主リザーバシステムから乾燥、濾過、及び調節された空気が渦発生装置に適用され得る。渦発生装置(vortex generator)は、冷却された圧縮空気をビーム174に適用し得る。冷却された空気は、直接適用するために、各モジュール176(例えば、1つ以上のセンサ)に送られてもよい。渦発生装置は、湿度調節器としても機能し得る。例えば、渦発生装置は、湿度を約50%に調節してもよい。圧縮空気は、ビーム174にわずかな正圧を提供することができ、これは、外部のほこり及び/又は破片が小さい孔を通ってビーム174に入るのを防ぐことができる。
【0072】
画像撮影システム170のデータシステム182は、画像撮影システム170の1つ以上の構成要素から受信した全てのデータ(例えば、センサデータ)を1つ以上のコンピュータ、1つ以上のコントローラ(例えば、コントローラ184)、及び/又は1つ以上の記憶装置に接続して指示する。データシステム182は、データをコントローラ及び/又は記憶装置に通信するための1つ以上のデータケーブルを含み得る。データシステム182のデータケーブルは、ビーム174の内部に存在する内部ケーブルを含み得る。データシステム182のデータケーブルは、ビーム174の外部に存在する外部ケーブルを含み得る。内部ケーブル及び外部ケーブルは、ビーム174の壁に位置する耐候性コネクタによって結合され得る。1つ以上の外部ケーブルは、1つ以上のコンピュータ、1つ以上のコントローラ、及び/又は1つ以上の記憶装置に送られ得る。データシステム182のデータケーブルは、データの流入及び/又は流出のための経路を提供する。例えば、データシステム182のデータケーブルは、コントローラ184からの信号流入をトリガーしてもよい。別の例として、データシステム182は、任意の適切な無線又はセルラ通信プロトコルを使用して、データをコントローラ184及び/又は記憶装置に無線で通信してもよい。
【0073】
画像撮影システム170のコントローラ184は、画像撮影システム170のための情報を処理するのに使用され得る任意の適切なコンピューティング構成要素を示す。コントローラ184は、画像撮影システム170の1つ以上の構成要素を調整し得る。コントローラ184は、モジュール176、照明システム179、HVACシステム180、データシステム182、車両410、及び/又は回転位置エンコーダ420からデータを受信し得る。コントローラ184は、モジュール176、照明システム178、HVACシステム180、及び回転位置エンコーダ420の入力及び/又は出力を監視し得る。コントローラ184は、ユーザ(例えば、技術者)が画像撮影システム170に直接結合することを可能にする通信機能を含み得る。例えば、コントローラ184は、コンピュータ(例えば、ラップトップ)の一部であってもよく、ユーザは、コンピュータのインタフェース(例えば、スクリーン、グラフィクユーザインタフェース(GUI)、又はパネル)を介してコントローラ184にアクセスしてもよい。コントローラ184は、ネットワーク(例えば、図1のネットワーク110)を介して画像撮影システム170の1つ以上の構成要素と通信してもよい。例えば、コントローラ184は、LANを介して、及び/又はセルラ又は無線ネットワークなどのWAN上のリモート端末から、画像撮影システム170の1つ以上の構成要素と通信してもよい。コントローラ184は、車両410内部に配置されてもよい。
【0074】
コントローラ184は、画像撮影システム170の1つ以上の構成要素への調整を開始し得る。調整は、1つ以上の条件に応答して、コントローラ184によって自動的に開始され得る。例えば、コントローラ184は、ビーム174内の温度が所定の値を超えたときに、ビーム174に冷却を提供するようにHVACシステム180に指示してもよい。調整は、コントローラ184のユーザ(例えば、コントローラ184を含むコンピュータを使用する技術者)によって局所的に(例えば、車両410内で)開始されてもよい。調整は、コントローラ184によって遠隔的に(例えば、セルラ又は無線リンクを介して))開始されてもよい。調整は、照明システム178(例えば、照明方向、照明強度など)の調整、HVACシステム180(例えば、温度、湿度など)の調整、カメラの向きの調整などを含んでもよい。
【0075】
画像撮影システム170のコントローラ184は、画像撮影システム170の1つ以上の構成要素の電力状態を監視し得る。コントローラ184は、画像撮影システム170の1つ以上の構成要素(例えば、モジュール176のセンサ)に電力を提供し得る。コントローラ184は、リモートリセットなどの非データ機能を使用し得る。コントローラ184は、回転位置エンコーダ420からトリガー信号を受信し、その信号をモジュール176のコントローラ(例えば、センサコントローラ)に分配し得る。モジュール176のコントローラは、制御システム信号を用いてリアルタイムでモジュール176(例えば、センサ)の1つ以上の構成要素を作動させ得る。画像撮影システム170は、外部の特徴(例えば、でこぼこの線路)によって引き起こされる車両の動きを説明するためのトリガー信号補償係数を提供するジャイロスコープ及び加速度計などの1つ以上のモーション検出センサを含み得る。
【0076】
特定の実施形態では、画像撮影システム170は、車両410の速度を受信し得る。コントローラ184は、GPS受信機、レーダー速度測定システム、レーザ速度測定システム、又は、車両410の速度を測定するように動作可能な任意の他の適切な構成要素からの速度(例えば、GPSの速度信号)を受信し得る。
【0077】
図4は、車両410、回転位置エンコーダ420、サブフレーム172、ビーム174、モジュール176、照明システム178、HVACシステム180、データシステム182、及びコントローラ184の特定の配置を示しているが、本開示は、車両410、回転位置エンコーダ420、サブフレーム172、ビーム174、モジュール176、照明システム178、HVACシステム180、データシステム182、及びコントローラ184の任意の適切な配置を企図する。例えば、照明システム170は、ビーム174の外部に配置されてもよい。車両410、回転位置エンコーダ420、サブフレーム172、ビーム174、モジュール176、照明システム178、HVACシステム180、データシステム182、及びコントローラ184は、物理的又は論理的に互いに全体的又は部分的に同じ場所に配置されてもよい。
【0078】
図4は、特定数の車両410、回転位置エンコーダ420、サブフレーム172、ビーム174、モジュール176、照明システム178、HVACシステム180、データシステム182、及びコントローラ184を示しているが、本開示は、任意の適切な数の車両410、回転位置エンコーダ420、サブフレーム172、ビーム174、モジュール176、照明システム178、HVACシステム180、データシステム182、及びコントローラ180を企図する。例えば、画像撮影システム170は、車両410の前方端部にある第1ビーム174、及び車両410の後方端部にある第2ビーム174を含んでもよい。別の例として、画像撮影システム178は、複数のコントローラ184(例えば、コントローラ及びサブコントローラ)を含んでもよい。画像撮影システム170の1つ以上の構成要素は、図7のコンピュータシステムの1つ以上の構成要素を使用して実装されてもよい。
【0079】
図5は、図4の画像撮影システム170によって使用され得る例示的なモジュール176を示す。モジュール176は、カメラ510、レンズ520、上部プレート530、ベースプレート540、カバープレート550、クリーニング装置560、ボルト570、開口部580、及び空気圧縮機585を含む。カメラ510は、物理オブジェクトの画像(例えば、図1の画像152)を撮影する任意の装置である。例えば、カメラ510は、レールの構成要素(例えば、レールジョイント、転轍機、フロッグ、締結装置、バラスト、レール頭部、及び/又はレールの枕木)の画像を撮影してもよい。特定の実施形態では、カメラ510は、センサである。
【0080】
1つ以上のカメラ510は、異なる角度から1つ以上の物理オブジェクトの画像を撮影し得る。例えば、1つ以上のカメラ510は、任意の与えられた位置で鉄道システムの両側のレールの画像を撮影してもよい。各ビーム(例えば、図4のビーム174)は、複数のカメラ510を含み得る。ビームは、物理オブジェクトの俯瞰画像を撮影するために、真下に向けられた第1カメラ510を含んでもよい。ビームは、物理オブジェクトの角度のある画像を撮影するために下向き及び外向きに向けられた第2カメラ510を含んでもよい。
【0081】
カメラ510は、ラインスキャンカメラであり得る。ラインスキャンカメラには、1列のピクセルが含まれる。カメラ510は、デュアルラインスキャンカメラであってもよい。デュアルラインスキャンカメラは、同時に撮影及び/又は処理できる2列のピクセルを含む。カメラ510が物理オブジェクト上を移動すると、カメラ510は、物理オブジェクトの完全な画像をソフトウェアで1行ずつ再構成できるように画像を撮影してもよい。カメラ510は、最大140キロヘルツの撮影速度を有し得る。カメラ510は、少なくとも1/16インチのサイズの物理オブジェクトを検出するための解像度及び光学系を有し得る。代替の実施形態では、カメラ510は、エリアスキャンカメラであってもよい。
【0082】
カメラ510は、入射光をカメラ510のセンサに集束及び向けるレンズ520を含む。レンズ520は、一片のガラス又は他の透明な物質であってもよい。レンズ520は、任意の適切な材料(例えば、スチール、アルミニウム、ガラス、プラスチック、又はこれらの組み合せ)で製造され得る。
【0083】
上部プレート530及びベースプレート540は、モジュール176の1つ以上の構成要素(例えば、カメラ510又はセンサ)を配置、支持、及び/又は安定化するために使用される構造要素である。上部プレート530及び下部プレート540は、任意の適切な材料(例えば、スチール、アルミニウム、プラスチック、ガラスなど)で製造され得る。上部プレート530は、1つ以上のボルト570でベースプレート540に接続され得る。ボルト570(例えば、ジャッキボルト)は、カメラ510のピッチ及び/又はロールの方向を変更するために使用され得る。例えば、ボルト570は、上部プレート530とベースプレート540との間の有効高さを変更するために使用されてもよい。上部プレート530及び/又はベースプレート540は、モジュール176の振動及び/又は衝撃を低減するように調整されてもよい。上部プレート530及び/又はベースプレート540は、より冷たい天候の期間に作動するようにカメラ510及びレンズ520に暖かい環境を提供するための抵抗性加熱要素を含んでもよい。
【0084】
カバープレート550は、ベースプレート540を覆うプレートである。カバープレート550は、任意の適切な材料(例えば、ガラス、スチール、アルミニウムなど)で製造され得る。カバープレート550は、開口部580を含む。開口部580は、カメラ510のレンズが物理オブジェクトを見る開口の役割をし得る。開口部580は、環境から検出された信号の送信が、カメラ510のセンサに到達できるようにする。開口部580は、カメラ510のビューを収容するのに適した任意のサイズ(例えば、楕円形、長方形など)であり得る。カメラ510及び/又は空気圧縮機585のレンズ520は、開口部580の真上に配置し得る。空気圧縮機585は、上記の図4で説明されたように、空気動力の渦発生装置を介してビーム174に冷却を提供し得る。
【0085】
クリーニング装置(Cleaning device)560は、レンズ520及び/又はカメラ510のセンサを環境から保護する任意の装置である。クリーニング装置560は、開口部580を介する視界を遮る可能性のある、ほこり、小さな破片、水、及び/又はその他の項目を取り除く。クリーニング装置560は、モジュール176の構成要素(例えば、カメラ又はセンサ)によって送信される信号の妨害を最小限に抑えるか、又は障害を無くす。クリーニング装置560は、カバープレート550とベースプレート540との間に設けられ得る。特定の実施形態では、クリーニング装置560は、カバープレート550及び/又はベースプレート540に物理的に接続される。クリーニング装置560は、任意の適切な材料(例えば、ガラス、スチール、アルミニウムなど)で製造され得る。クリーニング装置560は、モジュール176の外面(例えば、モジュール176の底面)に配置されてもよい。
【0086】
クリーニング装置560は、カメラ510のレンズ520をクリーニングするために任意の適切な方法を使用し得る。例えば、クリーニング装置560は、圧縮空気、圧縮ガス、又はクリーニング液を放出するクリーニング剤を含み得る。クリーニング装置560は、ワイパブレード、ブラシ、又はレンズ520をクリーニングするための任意の他の適切な方法を含み得る。特定の実施形態では、クリーニング剤は、圧縮空気又は圧縮ガスを放出する圧縮機(例えば、空気圧縮機585)である。圧縮空気又は圧縮ガスは、コアンダ効果を活用するように設計されたオリフィスを介して排出され、これは、周囲の大気を1次流に流入させて、レンズ520を横切って変位する空気の量(空気流については表記法590参照)を増幅させる。特定の実施形態では、クリーニング装置560は、HVACシステムの一部であってもよい(例えば、図4のHVACシステム180)。
【0087】
図5は、カメラ510、レンズ520、上部プレート530、ベースプレート540、カバープレート550、クリーニング装置560、ボルト570、開口部580、及び空気圧縮機585の特定の配置を示しているが、本開示は、カメラ510、レンズ520、上部プレート530、ベースプレート540、カバープレート550、クリーニング装置560、ボルト570、開口部580、及び空気圧縮機585の任意の適切な配置を企図する。図5は、特定数のカメラ510、レンズ520、上部プレート530、ベースプレート540、カバープレート550、クリーニング装置560、ボルト570、開口部580、及び空気圧縮機585を示しているが、本開示は、任意の適切な数のカメラ510、レンズ520、上部プレート530、ベースプレート540、カバープレート550、クリーニング装置560、ボルト570、開口部580、及び空気圧縮機585を企図する。例えば、モジュール176は、複数のカメラ510を含んでもよい。モジュール176の1つ以上の構成要素は、図7のコンピュータシステムの1つ以上の構成要素を使用して実装され得る。
【0088】
図6は、ラベル162で特徴154をタグ付けするための例示的な方法600を示す。図6は、レール630及びレールジョイントバー632の図を含む。方法600は、ステップ610で始まり、ここで、分類エンジン(例えば、図1の分類エンジン132)は、レールジョイント132の特徴154を識別する。特徴154は、第1四角ナット634、第1ボルト頭部636、第1孔638、第2孔640、第2四角ナット642、第2ボルト頭部636、破損646、及び不連続部648を含む。破損646は、レールジョイントバー632の欠陥(例えば、図1の欠陥156)を示す。不連続部648は、レール630の間の分離を示す。分類エンジンは、1つ以上のCNNを使用してレールジョイント132の特徴154を識別(例えば、分類)し得る。
【0089】
方法600のステップ620で、ラベリングエンジン(例えば、図1のラベリングエンジン138)は、ラベル162でレールジョイント132の特徴154をタグ付けする。図示するように、ラベリングエンジンは、特徴634を「四角ナット(0.84)」としてタグ付けし、特徴636を「ボルト頭部(0.77)」としてタグ付けし、特徴638を「孔(0.89)」としてタグ付けし、特徴640を「孔(0.89)」としてタグ付けし、特徴642を「四角ナット(0.84)」としてタグ付けし、特徴644を「ボルト頭部(0.77)」としてタグ付けし、特徴646を「破損(0.83)」としてタグ付けし、及び特徴648を「不連続部(0.87)」としてタグ付けする。各ラベルは、各特徴154の分類(例えば、図1の分類155)及び各分類が各特徴を正確に識別する確率を含む。例えば、「ボルト頭部(0.77)」としてタグ付けされた特徴636は、「ボルト頭部」の分類と、「ボルト頭部」が特徴636を正確に識別する確率0.77(例えば、77%)を示す。別の例として、「孔(0.89)」としてタグ付けされた特徴638は、「孔」の分類と、「孔」が特徴638を正確に識別する確率0.89(例えば、89%)を示す。別の例として、「破損(0.83)」としてタグ付けされた特徴646は、「破損」の分類と、「破損」が特徴646を正確に識別する確率0.83(例えば、83%)を示す。別の例として、「不連続部(0.87)」としてタグ付けされた特徴648は、「不連続部」の分類と、「不連続部」が特徴648を正確に識別する確率0.87(例えば、87%)を示す。
【0090】
分類及び/又は確率は、1つ以上の機械学習ネットワーク(例えば、CNN)及び/又はアルゴリズムを使用する分類エンジンによって判定され得る。図示した実施形態では、各境界ボックスの位置は、他の特徴154に対する、及びレールジョイントバー632に対する各特徴154の位置を示す。各境界ボックスは、任意の適切な四角形形(即ち、正方形、長方形など)であり得る。物体検出モデルは、検出された分類の境界ボックス、及びラベル162を出力するために使用されてもよい。図6に示した実施形態は、境界ボックスを備える特徴154を表しているが、特徴154は、任意の適切な形状及び/又は文字によって表現されてもよい。
【0091】
方法600は、欠陥をさらに分類するために使用され得る。図6では、欠陥は「破損」として示されている。1つ以上の機械学習アルゴリズム(例えば、図1のCNN166)は、四角ナット、ボルト頭部、破損、ホール、不連続部、及びバーの図示された分類を認識するようにトレーニングされ得る。1つ以上のCNNは、四角ナットとボルト頭部とを視覚的に区別するようにトレーニングされているが、2つの分類の視覚的表現は、ボルトの存在の物理的表現と同等である。欠陥検出器エンジン(例えば、図1の欠陥検出器エンジン134)は、1つ以上のアルゴリズムを使用して四角ナット及びボルト頭部の分類を単一のボルトの分類に論理的に減らすことができる。欠陥検出器エンジンは、検出されたオブジェクト(即ち、ボルト、破損、孔、及び不連続部)のそれぞれの相対位置(例えば、図1の位置158)を確認するために、1つ以上のアルゴリズムを使用してもよい。
【0092】
欠陥検出器エンジンは、ジョイントバーで検出された破損が相対位置を使用して、中央破損又は1/4破損欠陥であるか否かを判定するために、1つ以上のアルゴリズムを使用し得る。図示した実施形態では、破損に対して検出された境界ボックスは、2つの中間ボルトの間に位置する(例えば、「ボルト頭部(0.77)「及び」四角ナット(0.84)」)。欠陥検出器エンジンは、2つの中間ボルトの間の破損の位置によって、破損が中央の破損したジョイントバーの欠陥であると判定することができ、これは、破損が不連続部に非常に近接していることを示す。代替の実施形態では、破損は、2つの中間ボルトの外部に位置することがあり、欠陥検出器エンジンは、2つの中間ボルトの外部の破損位置に起因する1/4が破損したジョイントバーであると判定し得る。
【0093】
図6に示された方法600に対して、修正、追加、又は省略を行うことができる。方法600は、より多くの、より少ない、又は他のステップを含み得る。例えば、上述したように、方法600は、物理オブジェクトの他の特徴(例えば、ボルト、孔、及び不連続部)に関する欠陥の位置に基づいて物理オブジェクト(例えば、レールジョイントバー)の欠陥(例えば、破損)をより具体的な欠陥(例えば、中央破損ジョイントバー又は1/4破損ジョイントバー)に分類するステップをさらに含んでもよい。ステップは、並行して、又は任意の適切な順序で実行されてもよい。方法600のステップを完了する特定の構成要素として論じられているが、任意の適切な構成要素は、方法600の任意のステップを実行してもよい。
【0094】
図7は、本明細書に記載のシステム及び方法によって使用され得る例示的なコンピュータシステムを示す。例えば、図1のネットワーク110、欠陥検出器モジュール120、及び画像撮影システム170は、1つ以上のインタフェース710、処理回路720、メモリ730、及び/又は他の適切な要素を含み得る。インタフェース710(例えば、図1のインタフェース122)は、入力を受信し、出力を送信し、入力及び/又は出力を処理し、及び/又は他の適切な動作を行う。インタフェース710は、ハードウェア及び/又はソフトウェアを含み得る。
【0095】
処理回路720(例えば、図1のプロセッサ126)は、構成要素の動作を実行又は管理する。処理回路720は、ハードウェア及び/又はソフトウェアを含み得る。処理回路の例には、1つ以上のコンピュータ、1つ以上のマイクロプロセッサ、1つ以上のアプリケーションなどが含まれる。特定の実施形態では、処理回路720は、入力から出力を生成するようなアクション(例えば、動作)を行うためにロジック(例えば、命令)を実行する。処理回路720によって実行されるロジックは、1つ以上の有形の非一時的なコンピュータ可読媒体(例えば、メモリ730)に符号化され得る。例えば、ロジックは、コンピュータプログラム、ソフトウェア、コンピュータ実行可能命令、及び/又はコンピュータによって実行され得る命令を含んでもよい。特定の実施形態では、実施形態の動作は、コンピュータプログラムを格納、具現化、及び/又は符号化し、及び/又は格納及び/又は符号化されたコンピュータプログラムを有する1つ以上のコンピュータ可読媒体によって実行されてもよい。
【0096】
メモリ730(又はメモリユニット)は、情報を格納する。メモリ730(例えば、図1のメモリ124)は、1つ以上の非一時的、有形、コンピュータ可読、及び/又はコンピュータ実行可能な記憶媒体を含み得る。メモリ730の例には、コンピュータメモリ(例えば、RAM又はROM)、大容量記憶媒体(例えば、ハードディスク)、リムーバブル記憶媒体(例えば、コンパクトディスク(CD)又はデジタルビデオディスク(DVD))、データベース、及び/又はネットワークストレージ(例えば、サーバ)、及び/又はその他のコンピュータ可読媒体が含まれる。
【0097】
本明細書では、コンピュータ可読非一時的記憶媒体(storage medium or media)は、1つ以上の半導体ベース又は他の集積回路(IC)(例えば、フィールドプログラマブルゲートアレイ(FPGA)又は特定用途向けIC(ASIC))、ハードディスクドライブ(HDD)、ハイブリッドハードドライブ(HHD)、光ディスク、光ディスクドライブ(ODD)、光磁気ディスク、光磁気ドライブ、フロッピーディスク、フロッピーディスクドライブ(FDD)、磁気テープ、ソリッドステートドライブ(SSD)、RAMドライブ、安全なデジタルカード又はドライブ、その他の適切なコンピュータ可読の非一時的記憶媒体、又は必要に応じて、これらの2つ以上の適切な組み合せを含んでもよい。コンピュータ可読非一時的記憶媒体は、必要に応じて、揮発性、不揮発性、又は揮発性と不揮発性との組み合せであってもよい。
【0098】
本明細書において、「又は」は、明示的に特別な指示がない限り、又は文脈において特別な指示がない限り、包括的であり排他的でない。従って、本明細書では、「A又はB」は、明示的に特別な指示がない限り、又は文脈において特別な指示がない限り、「A、B又はその両方」を意味する。さらに、「及び」は、明示的に特別な指示がない限り、又は文脈において特別な指示がない限り、共同及び別々のものである。従って、本明細書で「A及びB」は、明示的に特別な指示がない限り、又は文脈において特別な指示がない限り、「A及びB、共同又は個別」を意味する。
【0099】
本開示の範囲は、当業者が理解できる本明細書に記載又は図示された例示的な実施形態に対する全ての変更、置換、変形、変更、及び修正を含む。本開示の範囲は、本明細書に記載又は図示された例示的な実施形態に限定されない。さらに、本開示は、特定の構成要素、要素、特徴、機能、動作、又はステップを含むものとして本明細書のそれぞれの実施形態を説明及び例示するが、これらの実施形態のいずれも、当業者が理解できる本明細書に記載又は図示された任意の構成要素、要素、特徴、機能、動作、又はステップのいずれかの任意の組み合せ又は順列を含み得る。さらに、特定の機能を実行するように適切に構成して配置され、作動又は作動可能な装置、又はシステム、又はその構成要素に関する添付の特許請求の範囲への言及は、その装置、システム、又は構成要素が適切に構成して配置され、作動又は作動可能、又は特定の機能が活性化又は解除されたかに関わらず、その装置のシステム又は構成要素を含む。さらに、本開示は、特定の利点を提供するものとして特定の実施形態を説明又は例示しているが、特定の実施形態では、これらの利点を提供しないか、一部又は全てを提供してもよい。
図1
図2
図3
図4
図5
図6
図7