IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アイメック・ヴェーゼットウェーの特許一覧

特許7263374三次元ライトフィールドの分布を形成するための光学装置、システムおよび方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-14
(45)【発行日】2023-04-24
(54)【発明の名称】三次元ライトフィールドの分布を形成するための光学装置、システムおよび方法
(51)【国際特許分類】
   G03H 1/04 20060101AFI20230417BHJP
【FI】
G03H1/04
【請求項の数】 15
(21)【出願番号】P 2020544413
(86)(22)【出願日】2019-02-19
(65)【公表番号】
(43)【公表日】2021-06-10
(86)【国際出願番号】 EP2019054116
(87)【国際公開番号】W WO2019162282
(87)【国際公開日】2019-08-29
【審査請求日】2021-12-15
(31)【優先権主張番号】18157987.1
(32)【優先日】2018-02-22
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】514156563
【氏名又は名称】アイメック・ヴェーゼットウェー
【氏名又は名称原語表記】IMEC VZW
(74)【代理人】
【識別番号】100101454
【弁理士】
【氏名又は名称】山田 卓二
(74)【代理人】
【識別番号】100189555
【弁理士】
【氏名又は名称】徳山 英浩
(72)【発明者】
【氏名】グザヴィエ・ロッテンベルク
(72)【発明者】
【氏名】クリストフ・ローデウェイクス
【審査官】森内 正明
(56)【参考文献】
【文献】米国特許出願公開第2015/0160612(US,A1)
【文献】特開2011-150326(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G03H 1/00 - 5/00
(57)【特許請求の範囲】
【請求項1】
三次元ライトフィールドの分布を形成するための光学装置(100)であって、前記光学装置(100)は、
ユニットセル(104)のアレイ(102)であって、ユニットセル(104)のアレイ(102)内のユニットセル(104)は、ユニットセル(104)の光学特性を制御するために個別にアドレス指定可能であり、ユニットセル(104)のアドレス指定は、光学特性の第1の条件と光学特性の第2の条件との間で、ユニットセル(104)の光学特性を切り替えるように構成される、ユニットセル(104)のアレイ(102)を備え、
ユニットセル(104)のアレイ(102)内のユニットセル(104)は、選択的にアクティブまたは非アクティブになるように構成され、ユニットセル(104)のアレイ(102)は、ユニットセル(104)の少なくとも第1のサブセット(110;112;114;116)およびユニットセル(104)の第2のサブセット(110;112;114;116)を備え、第1のサブセット(110;112;114;116)および第2のサブセット(110;112;114;116)は互いに素であり、それぞれの第1および第2のサブセット(110;112;114;116)内のユニットセル(104)は、非アクティブからアクティブへ、およびその逆に共同で切り替えられるように構成され、
アクティブなサブセットである第1のサブセットのユニットセル(104)は、入射光線(106)と相互作用し、アクティブなユニットセルの光学特性に従って三次元ライトフィールドの分布を形成するのに協働するように構成され、
非アクティブなサブセットである第2のサブセットのユニットセル(104)は、入射光線と相互作用せず、三次元ライトフィールドの分布を形成するのに協働しないように構成され、前記光学装置(100)はユニットセル(104)の光学特性を切り替えるために非アクティブなサブセットのユニットセル(104)をアドレス指定するように構成され、これにより、第2のサブセットのユニットセルが非アクティブである間、三次元ライトフィールドの分布をプログラムし、非アクティブなサブセットがアクティブに切り替えられるとき、およびアクティブなサブセットが非アクティブに切り替えられるときに、三次元ライトフィールドの分布を変化させる、光学装置。
【請求項2】
第1のサブセット(110;112;114;116)のユニットセル(104)は、ユニットセル(104)のアレイ内の第2のサブセット(110;112;114;116)のユニットセル(104)と交互に配置される、請求項1に記載の光学装置。
【請求項3】
ユニットセル(104)の第1のサブセット(110;112;114;116)は、ユニットセル(104)の第1のサブアレイを形成し、ユニットセル(104)の第2のサブセット(110;112;114;116)は、ユニットセル(104)の第2のサブアレイを形成し、第1のサブアレイおよび第2のサブアレイは、共通の基板上で互いに隣接して配置される、請求項1に記載の光学装置。
【請求項4】
ユニットセル(104)の各サブセット(110;112;114;116)は、光の第1の波長と相互作用するように構成された第1のユニットセルと、光の第1の波長とは異なる光の第2の波長と相互作用するように構成された第2のユニットセルと、を備える、請求項1ないし3のうちいずれか1項に記載の光学装置。
【請求項5】
光学装置は、ユニットセル(104)のアレイ(102)に関して配置された光シャッタ構造(120)をさらに備え、光シャッタ構造(120)は、光シャッタ構造(120)への入射光が、ユニットセル(104)が非アクティブであるか、またはアクティブであるかを選択するために光シャッタ構造(120)が関連付けられているユニットセル(104)に到達するかどうかを選択するために制御可能である、請求項1ないし4のうちいずれか1項に記載の光学装置。
【請求項6】
光シャッタ構造(120)は、ユニットセル(104)の第1のサブセット(110;112;114;116)によって共有される第1の光シャッタと、ユニットセル(104)の第2のサブセット(110;112;114;116)によって共有される第2の光シャッタと、を備える、請求項5に記載の光学装置。
【請求項7】
光シャッタ構造(120)は、光シャッタユニットのアレイを備え、各光シャッタユニットは、単一のユニットセル(104)に関連付けられ、第1のサブセット(110;112;114:116)に関連付けられた光シャッタユニットは、第1のサブセット(110;112;114:116)内のユニットセル(104)を非アクティブからアクティブに切り替えるために共同で制御されるように構成される、請求項5に記載の光学装置。
【請求項8】
光学装置(100)は、光シャッタ構造(120)に制御信号を提供する制御ユニット(210)を備え、制御信号は、光シャッタ構造(120)への入射光が、相変化材料の状態の変化、偏光フィルタを通過する光を制御するための液晶の状態の変化、電気光学効果の誘発、磁気光学効果の誘発、偏光フィルタによって透過される光の偏光の変更、微小電気機械システムのアクチュエータの動きのアクティブ化、または巨視的な機械的シャッタのアクティブ化に基づいて光シャッタ構造(120)が関連付けられているユニットセル(104)に到達するかどうかを制御するように構成される、請求項5ないし7のうちいずれか1項に記載の光学装置。
【請求項9】
光学装置(100)は、ユニットセル(104)のアレイ(102)に関して配置された受動偏光フィルタのセットを備え、ユニットセル(104)の第1のサブセット(110;112;114;116)は、第1の偏光の光を透過するように構成された第1の偏光フィルタに関連付けられ、ユニットセル(104)の第2のサブセット(110;112;114;116)は、第1の偏光とは異なる第2の偏光の光を透過するように構成された第2の偏光フィルタに関連付けられる、請求項1ないし4のうちいずれか1項に記載の光学装置。
【請求項10】
ユニットセル(104)は、第1の状態と第2の状態との間で切り替えられ得る相変化材料を備え、第1の状態と第2の状態との間の相変化材料の切り替えは、光学特性の第1の条件と光学特性の第2の条件との間でユニットセル(104)の光学特性を切り替えるように構成される、請求項1ないし9のうちいずれか1項に記載の光学装置。
【請求項11】
アクティブなユニットセル(104)は、三次元ライトフィールドの分布を形成するために入射光線(106)を反射する際に協働するように構成される、請求項1ないし10のうちいずれか1項に記載の光学装置。
【請求項12】
アクティブなユニットセル(104)は、三次元ライトフィールドの分布を形成するために入射光線(106)を透過する際に協働するように構成される、請求項1ないし10のうちいずれか1項に記載の光学装置。
【請求項13】
三次元ライトフィールドの分布を形成するためのシステム(200)であって、前記システム(200)は、
請求項1ないし12のうちいずれか1項に記載の光学装置(100)と、
ユニットセル(104)のアレイ(102)に入射する光線(106)を放射するように構成された光源(202)と、
を備えるシステム。
【請求項14】
前記システムは、光源(202)によって放射された光の偏光を制御するためのコントローラ(210)をさらに備える、請求項13に記載のシステム。
【請求項15】
三次元ライトフィールドの分布を形成するための方法であって、前記方法は、
ユニットセルのアレイに入射する光線を受け取るステップ(302)と、
ユニットセルの第1のサブセットをアクティブにし、ユニットセルの第2のサブセットを非アクティブにすることを選択するステップ(304)であって、ユニットセルの第1のサブセットは、ユニットセルの第2のサブセットから切り離されている、ステップと、
ユニットセルの光学特性を、光学特性の少なくとも第1条件および光学特性の第2の条件のうちの1つに制御するために、第2のサブセットのユニットセルが非アクティブである間に、ユニットセルの第2のサブセットのユニットセルを個別にアドレス指定するステップ(306)であって、ユニットセルの第2のサブセットは、三次元ライトフィールドの分布を形成するためのユニットセルの個別のアドレス指定によってプログラムされる、ステップと、
ユニットセルの第1のサブセットを非アクティブに共同で切り替えるステップ(308)と、
ユニットセルの第2のサブセットを共同で切り替えて(310)アクティブにし、三次元ライトフィールドの分布をユニットセルの第2のサブセットにプログラムされた分布に変更するステップと、
を含み、
アクティブなサブセットである第1のサブセットのユニットセル(104)は、入射光線(106)と相互作用し、アクティブなユニットセルの光学特性に従って三次元ライトフィールドの分布を形成するのに協働するように構成され、
非アクティブなサブセットである第2のサブセットのユニットセル(104)は、入射光線と相互作用せず、三次元ライトフィールドの分布を形成するのに協働しないように構成され、光学装置(100)は、ユニットセル(104)の光学特性を切り替えるために非アクティブなサブセットのユニットセル(104)をアドレス指定するように構成され、これにより、第2のサブセットのユニットセルが非アクティブである間、三次元ライトフィールドの分布をプログラムし、非アクティブなサブセットがアクティブに切り替えられるとき、およびアクティブなサブセットが非アクティブに切り替えられるときに、三次元ライトフィールドの分布を変化させる、
方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の概念は、三次元ライトフィールドの分布を形成するための光学装置に関する。特に、本発明の概念は、ホログラフィック画像を表示するために三次元ライトフィールドを形成することができる光学装置に関する。
【背景技術】
【0002】
ホログラフィック画像は、ライトフィールドの三次元制御によって形成される。特に、ホログラフィックビデオの提示など、変化するホログラフィック画像を提示することが望まれる場合、三次元ライトフィールドを形成するための光学装置は、特性を変化させるように制御される必要があるかもしれない。
【0003】
三次元ライトフィールドの分布を形成するための光学装置は、ユニットセルのアレイを備え得る。ユニットセルのアレイは、所望の三次元ライトフィールドを一緒に形成するために、入射光線と相互作用し得る。したがって、所望の三次元ライトフィールドが形成されるように、ユニットセルのそれぞれの光との相互作用を制御するために、ユニットセルを制御する必要がある場合がある。したがって、新しいホログラフィック画像を提示する場合、提示されるホログラフィック画像を変更するには、多数のユニットセルを目的の状態に再構成する必要がある。
【0004】
したがって、ホログラフィックビデオプロジェクタは、ユニットセルのアレイに大量のデータを書き込む必要がある。典型的なホログラフィックビデオプロジェクタの場合、ホログラフィックビデオを見る観察者が妨げられないようにするには、数十Gbのデータを10msのオーダの時間フレームで100nmのピッチ(隣接するユニットセル間の距離)で書き込む必要がある。
【0005】
このような量のデータの書き込みは非常に困難な作業である。
【発明の概要】
【0006】
本発明の概念の目的は、三次元ライトフィールドの分布の制御を改善するために使用することができる改善された光学装置を提供することである。本発明の概念の特定の目的は、ホログラフィックビデオを表示するために非常に大量のデータをユニットセルのアレイに書き込む問題を少なくとも軽減する光学装置を提供することである。
【0007】
本発明のこれらおよび他の目的は、独立請求項で定義された本発明によって少なくとも部分的に満たされる。好ましい実施形態は、従属請求項に記載されている。
【0008】
第1の態様によれば、三次元ライトフィールドの分布を形成するための光学装置が提供され、前記光学装置は、ユニットセルのアレイであって、ユニットセルのアレイ内のユニットセルは、ユニットセルの光学特性を制御するために個別にアドレス指定可能であり、ユニットセルのアドレス指定は、光学特性の第1の条件と光学特性の第2の条件との間で、ユニットセルの光学特性を切り替えるように構成される、ユニットセルのアレイを備え、ユニットセルのアレイ内のユニットセルは、選択的にアクティブまたは非アクティブになるように構成され、ユニットセルのアレイは、ユニットセルの少なくともの第1のサブセットおよびユニットセルの第2のサブセットを備え、第1のサブセットおよび第2のサブセットは互いに素であり、ユニットセルのサブセット内のユニットセルは、非アクティブからアクティブに共同で切り替えられるように構成され、アクティブなユニットセルは、入射光線と相互作用し、三次元ライトフィールドの分布を形成するのに協働するように構成され、光学装置は、ユニットセルが非アクティブであるときに、ユニットセルの光学特性を切り替えるために非アクティブなユニットセルをアドレス指定するように構成される。
【0009】
第1の態様による光学装置のおかげで、ユニットセルのアレイは、第1および第2のサブセットを備える。したがって、ユニットセルは、選択的に非アクティブまたはアクティブであり得、アクティブなユニットセルのみが、所与の時点での三次元ライトフィールドの分布の形成に寄与する。これは、非アクティブな状態で、非アクティブなユニットセルに表示される次のホログラフィック画像を表す情報を書き込むために、非アクティブなユニットセルをアドレス指定できることを意味する。情報の書き込みは、各ユニットセルの光学特性の条件を制御することにより行われる。したがって、前の画像が表示されている間に情報が書き込まれる可能性があるため、次のホログラフィック画像に関する情報を非アクティブなユニットセルに提供するための書き込み時間については、比較的寛大な要件がある。
【0010】
ユニットセルの少なくとも第1のサブセットと第2のサブセットの使用は、全てのユニットセルが三次元ライトフィールドの分布の形成に同時に使用されないことを意味する。したがって、ホログラフィックビデオを表示するためにユニットセルのアレイに大量の情報を書き込むことを可能にするために、ホログラフィック画像の解像度、明るさ、および品質のトレードオフを行うことができる。
【0011】
三次元ライトフィールドの所望の分布を形成するためにユニットセルの光学特性の条件を切り替えるために、ユニットセルは個別にアドレス指定される必要があるかもしれない。各ユニットセルは、所望の分布が形成されるように、光学特性の個別に設定された条件を有することができる。これは、各ユニットセルの光学特性の条件を制御するために、ユニットセルを個別にアドレス指定する必要があることを意味する。これは、時間のかかる操作、またはユニットセルのアドレス指定に非常に多くの並列制御ラインを必要とする。しかしながら、アクティブなユニットセルに基づいてホログラフィック画像が表示されている間に、ユニットセルから非アクティブなユニットセルへの個別のアドレス指定を実行すると、ユニットセルのアドレス指定に使用できる時間は、大幅に増加する(通常、1秒あたり25フレームのフレームレートは、約40msの期間に表示される単一の画像に対応する)。
【0012】
ユニットセルのサブセットの非アクティブからアクティブへの切り替え(またはその逆)は、非常に高速に実行できる。サブセットのユニットセルの光学特性の条件は、ユニットセルの個別のアドレス指定で設定されているため、サブセットのユニットセルが非アクティブからアクティブに確実に切り替えられるように、サブセット内の全てのユニットセルに対して共通の操作を実行できる。したがって、サブセット内のユニットセルは、サブセット内の全てのユニットセルに適用される単一の制御信号を使用して、非アクティブからアクティブに一緒に切り替えられてもよい。
【0013】
ユニットセルの非アクティブからアクティブへの共同切り替えは、サブセット内の全てのユニットセルが同時に切り替えられるように、単一の制御信号を使用して実行することができる。しかしながら、サブセットは、複数の制御線に関連付けられてもよく、各制御線は、サブセット内の複数のユニットセルを制御してもよいことを理解されたい。したがって、ユニットセルを非アクティブからアクティブに切り替えるために、複数(しかしながら少数)の制御線上の一連の制御信号を使用して共同切り替えを実行することができる。共同切り替えは、ホログラフィックビデオを見る観察者の体験に影響を及ぼさないように、短時間で実行されてもよい。
【0014】
したがって、ユニットセルの共同切り替えは、ユニットセルが同時に切り替えられると解釈する必要がある。または、切り替えが正確に同時に実行されない場合は、観察者の体験を妨げないように十分高速に実行する必要がある。これは、一般的な操作によって実現でき、事前定義された方法で制御できる。例えば、共通の動作は、複数の制御線上に供給される一連の制御信号を形成する制御信号のパケットによってトリガーされてもよい。
【0015】
以下の様々な実施形態で例示されるように、ユニットセルの非アクティブからアクティブへの切り替えは、例えば、ユニットセルに関連付けられた光シャッタ構造を使用して実行されてもよい。
【0016】
ユニットセルのアレイは、ユニットセルの2つ以上の互いに素のサブセットを備え得ることが理解されるべきである。これにより、ユニットセルに情報を書き込むためにサブセット内のユニットセルを個別にアドレス指定するための時間がさらに長くなる可能性がある。サブセットのユニットセルは、3つのサブセットを使用すると1/3の時間、4つのサブセットを使用すると1/4の時間だけアクティブになる。しかしながら、いくつかの実施形態では、ユニットセルのさらなるサブセットが使用される場合、ホログラフィック画像の解像度はさらに影響を受ける可能性がある。
【0017】
三次元ライトフィールドの分布の形成は、例えば、制御された照明のための任意のタイプの用途において、上述のホログラフィックビデオの表示など、いくつかの異なる用途で使用できることを理解されたい。
【0018】
アクティブなサブセットに基づく三次元ライトフィールドの分布は、観察者によって知覚されるホログラフィック画像の一部にのみ寄与する可能性があることも理解されるべきである。視覚の持続性に基づいて、高速シーケンスで形成されたホログラフィック画像は、完全なホログラフィック画像を一緒に表示していると認識される場合がある。したがって、第1のアクティブサブセットに基づいて形成された三次元ライトフィールドの分布は、第1のアクティブサブセットの分布が形成された直後に、第2のアクティブサブセットに基づいて形成された三次元ライトフィールドの分布と共に、完全なホログラフィック画像として観察者に知覚され得る。
【0019】
一実施形態によれば、第1のサブセットのユニットセルは、ユニットセルのアレイ内の第2のサブセットのユニットセルと交互に配置される。
【0020】
これは、第1のサブセットのユニットセルがユニットセルのアレイ全体に広がっていることを意味する。同様に、第1のサブセットのユニットセルは、ユニットセルのアレイ全体に広げることができる。
【0021】
一実施形態では、1つおきのユニットセルは第1のサブセットの一部であり、1つおきのユニットセルは第2のサブセットの一部である。これは、第1のサブセットの各ユニットセルが第2のサブセットの2つのユニットセルの間に配置され、第2のサブセットの各ユニットセルが第1のサブセットの2つのユニットセルの間に配置されることを意味する。そのような実施形態では、サブセット内のユニットセルは、ユニットセルのアレイ全体に亘って均一に広がっており、一連の連続的に投影されるホログラフィック画像全体に亘って高品質のホログラフィック画像の形成を容易にし得る。
【0022】
他の実施形態では、各サブセットのユニットセルは、n×mのユニットセルのクラスタに広げることができる。第1のサブセットのユニットセルの各クラスタは、第2のサブセットのユニットセルの2つのクラスタの間に配置されてもよく、逆もまた同様である。
【0023】
インターリーブされたサブセットの他の構成が可能であることを理解されたい。特に、ユニットセルのアレイは、3つ以上のサブセットを備えることができ、全てのサブセットのユニットセルは、交互配置することができる。サブセット内のユニットセルは、例えば、ユニットセルのアレイに規則的なパターンを形成し、サブセットに属する単一のユニットセルまたはユニットセルのクラスタをユニットセルのアレイに均等に分散させる。
【0024】
一実施形態によれば、ユニットセルの第1のサブセットは、ユニットセルの第1のサブアレイを形成し、ユニットセルの第2のサブセットは、ユニットセルの第2のサブアレイを形成し、第1のサブアレイおよび第2のサブアレイは共通の基板上で互いに隣接して配置される。
【0025】
これは、ユニットセルの各サブセットがユニットセルのアレイ内の個別の領域に関連付けられている可能性があることを意味する。したがって、同じサブセットの一部である2つの隣接するユニットセル間の距離は、ユニットセルのアレイ内の2つの隣接するユニットセル間の距離に等しくなる。したがって、このようなサブセットの配置を使用すると、ホログラフィック画像の解像度は、2つ以上のサブセットに分割されるユニットセルのアレイによって影響を受ける必要はない。
【0026】
しかしながら、複数のサブセットは、所与の時点でホログラフィック画像を表示するときに全てのユニットセルが同時に使用されないことを依然として意味する。したがって、ユニットセルのアレイ全体は、複数のサブセットに分割されないユニットセルのアレイよりも大きい必要がある。
【0027】
一実施形態によれば、ユニットセルの各サブセットは、光の第1の波長と相互作用するように構成される第1のユニットセルと、光の第1の波長とは異なる光の第2の波長と相互作用するように構成される第2のユニットセルとを備える。
【0028】
これは、マルチカラーのホログラフィック画像が形成されるように、光学装置が複数の波長に対する三次元ライトフィールドの分布を形成するように構成され得ることを意味する。したがって、サブセットのそれぞれは、第1の波長との相互作用専用の第1のユニットセルと第2の波長との相互作用専用の第2のユニットセルを備えることができ、単一のサブセットのユニットセルのみがアクティブな場合に、マルチカラーホログラフィック画像をいつでも表示できるようにする。
【0029】
アクティブなサブセットは、異なる波長の一連の入射光線を受け取ることができる。視覚の持続性のおかげで、ホログラフィック画像を見る観察者は、一連の異なる色の入射光線によってアクティブなサブセットを照明することによって形成されたホログラフィック画像の高速シーケンスを単一のマルチカラーホログラフィック画像として知覚できる。
【0030】
光学装置は、3つ以上の波長を使用してマルチカラー画像を形成するように構成され、ユニットセルの各サブセットは、第3の波長と相互作用するように構成された第3のユニットセルも備え得ることを理解されたい。
【0031】
一実施形態では、ユニットセルは、ユニットセルが相互作用する光の波長を制御するためのカラーフィルタと関連付けられてもよい。
【0032】
一実施形態によれば、光学装置は、ユニットセルのアレイに関して配置された光シャッタ構造をさらに備え、光シャッタ構造は、光シャッタ構造への入射光が、ユニットセルが非アクティブであるかアクティブであるかを選択するために関連付けられているユニットセルに到達するかどうかを選択するために制御可能である。
【0033】
光シャッタ構造は、ユニットセルのアレイが形成される基板と統合されてもよい。しかしながら、光シャッタ構造は、代替的に、基板とは別に配置されてもよく、例えば、光源に関連付けられるか、光源とユニットセルのアレイとの間に配置される。
【0034】
光シャッタ構造は、サブセットのユニットセルが光シャッタ構造に関連付けられて、光シャッタ構造が制御されると、サブセット内のユニットセルが共同して非アクティブからアクティブに切り替えられるように配置されてもよい(またはその逆)。
【0035】
一実施形態によれば、光シャッタ構造は、ユニットセルの第1のサブセットによって共有される第1の光シャッタと、ユニットセルの第2のサブセットによって共有される第2の光シャッタとを備える。
【0036】
したがって、第1の光シャッタは、第1のサブセットの全てのユニットセルに関連付けられ得、第2の光シャッタは、第2のサブセットの全てのユニットセルに関連付けられ得る。これは、第1の光シャッタの制御が、第1のサブセットのユニットセルを非アクティブからアクティブに、またはその逆に共同で切り替え得ることを意味する。同様に、第2の光シャッタの制御は、第2のサブセットのユニットセルを非アクティブからアクティブに、またはその逆に共同で切り替えることができる。
【0037】
したがって、第1の光シャッタは、単一の制御信号によって制御され得る単一の構造として形成され得、第2の光シャッタは、単一の制御信号(第1の光シャッタを制御する制御信号とは異なる)によっても制御され得る他の単一の構造として形成され得る。例えば、第1の光シャッタおよび/または第2の光シャッタは、光シャッタに関連付けられるサブセットのユニットセルの上に配置された複数のラインを備えてもよい。複数のラインは、例えば、端部で相互接続され得、その結果、単一の制御信号は、サブセットのユニットセルを非アクティブからアクティブに、またはその逆に切り替え得る。
【0038】
一実施形態によれば、光シャッタ構造は、光シャッタユニットのアレイを備え、各光シャッタユニットは、単一のユニットセルに関連付けられ、第1のサブセットに関連付けられた光シャッタユニットは、第1のサブセット内のユニットセルを非アクティブからアクティブに切り替えるために共同で制御されるように構成される。
【0039】
したがって、光シャッタ構造は、光シャッタユニットとアレイ内のユニットセルとの間に1対1の関係を形成する別個の光シャッタユニットを備えることができる。サブセットのユニットセルをアクティブから非アクティブに切り替える場合、サブセットに関連付けられた光シャッタユニットで共通の操作が実行されるため、光シャッタユニットの状態を切り替えるための制御信号を提供するために、光シャッタユニットを個別にアドレス指定する必要はない。むしろ、第1のサブセットに関連付けられた光シャッタユニットは、例えば、制御信号が同時にまたは共同で第1のサブセットに関連付けられた光シャッタユニットに提供されるように、共同で制御されるように構成され得る。
【0040】
一実施形態によれば、光学装置は、光シャッタ構造に制御信号を提供する制御ユニットを備え、制御信号は、光シャッタ構造への入射光が、相変化材料の状態の変化、偏光フィルタを通過する光を制御するための液晶の状態の変化、電気光学効果の誘発、磁気光学効果の誘発、偏光フィルタによって透過される光の偏光の変更、マイクロエレクトロメカニカルまたはナノエレクトロメカニカルシステムのアクチュエータの動きのアクティブ化、または巨視的なメカニカルシャッタのアクティブ化に基づいて、光シャッタ構造が関連付けられているユニットセルに到達するかどうかを制御するように構成される。
【0041】
このように、入射光がサブセット内のユニットセルによって受け取られるべきかどうかを制御する機能は、様々な方法で達成され得る。光シャッタ構造への入射光がユニットセルへ通過することを許可されるかどうかを制御する方法は、例えば、光がユニットセルに到達するのを防ぐ効果、制御構造のサイズ、光シャッタユニットのピッチ、および/または制御構造の複雑さに関して選択され得る。
【0042】
一実施形態によれば、光シャッタ構造は、光シャッタ構造への入射光が、光シャッタ構造が関連付けられているユニットセルに到達するかどうかを選択するための制御信号を送信するための制御線を備える。制御信号は、ユニットセルの光学特性の条件を切り替えるためにユニットセル内のローカル機能をトリガーするように構成され得る。
【0043】
他の実施形態では、光学装置は、光シャッタ構造に制御信号を提供する制御ユニットを備え、光シャッタ構造は、ユニットセルのアレイによって送信される光を受け取るように配置され、制御信号は、光シャッタ構造への入射光が三次元ライトフィールドの分布の形成に寄与できるかどうかを制御するように構成される。光シャッタ構造の制御は、相変化材料の状態の変化、偏光フィルタを通過する光を制御するための液晶の状態の変化、電気光学効果の誘発、磁気光学効果の誘発、偏光フィルタによって透過される光の偏光の変更、マイクロエレクトロメカニカルシステムのアクチュエータの動きのアクティブ化、または巨視的なメカニカルシャッタのアクティブ化に基づくことができる。
【0044】
一実施形態によれば、光学装置は、ユニットセルのアレイに関して配置された受動偏光フィルタのセットを備え、ユニットセルの第1のサブセットは、第1の偏光の光を透過するように構成される第1の偏光フィルタに関連付けられ、ユニットセルの第2サブセットは、第1偏光とは異なる第2偏光の光を透過するように構成された第2の偏光フィルタに関連付けられている。
【0045】
受動偏光フィルタのセットは、ユニットセルのアレイが形成される基板と統合されてもよい。しかしながら、受動偏光フィルタのセットは、代替的に、基板とは別に配置されてもよく、例えば、光源に関連付けられるか、光源とユニットセルのアレイとの間に配置される。
【0046】
したがって、各サブセットは、特定の光の偏光に関連付けられ得る。したがって、入射光線の光の偏光を切り替えることにより、サブセットのユニットセルを非アクティブからアクティブに切り替えることができる。
【0047】
第1の偏光フィルタおよび第2の偏光フィルタは、それぞれ入射光の直交直線偏光状態または左旋円偏光状態および右旋円偏光状態を透過するように構成され得る。
【0048】
一実施形態によれば、ユニットセルは、第1の状態と第2の状態との間で切り替えられ得る相変化材料を備え、第1の状態と第2の状態との間の相変化材料の切り替えは、ユニットセルの光学特性を、光学特性の第1の条件と光学特性の第2の条件との間で切り替えるように構成される。
【0049】
ユニットセルの光学特性の条件を制御するために相変化材料を有利に使用することができる。例えば、ユニットセルの反射率または透過率は、相変化材料の状態に大きく依存する場合がある。したがって、ユニットセルの相変化材料の状態を切り替えることにより、三次元ライトフィールドの分布の形成へのユニットセルの寄与を制御することができる。したがって、サブセット内のユニットセルのそれぞれの状態を設定することにより、三次元ライトフィールドの所望の分布を定義することができる。
【0050】
相変化材料は、例えば、材料の層のスタックにおいて、他の材料と組み合わせることができ、相変化材料の状態は、材料の層のスタックの光学特性の条件を制御することができる。したがって、ユニットセルは、相変化材料を含む様々な構成で形成されてもよいことが理解されるべきである。
【0051】
相変化材料の状態の切り替えは、例えば、熱活性化によって、または相変化材料を電場または磁場に加えることによって、多くの異なる方法で誘発され得る。相変化材料の状態の制御は、例えば、ユニットセルに局所的に相変化材料の状態の切り替えを誘導するためにユニットセルに関連付けられた電極に制御信号を送信することにより、ユニットセルを個別にアドレス指定することによって提供され得ることを理解されたい。
【0052】
一実施形態によれば、アクティブユニットセルは、三次元ライトフィールドの分布を形成するために入射光線を反射する際に協働するように構成される。
【0053】
他の実施形態によれば、アクティブユニットセルは、三次元ライトフィールドの分布を形成するために入射光線を送信する際に協働するように構成される。
【0054】
したがって、光学装置は、三次元ライトフィールドの分布の反射形成または透過形成のいずれかのために構成され得ることが理解されるべきである。光学装置が反射性であるか透過性であるように構成されるべきかどうかの選択は、所望の用途に応じて行われ得る。また、光シャッタ構造を実施するためのいくつかの技術は、例えば、非アクティブなユニットセルに対して入射光線を反射するように構成された光シャッタ構造を使用する場合など、透過型光学装置を使用するのにより適している。
【0055】
第2の態様によれば、三次元ライトフィールドの分布を形成するためのシステムが提供される。前記システムは、第1の態様に係る光学装置と、ユニットセルのアレイに入射する光線を放出するように構成された光源と、を備える。
【0056】
この第2の態様の効果および特徴は、第1の態様に関連して上記で説明したものとほぼ類似している。第1の態様に関連して述べられた実施形態は、第2の態様とほぼ互換性がある。
【0057】
したがって、システムは、三次元ライトフィールドの分布を制御するための光学装置と、光学装置と相互作用するときに三次元ライトフィールドを形成するための光線を提供するための光源との両方を備え得る。
【0058】
システムは、光源と光学装置との間に十分に制御された事前定義された関係が提供されるように、光学装置と光源が取り付けられたハウジングを備えることができる。
【0059】
一実施形態によれば、システムは、光源によって放出された光の偏光を制御するためのコントローラをさらに備える。
【0060】
光の偏光は、例えば、受動偏光フィルタのセットを使用する場合、アクティブなユニットセルを切り替えるために使用できる。したがって、コントローラは、光源によって放射された光の偏光が、三次元ライトフィールドの所望の分布を形成するための適切な時点で切り替えられるように制御することができる。
【0061】
コントローラはまた、表示される次のホログラフィック画像のために非アクティブなユニットセルに情報を書き込むためのユニットセルの個々のアドレス指定を制御するように構成されてもよい。しかしながら、システムは、代替として、ユニットセルの光学特性の状態の切り替えを制御するための別個のコントローラを備えてもよい。そのような場合、光源によって放射された光の偏光の変更が適切な時点で行われることを確実にするために、複数のコントローラが同期されてもよい。
【0062】
第3の態様によれば、三次元ライトフィールドの分布を形成する方法が提供され、前記方法は、ユニットセルのアレイに入射する光線を受け取るステップと、ユニットセルの第1のサブセットをアクティブにし、ユニットセルの第2のサブセットを非アクティブにすることを選択するステップであって、ユニットセルの第1のサブセットは、ユニットセルの第2のサブセットから切り離されている、ステップと、ユニットセルの光学特性を、光学特性の少なくとも第1条件および光学特性の第2の条件のうちの1つに制御するために、第2のサブセットのユニットセルが非アクティブである間に、ユニットセルの第2のサブセットのユニットセルを個別にアドレス指定するステップであって、ユニットセルの第2のサブセットは、三次元ライトフィールドの分布を形成するためのユニットセルの個別のアドレス指定によってプログラムされる、ステップと、ユニットセルの第1のサブセットを非アクティブに共同で切り替えるステップと、ユニットセルの第2のサブセットを共同で切り替えてアクティブにし、三次元ライトフィールドの分布をユニットセルの第2のサブセットにプログラムされた分布に変更するステップと、を含む。
【0063】
この第3の態様の効果および特徴は、第1および第2の態様に関連して上記で説明したものとほぼ類似している。
【0064】
第1および第2の態様に関連して述べられた実施形態は、第3の態様とほぼ互換性がある。
【0065】
この方法は、ホログラフィックビデオが三次元ライトフィールドの分布の形成に基づいて提示される場合でも、書き込み時間に関する比較的ゆるい要件が提供されるように、非アクティブなユニットセルへの情報の書き込みを可能にする。さらに、サブセットのユニットセルは、例えば、ホログラフィックビデオの現在のフレームから次のフレームに切り替えるときに、三次元ライトフィールドの現在の分布と三次元ライトフィールドの次の分布との間の非常に速い切り替えのために、非アクティブからアクティブまたはその逆に共同で切り替えられてもよい。
【0066】
上記、ならびに本発明の概念の追加の目的、特徴、および利点は、添付の図面を参照して、以下の例示的で非限定的な詳細な説明を通じてよりよく理解されるであろう。図面では、特に明記しない限り、同様の参照番号が同様の要素に使用される。
【図面の簡単な説明】
【0067】
図1】実施形態に係る光学装置の概略図である。
図2a】反射および透過形状における光学装置を示す概略図である。
図2b】反射および透過形状における光学装置を示す概略図である。
図3a】光学装置のユニットセルのアレイ内のユニットセルのサブセットを定義する実施形態を示す概略図である。
図3b】光学装置のユニットセルのアレイ内のユニットセルのサブセットを定義する実施形態を示す概略図である。
図4a】光学装置のユニットセルのアレイ内のユニットセルのサブセットを定義する実施形態を示す概略図である。
図4b】光学装置のユニットセルのアレイ内のユニットセルのサブセットを定義する実施形態を示す概略図である。
図4c】光学装置のユニットセルのアレイ内のユニットセルのサブセットを定義する実施形態を示す概略図である。
図4d】光学装置のユニットセルのアレイ内のユニットセルのサブセットを定義する実施形態を示す概略図である。
図5a】光学装置と共に使用されるカラーフィルタを示す概略図である。
図5b】光学装置と共に使用されるカラーフィルタを示す概略図である。
図6】ファラデー回転子の原理を示す概略図である。
図7】光シャッタ構造がMEMSベースのマイクロミラーシステムを使用して実施される、光学装置の光シャッタ構造を示す概略図である。
図8】光シャッタ構造がMEMSベースのマイクロミラーシステムを使用して実施される、光学装置の光シャッタ構造を示す概略図である。
図9】一実施形態に係るシステムの概略図である。
図10】実施形態に係る方法を示すフローチャートである。
【発明を実施するための形態】
【0068】
ここで図1を参照すると、光学装置100が一般的に説明される。光学装置100は、ユニットセル104のアレイ102を備え得る。ユニットセル104のアレイ102内のユニットセルは、ユニットセル104の光学特性を制御するため、したがって、ユニットセル104のアレイ102の光学応答を制御するために個別にアドレス指定可能であり得る。
【0069】
各ユニットセル104は、個別にアドレス可能であり得る。しかしながら、必ずしも、ユニットセル104の全てが個々にアドレス可能である必要はないことを理解されたい。
【0070】
ユニットセル104の光学特性を制御することにより、アレイ102に入射する光線106への影響を制御することができる。したがって、ユニットセル104は、組み合わされて、入射光線106に対する制御可能な効果を形成し得る。したがって、アレイ102は、入射光線106に基づいて三次元ライトフィールドの分布を形成および制御するために使用され得る。
【0071】
三次元ライトフィールドは、例えば、ホログラフィック画像を表示するために使用されてもよい。ユニットセル104のおかげで制御可能であれば、形成されるホログラフィック画像の変化を提供することができる。これは、光学装置100がホログラフィック画像のビデオを表示するために使用され得ることを意味する。
【0072】
しかしながら、三次元ライトフィールドの制御は、他の用途においても同様に有用であり得ることが理解されるべきである。三次元ライトフィールドを形成するための光学装置100は、入射光線の三次元に制御された分布を投影することができ、制御された照明のための任意のタイプの用途で使用でき、三次元ライトフィールドに基づいた表示画像の形成と必ずしも組み合わせる必要はない。
【0073】
光学装置100は、入射光線106を反射するか、または入射光線106を透過するように設定することができる。光線106は、レーザー光線である光線106などのコヒーレント光源によって形成されてもよく、これは、ユニットセル104のアレイ102に入射ライトフィールドの明確な関係を提供し、したがって、ユニットセル104のアレイ102を使用して三次元ライトフィールドの所望の分布を形成するための基礎として使用するのに適している。
【0074】
各ユニットセル104は、第1の状態と第2の状態との間で切り替えられ得る相変化材料(PCM)を備え得、第1の状態と第2の状態との間のPCMの切り替えは、ユニットセル104の光学特性を、光学特性の第1の条件と光学特性の第2の条件との間で切り替えるように構成される。
【0075】
PCMは、結晶状態とアモルファス状態との間で切り替わるように構成され得る。しかしながら、第1および第2の状態は、PCMの状態の他の構成であってもよいことが理解されるべきである。例えば、PCMは、2つの異なる結晶状態の間で切り替わるように構成されてもよい。
【0076】
ユニットセル104は、材料の組み合わせがユニットセルの光学特性を定義することができるように、例えば、材料の層のスタックにおいて、他の材料と組み合わせることができるPCMの層を備えることがきる。次に、PCMの状態の切り替えは、例えば、ユニットセル104内の層のスタックの光学特性に影響を与え、その結果、ユニットセル104の光学特性の条件は、PCMの状態によって制御され得る。
【0077】
例えば、PCMの状態の切り替えは、PCMの屈折率および/または誘電率に影響を与える可能性があり、その結果、例えば、PCM層またはPCM層を備えるスタックは、入射光の所与の波長に対して高反射状態から低反射状態に切り替えられてもよい。
【0078】
したがって、ユニットセル104は、ユニットセル104の光学特性の条件を制御するためのPCM層を備えることができる。例えば、所与の波長に対するユニットセルの反射率または透過率は、PCMの状態に大きく依存するように構成され得る。
【0079】
一実施形態によれば、PCMは、ゲルマニウム、アンチモンおよびテルルの化合物である。例えば、PCMはGeSbTe(GST)で形成できる。これは、アモルファス状態と結晶状態との間で変化する可能性があり、ユニットセル104のアレイ102の所望の光学特性を提供するために適切に使用され得る材料である。
【0080】
しかしながら、PCMは、2つの状態間の切り替えに基づいて光学特性の変化を提供する任意の材料であり得ることが理解されるべきである。PCMは、例えば、温度に曝されることに関連して(サーモクロミック材料)、または光に曝されることに関連して(フォトクロミック材料)、またはそのような材料の組み合わせに相変化を起こし得る任意の材料であり得る。例えば、VOおよびVなどの多数の異なる形態の酸化バナジウムを使用することができる。PCMは、上記の酸化バナジウムなどの金属酸化物材料、アゾベンゼン含有ポリジアセチレンなどのポリマー、またはジブロック(ポリ[スチレン-b-イソプレン])コポリマーなどのナノ構造ポリマーから形成されるサーモクロミック材料を含むことができる。あるいは、PCMは、複屈折材料など、印加された電場に基づいて光学特性の状態を変化させる電気光学材料、または、ガーネットおよび強磁性金属など、印加された磁場に基づいて光学特性の状態を変化させる磁気光学材料であってもよい。
【0081】
GSTをPCMとして使用する特定のケースでは、材料を切り替えると、プラズモニック(結晶状態)から誘電体(アモルファス状態)アンテナに構造を変更する。これは、非常に似た共振を示すが、波長は異なり、ユニットセル104の構造を、所定の波長の高反射状態から低反射状態に変更できる。
【0082】
GSTの状態を切り替えると、光学特性が大幅に変化し、屈折率と誘電率の実部と虚部の両方に大きな変化が生ずる。GSTの結晶状態では、GSTは、誘電率の負の実部を有することに注意されたい。これは、金属の振る舞いを示し、したがって、プラズモン共鳴をサポートすることを意味する。アモルファス状態では、GSTは、誘電率の正の実部を有し、大きな虚部を伴う。すなわち、GSTは、損失の大きい誘電体として機能する。
【0083】
ユニットセル104のPCMは、(GSTのように)熱的に切り替えることができるが、これに限定されない。異なる実施形態では、電気光学材料および磁気光学材料を代替の実施形態として使用できることを理解されたい。
【0084】
PCMの状態の制御は、例えば、PCMの局所加熱により、またはPCMに局所的な電場または磁場を与えることにより、ユニットセル内で局所的に相変化材料の状態の切り替えを誘発するために、例えば、ユニットセル104に関連付けられた電極に制御信号を送信することにより、ユニットセル104を個別にアドレス指定することによって提供できることを理解されたい。
【0085】
光学装置100は、可視波長で適切に使用されてもよい。これは、三次元ライトフィールドが人に見られ得ることを意味するためである。ホログラフィック画像の作成などの多くの用途では、可視波長の使用が望まれる。しかしながら、光学装置100は、代替的に、近赤外線、赤外線、または紫外線波長などの他の波長とともに使用されてもよい。したがって、ユニットセル104は、ユニットセル104の光学特性の条件の切り替えが、所望の動作波長に対するユニットセル104の強い効果を提供するように構成され得る。
【0086】
ユニットセル104のアレイ102は、ユニットセル104の複数のサブセット110、112を備えることができ、サブセット110、112は、ユニットセル104の異なるハッチングによって図1に示されている。サブセット110、112は互いに素であり得、その結果、アレイ102中の各ユニットセル104は、単一のサブセットの一部である。
【0087】
サブセット110、112内のユニットセル104は、アクティブであるか非アクティブであるかの間で共同に制御され得る。ユニットセル104がアクティブであるとき、ユニットセル104は、三次元ライトフィールドの分布を一緒に定義するユニットセル104のセットの一部である。ユニットセル104が非アクティブであるとき、ユニットセル104は、光学装置100によって現在形成されている三次元ライトフィールドの分布を定義するためのユニットセル104のセットの一部ではない。
【0088】
したがって、サブセット110、112は、アクティブであるか非アクティブであるかの間で切り替えられ得る。アクティブなサブセット110、112の場合、サブセット110、112の全てのユニットセル104は、アクティブであり、光学装置100によって形成される三次元ライトフィールドの分布を定義することに寄与する。非アクティブなサブセット110、112の場合、サブセット110、112の全てのユニットセル104は、非アクティブであり、光学装置100によって形成される三次元ライトフィールドの分布を定義することに寄与しない。
【0089】
三次元ライトフィールドの分布を形成する場合、光学装置100は、少なくとも1つのアクティブなサブセット110、112を有することができる。したがって、1つまたは複数のサブセット110、112は、一度にアクティブであり得る。光学特性のどの条件で各ユニットセル104を設定すべきかを決定するのを簡単にするために、単一のサブセット110、112のみが一度にアクティブであり得る。
【0090】
ユニットセル104が非アクティブである場合、ユニットセル104は、三次元ライトフィールドの分布の形成に寄与しない。したがって、ユニットセル104は、非アクティブである間に切り替えられて、ユニットセル104が光学特性の第1の条件に設定され得るか、光学特性の第2の条件に設定され得るかを制御し得る。これは、非アクティブなサブセット110、112を準備しながら、各ユニットセル104を光学特性の所望の条件に設定して、サブセット110、112が非アクティブからアクティブに切り替えられると、サブセット110、112内のアクティブなユニットセル104は、三次元ライトフィールドの所望の分布が光学装置100によって形成されることを即座に保証することができる。
【0091】
このようにして、非アクティブなサブセット110、112を使用すると、次のフレームの情報の書き込み(三次元ライトフィールドの分布)を非アクティブなサブセット110、112のユニットセル104に書き込むことができる。したがって、書き込み動作を実行するための時間は、例えば、ホログラフィックビデオを見ている観察者の体験に影響を与えることなく、比較的長くてもよい。
【0092】
次に、光学装置100が三次元ライトフィールドの現在の分布の形成から三次元ライトフィールドの次の分布の形成へと更新されるとき、アクティブなサブセット110を非アクティブに切り替え、非アクティブなサブセット110、112をアクティブに切り替えることにより、非常に高速な動作を実行することができる。
【0093】
三次元ライトフィールドの形成された分布の正確な制御が確実に得られるようにするために、アクティブなユニットセル104の周期性は、動作波長未満であり得る。周期性は、より正確な制御のために、動作波長の半分以下であることが好ましい場合がある。一実施形態では、アクティブなユニットセル104の周期性は、したがって、100nmのオーダであり得る。
【0094】
光学装置100は、サブセット110、112がアクティブであるか非アクティブであるかを共同で制御するためにサブセット110、112のそれぞれに関連付けられた個別のシャッタ122を有し得る光シャッタ構造120を備え得る。
【0095】
光シャッタ構造120は、複数のシャッタ122を含むことができ、各シャッタ122は、単一のサブセット110、112内の複数のユニットセル104と関連付けることができる。いくつかの実施形態では、単一のシャッタ122は、サブセット110、112の全てのユニットセル104に関連付けられてもよい。
【0096】
光シャッタ構造120は、以下で詳細に説明されるように、多くの異なる方法で実施されてもよく、アクティブまたはパッシブであってもよい。特にパッシブ光シャッタ構造120の場合、入射光線106の特性も制御して、光線106と光シャッタ構造120との間の相互作用を制御し、したがって、サブセット110、112がアクティブか非アクティブかを定義することができる。例えば、光線106の偏光を制御することができる。
【0097】
図2a~図2bに示されるように、光学装置100の投影形状に応じて、ユニットセル104のアレイ102およびシャッタパターン120のための異なる配置が必要とされる場合がある。図2aは、三次元ライトフィールドの分布を形成するために入射光線106を反射するように構成された光学装置100を示し、一方、図2bは、三次元ライトフィールドの分布を形成するために、入射光線106を透過するように構成された光学装置100を示す。
【0098】
図2a~図2bの図示された実施形態では、個々のユニットセル104の50nmのピクセルピッチが示されている。そのようなピクセルピッチでは、2×2のユニットセル104は、100nmの辺を有する正方形内に収まるであろう。これは、ユニットセル104の4つのサブセット110、112、114、116がユニットセル104のアレイ102で定義され、各サブセット110、112、114、116が100nmの有効ピッチを有することを意味する。各サブセット110、112、114、116に属するユニットセル104は、ユニットセル104の異なるハッチングによって図2a~図2bに示されている。
【0099】
1つのサブセット110は、三次元ライトフィールドの分布を形成するためにアクティブであり得る。これは、アクティブサブセット110に関連付けられる白色領域を備える光シャッタ構造120によって図2a~図2bに示されている。すなわち、光シャッタ構造120は、入射光線106がアクティブなサブセット110のユニットセル104に到達することを可能にする。さらに、光シャッタ構造120は、非アクティブなサブセット112、114、116に関連付けられる黒い領域を含む。すなわち、光シャッタ構造120は、入射光線106が非アクティブなサブセット112、114、116内のユニットセル104に到達するのを防ぐ。
【0100】
図2a~図2bの実施形態では、4つのピクセルのうちの1つが同時にアクティブ化され、光学装置100は、サブセット110がアクティブである所与の時点で示されている。非アクティブなサブセット112、114、116のユニットセル104は、次のフレームの三次元ライトフィールドの分布をエンコードするためにその時に書き込まれている。
【0101】
図2a~図2bは、4つのサブセット110、112、114、116を備える光学装置100を示しているが、2つまたは3つのサブセットなど、他の数のサブセットをアレイ102で使用することができることを理解されたい。
【0102】
三次元ライトフィールドの分布を形成するための反射形状(図2aに示される)と透過形状(図2bに示される)の場合、シャッタ構造120の機能は、異なる性質を有するべきである。両方の形状について、開いたシャッタ構造120は、入射光線106(の一部)を透過し、閉じたシャッタ構造120は、光の透過を少なくとも部分的に防ぐ必要がある。
【0103】
図2aの反射形状では、閉じたシャッタが入射光を反射しないことが望ましく、これは吸収シャッタ構造120が最もよく機能することを意味する。図2bの透過形状では、シャッタ構造120は、反射と吸収の両方について、光シャッタ構造120は、光学装置100によって形成される三次元ライトフィールドの分布との干渉を生じないので、閉状態では反射性および/または吸収性であり得る。
【0104】
また、図2bの透過形状では、ユニットセル104のアレイ102および光シャッタ構造120の位置も、装置の機能を変更することなく切り替えることができることに留意されたい。すなわち、光線106は、ユニットセル104のアレイ102に入射することができる。次に、ユニットセル104のアレイ102から送信された光は、光シャッタ構造120に入射することができ、それにより、光シャッタ構造120は、ユニットセル104が三次元ライトフィールドの分布の形成に寄与することを許可されるかどうかを選択するために、光がさらに透過されるかどうかを選択することができる。
【0105】
したがって、一実施形態では、光シャッタ構造120は、ユニットセル104のアレイ102に対して配置され、光シャッタ構造120は、光シャッタ構造120への入射光が、ユニットセル104が非アクティブであるかアクティブであるかを選択するために関連付けられているユニットセル104に到達するかどうかを選択するために制御可能である。
【0106】
他の実施形態では、光シャッタ構造120は、ユニットセル104のアレイ102に対して配置され、光シャッタ構造120は、光シャッタ構造120への入射光が、ユニットセル104によって透過されている光が、ユニットセル104が非アクティブであるかアクティブであるかを選択するための三次元ライトフィールドの分布に寄与できるかどうかを選択するために制御可能である。
【0107】
この開示の残りの部分では、反射形状について異なる実施形態が示されているが、おそらく透過形状についての適切な調整により、これらの実施形態は、透過形状でも使用できることを理解されたい。
【0108】
光のシャッタは、様々な実施形態に関連して以下で説明する異なるアーキテクチャで達成することができる。2つの実施形態は、図3a~図3bに示されている。
【0109】
その最も単純な実施形態(図3aに示される)では、ユニットセル104のアレイ102および光シャッタ構造120のパターンは、同じ密度およびアドレス指定を有する。このような実施形態は、いくつかの実施形態では、同一のコンポーネントを使用して、ユニットセル104の光学特性の切り替え可能な条件を提供し、光シャッタ構造120の切り替えを提供して、ユニットセル104がアクティブか非アクティブかを制御することができる。
【0110】
このような実施形態では、サブセット110、112、114、116に関連付けられた全ての光シャッタで同じ操作が実行されるため、光シャッタ構造120のアドレス指定はより簡単になる。
【0111】
図3aの光シャッタ構造120の実施形態の変形例が図3bに示されており、2つのサブセット110、112が、2つのユニットセル104のうちの1つが同時にアクティブになるように定義されている。サブセット110、112は、チェッカーボードパターンで配置されており、サブセット110、112の有効ピッチは、アレイ102内のユニットセル104のピッチに対して√2倍だけしか増加していない。この形状では、光シャッタ122は、単純なライン電極によってアドレス指定され、これは、クロスポイントアドレス指定の必要がある図3aの実施形態と比較して、光シャッタ構造120のアドレス指定を簡略化する。
【0112】
光シャッタ構造120の他の実施形態は、図4a~図4dに示され、サブセット110、112、114、116の有効ピッチは、実施形態に応じて、少なくとも1つの次元(行/列)で増加している。
【0113】
図4aに示される実施形態では、アレイ102内のユニットセル104の各列は、細長いシャッタ122を共有する。そのようなパターンは、単純なライン電極によってシャッタ122を制御することを可能にする。シャッタ122が複数の列をカバーする変形例は、接触電極への制限がより少ない同じ単純なアドレス指定から利益を得るであろう。
【0114】
図4bおよび図4cに示される実施形態では、2×2ユニットセル104のクラスタをカバーするシャッタ122が提供されている。図4bの実施形態は、アレイ102の2つのサブセット110、112を定義し、ユニットセル104の2つのクラスタのうちの1つが同時にアクティブである。図4cの実施形態は、4つのサブセット110、112、114、116を定義し、ユニットセル104の4つのクラスタのうちの1つが同時にアクティブである。
【0115】
図4bの実施形態は、ライン電極による光シャッタ構造120の非常に簡単な接触を再び可能にする。図4cの実施形態では、主な利点は、(図3aの実施形態と比較して)光シャッタ構造120を制御するために必要な電極の密度が低下することである。
【0116】
シャッタ122がN×M行および列をカバーする図4a~図4cに示された実施形態の変形例は、光シャッタ構造120の制御電極の複雑さを低減することを可能にする一方で、三次元ライトフィールドの分布を形成するアクティブなサブセット110内のユニットセル104の小さなピッチを維持できることを理解されたい。
【0117】
アクティブなサブセット110内のユニットセル104のセグメント化または配置は、三次元ライトフィールドの所望の分布を形成するために、それぞれのユニットセル104に対して設定される光学特性の条件の計算に影響を与える。また、アクティブサブセット110におけるユニットセル104のセグメント化または配置は、達成することができる画像品質に影響を与える可能性がある。したがって、光シャッタ構造120を制御するための電極の最も実用的な実施形態と、三次元ライトフィールドの所望の分布の最も効率的な計算の両方を見つけるために、サブセット110、112、114、116内のユニットセル104の画像品質とセグメント化の程度との間にトレードオフが行われる可能性がある。
【0118】
図4dでは、サブセット110、112、114、116のセグメント化が並べて行われる実施形態が示されている。各サブセット110、112、114、116は、別個のチップに形成されてもよく、チップは、互いに近接して配置されてもよい。したがって、各サブセット110、112、114、116は、ユニットセル104のサブアレイを形成することができる。図4dの実施形態では、2×2サブアレイのアレイが、三次元ライトフィールドの異なる分布の順次形成のために使用される。
【0119】
上記の実施形態は、概して、単一の動作波長に適用され得る、すなわち、単一の波長の単一の光線106が光学装置100に入射する、光シャッタ構造120を説明する。しかしながら、実際のホログラフィックビデオの表示など、多くの用途では、複数の色を使用する必要がある場合がある。
【0120】
このように、上に示されたセグメント化方式は、複数の色操作に拡張できる。複数の色操作は、光学装置100にカラーフィルタを追加することを要求するかもしれない。カラーフィルタ130は、例えば、ユニットセル104のアレイ102が形成される基板上に統合されてもよい。カラーフィルタ130は、単一のユニットセル104と関連付けられるように構成され得、その結果、各ユニットセル104は、ユニットセル104によって受信される動作波長を制御するためのそれぞれのカラーフィルタと関連付けられ得る。
【0121】
追加または代替として、ユニットセル104のアレイ102の特定の領域を特定の色で選択的に照明するために照明をマスクすることができる。
【0122】
この場合も、サブセット110、112、114、116をセグメント化するためにカラーフィルタ130と組み合わせて行った選択は、異なる色の三次元ライトフィールドの所望の分布を形成するために、それぞれのユニットセル104に設定される光学特性の条件を計算するためのアルゴリズムに追加の影響を与える可能性がある。この点で、個々のシャッタ122でカバーされるセグメント化領域が大きいほど、計算への影響が少なくなる可能性が高く、アルゴリズムの複雑さと必要な画像品質の両方に関して、実施形態の点で最も実用的なセグメント化に関して最適が求められる可能性がある。
【0123】
ユニットセル104のアレイ102に関連するカラーフィルタ130の可能なレイアウトの2つの実施形態が、図5a~図5bに示されている。カラーフィルタ130は、青色の光を透過させるカラーフィルタ130を示すために線状のハッチパターン、緑色の光を透過させるためのカラーフィルタ130を示すための点線のハッチパターン、および赤色の光を透過させるためのカラーフィルタ130を示すためのクロスラインのハッチパターンを使用して図5a~図5bに示されている。
【0124】
図5aの実施形態は、赤、緑、および青の3つの目標色に対して同じ数のユニットセル104を定義したが、図5bの実施形態は、ディスプレイおよびカメラ用途で一般的に使用されるYUVカラー符号化システムの使用を示す。図5bの実施形態では、カラーフィルタ130の配置が依然として周期的配列で現れる一方で、緑色の光用のユニットセル104は、赤色および青色に比べて2倍多い。赤色と青色のユニットセル104の周期性は、アレイ102のユニットセル104の個々のピッチの2倍であるが、緑色のユニットセル104の周期性は、アレイ102のユニットセル104の個々のピッチの√2倍である。ホログラフィック画像を表示する用途では、そのようなタイリングを使用して、異なる色を対象とする切り替え可能なユニットセル104の異なる回折効率を補償することができる。
【0125】
異なるタイリングスキームの場合、三次元ライトフィールドの所望の分布を得るために異なる光シャッタ構造120が必要であり、計算アルゴリズムは、三次元ライトフィールドの所望の分布を形成するために、それぞれのユニットセル104に対して設定される光学特性の条件を計算するときに、セグメント化を考慮する必要があろう。
【0126】
図5aおよび図5bの実施形態では、2×2および3×3アレイ(複数の)をカバーするシャッタ122(図5a~図5bにおいて破線で示される例)は、各シャッタ122の下のそれぞれの色に関連付けられるユニットセル104の同一の形状をもたらすことを理解することは容易である。
【0127】
実際の実施形態において、図5bに示されるようなタイリングは、図5aに示されるタイリングと比較して、それぞれのユニットセル104に対して設定される光学特性の条件を計算するための単純化された計算をもたらし得る。図5bの場合のように、特定の色に関連付けられるユニットセル104の周期性は固定されており、個々のユニットセル104は、正方形格子上にある。図5bに示される実施形態では、赤色および青色のユニットセル104は、個々のユニットセル104の周期の2倍の周期を有する正方形グリッド上に配置され、緑色のユニットセルは、個々のユニットセル104の周期の√2倍の45度回転した正方形グリッド上に配置される。
【0128】
他の実施形態では、図5a~図5bに示されるように、同じ色をターゲットとし、同様のパターンで配置されたN×Mユニットセル104のクラスタをグループ化することが有用であり得るが、各「ピクセル」は、特定の波長をターゲットとする「マイクロピクセル」(個々のユニットセル104)のアレイからなる「マクロピクセル」になる。次に、そのようなマクロピクセルは単一のカラーフィルタ130を備えることができ、一方、光シャッタ122は、異なる色のために動作する複数のマクロピクセルに再び関連付けることができる。
【0129】
カラーフィルタ130は、ユニットセル104のアレイ102が形成される基板に統合することができる単純な誘電体多層バンドパスフィルタとすることができる。あるいは、所望のパターンを有するカラーフィルタ130は、光源の前、または光源と光学装置100との間の光路のどこかに配置されてもよい。そのような場合、カラーフィルタ130が意図されたユニットセル104と関連付けられることを確実にするために、良好な位置合わせ制御を有することが重要であろう。
【0130】
使用される特定のアーキテクチャに応じて、多くの異なるタイプの光シャッタ構造120を使用することができる。
【0131】
単純なケースでは、使用される光シャッタ構造120は、ユニットセルレベルで実施され、同じタイプの切り替え可能なコンポーネントが、動作メカニズムに関係なく、ユニットセル層と光シャッタ層の両方で使用される。そのような実施形態では、光シャッタ122からの反射/透過強度に関して、良好なオン/オフ比が必要になる場合がある。
【0132】
光シャッタ構造120とユニットセル104に同じタイプの切り替え可能なコンポーネントを使用すると、開いたシャッタ122が「オン」状態のユニットセル104と同じ状態になる透過形状(図2b)でうまく機能し(すなわち、光学特性の条件を設定して、高度な光透過を提供する)、一方、閉じたシャッタ122は、「オフ」状態のユニットセル104と同じ状態になる(すなわち、光学特性の条件を設定して、光の透過を実質的に防止する)。このような実施では、光がユニットセル104と光シャッタ122を通過した後、光学装置100から十分な光強度を得るには、オン/開状態の透過強度を非常に大きくする必要がある。
【0133】
反射形状(図2a)では、光源からシャッタ122に入射してユニットセル104に通過したときと、ユニットセル104で反射してシャッタ122を通過したときに、光がシャッタ122を2回通過し、シャッタ122上に三次元ライトフィールドの分布を形成する。したがって、シャッタ122は、閉状態では吸収率が高い一方で、開状態では再び非常に透過性でなければならない。
【0134】
開状態では、光強度の主な変調は、光シャッタ122が関連付けられているユニットセル104からもたらされるべきである。閉じた状態では、隣接するアクティブユニットセル104によって形成される三次元ライトフィールドに干渉する反射を生成しないように、光を吸収する必要がある。一方、ユニットセル104の場合、「オン」状態では大きな反射が望まれるが、「オフ」状態では、光は吸収されるか、またはユニットセル104が形成される基板に向かって透過される。
【0135】
サブセット110、112、114、116内のユニットセル104の周期性が有利には動作波長を十分に下回ることがあるとすると、シャッタ122は、個々のシャッタ122が非常に小さいサイズである必要性を回避するために、複数のユニットセル104と関連付けられるように配置され得る。このような光シャッタ122の配置は、少なくとも可視またはNIRスペクトル領域の動作波長に使用できる(より長い波長の場合、ユニットセル104のサイズは大きくなり、光シャッタ122は、それぞれのユニットセル104に対してより簡単に個別に形成できる)。
【0136】
したがって、シャッタ122は、ユニットセル104よりも大きく、複数のユニットセル104と関連付けることができる。
【0137】
シャッタ122の適切な寸法を決定することは、三次元ライトフィールドの所望の分布を生成するための計算アルゴリズムに対する光シャッタ122の影響を考慮に入れ、選択されたシャッタタイプに基づいたシャッタ122の実施形態に関する実際的な考慮事項を考慮することを含み得る。
【0138】
以下に、光シャッタ構造を実施する複数の異なる方法を説明する。
【0139】
上記のように、PCMは、ユニットセル104の光学特性の状態を制御するのに有用であり得る。透過形状の場合、少なくとも透過強度が十分に高い場合、同様の設計を光シャッタ122として使用することができる。
【0140】
したがって、光シャッタ122は、第1の状態と第2の状態との間で切り替えられ得るPCM層を備え得、第1の状態と第2の状態との間のPCMの切り替えは、開状態と閉状態との間で光シャッタ122を切り替えるように構成される。
【0141】
PCMは、結晶状態とアモルファス状態との間で切り替わるように構成され得る。しかしながら、第1および第2の状態は、PCMの状態の他の構成であってもよいことが理解されるべきである。例えば、PCMは、2つの異なる結晶状態の間で切り替わるように構成されてもよい。
【0142】
光シャッタ122は、PCMの層を備えることができ、これは、例えば、材料の層のスタックにおいて他の材料と組み合わせることができ、それにより、材料の組み合わせは、光シャッタ122の開状態または閉状態を定義することができる。次に、PCMの状態の切り替えは、例えば、光シャッタ122内の層のスタックの光学特性に影響を与え、光シャッタ122の状態がPCMの状態によって制御され得る。
【0143】
上記で概説したように、反射ベースの形状の場合、光シャッタ122とユニットセル104の機能は異なる。したがって、光シャッタ122が反射ベースの形状のPCMを使用して実施される場合、PCMを使用する光シャッタ122の設計(例えば、PCM層を含む層のスタック)は、PCMを使用するユニットセル104の設計とは異なる必要がある。
【0144】
他の実施形態によれば、光シャッタ構造120は、液晶を使用することができる。
【0145】
液晶の動作は、液晶を通過する光の直線偏光の回転に依存する。これは、互いに90°回転する2つの直線偏光子の間に配置される。液晶を用いた光シャッタ122の開状態では、液晶中で光の偏光が90°回転するため、光シャッタ122の直線偏光子を透過することができる。光シャッタ122の閉状態では、光は、液晶中を伝搬するときに初期偏光を維持し、したがって、光シャッタ122の直線偏光子を透過することができない。
【0146】
液晶を使用する技術は非常に成熟しているが、現在、液晶で実現できる最小のピクセルサイズは、数ミクロンのサイズに制限されている。偏光の回転は、螺旋状の配置を形成し、物理的に回転させる必要があり、光と十分に相互作用して十分に機能する細長い分子によって実現される。これは、サブ波長ピクセルピッチのユニットセル104のアレイ102の場合、液晶を使用した光シャッタ122は、より大きなピクセルブロックまたは「マクロ」ピクセルにのみ適用できることを意味する。
【0147】
他の実施形態によれば、光シャッタ構造120は、電気光学効果を使用することができる。
【0148】
電気光学効果は、光の周波数と比較してゆっくりと変化する電界に応答した、材料の光学特性の変化である。最も一般的な変化は、外部電界の関数としての材料の吸収または材料の屈折率または誘電率の変化である。両方のメカニズムを使用して、様々な基本的な効果に依存して、光シャッタ122を作成できる。
【0149】
例えば、光シャッタ122は、ポッケルス効果(線形電気光学係数)またはカー効果(二次電気光学係数)を使用して屈折率を変化させる際に強い電気光学効果を示す材料を使用して実施され得る。ポッケルス効果は、反転対称性がなく、一般的にカー効果よりもはるかに強い特定の結晶性物質で観察できる。ポッケルス効果は、電磁波の位相と振幅の両方を変更するために使用できる電気光学変調器で広く研究されている。
【0150】
したがって、光シャッタ122は、局所電界を光シャッタ122に印加することに基づいて、開状態と閉状態との間で切り替えられ得る。
【0151】
他の実施形態によれば、光シャッタ構造120は、磁気光学効果を使用することができる。
【0152】
磁気光学効果は、その磁化に応じた材料の光学特性の変化である。材料が磁化されると、時間反転の対称性が失われ、材料の誘電率テンソルに非対角項が生ずる。光がそのような材料と相互作用すると、材料からの透過または反射により、光の偏光状態が変化し、光の強度と位相が変調される。透過形状では、この効果は、ファラデー効果と呼ばれ、反射では、磁気光学カー効果(MOKE)と呼ばれる。これらの効果の最も一般的な用途は、光アイソレータである。この場合、いわゆるファラデー回転子が2つの直線偏光子と組み合わせて使用される。図6に示されるように、ファラデー回転子を介して直線偏光で伝播すると、光の偏光は、材料の磁化に依存する角度で回転する。
【0153】
典型的な光アイソレータでは、回転角βが45°に達するように長さdが選択され、入力側の第1の偏光子を通過できる垂直偏光の光は、出力側の第2の偏光子を通過する。ここで、第2の偏光子は、第1の偏光子に対して45°回転される。光が出力側から入力側に反対方向に伝搬する場合、ファラデー回転子は光を入力側で水平偏光にするため、光は第1の偏光子を透過しない。ファラデー回転子の磁化を切り替えると、回転方向が反転する。すなわち、このような装置は、光学シャッタとして動作できる。
【0154】
しかしながら、最新のガーネットベースのファラデー回転子の典型的な回転値は、0.1°/μmのオーダである。すなわち、伝搬長はかなり長くなければならない。したがって、ファラデー回転子に基づく光シャッタ122は、比較的大きくなり得る。しかしながら、ファラデー回転子で45°の完全な回転を使用する必要がない場合がある。そのため、様々な偏光子の角度を操作することで、よりコンパクトな光シャッタ122を実現できるが、透過パワーの強度が低下する。
【0155】
したがって、磁気光学効果を使用する光シャッタ122は、局所磁場を光シャッタ122に印加することに基づいて、開状態と閉状態との間で切り替えられ得る。
【0156】
他の実施形態によれば、光シャッタ構造120は、マイクロエレクトロメカニカルシステム(MEMS)またはナノマイクロエレクトロメカニカルシステム(NEMS)ベースのコンポーネントを使用することができる。
【0157】
MEMSベースのコンポーネントは、様々なタイプのディスプレイデバイスに使用されている。ほとんどの研究は、主に(しかしながら、これに限定されない)反射型投影ディスプレイに使用されるマイクロミラーアレイに基づいているが、LEDバックライト付きの透過型ディスプレイも、10μmという小さなシャッタサイズで実現されている。MEMSベースのコンポーネントの透過形状の場合、MEMSシャッタを使用することは非常に複雑になる可能性が高いが、マイクロミラーは、図7に示されるように、ユニットセル104のアレイ102の選択された部分を照明するための効果的な方法として使用できる。
【0158】
図7に示される構成は、光学装置100の反射形状および透過形状の両方に対して機能する。MEMSベースの光シャッタ構造120は、マイクロミラー122のアレイを備え、各マイクロミラーは、アレイ102内の1つまたは複数のユニットセル104に関連付けられ得る。
【0159】
そのようなMEMSベースのミラーシステムは、数μmまでの寸法で製造することができるため、MEMSベースの構造によって制御されるマイクロミラーは、アレイ102のサブセット110、112、114、116を定義することを可能にする光シャッタを実行することができる。MEMSベースのミラーシステムは、光を受け取るために単一のユニットセル104を選択することができない場合がある。むしろ、図7に示されるピクセルは、それぞれ、個々のユニットセル104ではなく、ユニットセル104のクラスタを表す。例えば、5μmのミラーサイズおよび50nmの個々のユニットセル104のピッチの場合、MEMSベースのミラーシステムを使用する光シャッタ構造120は、100×100の個々のユニットセル104を含むマクロピクセルに光をセグメント化する。
【0160】
図8に示されるように、MEMSベースのミラーシステムは、各ミラー122に、照明しているマクロピクセルのターゲット波長のみを透過するバンドパスフィルタを備えることにより、複数の色に多重化することも可能である。
【0161】
MEMSベースのミラーシステムを使用する光シャッタ122は、ユニットセル104のアレイ102に向けて光を反射するか、またはアレイ102に到達しないように光を別の方向に向ける位置にマイクロミラーを設定するためのマイクロミラー122に関連付けられたマイクロエレクトロメカニカルアクティベータの制御に基づいて、開状態と閉状態との間で切り替えられ得る。
【0162】
他の実施形態によれば、光シャッタ構造120は、受動光偏光子を使用することができる。
【0163】
ユニットセル104の2つのサブセット110、112を定義する単純な実施形態(単一の動作波長の場合)は、各サブセット110、112に受動(ワイヤグリッド)直線偏光子を備え、それぞれのサブセット110、112の偏光子は、互いに直交するように配置されている。
【0164】
次に、サブセット110、112がアクティブになるかどうかの制御は、入射光線106の直線偏光状態を変更することによって実行されてもよい。これは、多くの異なる方法で、例えば、光源または光学装置100と関連付けられ得る、直線偏光子、光弾性変調器(PEM)、液晶またはファラデー回転子を回転させることによって達成され得る。
【0165】
他の実施形態によれば、光シャッタ構造120は、アクティブな偏光子を使用することができる。
【0166】
切り替え可能なPCMベースの(ワイヤグリッド)偏光子を備えたアーキテクチャを使用して、サブセット110、112がアクティブであるか非アクティブであるかを選択することができる。このような実施形態では、ワイヤグリッド偏光子の周期性とデューティサイクルは、PCMの1つの状態で多くの光を透過し、PCMの他の状態で多くの光を吸収または反射するように選択する必要がある。そのような中で構成では、第1の色をターゲットとするユニットセル104のサブセットは、照明のために単一の直線偏光状態を使用してすでにオンまたはオフに切り替えることができる。次に、他の波長をターゲットとするユニットセル104の第2のサブセットに、第1のサブセットの偏光子に対して90°回転する切り替え可能な偏光子を備えることができる。さらに、第2の色の入射光線も、第1の色に対して90°回転した直線偏光を有することができる。
【0167】
他の実施形態によれば、光シャッタ構造120は、個々の光シャッタ122がユニットセル104のかなり大きなクラスタに関連付けられているか、ユニットセル104のサブアレイに関連付けられている実施形態では、巨視的な機械的シャッタを使用することができ、機械的シャッタは、所望のフレームレートを維持するのに十分な速さで切り替えられるように設計される。
【0168】
アレイ102のユニットセル104が偏光依存になり、ユニットセル104の光学特性を提供する場合(例えば、直交する直線偏光状態でアレイ102を照明する2つの異なる波長で機能する)、上記のすべて前述の偏光ベースの光シャッタ構造120を使用して、追加の機能を得ることができる。
【0169】
次に、図9を参照して、三次元ライトフィールドの分布を形成するためのシステム200について説明する。
【0170】
システム200は、上述の実施形態のいずれかに係る光学装置100を備えることができる。システム200は、動作波長の照明光を提供するための1つまたは複数の光源202をさらに備えることができる。
【0171】
さらに、システム200は、ユニットセル104のアレイ102の所望の照明を確実にするために、光源202と光学装置100との間の経路に配置され得る光学コンポーネントを備え得る。
【0172】
上記の様々な実施形態について述べたように、光シャッタ構造120は、ユニットセル104のアレイ102が形成される基板と一体化することができる。あるいは、光シャッタ構造120は、例えば、光源202と光学装置100との間の光路に別個に配置されてもよく、または光源202に関連して取り付けられてもよい。
【0173】
システム200は、光源202、光シャッタ構造120および光学装置100の互いに対する適切に制御された取り付けを提供するために、ハウジング204に実施されてもよい。
【0174】
システム200は、システム200の1つまたは複数の機能を制御することができるコントローラ210をさらに含むことができる。コントローラ210は、ユニットセル104のアレイ102が形成される基板上に統合されてもよく、ユニットセル104の光学特性の条件を切り替えるために制御信号がユニットセル104にいつ提供されるべきかを制御し得る。さらに、コントローラ210は、光シャッタ構造120を制御して、光シャッタ122を開状態と閉状態との間で切り替えることができる。
【0175】
コントローラ210は、表示されるべき所望のホログラフィック画像の情報を受け取り得、三次元ライトフィールドの所望の分布を形成するために、それぞれのユニットセル104に対して設定されるべき光学特性の条件を計算するためのアルゴリズムを実行し得る。あるいは、コントローラ210は、アルゴリズムを実行することができる外部ユニットからユニットセル104に設定される光学特性の条件の情報を受け取ることができる。
【0176】
コントローラ210はまた、光源202の偏光を設定し、光学装置100への入射光線106の偏光を、アクティブであるユニットセル104のサブセット110、112のどのタイミングと同期させるかについて、光源202を制御することもできる。
【0177】
コントローラ210は、システム200の機能を実施するために1つまたは複数のコンピュータプログラムの命令を実行できる中央処理装置(CPU)などの1つまたは複数の処理装置として実施できることを理解されたい。
【0178】
代替として、コントローラ210は、例えば、組み込みシステムに配置されたファームウェアとして、または特定用途向け集積回路(ASIC)またはフィールドプログラマブルゲートアレイ(FPGA)などの特別に設計された処理ユニットとして実施されてもよい。
【0179】
ここで図10を参照して、三次元ライトフィールドの分布を形成するための方法が論じられる。
【0180】
この方法は、ユニットセルのアレイに入射する光線を受け取るステップ302を含むことができる。この方法は、ユニットセルの第1のサブセットをアクティブにし、ユニットセルの第2のサブセットを非アクティブにすることを選択するステップ304をさらに含む。
【0181】
したがって、アクティブなサブセットのユニットセルは、一緒になって、入射光ビームを受け取るユニットセルによって形成される三次元ライトフィールドの分布を定義することができる。
【0182】
この方法は、ユニットセルの光学特性を、光学特性の少なくとも第1の条件および光学特性の第2の条件のうちの1つに制御するために、第2のサブセットのユニットセルが非アクティブである間に、ユニットセルの第2のサブセットのユニットセルを個別にアドレス指定するステップ306をさらに含む。第2のサブセット内のユニットセルのアドレス指定によって、ユニットセルの第2のサブセットは、サブセットがアクティブに切り替えられたときに形成される三次元ライトフィールドの分布を形成するようにプログラムされる。
【0183】
この方法は、第1のサブセットのユニットセルが光学装置によって形成される三次元ライトフィールドの分布にもはや寄与しないように、ユニットセルの第1のサブセットを非アクティブに共同で切り替えるステップ308をさらに含む。
【0184】
この方法は、アクティブになるようにユニットセルの第2のサブセットを共同で切り替えるステップ310をさらに含む。したがって、光学装置は、第2のサブセットをアクティブに切り替えた後、サブセットが非アクティブである間にユニットセルの第2のサブセットにプログラムされた三次元ライトフィールドの分布を形成する。
【0185】
上記において、本発明の概念は、限られた数の例を参照して主に説明されてきた。しかしながら、すぐに当業者によって理解されるように、上に開示されたもの以外の他の例は、添付の請求の範囲によって定義されるように、本発明の概念の範囲内で等しく可能である。
図1
図2a
図2b
図3a
図3b
図4a
図4b
図4c
図4d
図5a
図5b
図6
図7
図8
図9
図10