IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ シャンハイ シンロン セミコンダクター テクノロジー カンパニー リミテッドの特許一覧

<>
  • 特許-復号化回路およびチップ 図1
  • 特許-復号化回路およびチップ 図2
  • 特許-復号化回路およびチップ 図3
  • 特許-復号化回路およびチップ 図4
  • 特許-復号化回路およびチップ 図5a
  • 特許-復号化回路およびチップ 図5b
  • 特許-復号化回路およびチップ 図5c
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-14
(45)【発行日】2023-04-24
(54)【発明の名称】復号化回路およびチップ
(51)【国際特許分類】
   H04L 25/03 20060101AFI20230417BHJP
【FI】
H04L25/03 C
【請求項の数】 7
(21)【出願番号】P 2021576436
(86)(22)【出願日】2021-04-19
(65)【公表番号】
(43)【公表日】2022-08-31
(86)【国際出願番号】 CN2021088126
(87)【国際公開番号】W WO2021209067
(87)【国際公開日】2021-10-21
【審査請求日】2021-12-21
(31)【優先権主張番号】202011226719.9
(32)【優先日】2020-11-06
(33)【優先権主張国・地域又は機関】CN
(73)【特許権者】
【識別番号】521557609
【氏名又は名称】シャンハイ シンロン セミコンダクター テクノロジー カンパニー リミテッド
(74)【代理人】
【識別番号】100120891
【弁理士】
【氏名又は名称】林 一好
(74)【代理人】
【識別番号】100165157
【弁理士】
【氏名又は名称】芝 哲央
(74)【代理人】
【識別番号】100205659
【弁理士】
【氏名又は名称】齋藤 拓也
(74)【代理人】
【識別番号】100126000
【弁理士】
【氏名又は名称】岩池 満
(74)【代理人】
【識別番号】100185269
【弁理士】
【氏名又は名称】小菅 一弘
(72)【発明者】
【氏名】リー ルイピン
(72)【発明者】
【氏名】チー ウェイ
(72)【発明者】
【氏名】リュウ ビン
(72)【発明者】
【氏名】ワン ジャンフー
【審査官】阿部 弘
(56)【参考文献】
【文献】中国実用新案第210327616(CN,U)
【文献】実開昭62-040584(JP,U)
【文献】米国特許出願公開第2020/0099373(US,A1)
【文献】特開2014-195217(JP,A)
【文献】中国特許出願公開第104283569(CN,A)
【文献】特開2006-217171(JP,A)
【文献】特開2005-045729(JP,A)
【文献】特開2011-109196(JP,A)
【文献】特開昭59-198050(JP,A)
【文献】町田 芳広 YOSHIHIRO MACHIDA,ソフトRZ方式を用いた業務用空調ネットワーク高速化の検討 Study of Commercial Air-Conditioning network speedup utilized software RZ method,情報処理学会 研究報告 モバイルコンピューティングとパーベイシブシステム(MBL) 2019-MBL-092 [online] ,日本,情報処理学会,2019年08月22日,pp. 1-7
(58)【調査した分野】(Int.Cl.,DB名)
H04L 25/03
(57)【特許請求の範囲】
【請求項1】
ホームバスシステム(HBS)プロトコルの復号規則に従って、HBSプロトコルを使用して伝送される信号を復号するための復号化回路であって、HBSプロトコルの復号規則は、信号「01」を「00」として復号し、信号「11」を「11」として復号することを含み、前記復号化回路は、順に接続された、充電/放電ユニット、コンデンサ、および変換ユニットを備え、
前記充電/放電ユニットは、第1レベルの受信に応答して前記コンデンサを充電し、第2レベルの受信に応答して前記コンデンサを放電するように、構成され、前記コンデンサに任意の量の電荷を移動させるのに必要な合計時間と、前記コンデンサから同じ量の電荷を移動させるのに必要な合計時間との比は、所定の値であり、
前記変換ユニットは、前記コンデンサ上の電圧が所定の電圧を超えた場合に第3レベルを出力し、そうでない場合には第4レベルを出力するように、構成され、前記所定の電圧は、第1レベルのノイズスパイクに起因する前記コンデンサ上の電圧と大きさが等しく、
第1レベルは低く、第2レベルは高く、第3レベルは低く、第4レベルは高く、
前記コンデンサは、伝送された信号におけるノイズの悪影響を排除し、異なるクロックレートで伝送された信号に対して自己適応するように構成され、
前記充電/放電ユニットは、定電流である第1電流で前記コンデンサを充電し、定電流である第2電流で前記コンデンサを放電するように、構成され、
第2電流の大きさに対する第1電流の大きさの比は、0.95-1.05の範囲であり、
基準電流を生成するための第1カレントミラーを備える第1基準ユニットをさらに備え、前記充電/放電ユニットは、第2カレントミラー、第3カレントミラーおよび第4カレントミラーをさらに備え、
第1カレントミラーは、基準電流を受け取るための入力を有し、第1カレントミラーは、第2カレントミラーの入力に結合された第1出力を有し、第2カレントミラーは、第3カレントミラーの入力に結合された出力を有し、第3カレントミラーは、前記コンデンサに結合された出力を有し、第1カレントミラーは、第4カレントミラーの入力に結合された第2出力を有し、第4カレントミラーは、第3カレントミラーの出力に結合された出力を有し、
第3カレントミラーは、基準電流の1.9-2.1倍である大きさの電流を出力するように構成され、第4カレントミラーは、基準電流の0.95-1.05倍である大きさであって第3カレントミラーからの電流と同じ方向に流れる電流を、出力するように構成される、復号化回路。
【請求項2】
請求項1に記載の復号化回路であって、前記所定の値は、0.95-1.05の範囲から選択される、復号化回路。
【請求項3】
請求項に記載の復号化回路であって、前記充電/放電ユニットは、第1レベルの受信に応答して第3カレントミラーを動作させて、その後第4カレントミラーからの電流に収束して第1電流を形成する電流を出力させるように、および、第4カレントミラーからの電流のみで第2電流を形成するように第2レベルの受信に応答して第3カレントミラーの動作を停止させるように、構成される、復号化回路。
【請求項4】
請求項1に記載の復号化回路であって、前記変換ユニットは、電圧比較モジュールを備え、前記電圧比較モジュールは、前記コンデンサ上の電圧を受け取るための第1入力を有し、前記電圧比較モジュールは、所定の電圧を受け取るための第2入力を有し、前記電圧比較モジュールは、第1入力で受け取った電圧が第2入力で受け取った電圧よりも高い場合に、所定の信号を出力するように構成される、復号化回路。
【請求項5】
請求項に記載の復号化回路であって、前記変換ユニットは、前記電圧比較モジュールの出力に結合されたイネーブル端子を有する出力モジュールをさらに備え、前記出力モジュールは、所定の信号が前記電圧比較モジュールから前記イネーブル端子で受信された場合に第3レベルを出力し、そうでなければ第4レベルを出力するように、構成される、復号化回路。
【請求項6】
請求項に記載の復号化回路であって、前記電圧比較モジュールおよび/または前記出力モジュールにバイアス電流を供給するための第2基準ユニットをさらに備える、復号化回路。
【請求項7】
請求項1からのいずれか1項に記載の復号化回路を備えるチップ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、集積回路(IC)チップの分野に関し、特に、復号化回路およびチップに関する。
【背景技術】
【0002】
空調、セキュリティ、スマートホームなどの分野では、HBS(Home Bus System)プロトコルが、ホスト機器とスレーブ機器との間の通信に使用されている。このプロトコルは、通信および電力供給の両方をツイストペアでサポートする点で有利である。つまり、ツイストペアは、通信に、および接続された機器に電力を供給するのに、使用することができる。機器を接続するのに使用する場合、ツイストペアは、極性要件を有さず、すなわち、無極性接続が可能となり、現場の設置者に大きな利便性を提供する。しかしながら、従来技術における通信に現行のHBSプロトコルを使用することは、以下の3つの欠点を有する。
【0003】
第1に、HBSプロトコルは、高レベル信号および低レベル信号「1」および「0」をそれぞれ「11」および「01」として符号化し、「01」および「11」をそれぞれ「00」および「11」として復号化して、元の波形を導出する。典型的に、復号化動作は、マイクロコントローラユニット(MCU)上で実行されるソフトウェアによって行われる。これは、MCUの有益リソースを使い尽くし、その構成により厳しい要件を課す。
【0004】
第2に、例えば、セントラルエアコンの分野では、内部ユニットは、インラインコントローラから、通常約50m、場合によっては200m以上離れて配置される。実際の設備の様々なニーズに対処するために、そのようなエアコンの設計では、製造業者は、500mの伝送距離を通常考慮に入れている。これは、この目的に使用される通信インターフェースチップに厳しい要求を課す。それに接続されるツイストペアは、通信線としてだけでなく、電力線としても機能するからである。それ故に、信号通信および電力伝送距離が長くなると、ツイストペアで伝送される信号の干渉が激しくなったり、ツイストペア自体の寄生容量が著しくなったりして、伝送信号を歪ませる可能性がある。この場合、MCUを使用して干渉信号を識別する必要があり、この動作の試みが失敗すると、ビットエラーレート(BER)の増加、または通信の失敗につながり得る。そのため、伝送距離には制限がある。
【0005】
第3に、異なる技術の信号は、通常、異なるクロックレートで伝送される。従って、これらの信号を復号するために、MCUは、様々なクロックレートに自己適応する設計を採用しなければならない。これは、MCUの計算負荷をさらに増大させる。
【0006】
要約すると、現行のHBSプロトコルの信号復号化方式は、MCUの計算負荷が重い、エラー訂正と伝送距離とのトレードオフ、異なるクロックレートで伝送される信号への適応性が不十分である、という問題を抱えている。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の目的は、現行のHBSプロトコルの信号復号化方式の上述した問題点、すなわち、重いMCUの計算負荷、エラー訂正と伝送距離とのトレードオフ、および異なるクロックレートで伝送される信号への不十分な適応性、を解決するような復号化回路およびチップを提供することにある。
【課題を解決するための手段】
【0008】
この目的のために、提供される復号化回路は、HBSプロトコルの復号規則に従って、HBSプロトコルを使用して伝送される信号を復号するのに使用される。HBSプロトコルの復号規則は、信号「01」を「00」として復号し、信号「11」を「11」として復号することを含む。復号化回路は、順に接続された、充電/放電ユニット、コンデンサ、および変換ユニットを含む。
【0009】
充電/放電ユニットは、第1レベルの受信に応答してコンデンサを充電し、第2レベルの受信に応答してコンデンサを放電するように構成されている。コンデンサに任意の量の電荷を移動させるのに必要な合計時間と、コンデンサから同じ量の電荷を移動させるのに必要な合計時間との比は、所定の値である。
【0010】
変換ユニットは、コンデンサ上の電圧が所定の電圧を超えた場合に第3レベルを出力し、そうでない場合には第4レベルを出力するように構成される。所定の電圧は、第1レベルのノイズスパイクに起因するコンデンサ上の電圧と大きさが等しい。
【0011】
第1レベルと第3レベルは共に低く、第2レベルと第4レベルは共に高い。
【0012】
コンデンサは、伝送された信号におけるノイズの悪影響を排除し、異なるクロックレートで伝送された信号に対して自己適応するように構成される。
【0013】
任意で、所定の値は、0.95-1.05の範囲から選択されてよい。
【0014】
任意で、充電/放電ユニットは、定電流である第1電流でコンデンサを充電し、同じく定電流である第2電流でコンデンサを放電するように構成されてよい。
【0015】
任意で、第2電流の大きさに対する第1電流の大きさの比は、0.95-1.05の範囲であってよい。
【0016】
任意で、復号化回路は、基準電流を生成するための第1カレントミラーを含む第1基準ユニットをさらに含んでよく、充電/放電ユニットは、第2カレントミラー、第3カレントミラーおよび第4カレントミラーを含み、第1カレントミラーは、基準電流を受け取るための入力を有し、第1カレントミラーは、第2カレントミラーの入力に結合された第1出力を有し、第2カレントミラーは、第3カレントミラーの入力に結合された出力を有し、第3カレントミラーは、コンデンサに結合された出力を有し、第1カレントミラーは、第4カレントミラーの入力に結合された第2出力を有し、第4カレントミラーは、第3カレントミラーの出力に結合された出力を有する。
【0017】
さらに、第3カレントミラーは、基準電流の1.9-2.1倍である大きさの電流を出力するように構成されてよく、第4カレントミラーは、基準電流の0.95-1.05倍である大きさであって第3カレントミラーからの電流と同じ方向に流れる電流を、出力するように構成されている。
【0018】
任意で、充電/放電ユニットは、第1レベルの受信に応答して第3カレントミラーを動作させて、その後第4カレントミラーからの電流に収束して第1電流を形成する電流を出力させるように、および、第4カレントミラーからの電流のみで第2電流を形成するように第2レベルの受信に応答して第3カレントミラーの動作を停止させるように、構成されてよい。
【0019】
任意で、変換ユニットは、電圧比較モジュールを含んでよく、電圧比較モジュールは、コンデンサ上の電圧を受け取るための第1入力を有し、電圧比較モジュールは、所定の電圧を受け取るための第2入力を有し、電圧比較モジュールは、第1入力で受け取った電圧が第2入力で受け取った電圧よりも高い場合に、所定の信号を出力するように構成される。
【0020】
任意で、変換ユニットは、電圧比較モジュールの出力に結合されたイネーブル端子を有する出力モジュールをさらに含んでよく、出力モジュールは、所定の信号が電圧比較モジュールからイネーブル端子で受信された場合に第3レベルを出力し、そうでなければ第4レベルを出力するように、構成される。
【0021】
任意で、復号化回路は、電圧比較モジュールおよび/または出力モジュールにバイアス電流を供給するための第2基準ユニットをさらに含んでよい。
【0022】
上記の目的は、上記で定義された復号化回路を含むチップによっても達成される。
【0023】
先行技術と比較して、提供される復号化回路およびチップでは、充電/放電ユニット、コンデンサ、および変換ユニットが順に接続されている。充電/放電ユニットは、コンデンサを充電および放電することができ、任意の量の電荷をコンデンサに移動させるのに必要な合計時間と、同じ量の電荷をコンデンサから移動させるのに必要な合計時間との比は、予め決められている。変換ユニットは、コンデンサの電圧が所定の電圧を超えた場合に第3レベルを出力し、そうでなければ第4レベルを出力するように、構成される。この設計は、コンデンサの充電および放電サイクルを制御するためにHBSプロトコルの符号化特性を利用することによる信号復号化を可能にし、このようにしてMCUの計算負荷を軽減する。また、コンデンサの電荷量が急激に変化しないという挙動を利用することによって、伝送信号におけるノイズの悪影響を排除し、HBSプロトコルを利用する場合に拡張された有効伝送距離を可能にする。さらに、コンデンサの充電時間と放電時間との比を所定の値に設定することで、異なるクロックレートで伝送される信号に自己適応性を付与する。このようにして、重いMCUの計算負荷、エラー訂正と伝送距離とのトレードオフ、および異なるクロックレートで伝送される信号への不十分な適応性を含む従来技術の問題点を解決する。
【0024】
当業者であれば、以下の図面は、本発明の範囲をいかなる意味でも制限するのではなく、本発明のより良い理解を可能にするためにのみ提示されていることを理解するであろう。
【図面の簡単な説明】
【0025】
図1】本発明の実施形態1による復号化回路の構造概略である。
図2】本発明の実施形態1による復号化回路で使用される信号の概略波形図である。
図3】本発明の実施形態2による復号化回路の概略図である。
図4】本発明の実施形態2による復号化回路からの干渉がない伝送信号に応答する出力波形を概略的に示す。
図5a】ソフトウェアベースの復号化方式からの干渉を伴う伝送信号に応答する出力波形を概略的に示す。
図5b】本発明の実施形態2による復号化回路からの干渉を伴う伝送信号に応答する出力波形を概略的に示す。
図5c図5bの部分Aを部分的に拡大した概略図である。
【発明を実施するための形態】
【0026】
これらの図において、
100-充電/放電ユニット、200-コンデンサ、300-変換ユニット、400-第1基準ユニット、500-第2基準ユニット、600-電圧供給ユニット、
110-第2カレントミラー、120-第3カレントミラー、130-第4カレントミラー、140-トランジスター、310-電圧比較モジュール、320-出力モジュール、311-電圧比較モジュールの第1入力、312-電圧比較モジュールの第2入力、321-出力モジュールのイネーブル端子、410-第1カレントミラー。
【0027】
本発明の目的、利点、および特徴は、添付の図面と併せてなされる、そのいくつかの特定の実施形態に関する以下のより詳細な説明から、より明らかになるであろう。図は、開示された実施形態をより便利で明確な方法で説明するのに役立つことを唯一の目的として、必ずしも正確な縮尺で描かれていない非常に簡略化された形で提供されていることに、留意されたい。また、図に示されている構造は、通常、実際の構造の一部である。特に、図は、異なる強調を有する傾向があるため、異なる縮尺で描かれていることが多い。
【0028】
本明細書では、単数形の“a”,“an”および“the”は、文脈が明確にその他を指示しない限り、複数の指示対象を含む。「または」という用語は、文脈が明確にその他を指示しない限り、「および/または」を含む意味で用いられる。「いくつかの」という用語は、「少なくとも1つ」の意味で使用され、「少なくとも2つ」という語句は、「2つ以上」の意味で使用される。さらに、本明細書における「第1」、「第2」および「第3」という用語の使用は、例示のみを意図し、相対的な重要性の意味または示唆として、あるいは参照される項目の数値の暗示として解釈されるべきではない。従って、「第1」、「第2」または「第3」で項目を定義することは、その項目の1つまたは少なくとも2つの存在を明示的または暗示的に示すことになる。「一端」および「他端」、または「近位端」および「遠位端」という用語は、一般に、端点のみではなく、対向する端点を含む対向する端部部分を指すのに使用される。さらに、「設置」、「接続」および「結合」という用語は、広い意味で解釈されるべきである。例えば、接続は、永久的な接続、着脱可能な接続、または一体型の接続であってよい。また、機械的な接続や電気的な接続であってよい。さらに、直接的な接続、1つ以上の要素を介在させた間接的な接続、2つの構成要素間の内部通信や相互作用であってもよい。さらに、ある要素が別の要素上に配置されていると言及される場合、それは、典型的に、2つの要素が、介在要素の存在により直接的または間接的に互いに接続、結合、嵌合、または噛合されることのみを意味する。そのような言及は、2つの要素間の相対的な空間的関係の意味または暗示として解釈されるべきではない。つまり、文脈が明確に特定しない限り、参照される要素は、他の要素の内側に、外側に、上に、下に、横に、またはその他の空間的な関係で、配置されてよい。当業者は、特定の状況に従って、本明細書における上述の用語の特定の意味を理解することができる。
【0029】
本発明のコアコンセプトは、現行のHBSプロトコルの信号復号化方式の上述した問題点、すなわち、重いMCUの計算負荷、エラー訂正と伝送距離とのトレードオフ、および異なるクロックレートで伝送される信号への不十分な適応性、を解決する復号化回路およびチップを提供することである。
【0030】
以下の説明では、添付の図面を参照する。
【0031】
実施形態1
ここで、図1および図2を参照すると、図1は、本発明の実施形態1による復号化回路の構造概略であり、図2は、本発明の実施形態1による復号化回路で使用される信号の概略波形図である。
【0032】
図1に示すように、本実施形態で提供される復号化回路は、順に接続された、充電/放電ユニット100、コンデンサ200、および変換ユニット300を含む。
【0033】
充電/放電ユニット100は、第1レベルの受信に応答してコンデンサ200を充電するように、および第2レベルの受信に応答してコンデンサ200を放電するように、構成される。任意の量の電荷をコンデンサ200に移動させるのに必要な合計時間と、同じ量の電荷をコンデンサ200から移動させるのに必要な合計時間との比は、予め決められている。
【0034】
変換ユニットは、コンデンサ200上の電圧が所定の電圧を超えた場合に第3レベルを出力し、それ以外の場合に第4レベルを出力するように、構成される。
【0035】
第1レベルは、高レベルおよび低レベルのうちの一方であり、第2レベルは、高レベルおよび低レベルのうちの他方である。第3レベルは、高レベルおよび低レベルのうちの一方であり、第4レベルは、高レベルおよび低レベルのうちの他方である。
【0036】
「任意の電荷量」という語句は、通常の動作で発生し得る移動電荷量を指すことが意図されていることが理解されるであろう。コンデンサ200の容量を超える移動電荷量や、通常の動作中に発生しない移動電荷量は、総充電時間と総放電時間との比が所定の値であるという制約を必ずしも受けない。通常の動作で発生し得る移動電荷量に対する総充電時間と総放電時間との所定の比と、通常の動作で発生しない移動電荷量に対する総充電時間と総放電時間との非所定の比とを有する回路方式は、本出願の範囲内であると考えられる。充電プロセスの総充電時間は、充電電流が存在しないプロセス中のブランク期間を除外して、プロセス中の全ての連続充電期間の持続時間を合計することによって計算される。放電プロセスの総放電時間は、同様に計算される。完全な充電および放電プロセスは、ゼロなどのコンデンサ200上の同じ量の電荷で開始し、終了する。例示的な充電および放電プロセスを以下の表1に示す。
【0037】
表1:コンデンサの例示的な充電および放電プロセス
【表1】


従って、表1の例示的なプロセスの総充電時間はT2+T6として、その総放電時間はT3+T5+T7+T8として、計算される。
【0038】
この配置は、以下の利点を提供する。
第1に、復号化タスクをMCUから専用復号化回路に移すことで、MCUの計算負荷を軽減し、関連するソフトウェアプログラムの必要性をなくす。
【0039】
第2に、コンデンサ200上の電荷量が急激に変化しないというコンデンサ200の挙動を利用することによって、伝送信号におけるノイズの悪影響を排除する。伝送信号に1つ以上のノイズスパイクが存在する場合であっても、それに応答して復号化回路から出力される信号の波形は、影響を受けない(そのパルス幅は多少歪むことはあるが、そのような歪みは後続のアナログ・デジタル変換モジュールによって無視される)。さらに、伝送信号におけるノイズの悪影響の排除は、HBSプロトコルを使用する場合、拡張された有効伝送距離を可能にする。
【0040】
第3に、充電時間と放電時間との所定の比により、コンデンサ200は、異なるクロックレートで伝送される信号に自己適応する。例えば、パルス幅がΔTの伝送信号については、信号の低レベルを、コンデンサ200の充電を開始するためのトリガとし得る。所定の値が1である場合、コンデンサ200上の電圧が所定の電圧よりも高い合計時間が、充電時間の2倍になるように構成されてよく、復号化回路が一対の連続するビットを常に単一ビットに変換できるようにする(当然、他のロジックと連携して)。つまり、異なる周波数(従って異なるパルス幅)を有する別の信号が入力されると、復号化回路は、入力信号の2倍のパルス幅を持つ信号を応答的に出力する。これにより、異なる周波数を有する入力信号について、その出力パルス幅を修正することが可能となる。すなわち、異なるクロックレートで伝送される信号に対して自己適応的であることが可能となる。
【0041】
なお、所定の値は、実際の動作条件によって変化し得ることを理解されたい。例えば、所定の値が1/2である場合、コンデンサ200上の電圧が所定の電圧よりも高い合計時間が、充電時間の3倍になるように構成されてよく、復号化回路が連続する3ビットのセットを常に単一ビットに復号できるようにする(当然、他のロジックと連携して)。別の例として、特殊なパスワードプロトコルは、それぞれ8ビットからなるデータフレームを利用し、最初のビットが、それが低レベルの場合、後続の7ビットが第1暗号化アルゴリズムを使用して暗号化された情報を表すことを示すように、設計される。さらに、第1ビットが高レベルの場合、それは、後続の7ビットが第2暗号化アルゴリズムを使用して暗号化された情報を表すことを示すように、設計される。この例では、他の回路と協力して、所定の値が1/7に設定されて動作する復号化回路で最初に処理することによって、入力データストリームの復号化を簡略化することができる。
【0042】
好ましくは、所定の値は、0.95-1.05の範囲から選択される。より好ましくは、所定の値は1である。理解を容易にするために、ここで図2を参照すると、図2は、第1レベルおよび第3レベルの両方が低い、本実施形態の例における信号の概略波形図である。図2の例では、復号化回路への入力信号は、異なる時間で入力される異なるパルス幅を有する3つの低レベルのパルスと実質的に考えることができる。これらの低レベルパルスのそれぞれは、特定のパルスのパルス幅の2倍の底辺長さを有する二等辺三角形の形状の対応する変化プロファイルに従うコンデンサ200上の電圧の変化を引き起こす。図2の3つの低レベルパルスは、コンデンサ200のそれぞれ対応する電圧変化プロファイルが互いに分離して独立するのに十分に時間的に間隔を置かれる。任意の隣り合う2つの低レベルパルスが互いに近接している場合、対応する2つの二等辺三角形の間に重なりがあり、それは、先の低レベルパルスによって充電されたコンデンサの不完全な放電により、後の二等辺三角形を高くし、その底辺を長くし得る。
【0043】
充放電時間を正確に制御する方法は数多くある。例えば、定電圧源が、コンデンサ200の充放電に使用されてよく、他の回路の詳細および様々な回路要素のパラメータが、意図した結果からの逆推論によって決定されてよい。しかしながら、好ましい実施では、充電/放電ユニットは、定電流である第1電流でコンデンサ200を充電する。さらに、同じく定電流である第2電流でコンデンサ200を放電する。この配置は、第1電流と第2電流の大きさを単に調整することによって、意図した結果を満足に達成することができ、従って回路の簡略化された論理設計を可能にする。さらに、第1電流の大きさと第2電流の大きさとの比は、0.95-1.05の範囲から選択されてよい。
【0044】
一実施形態では、復号化回路は、第1基準ユニット400をさらに含む。第1基準ユニット400は、以下の実施形態2で詳細に説明するように、充電/放電ユニット100が充放電電流を構成するための基礎となる基準電流を生成するように構成された第1カレントミラーを含む。
【0045】
好ましくは、変換ユニット300は、電圧比較モジュール310を含む。電圧比較モジュール310は、コンデンサ200の電圧を受け取るための第1入力311を有する。電圧比較モジュール310は、所定の電圧を受け取るための第2入力312も有する。電圧比較モジュール310は、第1入力311で受け取った電圧が、第2入力312で受け取った電圧よりも高い場合に、所定の信号を出力するように構成される。所定の信号は、高レベル、低レベル、立ち上がりエッジ、および立ち下がりエッジ、のうちの1つであることを、理解されたい。この配置により、復号化回路の機能の一部として、コンデンサ200上の電荷に関する情報を、後続の回路によって容易に読み取りおよび転送することができる情報に変換することができる。好ましくは、所定の電圧は、0よりわずかに高い値であってよく、それは、第1レベルにおける可能な限り広いノイズスパイクから生じるコンデンサ200の電圧値と、回路にわたる実際のライン電圧降下との両方から決定されてよい。
【0046】
さらに、電圧モジュール310の第1入力311および電圧モジュール310の第2入力312の少なくとも一方は、高インピーダンス入力である。この配置により、復号化回路の応答精度を向上させることができる。
【0047】
一実施形態では、変換ユニット300は、出力モジュール320をさらに含む。出力モジュール320は、電圧比較モジュール310の出力に結合されたイネーブル端子321を有する。出力モジュール320は、イネーブル端子321で電圧比較モジュール310から所定の信号を受信すると、第3レベルを出力するように構成される。そうでなければ、変換ユニット300は、出力モジュール320から第4レベルを出力するように構成される。この配置により、電圧比較モジュール310が外部回路から切り離されるため、外部回路が電圧比較モジュール310に影響を与えることを、従って復号化回路の精度に影響を与えることを、防止することができる。
【0048】
好ましくは、復号化回路は、第2基準ユニット500をさらに含む。第2基準ユニット500は、電圧比較モジュール310および/または出力モジュール320にバイアス電流を供給するように構成される。この配置により、電圧比較モジュール310および/または出力モジュール320の安定性と、復号化回路の正確性とが、さらに向上する。第1基準ユニット400および第2基準ユニット500は、別々のユニットであってもよく、単一のユニットとして統合されてもよいことを、理解されたい。前者の選択は、回路構成要素の配置においてより高い柔軟性を可能にし、後者の選択は、構成要素の数を減らすことを可能にする。本出願の範囲から逸脱することなく、実際の動作条件に従ってそれらの間で選択が行われてよい。
【0049】
次に、図2の破線より左側の部分を参照すると、例示的な実施では、復号化回路は、第1レベル(図2の「入力信号」)で動作し、ΔTのパルス幅を最初に受信し、それは、最大量の電荷がコンデンサに移動されるまで、コンデンサ200を充電する(移動される電荷量は、コンデンサ上の電圧に比例する、すなわち、図2の「電圧比較モジュールの第1入力(電圧)」)。その後、入力信号は第2レベルに移行し、ΔT(図2の「電圧比較モジュールの第1入力(電圧)」)に等しい期間、コンデンサ200の放電を開始する。この2*ΔTの期間内に、コンデンサ200上の電圧(すなわち、図2の「電圧比較モジュールの第1入力(電圧)」)は、所定の電圧(すなわち、図2の「電圧比較モジュールの第2入力(電圧)」)よりも高い状態を実質的に維持していると考えることができるので、上述した出力モジュール320の動作原理によれば、出力モジュール320は、継続的に第3レベルを出力する。残りの期間では、コンデンサ200上の電圧(すなわち、図2の「電圧比較モジュールの第1入力(電圧)」)が、所定の電圧(すなわち、図2の「電圧比較モジュールの第2入力(電圧)」)を超えていないので、出力モジュール320は、継続的に第4レベルを出力する。第1レベルと第3レベルが共に低く、第2レベルと第4レベルが共に高いと仮定すると、入力されたΔT幅のパルスが「01」を示す信号(このパルスは2*ΔTの全期間にわたって持続し、ΔTの期間にそれぞれ対応する2ビットを搬送する)であれば、2*ΔT幅のパルスが、「0」を示す信号として出力される。入力されたΔT幅のパルスが「11」を示す信号であれば、2*ΔT幅のパルスが、「1」を示す信号として出力される。図2に示される波形は、例にすぎず、第1レベル、第2レベル、第3レベル、および第4レベルによって変わるが、設計原理は同じままであることを、理解されたい。
【0050】
本実施形態では、チップも提供され、それは、上記で定義した復号化回路を含み、従って上述した同じ利点を有する。このチップは、IC製造で使用されるトランジスタまたは金属酸化膜半導体電界効果トランジスタ(MOSFET)プロセスを使用して製造することができる。当業者は、当技術分野における一般的な一般知識に基づいて、チップの他の構成要素をどのように構成および形成するかを理解および認識することができ、その詳細な説明は不要と考えられ、省略される。
【0051】
実施形態2
次に、図3から図5cを参照する。図3は、本発明の実施形態2による復号化回路の概略図である。図4は、本発明の実施形態2による復号化回路からの干渉がない伝送信号に応答する出力波形を概略的に示す。図5aは、ソフトウェアベースの復号化方式からの干渉を伴う伝送信号に応答する出力波形を概略的に示す。図5bは、本発明の実施形態2による復号化回路からの干渉を伴う伝送信号に応答する出力波形を概略的に示す。図5cは、図5bの部分Aを部分的に拡大した概略図である。
【0052】
図示するように、本実施形態で提供される復号化回路は、充電/放電ユニット100、コンデンサ200、変換ユニット300、第1基準ユニット400および第2基準ユニット500を含む。第2基準ユニット500は、第1基準ユニット400と一体化されている。
【0053】
第1基準ユニット400は、第1カレントミラー410を含み、基準電流I1を生成するように構成される。充電/放電ユニット100は、第2カレントミラー110、第3カレントミラー120、および第4カレントミラー130を含む。
【0054】
第1カレントミラー410は、基準電流I1を受け取るための入力を有する。第1カレントミラー410は、第2カレントミラー110の入力に結合された第1出力(図3に示すように、トランジスタQ8のコレクタによって提供される)をさらに有する。第2カレントミラー110は、第3カレントミラー120の入力に結合された出力を有する。第3カレントミラー120は、コンデンサ200に結合された出力を有する。第1カレントミラー410は、第4カレントミラー130の入力に結合された第2出力(図3に示すように、トランジスタQ3のコレクタによって提供される)をさらに有する。第4カレントミラー130は、第3カレントミラー120の出力に結合された出力を有する。つまり、第3カレントミラー120、第4カレントミラー130、およびコンデンサ200は、同じノードに結合される。
【0055】
第3カレントミラー120からの出力電流I3の大きさは、基準電流I1の1.9-2.1倍である。第4カレントミラー130からの出力電流I2の大きさは、基準電流I1の0.95-1.05倍であり、この出力電流I2は、第3カレントミラーからの出力電流I3と同じ方向に流れる。より好ましくは、第3カレントミラー120からの出力電流I3の大きさは、基準電流I1の2倍であり、第4カレントミラー130からの出力電流I2の大きさは、基準電流I1の大きさと等しい。さらに、第4カレントミラー130からの出力電流I2は、第3カレントミラー120からの出力電流I3と同じ方向に流れる。これは、第1カレントミラー410、第2カレントミラー110、第3カレントミラー120、および第4カレントミラー130における構成要素のパラメータを適切に構成することによって達成することができる。これを行う方法は、当技術分野で周知であり、その詳細な説明は不要と考えられ、省略される。第1カレントミラー410、第2カレントミラー110、第3カレントミラー120、および第4カレントミラー130は、設計通りの充放電電流を生成するために含まれ、当業者は、当技術分野における技術常識な知識および本明細書に開示された設計概念に基づいて、同じ大きさの充放電電流を生成し、同じ有益な効果を達成する、他の特定の回路を考案することができることを、理解されたい。従って、そのような回路も、本願の範囲内に包含されることが意図される。上記の配置の目的は、充電時間と放電時間との比を0.95-1.05の範囲で達成することであり、I3の大きさをI1の1.9-2.1倍に設定し、I2の大きさをI1の0.95-1.05倍に設定することは、目的を達成するための一例に過ぎないことを、理解されたい。あるいは、例えば、第3カレントミラー120からの出力電流I3の大きさを基準電流I1の3.9-4.1倍とし、第4カレントミラー130からの出力電流I2の大きさを基準電流I1の1.95-2.05倍とし、第4カレントミラー130からの出力電流I2を第3カレントミラーからの出力電流I3と同じ方向に流すことによっても、同様の効果を達成することができる。従って、関連構成要素を適切に構成することによってI3およびI2の大きさを適切に設定することを通じて、コンデンサ200の充電時間と放電時間との比0.95-1.05を達成する任意のおよび全てのアプローチが、本出願の範囲内であることが意図される。
【0056】
さらに、第2カレントミラー110、第3カレントミラー120、および第4カレントミラー130の入力は、図3に示され、以下に詳述されるように、トランジスタを介してコレクタに結合される。
【0057】
第2カレントミラー110の入力を提供するトランジスタQ9のベースは、NPNトランジスタQ10のエミッタに結合され、トランジスタQ9のコレクタは、トランジスタQ10のベースに結合される。さらに、トランジスタQ10のコレクタは、電源VCCに結合される。
【0058】
第3カレントミラー120の入力を提供するトランジスタQ12のベースは、PNPトランジスタQ13のエミッタに結合され、トランジスタQ12のコレクタは、トランジスタQ13のベースに結合される。さらに、トランジスタQ13のコレクタは接地される。
【0059】
第4カレントミラー130の入力を提供するトランジスタQ4のベースは、NPNトランジスタQ5のエミッタに結合され、トランジスタQ4のコレクタは、トランジスタQ5のベースに結合される。さらに、トランジスタQ5のコレクタは、電源VCCに結合される。
【0060】
この配置により、カレントミラーの精度が向上し、復号化回路の正しさが向上する。
【0061】
具体的には、この配置では、第3カレントミラー120が動作している場合、第3カレントミラー120からの出力電流I3は、第4カレントミラーからの出力電流I2に収束して、充電電流I1を形成する。I3の方向を正と定義すると、見られるように、充電電流は正となる。第3カレントミラー120が動作していない場合、第4カレントミラー130からの出力電流I2単独で、放電電流-I1を提供する。I3の方向を正と定義すると、見られるように、放電電流は負となる。従って、充放電電流は同じ大きさであるが、逆方向に流れる。さらに、カレントミラーの作用下で、充電電流と放電電流の両方が一定である。このようにして、コンデンサ200に任意の量の電荷を移動させるのに必要な合計時間と、コンデンサ200から同じ量の電荷を移動させるのに必要な合計時間とのの比は、1である。
【0062】
さらに、充電/放電ユニット100は、低レベルの受信に応答して第3カレントミラー120を動作させ、高レベルの受信に応答して第3カレントミラー120の動作を停止させるように、構成される。この配置により、本実施形態で提供される復号化回路の機能の一部として、コンデンサ200が入力信号に適応して充電および放電されることができる。これは、図3に示すように、トランジスタ140のコレクタを第2カレントミラー110の入力に結合し、トランジスタ140のベースを本実施形態で提供される復号化回路の入力として取ることによって達成されることが、理解されるであろう。他の実施形態では、第3カレントミラー120の動作は、例えば、トランジスタ140のエミッタを第3カレントミラー120の入力に結合することによって、または、スイッチング機能を有する別の回路モジュールを利用することによって、その他の方法で制御され得る。これらの代替は全て、本出願の範囲に包含されると考えられる。
【0063】
以上の説明から分かるように、本実施形態で提供される復号化回路は、実施形態1で提供される復号化回路と同様の有益な効果を提供する。この点に関するさらなる詳細については、実施形態1の説明を参照することができる。
【0064】
図3を参照すると、変換ユニット300は、電圧比較モジュール310を含む。電圧比較モジュール310は、第1入力311を有し、第1入力311は、コンデンサ200に結合され、コンデンサ200上の電圧を受け取る。電圧比較モジュール310は、所定の電圧を受け取るための第2入力312も有する。所定の電圧は、外部の電圧供給ユニット600によって提供されてよく、0よりもわずかに高い値に設定されてよい。この電圧比較モジュール310における詳細については、図3を参照することができる。図3に示す構成では、電圧比較モジュール310は、第1入力311で受け取った電圧が第2入力312で受け取った電圧よりも高い場合には、高レベルを出力するようになっている。それ以外の場合には、低レベルを出力する。変換ユニット300は、電圧比較モジュール310の出力に結合されたイネーブル端子321を有する出力モジュール320も含む。出力モジュール320が図3に示すように構成されている場合、出力モジュール320は、イネーブル端子321で電圧比較モジュール310から高レベルを受け取る場合には、変換ユニット300の出力モジュール320が低レベルを出力するように、動作する。それ以外の場合には、変換ユニット300の出力モジュール320は、高レベルを出力する。さらに、第1カレントミラー410は、電圧比較モジュール310にバイアス電流を供給するための第3出力(図3に示すようにトランジスタQ19のコレクタによって供給される)も有する。第1カレントミラー410は、出力モジュール320にバイアス電流を供給するための第4出力(図3に示すようにトランジスタQ24のコレクタによって供給される)をさらに有する。この点に関する詳細については、図3を参照されたい。
【0065】
図4は、上述したような配置を有する図3の復号化回路における信号の波形を示す。図4の破線で囲んだ部分を参照すると、ΔTのパルス幅を有するパルスが、「01」を示す信号として復号化回路に入力される場合(このパルスは2*ΔTの合計期間続き、ΔTの期間にそれぞれ対応する2ビットを搬送する)、2*ΔT幅のパルスが「0」を示す信号として出力される。ΔTのパルス幅を有するパルスが、「11」を示す信号として入力される場合(このパルスは2*ΔTの合計期間続き、ΔTの期間にそれぞれ対応する2ビットを搬送する)、2*ΔT幅のパルスが「1」を示す信号として出力される。この点に関する詳細については、実施形態1の説明を参照することができる。図4のΔTおよび図2のΔTは、それぞれ「ある期間」への一般的な言及であり、2つの期間は必ずしも等しくないことが理解されるであろう。
【0066】
先行技術では、図5aを参照すると、信号の伝達中に発生するノイズスパイクが入力信号に存在する場合、スパイクは、復号信号に残る。これにより、後続の回路の動作に悪影響を与えたり、深刻な場合には、後続の回路が論理的に無限ループに陥いったりすることさえあり、それ以上正常な動作ができなくなり得る。対照的に、本実施形態の復号化回路は、同じ状況でもあまり影響を受けない。図5bおよび図5cを参照すると、時刻t1から始まりt4で終わる低レベルの信号が復号化回路に入力され、その中にt2から始まりt3で終わるノイズスパイクがあり、さらにt4-t1=ΔT1、t3-t2=ΔT2と仮定すると、コンデンサ200はt1からt2までの期間に充電され、(t2-t1)の期間内に放電される電荷量を蓄積する。この期間では、コンデンサ200上の電圧が所定の電圧よりも高いため、復号化回路は「0」を示す信号を出力する。t2からt3までの期間では、コンデンサ200は放電され、コンデンサ200上の電荷が(t2-t1)-(t3-t2)の期間内に放電可能な量まで減少する。この期間では、コンデンサ200上の電圧が所定の電圧よりも高いままなので、復号化回路は「0」を出力し続ける。t3からt4までの期間では、コンデンサ200は充電され、コンデンサ200上の電荷が(t2-t1)-(t3-t2)+(t4-t3)の期間内に放電可能な量まで増加する。この期間では、コンデンサ200上の電圧は所定の電圧よりも高いままなので、復号化回路は「0」を出力し続ける。t2からt3まで、t4から(t4+ΔT3)までの期間では、コンデンサ200は完全に放電されてゼロになり、ΔT3=(t2-t1)-(t3-t2)+(t4-t3)である。この期間では、コンデンサ200上の電圧は所定の電圧よりも高いままなので、復号化回路は「0」を出力し続ける。その後、新たな復号化サイクルが開始され、復号化回路は「1」を出力し始める。このようにして、復号化回路が「0」を出力する実際の合計時間は、t4-t1+ΔT3=2*(t4-t1)-2*(t3-t2)=2*(ΔT1-ΔT2)であり、予想された2*ΔT1よりも2*ΔT2短くなる。典型的に、ノイズスパイクは非常に狭く、従って差2*ΔT2は、後続のアナログ-デジタル変換回路/チップによって無視されるほど小さい。それ故に、復号化回路からの出力信号波形は、ノイズスパイクの影響を受けず、そのパルス幅は変化するが、後続の回路に影響を与えない。従って、エラー訂正が達成される。
【0067】
本実施形態では説明されていない復号化回路の構成要素やモジュールの他の詳細については、図3を参照することができる。
【0068】
要約すると、実施形態1および2で提供される復号化回路およびチップでは、充電/放電ユニット、コンデンサ、および変換ユニットが順に接続されている。充電/放電ユニット100は、第1レベルの受信に応答してコンデンサ200を充電するように、および第2レベルの受信に応答してコンデンサ200を放電するように、構成される。任意の量の電荷をコンデンサ200に移動させるのに必要な合計時間と、同じ量の電荷をコンデンサ200から移動させるのに必要な合計時間との比は、予め決められている。変換ユニットは、コンデンサ200上の電圧が所定の電圧を超えた場合に第3レベルを出力し、それ以外の場合に第4レベルを出力するように、構成される。第1レベルは、高レベルおよび低レベルのうちの一方であり、第2レベルは、高レベルおよび低レベルのうちの他方である。第3レベルは、高レベルおよび低レベルのうちの一方であり、第4レベルは、高レベルおよび低レベルのうちの他方である。この設計は、コンデンサの充電および放電サイクルを制御するためにHBSプロトコルの符号化特性を利用することによる信号復号化を可能にし、このようにしてMCUの計算負荷を軽減する。また、コンデンサの電荷量が急激に変化しないという挙動を利用することによって、伝送信号におけるノイズの悪影響を排除し、HBSプロトコルを利用する場合に拡張された有効伝送距離を可能にする。さらに、コンデンサの充電時間と放電時間との比を所定の値に設定することで、異なるクロックレートで伝送される信号に自己適応性を付与する。このようにして、重いMCUの計算負荷、エラー訂正と伝送距離とのトレードオフ、および異なるクロックレートで伝送される信号への不十分な適応性を含む従来技術の問題点を解決する。
【0069】
上記に示した説明は、本発明のいくつかの好ましい実施形態の説明にすぎず、いかなる意味においてもその範囲を限定することを意図していない。上記の教示に基づいて当業者によってなされる任意のおよび全ての変更および修正は、添付の「特許請求の範囲」で定義される範囲内にある。


図1
図2
図3
図4
図5a
図5b
図5c