(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-12
(45)【発行日】2023-04-20
(54)【発明の名称】原子炉格納容器ベントシステム
(51)【国際特許分類】
G21C 9/004 20060101AFI20230413BHJP
G21F 9/02 20060101ALI20230413BHJP
【FI】
G21C9/004
G21F9/02 551E
(21)【出願番号】P 2020157838
(22)【出願日】2020-09-18
【審査請求日】2022-07-14
(73)【特許権者】
【識別番号】507250427
【氏名又は名称】日立GEニュークリア・エナジー株式会社
(74)【代理人】
【識別番号】110001829
【氏名又は名称】弁理士法人開知
(72)【発明者】
【氏名】吉田 慎太郎
(72)【発明者】
【氏名】木藤 和明
【審査官】松平 佳巳
(56)【参考文献】
【文献】特開昭56-138296(JP,A)
【文献】特開2018-072068(JP,A)
【文献】特開2019-124611(JP,A)
【文献】特開2018-119821(JP,A)
【文献】米国特許出願公開第2019/0371481(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G21C 9/004
G21F 9/02
(57)【特許請求の範囲】
【請求項1】
原子炉圧力容器を配置するドライウェルが形成された原子炉格納容器から気体を排出する原子炉格納容器ベントシステムであって、
前記ドライウェルとは区画されるように前記原子炉格納容器に形成され、プール水を貯留したサプレッションプール及び前記サプレッションプールの上方に形成された気相部を内部に有するウェットウェルと、
一方が前記ドライウェルに開口すると共に他方が前記サプレッションプール内に開口するベント管と、
前記ウェットウェルの前記気相部から前記原子炉格納容器外の外部環境までの流路を形成するベントラインと、
前記ベントライン上に設置され、同一の条件下において希ガスの透過する体積流量が水蒸気及び水素ガスの場合と比べて少なくなる特性を有する希ガスフィルタと、
前記ベントライン上における前記希ガスフィルタよりも上流側の部分と前記ウェットウェルの前記気相部とに接続された流路を形成する戻りラインとを備え、
前記ウェットウェルの前記気相部は、上下方向に延びる仕切壁によって第1空間部と第2空間部とに分離され、
前記ベント管は、前記サプレッションプール内における前記第1空間部の下方の領域で開口し、
前記ベントラインは、前記ウェットウェルの前記第1空間部に接続され、
前記戻りラインは、前記ウェットウェルの前記第2空間部に接続される
ことを特徴とする原子炉格納容器ベントシステム。
【請求項2】
請求項1に記載の原子炉格納容器ベントシステムにおいて、
前記第1空間部と前記第2空間部は、径方向に分離されており、
前記第1空間部は、前記第2空間部よりも径方向内側に位置する
ことを特徴とする原子炉格納容器ベントシステム。
【請求項3】
請求項2に記載の原子炉格納容器ベントシステムにおいて、
前記ベント管は、
前記ウェットウェルの径方向内側の位置で上下方向に延在する管本体部と、
前記管本体部から分岐して径方向外側に延在し、前記サプレッションプール内における前記第1空間部の下方の領域で開口する排気管部とを有する
ことを特徴とする原子炉格納容器ベントシステム。
【請求項4】
請求項1に記載の原子炉格納容器ベントシステムにおいて、
前記第1空間部と前記第2空間部は、径方向に分離されており、
前記第1空間部は、前記第2空間部よりも径方向外側に位置する
ことを特徴とする原子炉格納容器ベントシステム。
【請求項5】
請求項4に記載の原子炉格納容器ベントシステムにおいて、
前記ベント管は、
前記ウェットウェルの径方向内側の位置で上下方向に延在する管本体部と、
前記管本体部から分岐し、前記サプレッションプール内における前記第2空間部の下方の領域を通過して前記第1空間部の下方の領域まで延在して開口する排気管部とを有する
ことを特徴とする原子炉格納容器ベントシステム。
【請求項6】
請求項4に記載の原子炉格納容器ベントシステムにおいて、
前記ベント管は、
前記ウェットウェルの径方向外側の位置で上下方向に延在する管本体部と、
前記管本体部から分岐して径方向内側に延在し、前記サプレッションプール内における前記第1空間部の下方の領域で開口する排気管部とを有する
ことを特徴とする原子炉格納容器ベントシステム。
【請求項7】
請求項1に記載の原子炉格納容器ベントシステムにおいて、
前記ベントライン上における前記希ガスフィルタよりも上流側に設置され、前記ベントラインを流れる気体を冷却する冷却器を更に備える
ことを特徴とする原子炉格納容器ベントシステム。
【請求項8】
請求項1に記載の原子炉格納容器ベントシステムにおいて、
前記ベントライン上における前記希ガスフィルタの上流側に設置され、前記希ガスフィルタを透過できなかった気体を保持可能な容器を更に備える
ことを特徴とする原子炉格納容器ベントシステム。
【請求項9】
請求項1に記載の原子炉格納容器ベントシステムにおいて、
前記希ガスフィルタは、希ガスの透過する体積流量が水蒸気及び水素ガスの透過する体積流量と比べて10分の1以下となるように構成されたものである
ことを特徴とする原子炉格納容器ベントシステム。
【請求項10】
請求項9に記載の原子炉格納容器ベントシステムにおいて、
前記希ガスフィルタは、セラミック膜及び高分子膜のいずれか1つによって形成されている
ことを特徴とする原子炉格納容器ベントシステム。
【請求項11】
請求項10に記載の原子炉格納容器ベントシステムにおいて、
前記希ガスフィルタは、窒化ケイ素を主成分としたセラミック膜によって形成されている
ことを特徴とする原子炉格納容器ベントシステム。
【請求項12】
請求項10に記載の原子炉格納容器ベントシステムにおいて、
前記希ガスフィルタは、炭素を主成分としたセラミック膜によって形成されている
ことを特徴とする原子炉格納容器ベントシステム。
【請求項13】
請求項10に記載の原子炉格納容器ベントシステムにおいて、
前記希ガスフィルタは、ポリイミドを主成分とした高分子膜によって形成されている
ことを特徴とする原子炉格納容器ベントシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、原子炉格納容器ベントシステムに係り、更に詳しくは、沸騰水型原子炉(BWR)で用いる原子炉格納容器ベントシステムに関する。
【背景技術】
【0002】
原子力プラントでは、原子炉圧力容器内に配置された炉心が万が一溶融するような事態(以下、過酷事故という)が発生しても、十分な注水且つ原子炉格納容器の冷却を行うことで事故が収束するように設計されている。しかし、過酷事故時の原子炉格納容器の冷却が不十分な状況に陥った場合、水蒸気及び水素ガスの生成が継続されるので、原子炉格納容器内の圧力が上昇する。当該圧力が過度に上昇してしまった場合には、原子炉格納容器の損傷を防止するため、原子炉格納容器内の気体を大気中(外部環境)に放出して原子炉格納容器内を減圧する。この減圧のための操作をベント操作という。
【0003】
沸騰水型原子炉におけるベント操作では、先ず、原子炉格納容器のドライウェル内の気体(ベントガス)がウェットウェルのサプレッションプールのプール水中に放出され、ベントガス中に含まれている放射性物質の一部がプール水のスクラビング効果によって除去される。さらに、当該プール水によるスクラビングでは除去できなかった放射性物質をベントガスから取り除いた上で、ベントガスを大気中に放出する。このベント操作において、ベントガスから放射性物質を取り除くシステムとして原子炉格納容器ベントシステムが知られている(例えば、特許文献1を参照)。
【0004】
特許文献1に記載された原子炉格納容器ベントシステムは、電源が喪失されるような事態になっても原子炉格納容器内で発生する蒸気を大気へ継続的に放出することを可能とすることを目的としたものである。具体的には、原子炉格納容器内から排出されるベントガスのうち蒸気及び水素ガスを通し放射性希ガスを通さない希ガスフィルタをベントラインの最下流部に設けると共に、希ガスフィルタの直上流部と原子炉格納容器のドライウェルとを中間容器を介して戻り配管によって接続している。さらに、希ガスフィルタの直上流部に滞留した所定の圧力以上の放射性希ガスを逃し弁によって中間容器に流れ込むようにしている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1に記載の原子炉格納容器ベントシステムでは、希ガスフィルタによって、放射性希ガスを捕集しつつ、水蒸気及び水素ガスを継続的に大気へ放出する。希ガスフィルタを透過できずに当該フィルタの直上流部に滞留した放射性希ガスを含む気体は、逃し弁の設定圧に達すると電源などの外部動力がなくとも中間容器へ移動し、戻り配管を介して原子炉格納容器のドライウェル内に戻される。ドライウェル内に戻された放射性希ガスは、ベント管を通じてウェットウェルのプール水へ再び放出される。このように、特許文献1に記載の技術では、ベントガス中に含まれる放射性希ガスを原子炉格納容器のドライウェルから原子炉格納容器ベントシステムを介して再びドライウェルに戻るように循環させることで、放射性希ガスの外部環境への放出を防いでいる。
【0007】
ところで、原子炉格納容器から格納容器外(原子炉建屋)への気体の漏洩箇所として、ドライウェルを区画する原子炉格納容器の構造物に設けられたシール部やウェットウェルを区画する構造物に設けられたシール部が想定される。例えば、原子炉格納容器のドライウェルヘッドを締結するためのドライウェル主フランジや各種ハッチ、エアロックなどのシール部が挙げられる。ただし、ドライウェル側に設けたシール部(例えば、ドライウェル主フランジのシール部)からの気体の漏洩量の方がウェットウェル側に設けたシール部からの気体の漏洩量よりも多い傾向にある。
【0008】
特許文献1に記載の原子炉格納容器ベントシステムでは、上述したように、希ガスフィルタにより捕集した放射性希ガスを原子炉格納容器のドライウェル内に戻すので、放射性希ガスが当該ベントシステムを循環してドライウェル内に何度も戻ってくる。したがって、ドライウェル主フランジのシール部などドライウェル側に設けたシール部からの放射性希ガスの漏洩の機会が高まってしまう。このため、放射性希ガスの原子炉格納容器外(原子炉建屋)への漏洩による汚染や被曝の更なる抑制が望まれている。
【0009】
本発明は、上記の問題点を解消するためになされたものであり、その目的は、外部電源の喪失の事態においても原子炉格納容器内の水蒸気及び水素ガスを外部環境へ継続的に放出可能であると共に、放射性希ガスの外部環境への漏洩を低減することができる原子炉格納容器ベントシステムを提供することである。
【課題を解決するための手段】
【0010】
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、原子炉圧力容器を配置するドライウェルが形成された原子炉格納容器から気体を排出する原子炉格納容器ベントシステムであって、前記ドライウェルとは区画されるように前記原子炉格納容器に形成され、プール水を貯留したサプレッションプール及び前記サプレッションプールの上方に形成された気相部を内部に有するウェットウェルと、一方が前記ドライウェルに開口すると共に他方が前記サプレッションプール内に開口するベント管と、前記ウェットウェルの前記気相部から前記原子炉格納容器外の外部環境までの流路を形成するベントラインと、前記ベントライン上に設置され、同一の条件下において希ガスの透過する体積流量が水蒸気及び水素ガスの場合と比べて少なくなる特性を有する希ガスフィルタと、前記ベントライン上における前記希ガスフィルタよりも上流側の部分と前記ウェットウェルの前記気相部とに接続された流路を形成する戻りラインとを備え、前記ウェットウェルの前記気相部は、上下方向に延びる仕切壁によって第1空間部と第2空間部とに分離され、前記ベント管は、前記サプレッションプール内における前記第1空間部の下方の領域で開口し、前記ベントラインは、前記ウェットウェルの前記第1空間部に接続され、前記戻りラインは、前記ウェットウェルの前記第2空間部に接続されることを特徴とする。
【発明の効果】
【0011】
本発明によれば、ベントライン上に希ガスフィルタを設置することで、原子炉格納容器から排出する気体(ベントガス)のうち、水蒸気及び水素ガスを外部環境へ放出することができると共に、放射性希ガスのベントラインを介した外部環境への放出を極力抑制することができる。さらに、ウェットウェルの気相部のうち、ドライウェル内の気体が流入する第1空間部とは分離された第2空間部に戻りラインを接続することで、希ガスフィルタで捕集した放射性希ガスを外部電源の供給なしにウェットウェル内の閉鎖的な第2空間部に閉じ込めることができる。したがって、外部電源の喪失の事態においても原子炉格納容器内の水蒸気及び水素ガスを外部環境へ継続的に放出可能であると共に、放射性希ガスの外部環境への漏洩を低減することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
【図面の簡単な説明】
【0012】
【
図1】本発明の第1の実施の形態に係る原子炉格納容器ベントシステムの構成及び当該システムを用いる原子炉格納容器の構成を模式的に示した図である。
【
図2】本発明の第1の実施の形態の変形例に係る原子炉格納容器ベントシステムの構成及び当該システムを用いる原子炉格納容器の構成を模式的に示した図である。
【
図3】
図2に示す本発明の第1の実施の形態の変形例に係る原子炉格納容器ベントシステムの一部を構成する冷却器の構造を模式的に示した図である。
【
図4】本発明の第2の実施の形態に係る原子炉格納容器ベントシステムの構成及び当該システムを用いる原子炉格納容器の構成を模式的に示した図である。
【
図5】本発明の第3の実施の形態に係る原子炉格納容器ベントシステムの構成及び当該システムを用いる原子炉格納容器の構成を模式的に示した図である。
【発明を実施するための形態】
【0013】
以下、本発明の原子炉格納容器ベントシステムの実施の形態について図面を用いて説明する。なお、各図面において、共通する構成要素には同一の符号を付し、重複した説明を省略する。
【0014】
[第1の実施の形態]
まず、本発明の第1の実施の形態に係る原子炉格納容器ベントシステムを用いる原子炉格納容器の構造について
図1を用いて説明する。
図1は本発明の第1の実施の形態に係る原子炉格納容器ベントシステムの構成及び当該システムを用いる原子炉格納容器の構成を模式的に示した図である。
【0015】
図1において、原子力プラントでは、原子炉建屋(図示せず)内に原子炉格納容器1が設置されている。原子炉格納容器1内には、炉心2を内包する原子炉圧力容器3が格納されている。原子炉圧力容器3には、原子炉圧力容器3内で発生した水蒸気(以下、蒸気という)をタービン(図示せず)に送る主蒸気管4が接続されている。
【0016】
原子炉格納容器1は、原子炉圧力容器3から放射性物質が漏洩する事態が万が一発生した場合でも、その内部に放射性物質を閉じ込めて周辺環境への影響を最小限に留めるためのものである。原子炉格納容器1は、上方に開口部11aが形成された格納容器本体11と、格納容器本体11の開口部11aを閉塞する上蓋としてのドライウェルヘッド12とを備えている。ドライウェルヘッド12は、ドライウェル主フランジ13を介して格納容器本体11に着脱可能に結合されている。ドライウェル主フランジ13には、原子炉格納容器1内の気体の原子炉建屋への漏洩を封止するシール部が設けられている。
【0017】
原子炉格納容器1の内部は、ペデスタル5及びダイヤフラムフロア6によって、ドライウェル15とウェットウェル21とに区画されている。ペデスタル5は、格納容器本体11の底部11bから立ち上がる筒状の構造物であり、原子炉圧力容器3を支持している。ダイヤフラムフロア6は、ペデスタル5の上端部から径方向外側に延在して格納容器本体11の周壁11cに接続された環状の構造物である。ドライウェル15は、ペデスタル5により囲まれた内側の空間部分とダイヤフラムフロア6の上部の空間部分とを含み、原子炉圧力容器3を配置する領域であると共に各種配管が通る領域である。ウェットウェル21は、ペデスタル5の外周側かつダイヤフラムフロア6の下側に形成され、原子炉圧力容器3の外周側に位置する環状の部分である。ウェットウェル21は、冷却用のプール水を貯留したサプレッションプール22(液相部)とサプレッションプール22の上方に形成された気相部23を内部に有している。
【0018】
ドライウェル15とウェットウェル21は、ベント管27を介して相互に連通している。ベント管27は、一方がドライウェル15に開口すると共に、他方がサプレッションプール22内に開口している。ベント管27は、冷却材喪失事故(LOCA)等の発生によりドライウェル15内に放出された蒸気を含む気体をサプレッションプール22へ導くものである。
【0019】
原子炉格納容器1には、原子炉圧力容器3または主蒸気管4内の圧力が異常に上昇した場合に当該圧力を減少させる減圧機構を備えている。減圧機構は、主蒸気管4に設けられた主蒸気逃し安全弁8と、一方が主蒸気逃し安全弁8に接続され他方がサプレッションプール22内(プール水の水面下)に位置する主蒸気逃し安全弁排気管9と、主蒸気逃し安全弁排気管9の他方側端部に設けられたクエンチャ10とを有している。主蒸気逃し安全弁8は、開弁動作により、主蒸気管4から蒸気の一部を逃がすものである。主蒸気逃し安全弁排気管9は、主蒸気管4内を流れる蒸気を主蒸気逃し安全弁8を介してサプレッションプール22中に導くものである。クエンチャ10は、主蒸気逃し安全弁排気管9内を流れる蒸気をサプレッションプール22中に拡散させるものである。
【0020】
ところで、主蒸気管4などの配管類の一部が損傷することで原子炉格納容器1のドライウェル15内に蒸気や水素ガスなどの気体が流出する配管破断事故が発生した場合、ドライウェル15内の圧力が配管の破断口から流出した気体によって上昇する。ドライウェル15内に流出した蒸気を含む気体は、ドライウェル15とウェットウェル21の圧力差によって、ベント管27を通ってウェットウェル21内のサプレッションプール22中に導かれる。サプレッションプール22のプール水によって蒸気が凝縮するので、その分、原子炉格納容器1の圧力上昇が抑制される。
【0021】
また、原子炉圧力容器3や主蒸気管4の圧力が異常に上昇した場合には、主蒸気逃し安全弁8を開弁させることで、主蒸気管4内を流れる蒸気の一部を主蒸気逃し安全弁排気管9を介してクエンチャ10からサプレッションプール22中に放出する。これにより、主蒸気管4からサプレッションプール22中へ放出された蒸気の大半が凝縮されるので、その分、原子炉圧力容器3や主蒸気管4が減圧される。したがって、原子炉圧力容器3やそれに接続された主蒸気管などの配管類や機器の損傷を防止することができる。
【0022】
このように、配管破断事故(例えば、LOCA)や原子炉圧力容器3の圧力の異常上昇が発生した場合には、サプレッションプール22によって蒸気を凝縮させる。さらに、残留熱除去系(図示せず)によってサプレッションプール22を冷却することで、原子炉格納容器1内の圧力及び温度の上昇を防止する。つまり、通常は、主蒸気管4などからドライウェル15への蒸気の流出事故を収束させることができる。
【0023】
しかしながら、非常に低い可能性ではあるが、残留熱除去系の機能が喪失した事態を想定した場合には、サプレッションプール22のプール水の温度が上昇してしまう。このプール水の温度上昇に伴って、原子炉格納容器1内の蒸気の分圧がプール水の温度の飽和蒸気圧まで上昇する。すなわち、原子炉格納容器1内の圧力が上昇する。このような原子炉格納容器1の圧力上昇が生じた場合には、スプレイ冷却系(図示せず)によって原子炉格納容器1内に冷却水を散布する。これにより、原子炉格納容器1内の圧力上昇を抑えることができる。なお、スプレイ冷却系は、消防ポンプなどを接続して外部から作動させることで、冷却水の散布を行うことも可能である。
【0024】
さらに非常に低い可能性ではあるが、スプレイ冷却系も作動しない事態を想定する必要がある。また、スプレイによる注水によりプール水位が真空破壊弁の高さまで上昇した場合、注水を停止させなければならない。これらの場合、原子炉格納容器1内の圧力上昇が継続する。このような原子炉格納容器1の圧力上昇が続く場合には、原子炉格納容器1内の気体を外部環境へ放出して原子炉格納容器1を減圧させることが必要となる。この原子炉格納容器1の減圧のための操作をベント操作と呼ぶ。原子力プラントでは、原子炉格納容器1から気体(以下、ベントガスという)を排出して原子炉格納容器1を減圧する原子炉格納容器ベントシステム20を備えている。原子炉格納容器1内の気体は、蒸気及び水素ガス以外に、各種の放射性物質を含んでいる。そこで、原子炉格納容器ベントシステム20は、ベントガスに対して放射性物質を取り除いた上で外部環境へ放出するように構成されている。
【0025】
以下に、本実施の形態に係る原子炉格納容器ベントシステムの構成について
図1を用いて説明する。
図1中、破線で囲まれている部分が原子炉格納容器ベントシステムを示している。
【0026】
沸騰水型原子炉におけるベント操作では、原子炉格納容器1内のベントガスをウェットウェル21のサプレッションプール22を介して気相部23内に流入させてから外部環境へ放出する。原子炉格納容器1内のベントガスは、ベント管27や主蒸気安全弁逃し弁排気管9を介してサプレッションプール22中へ放出されることで、ドライウェル15の気相部23に流入する。このとき、ベントガス中に含まれている放射性物質の大半がサプレッションプール22のプール水のスクラビング効果により除去される。しかし、プール水のスクラビングでは除去しきれなかった放射性物質がベントガスと共にドライウェル15の気相部23に残留する。
【0027】
本実施の形態に係る原子炉格納容器ベントシステム20(以下、ベントシステムという)は、原子炉格納容器1内のウェットウェル21、ウェットウェル21をドライウェル15に連通させるベント管27、ウェットウェル21の気相部から原子炉格納容器1外の外部環境までの流路を形成するベントライン31、ベントライン31上に設けられた第1捕集装置32及び第2捕集装置33を備えている。ベントライン31は、ウェットウェル21の気相部内に流入したベントガスを外部環境へ導く流路である。第1捕集装置32及び第2捕集装置33はそれぞれ、ベントガス中に含まれている各種の放射性物質を捕集するものである。
【0028】
ウェットウェル21は、気相部23が上下方向に延びる仕切壁26によって第1空間部24と第2空間部25とに径方向に分離されている。第1空間部24は、例えば、第2空間部25よりも径方向内側に位置している。すなわち、第2空間部25は、第1空間部24よりも原子炉建屋(図示せず)に近い位置に形成されている。仕切壁26は、例えば、ダイヤフラムフロア6からサプレッションプール22中における格納容器本体11の底部11bに到達しない位置まで垂下した筒状の構造物である。サプレッションプール22における第1空間部24の下方の領域(サプレッションプール22の径方向内側の領域)には、クエンチャ10が配置されている。
【0029】
ベント管27は、ウェットウェル21の径方向内側に位置するペデスタル5内に埋設された上下方向に延在する管本体部28と、管本体部28から分岐して径方向外側に延在し、サプレッションプール22における気相部23の第1空間部24の下方の領域で開口する複数の排気管部29とを有している。管本体部28及びウェットウェル21の第1空間部24がウェットウェル21の径方向内側に位置しているので、排気管部29は第2空間部25の下方の領域を通過させる必要がなく、排気管部29の長さを短く設定することが可能である。このため、排気管部29の強度に問題が生じることはない。
【0030】
第1空間部24は、ドライウェル15からベント管27の排気管部29を介してサプレッションプール22へ放出された気体が導入される領域(空間)、且つ、主蒸気逃し安全弁排気管9からクエンチャ10を介してサプレッションプール22へ放出された気体が導入される領域(空間)となるように構成されている。一方、第2空間部25は、仕切壁26によってベントガスが流入する第1空間部24とは完全に分離された閉鎖的な空間となるように構成されている。
【0031】
ベントライン31は、ウェットウェル21の気相部23の第1空間部24と第1捕集装置32とを接続する第1ベント管路41と、第1捕集装置32と第2捕集装置33とを接続する第2ベント管路42と、第2捕集装置33と排気塔34とを接続する第3ベント管路43とを含んでいる。第1ベント管路41の一方側端部(上流側端部)41aは、仕切壁26を貫通してウェットウェル21の第1空間部24に開口している。第1ベント管路41上には、ベント操作時に開弁させる隔離弁45が設置されている。隔離弁45は、バッテリや圧力源の高圧気体により開弁操作が可能であり、外部電源が不要なものである。
【0032】
第1捕集装置32は、エアロゾル状の放射性物質、及び、放射性ヨウ素を含むガス状の放射性物質を捕集するためのものである。具体的には、第1捕集装置32は、スクラビング水52を貯留したフィルタベント容器51と、第2ベント管路42上に上流側から順に設置された金属フィルタ53及びヨウ素フィルタ54とを備えている。フィルタベント容器51内のスクラビング水52は、エアロゾル状の放射性物質を捕集するものである。金属フィルタ53は、フィルタベント容器51内におけるスクラビング水52の上部に形成された気相部内に配置されており、第2ベント管路42の上流側端部に接続されている。金属フィルタ53は、スクラビング水52では捕集しきれなかったエアロゾル状の放射性物質を捕集するものである。ヨウ素フィルタ54は、フィルタベント容器51の外部に配置されており、フィルタでの化学反応や吸着作用によってガス状の放射性物質を捕集するものである。フィルタベント容器51、金属フィルタ53、ヨウ素フィルタ54は、遮蔽壁55によって覆われている。遮蔽壁55は、スクラビング水52、金属フィルタ53、ヨウ素フィルタ54に蓄積した放射性物質による放射線の周辺環境への影響を軽減するためのものである。第1ベント管路41の他方側端部(下流側端部)41bは、遮蔽壁55を貫通してフィルタベント容器51内のスクラビング水52中に開口している。第2ベント管路42は、遮蔽壁55を貫通して遮蔽壁55外へ延びている。
【0033】
第2捕集装置33は、放射性希ガスを捕集するように構成されたものである。具体的には、第2捕集装置33は、蒸気及び水素ガスを透過させる一方、希ガスが透過しにくい特性を有する希ガスフィルタ57と、希ガスフィルタ57を透過できなかった気体を保持する中間容器58とを有している。中間容器58には第2ベント管路42の後流側端部が接続されており、希ガスフィルタ57には第3ベント管路43の上流側端部が接続されている。すなわち、中間容器58は、ベントライン31上における希ガスフィルタ57の直上流側に位置するものである。
【0034】
希ガスフィルタ57は、出口側を大気開放として入り口側に一定の圧力をかけた時に、希ガスの透過量(体積流量)が蒸気及び水素の透過量(体積流量)と比べて1/10以下となるフィルタと定義する。希ガスフィルタ57として、例えば、分子径が放射性希ガスよりも相対的に小さな蒸気及び水素ガスを選択的に透過させる膜が用いられている。蒸気や水素ガスの分子径は、0.3nm以下である一方、放射性希ガス(クリプトンやキセノンなど)の分子径は蒸気や水素ガスの分子径よりもかなり大きいものである。
【0035】
以上の条件に適した膜やその他のフィルタ材として、ポリイミドを主成分とした高分子膜、窒化ケイ素や炭素を主成分としたセラミック膜などがある。これらの膜は、一般的に、水素の精製に用いるフィルタとして知られているものである。高分子膜を用いた膜は、希ガスを空気から分離する性能が比較的高いと共に、気体中に含まれる蒸気の透過性能が高いという特徴がある。セラミック膜を用いた膜は、高い強度と高い耐熱性を有しているという特徴がある。なお、希ガスフィルタ57のフィルタ材は、希ガスであるクリプトンやキセノンを透過させず、水素や水(蒸気)の分子が透過する膜であるならば、どのような膜であってもよい。
【0036】
また、沸騰水型原子炉の場合、原子炉格納容器1内のドライウェル15やウェットウェル21中の気体は窒素ガスに置換されている。そのため、希ガスフィルタ57を用いて放射性希ガスを捕集する場合、希ガスフィルタ57は、分子径がクリプトンやキセノンに近い窒素ガスを透過させない可能性がある。しかし、原子炉格納容器1内の圧力上昇は継続的に生成される蒸気や水素ガスに起因するので、希ガスフィルタ57が窒素ガスを透過させなくとも、原子炉格納容器1内を減圧する観点からは問題ではない。
【0037】
ベントシステム20は、更に、ベントライン31における希ガスフィルタ57よりも上流側の部分とウェットウェル21の第2空間部25とに接続された流路を形成する戻りライン60を備えている。戻りライン60は、希ガスフィルタ57を透過できなかった気体を第2空間部25へ導くものである。
【0038】
具体的には、戻りライン60は、一方側端部(上流側端部)61aが中間容器58(ベントライン31上における希ガスフィルタ57の直上流側の部分)に接続されていると共に、他方側端部(下流側端部)61bがウェットウェル21の第2空間部25に開口している戻り管路61を有している。戻り管路61上には、上流側から順に、送出ポンプ62及び逆止弁63が設置されている。送出ポンプ62は、中間容器58内に滞留している気体をウェットウェル21の第2空間部25へ送出するものであり、例えば、外部電源により駆動されるものである。逆止弁63は、中間容器58から第2空間部25への気体の流れを許容する一方、第2空間部25から中間容器58への気体の流れを阻止するものである。
【0039】
戻りライン60は、更に、戻り管路61上の送出ポンプ62を迂回するバイパス管路65を有している。バイパス管路65は、戻り管路61における送出ポンプ62の上流側の部分と下流側の部分とに接続されている。バイパス管路65上には、逃がし弁66が設置されている。逃がし弁66は、一次側の流体圧力が第1設定圧P1を上回ると開弁する一方、第2設定圧P2(ただし、P2<P1)を下回ると閉弁するものであり、例えば、ダイアフラム方式の弁で構成されている。
【0040】
次に、本発明の第1の実施の形態に係る原子炉格納容器ベントシステムの作用及び効果について
図1を用いて説明する。
図1中、白抜き矢印はベントガスの流れの方向を、丸囲みの数字はベントガスを構成する気体のおおよその種類を示している。
【0041】
前述したように、炉心2が溶融するような過酷事故において、原子炉格納容器1の冷却を十分に行うことができなかった場合を想定する。この場合、蒸気及び水素ガスの生成が継続するので、原子炉格納容器1内の圧力が異常に上昇する。
【0042】
ここで、ベント操作として隔離弁45を開弁操作する。これにより、原子炉格納容器1のドライウェル15内に充満している高温高圧の蒸気及び水素ガスを含む気体は、ベント管27を介してサプレッションプール22に放出され、ウェットウェル21の第1空間部24へ導入される。このとき、気体中に含まれている放射性物質の大半がサプレッションプール22のプール水のスクラビング効果により除去される。しかし、プール水のスクラビングでは除去しきれなかった放射性物質がウェットウェル21の第1空間部24に凝縮しきれなかった蒸気及び水素ガスと共に流入している。
【0043】
ウェットウェル21の第1空間部24内の気体は、ベントガスとして、第1ベント管路41及び隔離弁45を介してフィルタベント容器51内のスクラビング水52中に放出される。第1ベント管路41を流通するベントガスは、蒸気、水素ガス、窒素ガスを主成分とするが、サプレッションプール22によるスクラビングでは除去できなかったエアロゾル状の放射性物質、及び、放射性ヨウ素や放射性希ガスなどのガス性の放射性物質を含んでいる。スクラビング水52中に放出されたベントガスは、スクラビング水52によってスクラビングされることで、エアロゾル状の放射性物質の大部分が主に除去される。
【0044】
フィルタベント容器51内のスクラビング水52を通過したベントガスは、その後、金属フィルタ53及びヨウ素フィルタ54を順に通過する。金属フィルタ53では、スクラビング水52では除去できなかったエアロゾル状の放射性物質が捕集される。ヨウ素フィルタ54では、放射性ヨウ素を含むガス状の放射性物質が捕集される。したがって、ヨウ素フィルタ54を通過したベントガスは、エアロゾル状の放射性物質及び放射性ヨウ素を含むガス状の放射性物質が除去されているが、反応性に乏しい放射性希ガスを含んでいる。
【0045】
それから、ベントガスは、第2ベント管路42及び中間容器58を介して希ガスフィルタ57に導入される。希ガスフィルタ57では、第1捕集装置32によって除去できなかった放射性希ガスの大部分が透過できずに捕集される一方、原子炉格納容器1の圧力上昇の原因である蒸気及び水素ガスが透過する。このため、蒸気及び水素ガスがベントガスとして第3ベント管路43を介して排気塔34から外部環境へ放出される。これにより、放射性希ガスの外部環境への放出を極力抑制しつつ、原子炉格納容器1内の圧力を下げることができる。
【0046】
希ガスフィルタ57では、放射性希ガスの他に、分子径が放射性希ガスに近い窒素ガスも十分に透過できない場合がある。希ガスフィルタ57を透過できなかった気体は、中間容器58内に滞留する。中間容器58内の放射性希ガスを含む気体は、送出ポンプ62よって戻り管路61を介してウェットウェル21の第2空間部25へ強制的に送出される。これにより、中間容器58内の気体の滞留による希ガスフィルタ57の蒸気及び水素ガスの透過性能の低下を防ぐことができる。
【0047】
万が一、送出ポンプ62が作動しない場合には、希ガスフィルタ57を透過できなかった気体が中間容器58内に滞留することで、中間容器58内の圧力が徐々に上昇する。中間容器58内の圧力が上昇しすぎると、希ガスフィルタ57の蒸気及び水素ガスの透過流量が低下してしまう恐れがある。
【0048】
それに対して、本実施の形態においては、戻り管路61の他方側端部(下流側端部)61bがウェットウェル21における第1空間部24とは隔てられた第2空間部25に開口している。ドライウェル15内の高温高圧の気体がウェットウェル21の第1空間部24のみに集中して流入するので、ウェットウェル21のサプレッションプール22における第1空間部24の領域のプール水の水面の方が第2空間部25の領域のプール水の水面よりも下方に位置するようになっている。すなわち、第2空間部25は第1空間部24よりも水頭差分だけ低圧である。中間容器58内の圧力が逃がし弁66の第1設定圧P1を超えると、バイパス管路65上の逃がし弁66が開弁する。このとき、中間容器58内の圧力とウェットウェル21の第2空間部25内の圧力との差圧によって、中間容器58内に滞留していた放射性希ガスを含む気体が、外部電源を使用することなく、バイパス管路65及び戻り管路61を介してウェットウェル21の第2空間部25へ流入する。これより、希ガスフィルタ57の直上流に位置する中間容器58内の放射性希ガス及び窒素ガスの分圧が所定値を超えないようにすることができ、希ガスフィルタ57の蒸気及び水素ガスの透過性能を維持することができる。
【0049】
このように、本実施の形態においては、外部電源により駆動する送出ポンプ62が作動しない場合でも、希ガスフィルタ57が放射性希ガスを透過させずに蒸気及び水素ガスを透過させる性能を継続して維持することができる。つまり、過酷事故時に、原子炉格納容器1内の圧力上昇の原因となる蒸気及び水素を継続的に外部に放出することができ、原子炉格納容器1を継続的に減圧することができる。
【0050】
ところで、作業員の被ばくや環境汚染の観点から、放射性希ガスの原子炉建屋(原子炉格納容器1の外部)への漏洩を極力抑制することが望まれている。原子炉格納容器1から原子炉建屋への気体の漏洩部分の多くは、ドライウェル15に設けられた各種のシール部である。例えば、ドライウェルヘッド12を格納容器本体11に結合するドライウェル主フランジ13のシール部がある。
【0051】
従来の原子炉格納容器ベントシステム(前述の特許文献1を参照)のように戻りラインがドライウェルに接続されている場合には、希ガスフィルタに捕集された放射性希ガスはドライウェル内に戻される。したがって、ドライウェル内に戻された放射性希ガスがドライウェル主フランジのシール部などのドライウェルに設けたシール部を介して原子炉格納容器外へ少なからず漏洩する可能性がある。
【0052】
それに対して、本実施の形態においては、戻りライン60がウェットウェル21の第2空間部25に開口している。このため、希ガスフィルタ57で捕集された放射性希ガスがウェットウェル21の第2空間部25内に戻される。したがって、ウェットウェル21を区画する構造物は、ドライウェル15を区画する構造物よりも、原子炉格納容器1から原子炉建屋への気体の漏洩部分が少ないので、放射性希ガスの原子炉建屋への漏洩を従来技術よりも低減することができる。
【0053】
また、従来の原子炉格納容器ベントシステム(前述の特許文献1を参照)のように、ウェットウェルの気相部が分離されておらず、戻りラインがドライウェルに接続されている場合には、希ガスフィルタにより捕集された放射性希ガスがドライウェル内に戻されて再びベント管を介してウェットウェルに流入する。ウェットウェルの気相部に流入した放射性希ガスは当該ベントシステムのベントラインを介して再び希ガスフィルタに導入される。希ガスフィルタは放射性希ガスが完全に透過不能ではないので、極微量の放射性希ガスが希ガスフィルタを介して外部環境へ放出されてしまう。すなわち、放射性希ガスがベントシステムを循環する毎に、放射性希ガスの外部環境へ漏洩の機会が生じる。
【0054】
それに対して、本実施の形態においては、ウェットウェル21の気相部23を、ベントライン31が接続される第1空間部24と戻りライン60が接続される第2空間部25とに分離している。すなわち、ウェットウェル21の気相部23を、ドライウェル15内の高圧の気体を導入してベントライン31に流出させるための空間としての第1空間部24と、希ガスフィルタ57で捕集した放射性希ガスを閉じ込めるための空間としてのウェットウェル21の第2空間部25とに分離している。したがって、希ガスフィルタ57により捕集した放射性希ガスを、ベントシステム20を循環させずに、閉鎖的な空間の第2空間部25に閉じ込めることができる。したがって、希ガスフィルタ57により捕集された放射性希ガスがベントシステム20を循環して再び希ガスフィルタ57に導入されることがないので、従来のベントシステムとは異なり、放射性希ガスが希ガスフィルタ57を透過して外部環境へ放出される機会を極力なくすことができ、安全性が向上する。
【0055】
また、本実施の形態においては、ベントライン31上の複数の放射性物質捕集手段のうち、希ガスフィルタ57をフィルタベント容器51、金属フィルタ53、ヨウ素フィルタ54よりも最下流の位置に配置している。これにより、希ガスフィルタ57にエアロゾル状の放射性物質や放射性ヨウ素が付着することを防止することができる。したがって、エアロゾル状の放射性物質や放射性ヨウ素の付着による希ガスフィルタ57の蒸気及び水素ガスの透過性能の低下を防止することができる。
【0056】
また、本実施の形態においては、希ガスフィルタ57を最下流に配置することで、希ガスフィルタ57に流入する気体の温度が低下している。したがって、希ガスフィルタ57が高温の気体に曝されず、希ガスフィルタ57の高温による劣化を防止することができる。このため、ベントシステム20の信頼性を向上させることができる。なお、希ガスフィルタ57をベントライン31上のどの位置に配置しても、放射性希ガスを捕集することは可能である。しかし、上述したように、ベントライン31上の他の捕集手段よりも最下流に希ガスフィルタ57を配置することが最良である。
【0057】
上述したように、本発明の第1の実施の形態に係る原子炉格納容器ベントシステム20は、原子炉圧力容器3を配置するドライウェル15が形成された原子炉格納容器1から気体を排出するものであって、ドライウェル15とは区画されるように原子炉格納容器1に形成され、プール水を貯留したサプレッションプール22及びサプレッションプール22の上方に形成された気相部23を内部に有するウェットウェル21と、一方がドライウェル15に開口すると共に他方がサプレッションプール22内に開口するベント管27と、ウェットウェル21の気相部23から原子炉格納容器1外の外部環境までの流路を形成するベントライン31と、ベントライン31上に設置され同一の条件下において希ガスの透過する体積流量が水蒸気及び水素ガスの場合と比べて少なくなる特性を有する希ガスフィルタ57と、ベントライン31上における希ガスフィルタ57よりも上流側の部分とウェットウェル21の気相部23とに接続された流路を形成する戻りライン60とを備えている。ウェットウェル21の気相部23は上下方向に延びる仕切壁26によって第1空間部24と第2空間部25とに分離され、ベント管27はサプレッションプール22内における第1空間部24の下方の領域で開口している。ベントライン31はウェットウェル21の第1空間部24に接続され、戻りライン60はウェットウェル21の第2空間部25に接続されている。
【0058】
この構成によれば、ベントライン31上に希ガスフィルタ57を設置することで、原子炉格納容器1から排出する気体(ベントガス)のうち、水蒸気及び水素ガスを外部環境へ放出することができると共に、放射性希ガスのベントライン31を介した外部環境への排出を極力抑制することができる。さらに、ウェットウェル21の気相部23のうち、ドライウェル15内の気体が流入する第1空間部24とは分離された第2空間部25に戻りライン60を接続することで、希ガスフィルタ57で捕集した放射性希ガスを外部電源の供給なしにウェットウェル21内の閉鎖的な第2空間部25に閉じ込めることができる。したがって、外部電源の喪失の事態においても、原子炉格納容器1内の蒸気及び水素ガスを外部環境へ継続的に放出可能であると共に、放射性希ガスの外部環境への漏洩を低減することができる。
【0059】
また、本実施の形態においては、ウェットウェル21の気相部23の第1空間部24と第2空間部25は径方向に分離されており、第1空間部24が第2空間部25よりも径方向内側に位置している。この構成によれば、既設の原子炉格納容器のウェットウェルに対して仕切壁26を新たに設置することで、本実施の形態に係るベントシステム20を既設の原子炉格納容器に対して容易に適用することができる。
【0060】
また、本実施の形態においては、ベント管27が、ウェットウェル21の径方向内側の位置で上下方向に延在する管本体部28と、管本体部28から分岐して径方向外側に延在し、サプレッションプール22内における第1空間部24の下方の領域で開口する排気管部29とを有している。この構成によれば、本実施の形態に係るベントシステム20を既設の原子炉格納容器に適用する場合において、既設の原子炉格納容器で用いられているベント管をそのまま利用することができる。
【0061】
また、本実施の形態に係る原子炉格納容器ベントシステム20は、ベントライン31上における希ガスフィルタ57の上流側に設置され、希ガスフィルタ57を透過できなかった気体を保持可能な中間容器(容器)58を更に備えている。この構成によれば、管路と比べて容積が大きな中間容器58内に希ガスフィルタ57により捕集された気体が一時的に滞留するので、希ガスフィルタ57の上流側の圧力が滞留した気体よって直ちに上昇することがなく、希ガスフィルタ57の蒸気及び水素ガスの透過性能の低下を防ぐことできる。
【0062】
また、本実施の形態においては、希ガスフィルタ57が希ガスの透過する体積流量が水蒸気及び水素ガスの透過する体積流量と比べて10分の1以下となるように構成されている。この構成によれば、希ガスフィルタ57は、既存の膜を利用することで実現可能である。
【0063】
また、本実施の形態においては、希ガスフィルタ57を、セラミック膜及び高分子膜のいずれか1つによって形成している。この構成によれば、希ガスフィルタ57として、一般的に入手可能な膜を用いることができる。
【0064】
また、本実施の形態においては、希ガスフィルタ57が窒化ケイ素を主成分としたセラミック膜によって形成されている。この構成よれば、希ガスフィルタ57が高い強度と高い耐熱性の特性を備えている。
【0065】
また、本実施の形態においては、希ガスフィルタ57が炭素を主成分としたセラミック膜によって形成されている。この構成よれば、希ガスフィルタ57が高い強度と高い耐熱性の特性を備えている。
【0066】
また、本実施の形態においては、希ガスフィルタ57がポリイミドを主成分とした高分子膜によって形成されている。この構成よれば、希ガスフィルタ57は、希ガスの高い分離性能と水蒸気の高い透過性能の両立が可能である。
【0067】
[第1の実施の形態の変形例]
次に、本発明の第1の実施の形態の変形例に係る原子炉格納容器ベントシステムについて
図2及び
図3を用いて説明する。
図2は本発明の第1の実施の形態の変形例に係る原子炉格納容器ベントシステムの構成及び当該システムを用いる原子炉格納容器の構成を模式的に示した図である。
図3は
図2に示す本発明の第1の実施の形態の変形例に係る原子炉格納容器ベントシステムの一部を構成する冷却器の構造を模式的に示した図である。
【0068】
図2に示す本発明の第1の実施の形態の変形例に係る原子炉格納容器ベントシステム20Aが第1の実施の形態と相違する点は、ベントライン31上における第2捕集装置33(希ガスフィルタ57)の上流側に冷却器35を追加したことである。第1の実施の形態の変形例のそれ以外の構成は、第1の実施の形態の構成と同様なものである。
【0069】
第1の実施の形態に係るベントシステム20(
図1参照)では、希ガスフィルタ57の種類によっては、中間容器58に流入するベントガスの温度が耐熱性条件を超えるので、フィルタ寿命が低下するものがある。そこで、本変形例においては、第2ベント管路42上におけるヨウ素フィルタ54と中間容器58との間であって遮蔽壁55の外側の位置に冷却器35を設置している。ヨウ素フィルタ54を通過したベントガスを冷却器35によって冷却することで、ベントガス中の蒸気が凝縮するので、中間容器58に流入するベントガスの温度を希ガスフィルタ57の耐熱性条件を満たすように低下させることができる。
【0070】
冷却器35は、例えば、空気又は水の自然対流を用いてベントガスを冷却するものであり、交流電源などの外部動力がなくても作動する受動部品である。具体的には、冷却器35は、
図3に示すように、上下方向に延在する第2ベント管路42の一部分42aと、第2ベント管路42の当該一部分42aの外周側を間隔をあけて囲う筒状のカバー59とで構成されている。第2ベント管路42の当該一部分42aとカバー59との間に空気が流通可能な環状の冷却流路Pが形成されている。なお、第2ベント管路42及び冷却器35は、フィルタベント容器51よりも高い位置に配置されるものとする。
【0071】
次に、本変形例に係るベントシステムにおける冷却器の作用及び効果を
図2及び
図3を用いて説明する。
図2中、白抜き矢印はベントガスの流れの方向を、丸囲みの数字はベントガスを構成する気体のおおよその種類を示している。
図3中、太矢印はベントガスの流れの方向を、白抜き矢印は冷却空気の流れの方向を示している。
【0072】
図2に示すように、ヨウ素フィルタ54を通過した高温の蒸気を含むベントガスは、第2ベント管路42中を流れる。このとき、
図3に示すように、第2ベント管路42の一部分42aとカバー59との間隙である冷却流路Pには、ベントガスよりも低温の外気Cが流入する。冷却流路P内の外気Cは、第2ベント管路42中を流れるベントガスの熱により暖められるので、当該外気Cには煙突効果により上昇気流が生じる。そのため、この冷却流路Pには、カバー59の下方から新たに外気Cが取り込まれる。なお、カバー59の長さをより長く設定することで、より大きな煙突効果を得ることができる。
【0073】
冷却流路Pを流れる上昇気流の外気Cによって、第2ベント管路42の当該一部分42aを流れる蒸気を含むベントガスが冷却される。このとき、ベントガスの温度が蒸気の露点以下にまで降下すると、ベントガス中に含まれている蒸気が凝縮する。蒸気の凝縮により生じた凝縮水Wは、自重によって第2ベント管路42の上流側(下方側)に流下し、
図2に示すフィルタベント容器51内に戻され、最終的にスクラビング水52として貯留される。
【0074】
このように、本変形例においては、冷却器35によりベントガス中の蒸気が凝縮するので、冷却器35を通過したベントガスは、主に、水素ガスや窒素ガス、放射性希ガスなどの非凝縮性ガスで占められている。したがって、非凝縮性ガスがベントガスとして中間容器58に流入する。
【0075】
また、本変形例においては、冷却器35を用いたベントガスの冷却により生じた凝縮水を自重によってフィルタベント容器51まで流下させてスクラビング水52として貯留している。このため、フィルタベント容器51内のスクラビング水52の減少を抑える効果を期待することができる。
【0076】
上述したように、本発明の第1の実施の形態の変形例に係る原子炉格納容器ベントシステム20Aによれば、第1の実施の形態と同様に、ベントライン31上の希ガスフィルタ57によって、原子炉格納容器1から排出する気体(ベントガス)のうち、水蒸気及び水素ガスを外部環境へ放出することができると共に、放射性希ガスのベントライン31を介した外部環境への放出を極力抑制することができる。さらに、ウェットウェル21の気相部23のうち、ドライウェル15内の気体が流入する第1空間部24とは分離された第2空間部25に戻りライン60を接続することで、希ガスフィルタ57で捕集した放射性希ガスを外部電源の供給なしにウェットウェル21の閉鎖的な第2空間部25に閉じ込めることができる。したがって、外部電源の喪失の事態でも、原子炉格納容器1内の蒸気及び水素ガスを外部環境へ継続的に放出可能であると共に、放射性希ガスの外部環境への漏洩を低減することができる。
【0077】
また、本変形例に係る原子炉格納容器ベントシステム20Aは、ベントライン31上における希ガスフィルタ57よりも上流側に設置されベントライン31を流れる気体を冷却する冷却器35を更に備えている。この構成よれば、希ガスフィルタ57に導入される気体(ベントガス)を冷却器35によって冷却するので、高温のベントガスによる希ガスフィルタ57の透過性能の劣化を防止することができる。
【0078】
[第2の実施の形態]
次に、本発明の第2の実施の形態に係る原子炉格納容器ベントシステムの構成について
図4を用いて説明する。
図4は本発明の第2の実施の形態に係る原子炉格納容器ベントシステムの構成及び当該システムを用いる原子炉格納容器の構成を模式的に示した図である。
図4中、白抜き矢印はベントガスの流れの方向を、丸囲みの数字はベントガスを構成する気体のおおよその種類を示している。
【0079】
図4に示す本発明の第2の実施の形態に係るベントシステム20Bが第1の実施の形態と相違する点は、ウェットウェル21Bの気相部23の第1空間部24Bと第2空間部25Bの径方向位置が逆転していること、及び、ベント管27Bの排気管部29Bが異なることである。第2の実施の形態のそれ以外の構成は、第1の実施の形態の構成と同様なものである。
【0080】
具体的には、ベントライン31が接続されるウェットウェル21Bの第1空間部24Bは、戻りライン60が接続される第2空間部25Bよりも径方向外側に位置している。すなわち、第2空間部25Bは、第1空間部24Bよりも原子炉建屋から遠い位置に形成されている。戻りライン60の戻り管路61の下流側端部61bが仕切壁26を貫通して第2空間部25Bに開口している。ベント管27Bは、ウェットウェル21Bの径方向内側に位置するペデスタル5に埋設され、上下方向に延在する管本体部28と、管本体部28から分岐し、サプレッションプール22における第2空間部25Bの下方の領域を通過して第1空間部24Bの下方の領域まで延在して開口する排気管部29Bとを有している。サプレッションプール22における第1空間部24Bの下方の領域(サプレッションプール22の径方向外側の領域)には、クエンチャ10が配置されている。第1空間部24Bは、ドライウェル15からベント管27Bの排気管部29Bを介してサプレッションプール22へ放出された高圧の気体が導入されると共に主蒸気逃し安全弁排気管9からクエンチャ10を介してサプレッションプール22へ放出された高圧の気体が導入される領域となるように構成されている。一方、第2空間部25Bは、仕切壁26によって第1空間部24Bとは完全に分離された閉鎖的な空間となるように構成されている。
【0081】
第1の実施の形態に係るベントシステム20(
図1参照)においては、ベントライン31が接続されるウェットウェル21の第1空間部24が戻りライン60が接続される第2空間部25よりも径方向内側に位置している。すなわち、第2空間部25は、第1空間部24よりも原子炉建屋に近い位置に形成されている。希ガスフィルタ57で捕集された放射性希ガスを含む気体は、戻りライン60を介してウェットウェル21の第2空間部25に戻される。しかし、ウェットウェル21の径方向外側に位置する第2空間部25に閉じ込められた放射性希ガスは、ウェットウェル21を区画する外周側の構造物(周壁11c)に設けたシール部を介して原子炉建屋側へ漏洩する虞がある。
【0082】
それに対して、本実施の形態においては、第2空間部25Bが第1空間部24Bよりも原子炉建屋から遠い位置の径方向内側に形成されている。したがって、希ガスフィルタ57に捕集されてウェットウェル21Bの第2空間部25Bに戻された放射性希ガスは、ウェットウェル21Bの外周側に位置する原子炉建屋側へ漏洩することはない。
【0083】
上述した本発明の第2の実施の形態に係る原子炉格納容器ベントシステム20Bによれば、第1の実施の形態と同様に、ベントライン31上の希ガスフィルタ57によって、原子炉格納容器1から排出する気体(ベントガス)のうち、水蒸気及び水素ガスを外部環境へ放出することができると共に、放射性希ガスのベントライン31を介した外部環境への排出を極力抑制することができる。さらに、ウェットウェル21Bの気相部23のうち、ドライウェル15内の気体が流入する第1空間部24Bとは分離された第2空間部25Bに戻りライン60を接続することで、希ガスフィルタ57で捕集した放射性希ガスを外部電源の供給なしにウェットウェル21Bの閉鎖的な第2空間部25Bに閉じ込めることができる。したがって、外部電源の喪失の事態でも、原子炉格納容器1内の蒸気及び水素ガスを外部環境へ継続的に放出可能であると共に、放射性希ガスの外部環境への漏洩を低減することができる。
【0084】
また、本実施の形態に係る原子炉格納容器ベントシステム20Bにおいては、ウェットウェル21Bの第1空間部24Bと第2空間部25Bは径方向に分離されており、第1空間部24Bが第2空間部25Bよりも径方向外側に位置している。この構成によれば、希ガスフィルタ57に捕集されてウェットウェル21Bの第2空間部25Bに戻された放射性希ガスが、ウェットウェル21Bを区画する構造物に設けたシール部を介して原子炉格納容器1の外部へ漏洩することがない。
【0085】
また、本実施の形態に係る原子炉格納容器ベントシステム20Bにおいては、ベント管27Bが、ウェットウェル21Bの径方向内側の位置で上下方向に延在する管本体部28と、管本体部28から分岐し、サプレッションプール22内における第2空間部25Bの下方の領域を通過して第1空間部24Bの下方の領域まで延在して開口する排気管部29Bとを有している。
【0086】
この構成によれば、既設の原子炉格納容器で用いられているベント管のうち、排気管部を改修することで、既設の原子力プラントに対して本実施の形態を適用することが可能である。このため、既設の原子炉格納容器の改修が容易である。
【0087】
[第3の実施の形態]
次に、本発明の第3の実施の形態に係る原子炉格納容器ベントシステムについて
図5を用いて説明する。
図5は本発明の第3の実施の形態に係る原子炉格納容器ベントシステムの構成及び当該システムを用いる原子炉格納容器の構成を模式的に示した図である。
図5中、白抜き矢印はベントガスの流れの方向を、丸囲みの数字はベントガスを構成する気体のおおよその種類を示している。
【0088】
図5に示す本発明の第3の実施の形態に係るベントシステム20Cが第1の実施の形態と相違する点は、ウェットウェル21Cの気相部23の第1空間部24Cと第2空間部25Cの径方向位置が逆転していること、及び、ベント管27Cの配置が異なることである。第3の実施の形態のそれ以外の構成は、第1の実施の形態の構成と同様なものである。
【0089】
具体的には、ベントライン31が接続されるウェットウェル21Cの第1空間部24Cは、戻りライン60が接続される第2空間部25Cよりも径方向外側に位置している。すなわち、第2空間部25Cは、第1空間部24Cよりも原子炉建屋から遠い位置に形成されている。戻りライン60の戻り管路61の下流側端部61bが仕切壁26を貫通して第2空間部25Cに開口している。ベント管27Cは、ウェットウェル21Cの径方向外側に位置する原子炉格納容器1の周壁11cに埋設され、上下方向に延在する管本体部28Cと、管本体部28Cから分岐して径方向内側に延在し、サプレッションプール22における第1空間部24Cの下方の領域で開口する排気管部29Cとを有している。サプレッションプール22における第1空間部24Cの下方の領域(サプレッションプール22の径方向外側の領域)には、クエンチャ10が配置されている。第1空間部24Cは、ドライウェル15からベント管27Cの排気管部29Cを介してサプレッションプール22へ放出された高圧の気体が導入されると共に主蒸気逃し安全弁排気管9からクエンチャ10を介してサプレッションプール22へ放出された気体が導入される気相部23の領域となるように構成されている。一方、第2空間部25Cは、仕切壁26によって第1空間部24Cとは完全に分離された閉鎖的な空間となるように構成されている。
【0090】
本実施の形態においては、第2空間部25Cが第1空間部24Cよりも原子炉建屋から遠い位置の径方向内側に形成されている。したがって、希ガスフィルタ57に捕集されてウェットウェル21Cの第2空間部25Cに戻された放射性希ガスは、ウェットウェル21Cの外周側に位置する原子炉建屋側へ漏洩することはない。
【0091】
上述した本発明の第3の実施の形態に係る原子炉格納容器ベントシステム20Cによれば、第1の実施の形態と同様に、ベントライン31上の希ガスフィルタ57によって、原子炉格納容器1から排出する気体(ベントガス)のうち、水蒸気及び水素ガスを外部環境へ放出することができると共に、放射性希ガスのベントライン31を介した外部環境への排出を極力抑制することができる。さらに、ウェットウェル21Cの気相部23のうち、ドライウェル15内の気体が流入する第1空間部24Cとは分離された第2空間部25Cに戻りライン60を接続することで、希ガスフィルタ57で捕集した放射性希ガスを外部電源の供給なしにウェットウェル21Cの閉鎖的な第2空間部25Cに閉じ込めることができる。したがって、外部電源の喪失の事態でも、原子炉格納容器1内の蒸気及び水素ガスを外部環境へ継続的に放出可能であると共に、放射性希ガスの外部環境への漏洩を低減することができる。
【0092】
また、本実施の形態に係る原子炉格納容器ベントシステム20Cにおいては、
ウェットウェル21Cの第1空間部24Cと第2空間部25Cは径方向に分離されており、第1空間部24Cが第2空間部25Cよりも径方向外側に位置している。この構成によれば、希ガスフィルタ57に捕集されてウェットウェル21Cの第2空間部25Cに戻された放射性希ガスが、ウェットウェル21Cを区画する構造物に設けたシール部を介して原子炉格納容器1の外部へ漏洩することがない。
【0093】
また、本実施の形態に係る原子炉格納容器ベントシステム20Cにおいては、ベント管27Cが、ウェットウェル21Cの径方向外側の位置で上下方向に延在する管本体部28Cと、管本体部28Cから分岐して径方向内側に延在し、サプレッションプール22内における第1空間部24Cの下方の領域で開口する排気管部29Cとを有している。この構成によれば、ベント管27Cの排気管部29Cの長さを特段長くすることなく、サプレッションプール22における第1空間部24Cの下方の領域で排気管部29Cを開口させることができる。したがって、排気管部29Cの長さに起因した強度上の問題が生じることはない。
【0094】
[その他の実施の形態]
なお、本発明は上述した第1~第3の実施の形態及びその変形例に限られるものではなく、様々な変形例が含まれる。上記した実施形態は本発明をわかり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
【0095】
例えば、上述した本発明の原子炉格納容器ベントシステムの第1~第3の実施の形態及びその変形例においては、改良型沸騰水型原子炉(ABWR)に適用した例を示した。しかし、サプレッションプール22及び気相部23を含むウェットウェル21、21B、21Cを備えた沸騰水型原子炉(BWR)に対して、本発明の原子炉格納容器ベントシステムを適用することが可能である。例えば、本実施の形態及びその変形例においては、原子炉格納容器1をペデスタル5及びダイヤフラムフロア6によってドライウェル15とウェットウェル21、21B、21Cとに区画した構成の例を示した。しかし、ペデスタル5及びダイヤフラムフロア6とは異なる構造によってドライウェルとウェットウェルとを区画する構成も可能である。
【0096】
また、上述した本発明の原子炉格納容器ベントシステムの第1~第3の実施の形態及びその変形例においては、仕切壁26をダイヤフラムフロア6からサプレッションプール22中における格納容器本体11の底部11bに到達しない位置まで垂下した筒状の構造物とした例を示した。しかし、仕切壁は、ダイヤフラムフロア6から格納容器本体11の底部11bまで延在する筒状の構造物であって、サプレッションプール22のプール水が通過可能な貫通孔を有する構成も可能である。
【0097】
また、上述した本発明の第1の実施の形態の変形例に係る原子炉格納容器ベントシステムの一部を構成する冷却器35を第2~第3の実施の形態に係る原子炉格納容器ベントシステムに対しても適用することが可能である。
【0098】
また、上述した本発明の原子炉格納容器ベントシステムの第1の実施の形態の変形例においては、第2ベント管路42の冷却に外気の自然対流を用いる構成の例を示した。しかし、第2ベント管路42の冷却には、冷却水の自然対流を用いる構成も可能である。この場合、冷却水を収容する容器を冷却器35よりも高い位置に設置し、容器と冷却器との水頭差を利用して第2ベント管路42の一部分42aと流路カバー59との間に形成された冷却流路P内に冷却水を流入させることで、第2ベント管路42を流れるベントガスを冷却することができる。
【符号の説明】
【0099】
1…原子炉格納容器、 3…原子炉圧力容器、 15…ドライウェル、 20、20A、20B、20C…原子炉格納容器ベントシステム、 21、21B、21C…ウェットウェル、 22…サプレッションプール、 23…気相部、 24、24B、24C…第1空間部、 25、25B、25C…第2空間部、 26…仕切壁、 27、27B、27C…ベント管、 28、28C…管本体部、 29、29B、29C…排気管部、 31…ベントライン、 35…冷却器、 57…希ガスフィルタ、 58…中間容器(容器)、 60…戻りライン