(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-12
(45)【発行日】2023-04-20
(54)【発明の名称】抵抗器への常伝導金属接続を備えた超伝導体構造およびその製造方法
(51)【国際特許分類】
H10N 60/82 20230101AFI20230413BHJP
H01L 21/822 20060101ALI20230413BHJP
H01L 27/04 20060101ALI20230413BHJP
【FI】
H10N60/82 ZAA
H01L27/04 P
(21)【出願番号】P 2022529930
(86)(22)【出願日】2020-11-21
(86)【国際出願番号】 US2020061691
(87)【国際公開番号】W WO2021141691
(87)【国際公開日】2021-07-15
【審査請求日】2022-05-23
(32)【優先日】2020-01-09
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】520128820
【氏名又は名称】ノースロップ グラマン システムズ コーポレーション
(74)【代理人】
【識別番号】100105957
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【氏名又は名称】恩田 博宣
(74)【代理人】
【識別番号】100142907
【氏名又は名称】本田 淳
(72)【発明者】
【氏名】カービー、クリストファー エフ.
(72)【発明者】
【氏名】レニー、マイケル
(72)【発明者】
【氏名】オドネル、ダニエル ジェイ.
(72)【発明者】
【氏名】グラニンガー、アウレリウス エル.
(72)【発明者】
【氏名】ペセツキー、アーロン エイ.
【審査官】綿引 隆
(56)【参考文献】
【文献】米国特許第5897367(US,A)
【文献】米国特許出願公開第2018/247974(US,A1)
【文献】特開2004-072102(JP,A)
【文献】特開2008-211082(JP,A)
【文献】特表2015-506110(JP,A)
【文献】G.L. KERBER et al.,Fabrication of Submicrometer High Current Density Nb/Al-AlN/Nb Junctions,IEEE Transactions on Applied Superconductivity,2009年06月,Vol.19, No.3,p.159-166
(58)【調査した分野】(Int.Cl.,DB名)
H10N 60/82
H10N 69/00
H01L 21/822
H01L 27/04
(57)【特許請求の範囲】
【請求項1】
超伝導体構造を形成する方法であって、
第1の誘電体層に超伝導体配線を形成すること、
前記超伝導体配線の端部に結合された端部を備えた抵抗器を形成すること、
前記抵抗器を覆う第2の誘電体層を形成すること、
前記第2の誘電体層を貫通して前記抵抗器まで通じるテーパー状の開口部をエッチングすること、
常伝導金属材料でコンタクト材料充填を実施して、前記テーパー状の開口部を充填し、前記抵抗器に結合された常伝導金属コネクタを形成すること
を含む、方法。
【請求項2】
前記常伝導金属コネクタは、前記抵抗器の中間部分
または前記抵抗器の端部分に結合されている、請求項1に記載の方法。
【請求項3】
前記超伝導体配線は、第1の超伝導体配線であり、前記第1の超伝導体配線から離隔されて前記第1の誘電体層に配置された第2の超伝導体配線をさらに備える、請求項1に記載の方法。
【請求項4】
前記抵抗器は、前記第1の超伝導体配線に結合された第1の抵抗器コンタクト、および前記第2の超伝導体配線に結合された第2の抵抗器コンタクトを有し、前記抵抗器は、前記第1の抵抗器コンタクトを前記第2の抵抗器コンタクトに接続する接続部分を有する、請求項3に記載の方法。
【請求項5】
前記接続部分は、前記第1の抵抗器コンタクトおよび前記第2の抵抗器コンタクトの両方を越えて延在し、前記抵抗器の抵抗値の大部分を提供する、請求項4に記載の方法。
【請求項6】
前記抵抗器に結合された前記超伝導体配線の端部と反対側の前記超伝導体配線の端部に接触する超伝導体コンタクトを形成することをさらに含む、請求項1に記載の方法。
【請求項7】
前記超伝導体コンタクトに接触する別の超伝導体配線を形成して、ダマシン超伝導体コネクタを形成することをさらに含み、前記別の超伝導体配線は、前記第2の誘電体層の上面と平面をなす表面を有している、請求項6に記載の方法。
【請求項8】
前記テーパー状の開口部を埋めるとともに前記第2の誘電体層の一部にわたって延在するようにライナー材料を堆積することをさらに含み、前記常伝導金属材料でコンタクト材料充填を実施することは、前記テーパー状の開口部内および前記第2の誘電体層の一部にわたって延在する前記ライナー材料上に常伝導金属材料を堆積して、前記ライナー材料および前記常伝導金属材料が集合的に前記常伝導金属コネクタを形成するようにすることを含む、請求項1に記載の方法。
【請求項9】
超伝導体構造であって、
基板を覆う第1の誘電体層と、
前記第1の誘電体層内に存在する超伝導体配線と、
前記第1の誘電体層を覆う第2の誘電体層と、
前記第2の誘電体層を覆う第3の誘電体層と、
前記第2の誘電体層を貫通して前記超伝導体配線の端部まで延在する抵抗器コンタクトの端部、および前記抵抗器コンタクトの端部に接続するとともに前記第3の誘電体層内に存在する接続部分を有する抵抗器と、
前記第3の誘電体層を貫通して前記抵抗器まで通じるテーパー状の開口部と、
前記テーパー状の開口部を介して前記抵抗器に接続する常伝導金属コネクタと
を備える、超伝導体構造。
【請求項10】
前記常伝導金属コネクタは、前記抵抗器の中間部分
または前記抵抗器の端部分に結合されている、請求項
9に記載の超伝導体構造。
【請求項11】
前記超伝導体配線は、第1の超伝導体配線であり、前記第1の超伝導体配線から離隔されて前記第1の誘電体層内に配置された第2の超伝導体配線をさらに備える、請求項
9に記載の超伝導体構造。
【請求項12】
前記抵抗器コンタクトは、第1の抵抗器コンタクトであり、第2の抵抗器コンタクトをさらに備え、前記第2の抵抗器コンタクトは、前記第2の誘電体層を貫通して延在し、前記第2の超伝導体配線に結合され、前記接続部分は、前記第1の抵抗器コンタクトを前記第2の抵抗器コンタクトに接続する、請求項
11に記載の超伝導体構造。
【請求項13】
前記接続部分は、前記第1の抵抗器コンタクトおよび前記第2の抵抗器コンタクトの両方を越えて延在し、前記抵抗器の抵抗値の大部分を提供する、請求項
12に記載の超伝導体構造。
【請求項14】
前記超伝導体配線に接続する超伝導体コンタクトと接触する別の超伝導体配線を含むダマシン超伝導体コネクタをさらに備え、前記別の超伝導体配線は、前記第3の誘電体層の表面と平面をなす表面を有している、請求項
13に記載の超伝導体構造。
【請求項15】
前記テーパー状の開口部を埋めるとともに前記第3の誘電体層の一部にわたって延在するライナー材料と、前記テーパー状の開口部内および前記第3の誘電体層の一部にわたって延在する前記ライナー材料上に配置された常伝導金属材料とをさらに備え、前記ライナー材料および前記常伝導金属材料が集合的に前記常伝導金属コネクタを形成する、請求項
9に記載の超伝導体構造。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概して超伝導体に関し、より詳細には、抵抗器への常伝導金属接続を備えた超伝導体構造およびその製造方法に関する。
(政府の権利)
本発明は、政府契約の下でなされた。したがって、米国政府は、その契約で指定されている発明に対する権利を有する。
【背景技術】
【0002】
超伝導回路は、電力消費および速度の点で従来の半導体回路に勝る利点があるため、さまざまなコンピューティングおよびエレクトロニクス応用に提案されている主要な技術の1つである。それらは100ケルビン未満の温度で動作させられる。超伝導デバイスの製造の取り組みは、ほとんどが大学または政府の研究機関に限定されており、超伝導デバイスの大量生産についてはほとんど発表されていない。したがって、これらの研究機関で超伝導デバイスを製造するために使用される方法の多くは、迅速で一貫した製造が不可能なプロセスまたは装置を利用する。近年、従来の半導体プロセスで利用されているものと類似の技術を利用した超伝導回路の大量生産の動きがある。
【0003】
よく知られている半導体プロセスの1つは、集積回路の異なる層にわたってデバイスを相互に結合するために多層配線スタックにコンタクトおよび導電配線を形成することである。超伝導回路の製造中に、ビア/トレンチ構造がパターニングされ、エッチングされ、金属(例えば、ニオブ、タンタル、アルミニウム)が充填され、化学機械研磨(CMP)プロセスを使用して研磨される。次いで、次の層の誘電体が堆積され、シーケンスが再び開始され、多層配線スタックが構築される。
【0004】
マイクロエレクトロニクスデバイスのための従来の金属配線では、下にある金属へのビア開口は、通常、ビア開口の底部の金属表面の物理的スパッタリングによってクリーニングされる。これにより、スパッタされた金属が側壁に沿って再堆積する可能性がある。しかしながら、従来の配線の目標は、連続した低抵抗の電気経路を提供することであるため、再堆積された材料は、ビアに充填された金属の導電率に殆どまたは全く影響を与えない。目標が超伝導体構造に抵抗器を提供することである場合、超伝導体材料の再堆積は、短絡経路を生成することによって抵抗を損なう可能性がある。
【発明の概要】
【0005】
一例では、超伝導体構造を形成する方法が開示されている。方法は、第1の誘電体層に超伝導体配線を形成すること、超伝導体配線の端部に結合された端部を有する抵抗器を形成すること、抵抗器を覆う第2の誘電体層を形成することを含む。方法は、第2の誘電体層を貫通して抵抗器まで通じるテーパー状の開口部をエッチングすること、常伝導金属材料でコンタクト材料充填を実施して、テーパー状の開口部を充填し、抵抗器に結合された常伝導金属コネクタを形成することをさらに含む。
【0006】
さらに別の例では、超伝導体構造が開示されている。超伝導体構造は、基板を覆う第1の誘電体層と、第1の誘電体層内に存在する超伝導体配線と、第1の誘電体層を覆う第2の誘電体層と、第2の誘電体層を覆う第3の誘電体層とを備えている。抵抗器コンタクトの端部を有する抵抗器は、第2の誘電体層を貫通して超伝導体配線の端部まで延在し、接続部分は、抵抗器コンタクトの端部に接続し、第3の誘電体層内に存在する。テーパー状の開口部は、第3の誘電体層を貫通して抵抗器まで通じており、常伝導金属コネクタは、テーパー状の開口部を介して抵抗器に接続している。
【図面の簡単な説明】
【0007】
【
図1】3端子抵抗器を備えた超伝導体構造の一例の断面図である。
【
図2】2端子抵抗器を備えた超伝導体構造の別の例の断面図である。
【
図3】フォトレジスト材料層が堆積およびパターニングされた後、エッチングプロセスを受けている間の超伝導体構造の概略断面図である。
【
図4】エッチングプロセス後かつフォトレジスト材料層が剥離された後の
図3の構造の概略断面図である。
【
図5】コンタクト材料充填の後の
図4の構造の概略断面図である。
【
図6】誘電体層の堆積後、誘電体層上にフォトレジスト材料層が堆積およびパターニングされた後、エッチングプロセスを受けている間の
図5の構造の概略断面図である。
【
図7】エッチングプロセス後かつフォトレジスト材料層が剥離された後の
図6の構造の概略断面図である。
【
図8】抵抗性材料層の堆積後の
図7の構造の概略断面図である。
【
図9】フォトレジスト材料層が堆積およびパターニングされた後、エッチングプロセスを受けている間の
図8の超伝導体構造の概略断面図である。
【
図10】エッチングプロセス後かつフォトレジスト材料層が剥離された後の
図9の構造の概略断面図である。
【
図11】誘電体層の堆積が行われた後かつ第1のフォトレジスト材料層が堆積およびパターニングされた後、エッチングプロセスを受けている間の
図10の超伝導体構造の概略断面図である。
【
図12】第1のフォトレジスト材料層の剥離の後かつ第2のフォトレジスト材料層が堆積およびパターニングされた後、エッチングプロセスを受けている間の
図11の超伝導体構造の概略断面図である。
【
図13】エッチングプロセス後かつ第2のフォトレジスト材料層が剥離された後の
図12の構造の概略断面図である。
【
図14】コンタクト材料充填プロセス後の
図13の構造の概略断面図である。
【
図15】フォトレジスト材料層が堆積およびパターニングされた後、エッチングプロセスを受けている間の
図14の超伝導体構造の概略断面図である。
【
図16】エッチングプロセス後かつフォトレジスト材料層が剥離された後の
図15の構造の概略断面図である。
【
図17】ライナーの堆積後かつコンタクト材料充填プロセス後の
図16の構造の概略断面図である。
【発明を実施するための形態】
【0008】
本開示は、抵抗器への常伝導金属接続を備えた超伝導体構造およびそれを製造する方法に関する。常伝導金属接続の要件は、高導電性でありながら、集積回路の意図された動作温度では超伝導にならないことである。一例では、非超伝導(常伝導金属)コンタクトが、平坦化されたダマシンプロセスフローを用いた超伝導ニオブベースの配線で使用されるインレイ(inlay)精密抵抗器に接続される。本明細書で使用される場合、ダマシンという用語は、シングルダマシンプロセスまたは構造、あるいはデュアルダマシンプロセスまたは構造のいずれかを指すことができる。別の例では、常伝導金属コンタクトは、抵抗器の両端の間に接続され、抵抗器から熱を除去するように構成されている。代替的に、常伝導金属コンタクトは、抵抗器の端部に接続され、接地面に接続可能な接地端子および/または抵抗器から熱を除去するための熱コンタクトとして構成されてもよい。この特定の構成では、抵抗器は2端子デバイスまたは3端子デバイスのいずれかとして構成することができる。
【0009】
超伝導プロセスフローに抵抗器を組み込む現在の方法は、リソグラフィの課題(フィーチャサイズ)および抵抗器の上方に複数レベルの配線をスタックする能力(3~4に制限される)のためにスケーラビリティを制限する大きなトポグラフィを生成する。問題は、抵抗器の製造の既存の方法が、超伝導コンタクトに加えて、常伝導金属コンタクトの実装を提供しないか、または可能にしないということである。本開示は、例えば、抵抗器レベルの上方に5つ以上のレベルをスタックすることを可能にするダマシン金属配線など、完全に平坦化されたプロセスフローに適合したインレイ抵抗器の形成を提供する。
【0010】
図1は、3端子デバイス構成において抵抗器の中央部分に結合された常伝導金属コネクタを含む例示的な超伝導体構造10の断面図を示している。超伝導体構造10は、超伝導配線構造であってよい。超伝導体構造10は、基板12を覆う第1の誘電体層14を含む。基板12は、シリコン、ガラス、または他の基板材料で形成することができる。第2の誘電体層20は第1の誘電体層14を覆い、第3の誘電体層22は第2の誘電体層20を覆っている。一例では、第1の誘電体層14、第2の誘電体層20、および第3の誘電体層22のうちの1つまたは複数は、超伝導デバイスの形成に通常利用される低温(例えば、摂氏160度以下)で使用することができる低温誘電体材料(例えば、TEOS)で形成することができる。別の例では、第1の誘電体層14、第2の誘電体層20、および第3の誘電体層22のうちの1つまたは複数は、より高温の誘電体材料(例えば、窒化ケイ素)で形成することができる。さらに別の例では、第1の誘電体層14、第2の誘電体層20、および第3の誘電体層22のうちの1つまたは複数は、より高い低温および高温の誘電体材料の組み合わせで形成することができる。第1の超伝導体配線16および第2の超伝導体配線18は、第2の誘電体層20の底面と同一平面上にある上面を有する第1の誘電体層14に配置されている。
【0011】
抵抗器24は、概してT字形状を有し、第1の超伝導体配線16の端部と接触する第1の抵抗器コンタクト21と、第2の超伝導体配線18の端部と接触する第2の抵抗器コンタクト23とを含む。抵抗器24の接続部分25は、第1の抵抗器コンタクト21および第2の抵抗器コンタクト23を一緒に結合し、抵抗器24の抵抗の大部分(substantial portion)を提供する。接続部分25は、第1の抵抗器コンタクト21および第2の抵抗器コンタクト23の両方を越えて延在している。第1の抵抗器コンタクト21および第2の抵抗器コンタクト23は、第2の誘電体層20を貫通して、第2の誘電体層20の底面から第2の誘電体層20の上面まで延在している。抵抗器24の接続部分25は、第3の誘電体層22の底面部分内の第2の誘電体層20の上面上に配置されている。
【0012】
ダマシン超伝導体コネクタ34は、第1の抵抗器コンタクト21に接続された端部と反対側の第1の超伝導体配線16の端部に接続されている。ダマシン超伝導体コネクタ34は、超伝導体コンタクト26および超伝導体配線28を含む。第1の超伝導体配線16および第2の超伝導体配線18の各々、ならびにダマシン超伝導体コネクタ34は、ニオブ、アルミニウム、またはタンタルなどの超伝導材料で形成されている。抵抗器24は、チタンタングステン(TiW)、モリブデンまたは窒化モリブデン(Mo、MoN)、またはパラジウム金(PdAu)などの抵抗性材料で形成することができる。
【0013】
常伝導金属コネクタ36は、第3の誘電体層22の一部を覆い、第3の誘電体層22のテーパー状の開口部35を充填して抵抗器24の中央部分に接続する。常伝導金属コネクタ36は、常伝導金属ライナー30および常伝導金属導電配線32を含む。常伝導金属ライナー30は、抵抗器24に付着する薄いチタン層から形成することができ、常伝導金属導電配線32は、金などの常伝導金属から形成することができる。常伝導金属コネクタ36は、抵抗器24への第3の接続を提供して電気的接続を提供し、および/または抵抗器24から熱を除去するように構成することができる。
【0014】
図2は、2端子デバイス構成において抵抗器の端部分に結合された常伝導金属コネクタを含む例示的な超伝導体構造40の断面図を示している。この例では、常伝導金属コネクタは、接地面に接続されるか、または接地面の一部を形成してよい。超伝導体構造40は、超伝導配線構造であってよい。超伝導体構造40は、基板42を覆う第1の誘電体層44を含む。第2の誘電体層48は第1の誘電体層44を覆い、第3の誘電体層50は第2の誘電体層48を覆っている。第1の誘電体層44、第2の誘電体層48、および第3の誘電体層50のうちの1つまたは複数は、超伝導デバイスの形成に通常利用される低温(例えば、摂氏160度以下)で使用することができる低温誘電体材料(例えば、TEOS)、および/またはより高い温度の誘電体材料(例えば、窒化ケイ素)、または低温誘電体材料および高温誘電体材料の両方の組み合わせで形成することができる。単一の超伝導体配線46は、第2の誘電体層48の底面と同一平面である上面を有する第1の誘電体層44に配置されている。
【0015】
抵抗器52は、概してT字形状を有し、単一の超伝導体配線46の端部と接触する第1の抵抗器コンタクト49と、第2の抵抗器コンタクト51(任意選択)とを含む。抵抗器52の接続部分53は、第1の抵抗器コンタクト49および第2の抵抗器コンタクト51を一緒に結合し、抵抗器52の抵抗の大部分を提供する。接続部分53は、第1の抵抗器コンタクト49および第2の抵抗器コンタクト51の両方を越えて延在している。第1の抵抗器コンタクト49および第2の抵抗器コンタクト51は、第2の誘電体層48を貫通して、第2の誘電体層48の底面から第2の誘電体層48の上面まで延在している。抵抗器52の接続部分53は、第3の誘電体層50の底面部分内の第2の誘電体層48の上面上に配置されている。別の例では、超伝導体構造40は、
図1に示されるような第2の超伝導体配線に結合されている第2の抵抗器コンタクト51を有する3端子抵抗器を含む。
【0016】
ダマシン超伝導体コネクタ62は、第1の抵抗器コンタクト49に接続された端部と反対側の単一の超伝導体配線46の端部に接続されている。ダマシン超伝導体コネクタ62は、超伝導体コンタクト54および超伝導体配線56を含む。第1の超伝導体配線46、およびダマシン超伝導体コネクタ62の各々は、ニオブ、アルミニウム、またはタンタルなどの超伝導材料で形成されている。抵抗器52は、チタンタングステン(TiW)、モリブデンまたは窒化モリブデン(Mo、MoN)、またはパラジウム金(PdAu)などの抵抗性材料で形成することができる。
【0017】
常伝導金属コネクタ64は、第3の誘電体層50の一部を覆い、第3の誘電体層50のテーパー状の開口部65を充填して抵抗器52の端部分に接続する。常伝導金属コネクタ64は、常伝導金属ライナー58および常伝導金属導電配線60を含む。常伝導金属ライナー58は、抵抗器52に付着する薄いチタン層から形成することができ、常伝導金属導電配線60は、金などの常伝導金属から形成することができる。常伝導金属コネクタ64は、抵抗器52への接地接続などの電気的接続を提供するように構成することができる。
【0018】
次に、
図3~
図17を参照して、
図1の超伝導体構造に関する製造について説明する。本実施例は、抵抗器の中央部分に結合された常伝導金属コネクタを備える、
図1に示されるような超伝導体配線の間に抵抗構造を形成するプロセスフローに関して説明されるが、常伝導金属コネクタを移動させて抵抗器の端部分の接続ポイントに位置合わせし、任意選択で第2の超伝導体配線および/または第2の抵抗器コンタクトを削除することによって
図2に示されるような構造を提供するために使用することができることを理解されたい。
【0019】
図3は、製造の初期段階における超伝導体構造の断面図を示している。超伝導体構造は、下にある基板100を覆う第1の誘電体層102を含む。下にある基板100は、例えば、第1の誘電体層102および続いて上を覆う層に機械的支持を提供するシリコンまたはガラスウェハであってよい。第1の誘電体層102を、配線層を提供するのに適した厚さまで形成するための任意の適切な技術、例えば、熱酸化、減圧化学気相成長(LPCVD)、プラズマ励起化学気相成長(PECVD)、高密度プラズマ化学気相成長(HDPCVD)、スパッタリング、またはスピンオン技術などを使用することができる。一例では、形成される第1の誘電体層102は、CVDプロセスによるTEOSまたはシラン酸化物などの二酸化ケイ素タイプである。第1の誘電体層102は、抵抗器への接続に使用される後続の超伝導体配線のためのインレイとして利用される。
【0020】
図3に示されるように、フォトレジスト材料層104は、構造を覆うために塗布され、トレンチパターンに従ってフォトレジスト材料層104に開口部106および108を露出させるようにパターニングおよび現像されている。フォトレジスト材料層104は、フォトレジスト材料層104をパターニングするために使用される放射の波長に対応して変化する厚さを有することができる。フォトレジスト材料層104は、スピンコーティングまたはスピンキャスティング堆積技術を利用して第1の誘電体層102上に形成され、選択的に照射され(例えば、深紫外線(DUV)照射で)、現像されて、開口部106および108を形成することができる。例えば、露光手段は、約250nmの最小フィーチャサイズを生成するための深紫外線(DUV)であってよい。
【0021】
図3は、フォトレジスト材料層104のパターンに基づいて第1の誘電体層102に拡張された開口110および112(
図4)を形成するために、第1の誘電体層102に対してエッチング200(例えば、異方性反応性イオンエッチング(RIE))を実施することも示している。エッチング200は、ドライエッチングであってよく、上にあるフォトレジスト材料層104よりも速い速度で第1の誘電体層102を選択的にエッチングするエッチャントを使用することができる。例えば、第1の誘電体層102は、平行平板RIE装置などの市販のエッチャー、または代替的に電子サイクロトロン共鳴(ECR)プラズマリアクターで、プラズマガス、本明細書ではフッ素イオンを含む四フッ化炭素(CF
4)で異方的にエッチングされて、パターニングされたフォトレジスト材料層104のマスクパターンを複製し、それによって拡張されたトレンチ開口部110および111を作製することができる。その後、フォトレジスト材料層104は、
図4に示される構造をもたらすように、剥離され(例えば、O
2プラズマ中でのアッシング)、有機残留物を除去するために湿式洗浄される。
【0022】
次に、
図4の構造は、トレンチ材料の充填を受けて、ニオブ、アルミニウム、またはタンタルなどの超伝導体材料が拡張されたトレンチ開口部110および111に堆積され、結果として
図5に示す構造が形成される。トレンチ材料の充填物は、物理気相成長(PVD)、スパッタリングまたは蒸着などの標準的なトレンチ材料堆積を使用して、トレンチの開口部110および111を充填するのに十分な厚さで堆積することができる。トレンチ材料充填物の堆積に続いて、超伝導材料は、化学機械研磨(CPM)を利用して第1の誘電体層102の表面レベルまで研磨されて、第1の超伝導体配線112および第2の超伝導体配線114を形成し、
図5の構造が結果として得られる。CMPは、第1の誘電体層102に対して選択的なスラリーを使用することができる。超伝導体材料を研磨するために使用されるスラリーは、過酸化物成分を含んでいてよく、誘電体材料に対して選択的に超伝導体を除去する。
【0023】
次に、シリコン酸化膜の薄層などの第2の誘電体層116が、
図5の構造の表面上に堆積される。フォトレジスト材料層118は、第2の誘電体層116上に堆積され、パターニングされて、第2の誘電体層116上に開口部120および122を形成して、結果として生じる
図6の構造を提供する。
図6は、フォトレジスト材料層118のパターンに基づいて、第2の誘電体層116に拡張された開口部124および126(
図7)を形成するために、第2の誘電体層116に対してエッチング210(例えば、異方性反応性イオンエッチング(RIE))を実施することも示している。エッチング210は、
図3のエッチング200と同様のドライエッチングであってよく、上にあるフォトレジスト材料層よりも速い速度で第2の誘電体層116を選択的にエッチングし、その下の第1の超伝導体配線112および第2の超伝導体配線114で停止するエッチャントを使用することができる。次に、フォトレジスト材料層116は、上述のように、酸素プラズマによって剥離されて、結果として
図7の構造が提供される。第2の誘電体層116の厚さは、後続の抵抗器材料が、第1の超伝導体配線112および第2の超伝導体配線114に短絡するのを防ぐのに十分な厚さであるが、後続のトポグラフィを最小化するのに十分な薄さでなければならない。
【0024】
次に、抵抗性材料の堆積を実施して、チタンタングステン(TiW)、モリブデンまたは窒化モリブデン(Mo、MoN)、またはパラジウム金(PdAu)などの抵抗性材料層128を
図7の構造上に堆積させ、
図8に示す構造が結果として得られる。抵抗性材料128は、デバイスの動作温度での抵抗器シート抵抗率の要件に基づく正しい厚さまで、開口部124および126を充填するようにスパッタ堆積されてよい。
【0025】
図9に示されるように、フォトレジスト材料層130は、構造を覆うために塗布され、パターニングおよび現像されて、抵抗性材料層128の保護領域を形成し、抵抗性材料層128の残りの部分を露出させる。
図9は、抵抗器を形成しない抵抗器材料の部分を除去し、
図10に示すような抵抗器132を形成するために、抵抗器材料層128に対してエッチング220(例えば、異方性反応性イオンエッチング(RIE))を実施することも示している。結果として得られる抵抗器132は、第1の抵抗器コンタクト135および第2の抵抗器コンタクト137に結合された第2の誘電体層116の少なくとも一部を覆うコネクタ部分133を含む。エッチング220は、上にあるフォトレジスト材料層130よりも速い速度で下にある抵抗性導電性材料を選択的にエッチングするエッチャントを用いた金属エッチングであってよい。その後、フォトレジスト材料層130は剥離されて(例えば、O
2プラズマ中でのアッシング)、
図10に示される構造が得られる。
【0026】
次に、第3の誘電体層134が、
図11の構造を形成するために
図10の構造上に堆積される。第3の誘電体層134は、より厚い二酸化ケイ素材料層であってよい。第3の誘電体層134を、第3の誘電体層134を提供するのに適した厚さまで形成するための任意の適切な技術、例えば、減圧化学気相成長(LPCVD)、プラズマ励起化学気相成長(PECVD)、高密度プラズマ化学気相成長(HDPCVD)、スパッタリング、またはスピンオン技術などを使用することができる。
【0027】
図11に示されるように、フォトレジスト材料層136は、構造を覆うために塗布され、ビアパターンに従ってフォトレジスト材料層136のビア開口部138を露出させるようにパターニングおよび現像されている。
図11は、フォトレジスト材料層136のビアパターンに基づいて、第3の誘電体層134に拡張されたビア開口部140(
図12)を形成するために、第3の誘電体層134に対してエッチング230(例えば、異方性反応性イオンエッチング(RIE))を実施することも示している。エッチング230は、ドライエッチングであってよく、下にある第1の超伝導体配線112および上にあるフォトレジスト材料層136よりも速い速度で、下にある第3の誘電体層134および第2の誘電体層116を選択的にエッチングするエッチャントを使用することができる。その後、フォトレジスト材料層136は剥離されて(例えば、O
2プラズマ中でのアッシング)、
図12に示される構造が得られる。
【0028】
図12に示されるように、フォトレジスト材料層142は、構造を覆うために塗布され、トレンチパターンに従ってフォトレジスト材料層142のトレンチ開口部144を露出させるようにパターニングおよび現像されている。
図12は、フォトレジスト材料層142のトレンチパターンに基づいて、第3の誘電体層134に拡張されたトレンチ開口部146(
図13)を形成するために、第3の誘電体層134に対してエッチング240(例えば、異方性反応性イオンエッチング(RIE))を実施することも示している。エッチング240は、時限ドライエッチングであってよく、下にある第1の超伝導体配線112および上にあるフォトレジスト材料層142よりも速い速度で、下にある第3の誘電体層134を選択的にエッチングするエッチャントを使用することができる。その後、フォトレジスト材料層142は剥離されて(例えば、O
2プラズマ中でのアッシング)、
図13に示される構造が得られる。
【0029】
次に、
図13の構造は、コンタクト材料の充填を受けて、ニオブ、アルミニウム、またはタンタルなどの超伝導体材料が拡張されたビア開口部140および拡張されたトレンチ開口部146に堆積され、下にある第1の超伝導体配線112へのダマシン超伝導体コネクタ149を提供し、結果として
図14に示す構造が形成される。コンタクト材料の充填物は、物理気相成長(PVD)、スパッタリングまたは蒸発などのコンタクト材料堆積を使用して堆積され、ビア開口部140およびトレンチ開口部146を超伝導体材料で充填することができる。コンタクト材料充填物の堆積に続いて、超伝導材料は、化学機械研磨(CPM)を利用して、第3の誘電体層134の表面レベルまで研磨されて、結果として
図14の構造が形成される。ダマシン超伝導体コネクタ149は、第1の超伝導体配線112に接続された超伝導体コンタクト148と、超伝導体配線150とを含む。
【0030】
図15に示されるように、フォトレジスト材料層152は、
図14の構造を覆うために塗布され、抵抗器132の中央部分の上方に配置されたビア開口部154を備えたビアパターンに従って、フォトレジスト材料層152にビア開口部154を露出させるようにパターニングおよび現像されている。
図15は、フォトレジスト材料層152のビアパターンに基づいて、第3の誘電体層134にテーパー状の開口部156(
図16)を形成するために、第3の誘電体層134に対してトップビアプラズマエッチング250を実施することも示している。トップビアプラズマエッチング250は、等方性であるように調整されて、側壁の大きなテーパーを形成するので、常伝導金属のその後の堆積は、抵抗器132への電気的接触を確実にするのに適切である。これは、約50度から約60度までの角度であってよい。その後、フォトレジスト材料層152は剥離されて(例えば、O
2プラズマ中でのアッシング)、
図16に示される構造が得られる。
【0031】
トップビアパターンのフォトレジスト材料層の剥離の後に、別のフォトレジストパターン(図示せず)が作製されて、常伝導金属の後続の堆積のためのリフトオフプロファイルを可能にする。常伝導金属は、最初にArプレクリーンを使用して酸化されたTiWを除去し、続いて薄いチタン(Ti)層158および金などの厚い常伝導金属160を堆積することによって、蒸着システムで堆積される。薄いTi層158は、残留酸化物を除去して、金とTiWとの間の良好なオーミックコンタクトを可能にするために使用される。厚い金膜は、抵抗率が低く、超伝導しないので、使用されている。金配線パターンは、フォトレジストパターンのリフトオフおよび除去の後に実現されて、結果として
図17の構造が提供される。
図17は、第3の誘電体層134の一部を覆い、第3の誘電体層134のテーパー状の開口部156を充填して抵抗器132の中間部分に接続する常伝導金属コネクタ162を示している。常伝導金属コネクタ162は、抵抗器132への第3の接続を提供して電気的接続を提供し、および/または抵抗器132から熱を除去するように構成することができる。
【0032】
説明を簡単にするために、「覆う(overlay)」、「覆っている(overlaying)」、「上にある(overlying)」、「下に置く(underlay)」、および「下にある(underlying)」という用語(および派生語)は、選択された向きにおける2つの隣接する表面の相対位置を示すために本開示全体で使用されている。さらに、本開示全体で使用される「上(top)」および「下(bottom)」という用語は、選択された向きにおける反対側の面を示す。同様に、「上(upper)」および「下(lower)」という用語は、説明のために、選択された向きにおける相対位置を示す。実際、本開示全体で使用される例は、1つの選択された向きを示している。しかしながら、記載された例では、選択された向きは任意であり、本開示の範囲内で他の向き(例えば、逆さま、90度回転など)が可能である。
【0033】
上記で説明したのは、本発明の例である。もちろん、本発明を説明する目的で構成要素または方法の考えられるすべての組み合わせを説明することは不可能であるが、当業者は、本発明の多くのさらなる組み合わせおよび置換が可能であることを認識するであろう。したがって、本発明は、添付の特許請求の範囲を含む、本出願の範囲内に含まれるそのようなすべての変更、修正、および変形を包含することが意図されている。
以下に、本開示に含まれる技術思想を付記として記載する。
[付記1]
超伝導体構造を形成する方法であって、
第1の誘電体層に超伝導体配線を形成すること、
前記超伝導体配線の端部に結合された端部を備えた抵抗器を形成すること、
前記抵抗器を覆う第2の誘電体層を形成すること、
前記第2の誘電体層を貫通して前記抵抗器まで通じるテーパー状の開口部をエッチングすること、
常伝導金属材料でコンタクト材料充填を実施して、前記テーパー状の開口部を充填し、前記抵抗器に結合された常伝導金属コネクタを形成すること
を含む、方法。
[付記2]
前記常伝導金属コネクタは、前記抵抗器の中間部分に結合されている、付記1に記載の方法。
[付記3]
前記超伝導体配線は、第1の超伝導体配線であり、前記第1の超伝導体配線から離隔されて前記第1の誘電体層に配置された第2の超伝導体配線をさらに備える、付記1に記載の方法。
[付記4]
前記抵抗器は、前記第1の超伝導体配線に結合された第1の抵抗器コンタクト、および前記第2の超伝導体配線に結合された第2の抵抗器コンタクトを有し、前記抵抗器は、前記第1の抵抗器コンタクトを前記第2の抵抗器コンタクトに接続する接続部分を有する、付記3に記載の方法。
[付記5]
前記接続部分は、前記第1の抵抗器コンタクトおよび前記第2の抵抗器コンタクトの両方を越えて延在し、前記抵抗器の抵抗値の大部分を提供する、付記4に記載の方法。
[付記6]
前記抵抗器に結合された前記超伝導体配線の端部と反対側の前記超伝導体配線の端部に接触する超伝導体コンタクトを形成することをさらに含む、付記1に記載の方法。
[付記7]
前記超伝導体コンタクトに接触する別の超伝導体配線を形成して、ダマシン超伝導体コネクタを形成することをさらに含み、前記別の超伝導体配線は、前記第2の誘電体層の上面と平面をなす表面を有している、付記6に記載の方法。
[付記8]
前記常伝導金属コネクタは、前記抵抗器の端部分に結合されている、付記1に記載の方法。
[付記9]
前記抵抗器は、チタンタングステン(TiW)、モリブデンまたは窒化モリブデン(Mo、MoN)、またはパラジウム金(PdAu)のうちの1つから形成され、前記超伝導体配線は、ニオブ、アルミニウム、およびタンタルのうちの1つから形成される、付記1に記載の方法。
[付記10]
前記テーパー状の開口部を埋めるとともに前記第2の誘電体層の一部にわたって延在するようにライナー材料を堆積することをさらに含み、前記常伝導金属材料でコンタクト材料充填を実施することは、前記テーパー状の開口部内および前記第2の誘電体層の一部にわたって延在する前記ライナー材料上に常伝導金属材料を堆積して、前記ライナー材料および前記常伝導金属材料が集合的に前記常伝導金属コネクタを形成するようにすることを含む、付記1に記載の方法。
[付記11]
前記ライナー材料はチタンで形成され、前記常伝導金属は金で形成されている、付記10に記載の方法。
[付記12]
超伝導体構造であって、
基板を覆う第1の誘電体層と、
前記第1の誘電体層内に存在する超伝導体配線と、
前記第1の誘電体層を覆う第2の誘電体層と、
前記第2の誘電体層を覆う第3の誘電体層と、
前記第2の誘電体層を貫通して前記超伝導体配線の端部まで延在する抵抗器コンタクトの端部、および前記抵抗器コンタクトの端部に接続するとともに前記第3の誘電体層内に存在する接続部分を有する抵抗器と、
前記第3の誘電体層を貫通して前記抵抗器まで通じるテーパー状の開口部と、
前記テーパー状の開口部を介して前記抵抗器に接続する常伝導金属コネクタと
を備える、超伝導体構造。
[付記12]
前記常伝導金属コネクタは、前記抵抗器の中間部分に結合されている、付記11に記載の超伝導体構造。
[付記13]
前記超伝導体配線は、第1の超伝導体配線であり、前記第1の超伝導体配線から離隔されて前記第1の誘電体層内に配置された第2の超伝導体配線をさらに備える、付記11に記載の超伝導体構造。
[付記14]
前記抵抗器コンタクトは、第1の抵抗器コンタクトであり、第2の抵抗器コンタクトをさらに備え、前記第2の抵抗器コンタクトは、前記第2の誘電体層を貫通して延在し、前記第2の超伝導体配線に結合され、前記接続部分は、前記第1の抵抗器コンタクトを前記第2の抵抗器コンタクトに接続する、付記13に記載の超伝導体構造。
[付記15]
前記接続部分は、前記第1の抵抗器コンタクトおよび前記第2の抵抗器コンタクトの両方を越えて延在し、前記抵抗器の抵抗値の大部分を提供する、付記14に記載の超伝導体構造。
[付記16]
前記超伝導体配線に接続する超伝導体コンタクトと接触する別の超伝導体配線を含むダマシン超伝導体コネクタをさらに備え、前記別の超伝導体配線は、前記第3の誘電体層の表面と平面をなす表面を有している、付記15に記載の超伝導体構造。
[付記17]
前記常伝導金属コネクタは、前記抵抗器の端部分に結合されている、付記11に記載の超伝導体構造。
[付記18]
前記抵抗器は、チタンタングステン(TiW)、モリブデンまたは窒化モリブデン(Mo、MoN)、またはパラジウム金(PdAu)のうちの1つから形成され、前記超伝導体配線は、ニオブ、アルミニウム、およびタンタルのうちの1つから形成される、付記11に記載の超伝導体構造。
[付記19]
前記テーパー状の開口部を埋めるとともに前記第3の誘電体層の一部にわたって延在するライナー材料と、前記テーパー状の開口部内および前記第3の誘電体層の一部にわたって延在する前記ライナー材料上に配置された常伝導金属材料とをさらに備え、前記ライナー材料および前記常伝導金属材料が集合的に前記常伝導金属コネクタを形成する、付記11に記載の超伝導体構造。
[付記20]
前記ライナー材料は、チタンで形成され、前記常伝導金属は、金で形成されている、付記19に記載の超伝導体構造。